
MATH 465, LECTURE 4: TRANSVERSALITY

J. FRANCIS, NOTES BY I. BOBKOVA

In this lecture we will prove Thom’s Transversality Theorem and apply it to complete the proof
of the equivalence Ωun

n
∼= πnMO begun in the previous lecture.

1. Transversality

An idea of “general position” seems to have existed very early in topology. This was made precise
in the notion of a transverse intersection, which possibly originates in Thom’s thesis in the early
1950s.

Definition 1.1. Let f : P → E be a smooth map of manifolds and i : M → E a smooth submanifold
of E. f is transverse to i at a point x of M if, for any p ∈ f−1{x}, the induced map

df + di : TpP ⊕ TxM // TxE

is surjective. If f is transverse to i at every point x ∈M , then f is transverse to i, notated f t i.

Remark 1.2. If f−1{x} is the empty set, then f is automatically transverse to i at x.

The notion of transversality generalizes of that a regular value of a map f : P → E. That is, we
have the following:

Example 1.3. Let the submanifold M consist of a single point M = ∗ x−→ E. In this case, f is
transverse to x if and only if x is a regular value of f .

As observed by Pontryagin in the 30s, the inverse image of a regular value always has the structure
of a smooth manifold; this feature is part of what gives the notion of a regular value its importance.
This generalizes.

Proposition 1.4. If f t i, then f−1M ↪→ P is a smooth submanifold.

Proof. Apply the inverse function theorem. �

Regular values occur in abundance, as follows from the the well-known theorem of Brown, Sard
and Morse.

Theorem 1.5 (Brown–Sard–Morse). For any smooth map of manifolds f : P → E, the regular
values of f form a dense subspace of E.

Thom’s Transversality Theorem, the key geometric input making the work of [5] go, is a gener-
alization of this result.

Theorem 1.6 (Thom Transversality). Let P be a smooth manifold, and let i : M ↪→ E be a smooth
submanifold. The subspace Mapsm

ti (P,E) ⊂ Mapsm(P,E), consisting of those maps f : P → E for
which f is transverse i, is dense.

Remark 1.7. Additionally, every map P → E can be approximated within arbitrarily small ε by a
smooth; i.e., Mapsm(P,E) is a dense subspace of Map(P,E). Thus, by composing, we obtain that
transverse to M maps, Mapsm

ti (P,E), form a dense subspace of all maps, Map(P,E).
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We will in fact prove a modification of this theorem, namely, the following statement: For any
smooth map f : P → E there exists a smooth embedding s : M → E arbitrarily close to i, and for
which f is transverse to s. This is easily seen to be equivalent.

Proof. First, we will demonstrate that the transversality theorem for a general manifold E is a
consequence of the particular case in which E has the structure of a vector bundle over M . A
tubular neighborhood Ni of the embedding i is an open submanifold of E, so the inverse image
f−1Ni therefore defines a smooth open submanifold of P :

P
f // E

f−1Ni
?�

OO

f
// Ni

?�

open

OO

Mz
oo

i

``AAAAAAAA

Now, let us assume the the transversality theorem for P ′ = f−1Ni and E′ = Ni. With this
assumption, we can find an embedding s : M → Ni arbitrarily close to the zero section z and for
which f and s are transverse in Ni. Composing the map s with the embedding of Ni into E, we
thus obtain a map s̃ : M → E that is transverse to f : P → E.

Thus, it suffices to prove the transversality theorem under the assumption that E is a vector
bundle over M . We will first consider the case where the vector bundle is trivial, which we will then
make use of in the case of a general vector bundle.

First case: E a trivial vector bundle.
Let E be a trivial k-dimensional vector bundle over M , E ∼= M × Rk, and let f : P → E be any
smooth map, as before. Given a point x : ∗ → Rk, consider the following commuting diagram:

P
f // M × Rk

π

{{wwwwwwwww

Rk M × {x}

yyrrrrrrrrrr

3 S

id×x
ffLLLLLLLLLL

{x}
1 Q

ccGGGGGGGGG
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Observe that x is a regular value of composite map π ◦ f if and only if f is transverse to id × x.
To see this, first assume that the derivative map d(π ◦ f)|p is a surjection onto the tangent space
TxRk, for p a point in the inverse image f−1(M × {x}). Then d(π∗f)|p ⊕ d(id × x) is a surjection
onto Tf(p)M × Rk, since this tangent space Tf(p) can be split as a direct sum TxRk ⊕ TpP , where
each of these summands is surjected upon by one of the two derivative maps. The converse, that
the transversality of f and id×x implies that x is a regular value of π ◦f , obtains by the reverse bit
of linear algebra. The Brown–Sard–Morse theorem now implies that the collection of x ∈ Rk that
regular values of π ◦ f forms a dense subspace of Rk. Thus, a value of x for which f t id × {x},
is dense in Rk. We may therefore select a regular value x arbitrarily close to the origin 0 ∈ Rk,
and f will be transverse to id× x. This proves the transversality theorem in the case of E a trivial
bundle.

Second case: E a general vector bundle.
Let E be any vector bundle over M , and let f : P → E be a smooth map, as before. We can choose
E⊥ such that the direct sum of vector bundles E⊕E⊥ is a trivial bundle. Choosing a trivialization
E ⊕ E⊥ ∼= M × Rk, our situation is summarized in the following diagram:
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f−1(E ⊕ E⊥)
f̃ //

��

E ⊕ E⊥

πE

��

∼
M × Rk

P
f // E M

id×x

OO

By forming the pullback f−1(E ⊕E⊥) (which is manifold, since it fibers smoothly over P ), we put

ourselves in the situation of the first case: For the smooth map f̃ : f−1(E ⊕ E⊥)→M × Rk, valued
in a trivial vector bundle, there exists a a point x : ∗ → Rk such that the map id×x : M →M ×Rk
is transverse to f̃ .

We now define the embedding s : M → E to be the composite πE ◦ (id× x). We now show that
f is indeed transverse to s, and this will complete the proof of the transversality theorem.

The transversality f̃ t id× {x} implies that for any e ∈ E ⊕ E⊥ in the image of f̃ and id× {x}
and ẽ ∈ ˜f−1(e) the following diagram commutes

Tẽf
−1(E ⊕ E⊥)⊕ TeM // //

���� )) ))SSSSSSSSSSSSSS
Te(E ⊕ E⊥)

����
Tπ(ẽ)E ⊕ TeM // TπE(e)E

The surjectivity of the dotted arrow in the above diagram is forced by the surjectivity of all
the other maps in this diagram, so we conclude the transversality of f t πE ◦ (id × x). I.e., f is
transverse to s. �

We now make immediate use of the transversality theorem to finish Thom’s proof of the equiva-
lence Ωun

n
∼= πnMO.

2. Completion of the proof of Ωn ∼= πnMO

Recall from the last lecture the construction of well-defined homomorphism Θ : Ωun
n → πnMO

defined via the Pontryagin-Thom collapse map of the tubular neighborhood of an n-manifold M
embedded into Euclidean space.

Theorem 2.1. Θ is an isomorphism.

Proof. Let us consider a class [f ] ∈ πnMO and choose a representative

f : (Sn+k, ∗)→ (Th(γks ), ∗)
for k sufficiently large. By smooth approximation, we may select f so that its restriction f ′ to the
inverse image of complement of a small neighborhood of the basepoint of Th(γks ),

f ′ : Sn+k − f−1(∗) −→ Th(γks )− {∗} ∼= Disk◦(γks )

is a smooth map of manifolds. (For convenience, I assume that this neighborhood is just the point,
itself.) Our goal is to define an n-dimensional manifold M which corresponds to this class [f ], so
that Θ([M ]) = [f ]. This will, of course, imply the surjectivity of our map Θ.

We may apply Thom’s Transversality Theorem and choose an embedding s of Grk(Rs) ↪→
Th(γks ) − {∗} near the zero section, such that s is transverse to f ′. Define the desired n-manifold
M as a pullback of the following diagram:

f ′−1(Grk(Rs))

��

� � // Sn−k − f−1(∗)

��
Grk(Rs) � � // Th(γks )− {∗}
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I.e., M is the transverse intersection of Sn+k and Grk(Rs) inside Th(γks ).
Note that M comes with an embedding into Sn+k, and the basepoint of Sn+k is, by construction,

not in the image of this embedding. By identifying Sn+k−{∗} ∼= Rn+k, we obtain an embedding of
M into the Euclidean space Rn+k. Applying the Pontryagin-Thom collapse to the normal bundle of
this embedding, as in the previous lecture, we obtain a pointed map Θ(M) : Sn+k →MO(n+ k).

Let us now construct a homotopy between the map Θ(M) and our original map f . f can be
chosen to so that its restriction to M exactly classifies the normal bundle of M , and its restriction
to the tubular neighborhood of M in Sn+k agrees with the Pontryagin-Thom collapse map. By
contracting whatever the map f does outside of M ’s tubular neighborhood to zero, we obtain a
homotopy between f and Θ(M), and thus we have shown the surjectivity of Θ.

Injectivity of Θ: Since Θ is a homomorphism, to demonstrate the injectivity of Θ it suffices to
assume that for an n-manifold M for which Θ[M ] = 0, that it is therefore the case that M ' ∂Wn+1.
I.e., M is a boundary of an (n+1)-manifold. Since we are assuming the map Θ(M) is null-homotopic,
let us choose a regular homotopy

[0, 1]× Sn+k → Th(γks )

from the map Θ(M) to the constant map {1}×Sn+k → ∗ → Th(γks ). Note that the above transverse
inverse image construction applied to the constant map produces an empty n-manifold. Thus,
applying this the transversality construction to the map

[0, 1)× Sn+k ↪→ [0, 1]× Sn+k → Th(γks )

produces an (n+ 1)-dimensional manifold Wn+1 with boundary M .
�

Remark 2.2. The above proof can repeated essentially verbatim to prove the more general isomor-
phism ΩB∗

∼= π∗MB. Here B consists of a sequence . . . Bn → Bn+1 with compatible fibrations
αn : Bn → BO(n), ΩBn consists of cobordism classes of n-manifolds with structure B on their
normal bundles, and MB is the (Thom) spectrum with MB(n) = Th(α∗nγ

n). The proof is the
same, one need only verify at each step that the B structure can be carried along through each of
constructions.
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