MATH 465, LECTURE 6: HANDLES

J. FRANCIS, NOTES BY Y. SHEN

Before beginning our study of the handlebody decompositions of manifolds, I want to give a few
of the very striking consequences of Thom’s calculation of 7, MO sketched last time.

1. THOM’S THEOREM, CONT.
Recall that, in the last lecture, we sketched a proof of the following theorem:

Theorem 1.1 (Thom). There is an equivalence © : Q¥ — 7, MO = Fylz;|i # 2™ — 1]. That
is, the unoriented cobordism ring is a polynomial algebra on generators of each positive degree not
equal to 2™ — 1, for any n. Furthermore, the spectrum MO is equivalent to a product of mod 2
Eilenberg-MacLane spectra.

This immediately implies the following;:

Corollary 1.2. Two smooth manifolds M and N are unoriented cobordant if and only if their
Stiefel- Whitney numbers agree, i.e., (w(Tar), [M]) = (w(Tn),[N]) for every class w € H*(BO,F).

Proof. The Hurewicz homomorphism is injective for any mod-2 Eilenberg-MacLane spectrum HF3[n].
Now recall that MO is a product of such spectra. The Hurewicz homomorphism h : 7, MO —
H,.(MO;TF,) is injective. Using the Thom isomorphism H,(MO,Fy) = H,(BO,F3), we have an
injection ho © : Q'™ — H,(BO,F3). For a manifold M, the Stiefel-Whitney number of the stable
normal bundle is (w(Nys), [M]) = (w,hO[M]). Since coefficients are in a field, n-dimension ho-
mology classes are distinguished by pairing them again n-dimensional cohomology classes, so equal
Stiefel-Whitney numbers imply the equality of hO[M] and hO[N], hence of [M] and [N]. O

We will next couple this finding with the following surprising result of Wu. Recall that the Wu
class vy € H*(M,F5) is defined by the property that for any cohomology class x,,_ € H" % (M;Fs),
then there is an equality vgx,—r = qu (n—k). By Poincaré duality, such a vy exists and is unique.

In the following theorem, M is a manifold, w is the total Stiefel-Whitney class of M, w =
> wi(M), v is the total Wu class of M, and Sq is the total Steenrod operation Sq = Zj Sq’.

Theorem 1.3 (Wu). There is equality w = Sq(v). In particular, the Stiefel-Whitney classes of an
n-dimensional manifold M are determined by the homotopy type of M.

See [1] for a proof of Wu’s theorem. Combining these results, we obtain:

Corollary 1.4. If two smooth compact manifolds M and N are homotopy equivalent, then they
are unoriented cobordant. Ie., there exists a smooth compact manifold with boundary W and a
diffeomorphism M U N = W

Proof. Since the Wu class v is determined by the homotopy type of M, as is the action of the
Steenrod squares, thus the Stiefel-Whitney classes of M and N agree. Consequently, their Stiefel-
Whitney numbers agree, and Thom’s theorem implies that they are thereby cobordant.

|

This is a completely inobvious result, and a happy coincidence between classifying manifolds
within a homotopy type, the eventual goal of surgery theory, and of classifying manifolds up to
cobordism.
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2. SURGERY

We now proceed to the main topic of this lecture: Surgery. In particular, we will begin our study
of handlebody decompositions. Thom (and Dold) solved the classification of manifolds up to cobor-
dism: There is a list of classes (given by combinations of real projective spaces and hypersurfaces
in products of real projective spaces), and any manifold M is cobordant to one in this list. Exactly
which one can be determined by the computation of all the Stiefel-Whitney numbers of M. Done.
We could now ask for a complementary technique for building manifolds for which:

e Given any representative M"~! of a cobordism class in QU |, this technique enables the
construction of all the other manifolds cobordant to M;

e This technique serves as a analogue in the setting of manifolds of the theory of building
homotopy types (of topological spaces) as CW-complexes.

Surgery is this technique. This begins with the following modest observation: S9~! x D"~? and
D7 x S7~97! both have the same boundary, 8 = S9! x §7~7~!. Given an embedding of one of
these manifolds into an (n — 1)-manifold M, we could remove its interior and glue in the other one
along the common boundary. These two manifolds will be cobordant, as is made apparent following
construction.

Definition 2.1 (Adding a g-handle). Let (W,0W) be an n-manifold with boundary, and let ¢? :
S9=1 x D"~9 < 9W be a smooth embedding. Attaching a handle along the map ¢? produces a
new manifold, W + ¢4, defined as the pushout:

%%

Dq X D’I'L—q W USq—lXDn—q Dq X D’Il—q = W + qu

§971 x prmat—s gW

Remark 2.2. Such an embedding ¢ can equivalently be thought of as just the embedding ¢?| g1 {0y :
S971 x {0} — OW together with a trivialization of the normal bundle of this embedding.

W 4 @7 is clearly a topological manifold with boundary. It additionally has a smooth structure,
which we will deal with at the end of this lecture. The boundary of this new n-manifold, (W + ¢)
is given by the union of the respective boundaries of W and D? x D™~ 9 over the their intersection:

AW +¢7) =W — (59— 1 x D" ") Uga—1xgn-a—r DI x §77071,
Here, D is the open interior of the disk D.

Ezample 2.3. We construct a cobordism between the 2-sphere 52 and Xy, the surface of genus g.
We could, of course, exhibit these surfaces separately as boundaries of distinct 3-manifolds and then
take their disjoint union; for the sake of illustrating our technique, we will construct a connected
cobordism, the existence of which is perhaps less immediately clear.

Begin with W = 52 x [0, 1], the boundary of which consists of has two disjoint 2-spheres JyW =
S% x {0} and 1 W = §% x {0}. We will alter ;W by adding a g-handle, for ¢ = 1. Choose an
embedding ¢! : S° x D? < O, W.

Then, by our construction above, the outgoing boundary component of our 3-manifold obtained
by adding the handle along ¢ is 01(W + ¢!) = S2 — ¢(S° x D2) Ugoxgt D' x S'. Unpacking
this, we realize we removed the interiors of two disjoint disks in the image of ¢! inside the sphere,
and then attached on a cylinder (the handle) connecting the two boundary circles. In this way,
AW + ¢') = S?2 11 X;. We can now repeat this process to construct a cobordism between the sphere
and a surface of any genus.

Moreover, this process is reversible by adding another handle, but of a different index. Let us
start instead with W = X, x [0, 1] and select an embedding ¢? : S' x D' < 9;W. To add a handle
along ¢, first removes the embedded cylinder, then cap off the ends with two 2-disks. In the case
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of g = 1, we obtain the sphere from the one-holed torus; and in the case of g = 0, we obtain two
disjoint spheres from X, = S2.

We now address the existence of a smooth structure on W + ¢?. Intuitively, we can imagine
smoothing out the “kinks” along the boundary of the attachment of D? x D"~ ? along the image of
¢ in OW. We will us make this precise. First, recall that a choice of smooth structure on a manifold
M is equivalent to the choice of subsheaf O3} C Oy of “smooth functions,” which must satisfy a
local condition: Each each point x in M has a neighborhood U homeomorphic to R™, such that this
homeomorphism defines an isomorphisms of rings between O (U) and the ring of smooth functions
on R™. In other words, specifying a smooth structure on a topological manifold is equivalent to
specifying which functions are smooth.

To our case, first choose a trivialization of the tubular neighborhood of the inclusion of i : OW <

w.
GWC\ | /W
N, & OW x RZO

The space of such choices of a trivialization is contractible. Similarly, choose a trivialization

Sa—1 x prac d DY x D"1

S

Sq—l X RSO

of the tubular neighborhood of S9=1 x D79 in the n-disk. Now consider the following smooth
embeddings,
STl x D" x R5g C ST x D1 xR D ST x D" x Ry

which defines an open embedding of C S7971 x D"~9 x R into W + ¢. To specify the smooth
structure of W + ¢, we can essentially declare to such that this embedding is smooth. More pre-
cisly, define function f € Ow g to be smooth if and only if its restrictions f|w, f|pixpn-« and
flga-1xprn-axr are smooth. This defines a subsheaf OW'y s C Owg and, thus, a smooth structure
on W + ¢.
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