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Preface

This is a book about the theory of topological modular forms. It is also a
record of the efforts of a group of graduate students to learn that theory at the
2007 Talbot Workshop, and so a book born of and steeped in the Talbot vision.

In the fall of 2003, Mike Hopkins taught a course at MIT about ¢tmf. Our gen-
eration of Cambridge algebraic topologists, having survived and thrived in Haynes
Miller’s Kan seminar, found in Mike’s class our next, and really our last common,
mathematical crucible. The course hacked through the theory of algebraic modu-
lar forms, formal groups, multiplicative stable homotopy theory, stacks, even more
stacks, moduli stacks of elliptic curves, Bousfield localization, Morava K- and E-
theory, the arithmetic and Hasse squares, André-Quillen cohomology, obstruction
theory for moduli of associative and commutative ring spectra—by this point we
were having dreams, or maybe nightmares, about the spiral exact sequence.

In the middle of the course, we all flew over to Miinster for a week-long workshop
on tmf with lectures by Mike, Haynes, Matt Ando, Charles Rezk, and Paul Goerss.
A transatlantic mix of students spent the late afternoons coaxing and cramming the
knowledge in at a cafe off Steinfurter Strasse; there we devised a plan to reconvene
and sketched a vision of what would become the Talbot Workshops: a gathering
for graduate students, focused on a single topic of contemporary research interest,
lectured by graduate students and guided by a single faculty mentor, having talks in
the morning and in the evening and every afternoon free for discussion and outdoor
activities, with participants sleeping and lecturing and cooking together under the
same roof. We pitched it to Mike and Haynes and they agreed to back a ragtag
summit. Talbot was born.

Three years later, in 2007, we decided to bring Talbot home with a workshop
on tmf, mentored by Mike Hopkins. Mike stopped by Staples on his way to the
workshop and picked up a big red “That was easy” button. Throughout the work-
shop, whenever he or anyone else completed a particularly epic spectral sequence
computation or stacky decomposition, he’d hit the button and a scratchy electronic
voice would remind us, “That was easy!” It became the workshop joke (for much
of it was evidently not easy) and mantra (for shifting perspective, whether to mul-
tiplicative stable homotopy or to stacky language or to a suitable localization, did
make the intractable seem possible).

This book is a record and expansion of the material covered in the Talbot
2007 workshop. Though the authors of the various chapters have brought their
own expositional perspectives to bear (particularly heroically in the case of Mark
Behrens), the contemporary material in this book is due to Mike Hopkins, Haynes
Miller, and Paul Goerss, with contributions by Mark Mahowald, Matt Ando, and
Charles Rezk.

viii
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1. Elliptic cohomology

A ring-valued cohomology theory E is complex orientable if there is an ‘orien-
tation class’ z € E?(CP*) whose restriction along the inclusion S? 2 CP! — CP™
is the element 1 in E°S® = E2CP!. The existence of such an orientation class
implies, by the collapse of the Atiyah—Hirzebruch spectral sequence, that

E*(CP>) = E*[la]].

The class z is a universal characteristic class for line bundles in E-cohomology; it
is the E-theoretic analogue of the first Chern class. The space CP> represents the
functor

X — {isomorphism classes of line bundles on X},

and the tensor product of line bundles induces a multiplication map CP> x CP>° —
CP. Applying E* produces a ring map

E*[[z] = E*(CP®) — E*(CP™ x CP®) = E*[[z1, 25]};

the image of  under this map is a formula for the E-theoretic first Chern class
of a tensor product of line bundles in terms of the first Chern classes of the two
factors. That ring map E*[[z]] — E*[[z1,22]] is a (1-dimensional, commutative)
formal group law—that is, a commutative group structure on the formal completion
Al at the origin of the affine line A! over the ring E*.

A formal group often arises as the completion of a group scheme at its identity
element; the dimension of the formal group is the dimension of the original group
scheme. There are three kinds of 1-dimensional group schemes:

(1) the additive group G, = A! with multiplication determined by the map
Zlx] — Z[x1, z2] sending z to x1 + x2,
(2) the multiplicative group G,,, = A'\{0} with multiplication determined by
the map Z[z*'] — Z[zE!, 25 sending = to 29, and
(3) elliptic curves (of which there are many isomorphism classes).
1
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Ordinary cohomology is complex orientable, and its associated formal group is
the formal completion of the additive formal group. Topological K-theory is also
complex orientable, and its formal group is the formal completion of the multiplica-
tive formal group. This situation naturally leads one to search for ‘elliptic’ coho-
mology theories whose formal groups are the formal completions of elliptic curves.
These elliptic cohomology theories should, ideally, be functorial for morphisms of
elliptic curves.

Complex bordism MU is complex orientable and the resulting formal group
law is the universal formal group law; this means that ring maps from MU, to R
are in natural bijective correspondence with formal group laws over R. Given a
commutative ring R and a map MU, — R that classifies a formal group law over
R, the functor

X = MU(X)®uu. R

is a homology theory if and only if the corresponding map from Spec(R) to the
moduli stack M pg of formal groups is flat. There is a map

Mell — MFG

from the moduli stack of elliptic curves to that of formal groups, sending an elliptic
curve to its completion at the identity; this map is flat. Any flat map Spec(R) —
My therefore provides a flat map Spec(R) — M pg and thus a homology theory, or
equivalently, a cohomology theory (a priori only defined on finite CW-complexes).
In other words, to any affine scheme with a flat map to the moduli stack of elliptic
curves, there is a functorially associated cohomology theory.

The main theorem of Goerss—Hopkins—Miller is that this functor (that is,
presheaf)

{ﬂat maps from affine schemes to Mell} — {multiplicative cohomology theories},

when restricted to maps that are étale, lifts to a sheaf
Owr . {étale maps to Me”} — {Eoo—ring Spectra}.

(Here the subscript ‘top’ refers to it being a kind of ‘topological’, rather than
discrete, structure sheaf.) The value of this sheaf on My itself, that is the E-ring
spectrum of global sections, is the periodic version of the spectrum of topological
modular forms:

TMF := O"P(My;) = T'(M g, O'P).

The spectrum TMF owes its name to the fact that its ring of homotopy groups
is rationally isomorphic to the ring

Zlea, ca, A1 /(] — ¢§ — 1728A) = P T'( My, w®")
n>0

of weakly holomorphic integral modular forms. Here, the elements c4, cg, and A
have degrees 8, 12, and 24 respectively, and w is the bundle of invariant differentials
(the restriction to M,y of the (vertical) cotangent bundle of the universal elliptic
curve £ = M,y;). That ring of modular forms is periodic with period 24, and the
periodicity is given by multiplication by the discriminant A. The discriminant is
not an element in the homotopy groups of TMF, but its twenty-fourth power A%* €
7o42 (TMF) is, and, as a result, m,(TMF) has a periodicity of order 242 = 576.
2
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One would like an analogous FE..-ring spectrum whose homotopy groups are
rationally isomorphic to the subring

Zlcy, ce, A)/(c3 — g — 1728A)

of integral modular forms. For that, one observes that the sheaf Q%P is defined
not only on the moduli stack of elliptic curves, but also on the Deligne-Mumford
compactification M,y of the moduli stack—this compactification is the moduli
stack of elliptic curves possibly with nodal singularities. The spectrum of global
sections over My is denoted

Tmf = Omp(ﬂeu) = F(Mell, (’)tOp).

The element A?* € 742 (Tmf) is no longer invertible in the homotopy ring, and
so the spectrum T'mf is not periodic. This spectrum is not connective either, and
the mixed capitalization reflects its intermediate state between the periodic version
TMF and the connective version tmf, described below, of topological modular
forms.

In positive degrees, the homotopy groups of T'mf are rationally isomorphic to
the ring Zcy, ¢, A]/(c3 — 2 — 1728A). The homotopy groups 7_1, ..., T_gg are all
zero, and the remaining negative homotopy groups are given by:

T_n(Tmf) = [mp_21(Tmf)] @ [Tn—22(Tmf)]

torsion-free torsion’

This structure in the homotopy groups is a kind of Serre duality reflecting the
properness (compactness) of the moduli stack M ;.

If we take the (—1)-connected cover of the spectrum Tmf, that is, if we kill all
its negative homotopy groups, then we get

tmf = Tmf{(0),

the connective version of the spectrum topological modular forms. This spectrum
is now, as desired, a topological refinement of the classical ring of integral modular
forms. Note that one can recover TMF from either of the other versions by inverting
the element A%* in the 576" homotopy group:

TMF = tmf[A~%*] = Tmf[A™24).

There is another moduli stack worth mentioning here, the stack ﬂ:” of elliptic
curves with possibly nodal or cuspidal singularities. There does not seem to be
an extension of O'%P to that stack. However, if there were one, then a formal
computation, namely an elliptic spectral sequence for that hypothetical sheaf, shows
that the global sections of the sheaf over ﬂ:” would be the spectrum ¢mf. That
hypothetical spectral sequence is the picture that appears before the preface. It is
also, more concretely, the Adams—Novikov spectral sequence for the spectrum tmf.

So far, we have only mentioned the connection between ¢mf and modular forms.
The connection of tmf to the stable homotopy groups of spheres is equally strong
and the unit map from the sphere spectrum to tmf detects an astounding amount
of the 2- and 3-primary parts of the homotopy 7. (S) of the sphere.

The homotopy groups of tmf are as follows at the prime 2:

3
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and as follows at the prime 3:

S o o o o 5, o 54 54 54 % ,

0 1 s 12 16 20 21 28 32 36 10 1 15

Here, a square indicates a copy of Z and a dot indicates a copy of Z/p. A little
number n drawn in a square indicates that the copy of Z in 7. (¢mf) maps onto an
index n subgroup of the corresponding Z in the ring of modular forms. A vertical
line between two dots indicates an additive extension, and a slanted line indicates
the multiplicative action of the generator n € m(¢mf) or v € w3(tmf). The y-
coordinate, although vaguely reminiscent of the filtration degree in the Adams
spectral sequence, has no meaning in the above charts.

Note that, at the prime 2, the pattern on the top of the chart (that is, above
the expanding ko pattern on the base) repeats with a periodicity of 192 = 8 -
24. A similar periodicity (not visible in the above chart) happens at the prime 3,
with period 72 = 324 . Over Z, taking the least common multiple of these two
periodicities results in a periodicity of 24 - 24 = 576.

2. A brief history of tmf

In the sixties, Conner and Floyd proved that complex K-theory is determined
by complex cobordism: if X is a space, then its K-homology can be described as
K (X) & MU(X) ®yu, K., where K, is a module over the complex cobordism
ring of the point via the Todd genus map MU, — K,. Following this observation,
it was natural to look for other homology theories that could be obtained from
complex cobordism by a similar tensor product construction. By Quillen’s theorem
(1969), MU, is the base ring over which the universal formal group law is defined;
ring maps MU, — R thus classify formal groups laws over R.

Given such a map, there is no guarantee in general that the functor X —
MU,(X) ®pmy, R will be a homology theory. If R is a flat MU,-module, then
long exact sequences remains exact after tensoring with R and so the functor in
question does indeed define a new homology theory. However, the condition of
being flat over MU, is quite restrictive. Landweber’s theorem (1976) showed that,
because arbitrary MU,-modules do not occur as the M U-homology of spaces, the
flatness condition can be greatly relaxed. A more general condition, Landweber
exactness, suffices to ensure that the functor MU, (—)®v, R satisfies the axioms of
a homology theory. Shortly after the announcement of Landweber’s result, Morava
applied that theorem to the formal groups of certain elliptic curves and constructed
the first elliptic cohomology theories (though the term ‘elliptic cohomology’ was
coined only much later).

In the mid-eighties, Ochanine introduced certain genera (that is homomor-
phisms out of a bordism ring) related to elliptic integrals, and Witten constructed
a genus that took values in the ring of modular forms, provided the low-dimensional
characteristic classes of the manifold vanish. Landweber—Ravenel-Stong made ex-
plicit the connection between elliptic genera, modular forms, and elliptic coho-
mology by identifying the target of the universal Ochanine elliptic genus with the

5
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coefficient ring of the homology theory X +— MU.(X) ®u. Z[1][6, e, A7 asso-
ciated to the Jacobi quartic elliptic curve y? = 1 — 2622 + ex* (here, A is the
discriminant of the polynomial in x). Segal had also presented a picture of the re-
lationship between elliptic cohomology and Witten’s physics-inspired index theory
on loop spaces. In hindsight, a natural question would have been whether there
existed a form of elliptic cohomology that received Witten’s genus, thus explaining
its integrality and modularity properties. But at the time, the community’s at-
tention was on Witten’s rigidity conjecture for elliptic genera (established by Bott
and Taubes), and on finding a geometric interpretation for elliptic cohomology—a
problem that remains open to this day, despite a tantalizing proposal by Segal and
much subsequent work.

Around 1989, inspired in part by work of McClure and Baker on A, structures
and actions on spectra and by Ravenel’s work on the odd primary Arf invariant,
Hopkins and Miller showed that a certain profinite group known as the Morava
stabilizer group acts by A, automorphisms on the Lubin—Tate spectrum FE,, (the
representing spectrum for the Landweber exact homology theory associated to the
universal deformation of a height n formal group law). Of special interest was
the action of the binary tetrahedral group on the spectrum F, at the prime 2.
The homotopy fixed point spectrum of this action was called EOs, by analogy
with the real K-theory spectrum KO being the homotopy fixed points of complex
conjugation on the complex K-theory spectrum.

Mahowald recognized the homotopy of EOy as a periodic version of a hypo-
thetical spectrum with mod two cohomology A// A(2), the quotient of the Steenrod
algebra by the submodule generated by Sq', Sq?, and S¢*. It seemed likely that
there would be a corresponding connective spectrum eo, and indeed a bit later Hop-
kins and Mahowald produced such a spectrum; (in hindsight, that spectrum eo is
seen as the 2-completion of ¢tmf). However, Davis-Mahowald (1982) had proved, by
an intricate spectral sequence argument, that it is impossible to realize A/ A(2) as
the cohomology of a spectrum. This conundrum was resolved only much later, when
Mahowald found a missing differential around the 55" stem of the Adams spectral
sequence for the sphere, invalidating the earlier Davis—Mahowald argument.

In the meantime, computations of the cohomology of MO(8) at the prime 2
revealed an A//A(2) summand, suggesting the existence of a map of spectra from
MO(8) to eoy. While attempting to construct a map MO(8) — FEO,, Hopkins
(1994) thought to view the binary tetrahedral group as the automorphism group of
the supersingular elliptic curve at the prime 2; the idea of a sheaf of ring spectra
over the moduli stack of elliptic curves quickly followed—the global sections of that
sheaf, TMF, would then be an integral version of EQOs.

The language of stacks, initially brought to bear on complex cobordism and
formal groups by Strickland, proved crucial for even formulating the question TMF
would answer. In particular, the stacky perspective allowed a reformulation of
Landweber’s exactness criterion in a more conceptual and geometric way: MU, —
R is Landweber exact if and only if the corresponding map to the moduli stack of
formal groups, Spec(R) — M ¢, is flat. From this viewpoint, Landweber’s theorem
defined a presheaf of homology theories on the flat site of the moduli stack M pg of
formal groups. Restricting to those formal groups coming from elliptic curves then
provided a presheaf of homology theories on the moduli stack of elliptic curves.
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Hopkins and Miller conceived of the problem as lifting this presheaf of ho-
mology theories to a sheaf of spectra. In the 80s and early 90s, Dwyer, Kan,
Smith, and Stover had developed an obstruction theory for rigidifying a diagram
in a homotopy category (here a diagram of elliptic homology theories) to an honest
diagram (here a sheaf of spectra). Hopkins and Miller adapted the Dwyer—Kan—
Stover theory to treat the seemingly more difficult problem of rigidifying a diagram
of multiplicative cohomology theories to a diagram of A.,-ring spectra. The re-
sulting multiplicative obstruction groups vanished, except at the prime 2—Hopkins
addressed that last case by a direct construction in the category of K (1)-local Fo.-
ring spectra. Altogether the resulting sheaf of spectra provided a universal elliptic
cohomology theory, the spectrum TMF of global sections (and its connective ver-
sion tmf). Subsequently, Goerss and Hopkins upgraded the A, obstruction theory
to an obstruction theory for F-ring spectra, leading to the definitive theorem of
Goerss—Hopkins—Miller: the presheaf of elliptic homology theories on the compact-
ified moduli stack of elliptic curves lifts to a sheaf of F.,-ring spectra.

Equipped finally with the spectrum ¢mf, Ando—Hopkins—Strickland (2001) es-
tablished the connection to elliptic genera by constructing a tmf-orientation for
almost complex manifolds with certain vanishing characteristic classes; specifically,
they built a map of ring spectra from MU (6) to tmf. This map was later refined
by Ando-Hopkins—Rezk to a map of E.-ring spectra MO(8) — tmf that recov-
ers Witten’s genus at the level of homotopy groups. In the meantime, the source
spectrum MO(8) of that map had been optimistically rebranded as MString.

Later, an interpretation of ¢tmf was given by Lurie (2009) using the theory of
spectral algebraic geometry, based on work of Téen and Vezzosi. Lurie interpreted
the stack M, with its sheaf QP as a stack not over commutative rings but over
F-ring spectra. Using Goerss—Hopkins—Miller obsturction theory and a spectral
form of Artin’s representability theorem, he identified that stack as classifying ori-
ented elliptic curves over E-ring spectra. Unlike the previous construction of tmf
and of the sheaf O'°P, this description specifies the sheaf and therefore the spectrum
tmf up to a contractible space of choices.

3. Overview
Part I

Chapter 1: Elliptic genera and elliptic cohomology. One-dimensional
formal group laws entered algebraic topology though complex orientations, in an-
swering the question of which generalized cohomology theories E carry a theory of
Chern classes for complex vector bundles. In any such theory, the E-cohomology of
CP® is isomorphic to E*[[¢1]], the E-cohomology ring of a point adjoined a formal
power series generator in degree 2. The tensor product of line bundles defines a
map CP* x CP* — CP°, which in turn defines a comultiplication on E*[[¢1]],
i.e., a formal group law. Ordinary homology is an example of such a theory; the
associated formal group is the additive formal group, since the first Chern class
of the tensor product of line bundles is the sum of the respective Chern classes,
(L@ L) = (L) + e1(L'). Complex K-theory is another example of such a
theory; the associated formal group is the multiplicative formal group.

Complex cobordism also admits a theory of Chern classes, hence a formal group.
Quillen’s theorem is that this is the universal formal group. In other words, the
formal group of complex cobordism defines a natural isomorphism of MU* with

7
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the Lazard ring, the classifying ring for formal groups. Thus, a one-dimensional
formal group over a ring R is essentially equivalent to a complex genus, that is,
a ring homomorphism MU* — R. One important example of such a genus is
the Todd genus, a map MU* — K*. The Todd genus occurs in the Hirzebruch—
Riemann—Roch theorem, which calculates the index of the Dolbeault operator in
terms of the Chern character. It also determines the K-theory of a finite space
X from its complex cobordism groups, via the Conner—-Floyd theorem: K*(X) 2
MU*(X) @pu+ K*.

Elliptic curves form a natural source of formal groups, and hence complex
genera. An example of such is Euler’s formal group law over Z[%, 0, €] associated to
Jacobi’s quartic elliptic curve; the corresponding elliptic cohomology theory is given
on finite spaces by X +— MU*(X)®nu+Z[3,6, €. Witten defined a genus MSpin —
Z[[q]] (not an elliptic genus in the above strict sense, because not a map out of
MU™*) which lands in the ring of modular forms, provided the characteristic class
B vanishes. He also gave an index theory interpretation, at a physical level of rigor,
in terms of Dirac operators on loop spaces. It was later shown, by Ando-Hopkins—
Rezk that the Witten genus can be lifted to a map of ring spectra MString — tmf.
The theory of topological modular forms can therefore be seen as a solution to the
problem of finding a kind of elliptic cohomology that is connected to the Witten
genus in the same way that the Todd genus is to K-theory.

Chapter 2: Elliptic curves and modular forms. An elliptic curve is a
non-singular curve in the projective plane defined by a Weierstrass equation:

y2 + a1y + asy = x> + a2w2 + asx + ag.

Elliptic curves can also be presented abstractly, as pointed genus one curves. They
are equipped with a group structure, where one declares the sum of three points to
be zero if they are collinear in P2. The bundle of Kihler differentials on an elliptic
curve, denoted w, has a one-dimensional space of global sections.

When working over a field, one-dimensional group varieties can be classified
into additive groups, multiplicative groups, and elliptic curves. However, when
working over an arbitrary ring, the object defined by a Weierstrass equation will
be typically a combination of those three cases. The general fibers will typically be
elliptic curves, some fibers will be nodal (multiplicative groups), and some cuspidal
(additive groups).

By a ‘Weierstrass curve’ we mean a curve defined by a Weierstrass equation—no
smoothness requirement. An integral modular form can then be defined, abstractly,
to be a law that associates to every (family of) Weierstrass curves a section of w®",
in a way compatible with base change. Integral modular forms form a graded ring,
graded by the power of w. Here is a concrete presentation of that ring:

Zlcs, co, A/ (c] — cg — 1T28A).

In the context of modular forms, the degree is usually called weight: the generators
¢4, cg, and A have weight 4, 6, and 12, respectively. As we’ll see later, those weights
correspond to the degrees 8, 12, and 24 in the homotopy groups of tmf.

Chapter 3: The moduli stack of elliptic curves. We next describe the
geometry of the moduli stack of elliptic curves over fields of prime characteristic,
and over the integers. At large primes, the stack M looks rather like the way
it does over C: general elliptic curves have an automorphism group of order two,
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and there are two special curves with automorphism groups of orders four and
six. That picture needs to be modified when dealing with small primes. At the
prime p = 3 (respectively p = 2), there is only one special ‘orbifold point’, and the
automorphism group of the corresponding elliptic curve has order 12 (respectively
24). The automorphism group of that curve is given by Z/4 x Z/3 at the prime 3,
and by Z/3 x Qg (also known as the binary tetrahedral group) at the prime 2.

In characteristic p, there is an important dichotomy between ordinary and
supersingular elliptic curves. An elliptic curve C' is ordinary if its group of p-
torsion points has p connected components, and supersingular if the group of p-
torsion points is connected. This dichotomy is also reflected in the structure of the
multiplication-by-p map, which is purely inseparable in the supersingular case, and
the composite of an inseparable map with a degree p covering in the case of an
ordinary elliptic curve. The supersingular elliptic curves form a zero-dimensional
substack of (M e”)]Fp—the stack of elliptic curves in characteristic p—whose car-
dinality grows roughly linearly in p. If one counts supersingular curves with a
multiplicity equal to the inverse of the order of their automorphism group, then
there are exactly (p — 1)/24 of them.

The stratification of (M¢y)r, into ordinary and supersingular alliptic curves is
intimately connected to the stratification of the moduli stack of formal groups by
the height of the formal group. A formal group has height n if the first non-zero
coefficient of the multiplication-by-p map is that of 22" . The ordinary elliptic curves
are the ones whose associated formal group has height one, and the supersingular
elliptic curves are the ones whose associated formal group has height two. Higher
heights cannot occur among elliptic curves.

Chapter 4: The Landweber exact functor theorem. The next main re-
sult is that there this a presheaf Ell of homology theories on the (affines of the)
flat site of the moduli stack of elliptic curves—the category whose objects are flat
maps Spec(R) — M. That presheaf is defined as follows. Given an elliptic curve
C over a ring R, classified by a flat map Spec(R) — M.y, the associated formal
group C corresponds to a map MPy — R, where MP, = @, ., MU, 2, is the
periodic version of complex cobordism. Ell€ is then defined by

Ell°(X):= MP.(X) ® R.
M Py

We claim that for every elliptic curve C' whose classifying map Spec(R) — M.y
is flat, the functor ElIC is a homology theory, i.e., satisfies the exactness axiom.
An example of an elliptic curve whose classifying map is flat, and which therefore
admits an associated elliptic homology theory, is the universal smooth Weierstrass
curve.

The proof is a combination of several ingredients. The main one is the Landwe-
ber exact functor theorem, which provides an algebraic criterion (Landweber ex-
actness, which is weaker than flatness) on a ring map M Py — R, that ensures the
functor X — MP,(X) ®@ump, R satisfies exactness. The other ingredients, due to
Hopkins and Miller, relate the geometry of M;; and M g to the Landweber exact-
ness criterion. These results are the following: (1) A formal group law MPy — R
over R is Landweber exact if and only if the corresponding map Spec(R) — M pg is
flat; together with Landweber exactness, this gives a presheaf of homology theories
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on the flat site of the moduli stack of formal groups M pg. (2) The map of stacks,
My = Mpg defined by sending an elliptic to its associated formal group, is flat.

Chapter 5: Sheaves in homotopy theory. By the above construction,
using the Landweber Exact Functor Theorem, we have a presheaf O"™ of ho-
mology theories (previousely called Ell) on the moduli stack of elliptic curves.
One might try to define a single ‘universal elliptic homology theory’ as the limit
limgr ey OM™(U), where 4 is an affine cover of the moduli stack. However, the
category of homology theories does not admit limits. If, though, we can rigidify
the presheaf OP°™ of homology theories to a presheaf Q%P of spectra, then we can
use instead a homotopy limit construction in the category of spectra. The main
theorem is that there does indeed exist such a presheaf, in fact a sheaf, of spectra.

THEOREM (Goerss—Hopkins—Miller). There exists a sheaf O™ of E., ring
spectra on (Mey) e, the étale site of the moduli stack of elliptic curves (whose
objects are étale maps to M.y ), such that the associated presheaf of homology the-
ories, when restricted to those maps whose domain is affine, is the presheaf OP™
built using the Landweber FExact Functor Theorem.

In this theorem, it is essential that the sheaf O%P is a functor to a point-set-
level, not homotopy, category of E, ring spectra. Moreover, the functor is defined
on all étale maps N — My, not just those where A is affine; (in fact, N can be
itself a stack, as long as the map to My is étale). Given a cover = {N; — N} of
an object A, we can assemble the n-fold ‘intersections’ Nj; := N xn N, Nyj :=
Ni X Nj xn N, etc., into a simplicial object

N, = [HNA: [T~ & HM’J”CE }

The sheaf condition is that the natural map from the totalization (homotopy limit)
of the cosimplicial spectrum

o) = [0 (TTA) = 0 ([T M) Z 0P (TT M) -+ ]

to O'P(N) is an equivalence.
Now consider a cover 9N = {N; — My} of My by affine schemes. The above
cosimplicial spectrum has an assoicated tower of fibrations

... = Tot? O%P(N,) — Tot! OP(N,) — Tot® OP(MN,)

whose inverse limit is Tot O%P(N,) = O°P(M ;) = TMF. The spectral sequence
associated to this tower has as E? page the Cech cohomology ﬁgﬂt(/\/le”, 7, O°P) of
M with coefficients in 7,0'P. Since N is a cover by affines, the Cech cohomology
of that cover is the same as the sheaf cohomology of M, with coefficients in the
sheafification W;Ot‘)p of m,O%P; (that sheafification happens to agree with m,O%*P
on maps to M, whose domain is affine). Altogether, we get a spectral sequence,
the so-called descent spectral sequence, that converges to the homotopy groups of
the spectrum of global sections:

B2, = HY M.y, 7} O"P) = r,_,TMF.
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Chapter 6: Bousfield localization and the Hasse square. We would like
a sheaf of spectra O'P on the moduli stack of elliptic curves M ;. As we will see,
this moduli stack is built out of its p-completions O;,Op and its rationalization. The
p-completion O;OP is in turn built from certain localizations of O'°P with respect
to the first and second Morava K-theories.

Localizing a spectrum X at a spectrum F is a means of systematically ignoring
the part of X that is invisible to E. A spectrum A is called E-acyclic if A A X is
contractible. A spectrum B is called E-local if there are no nontrivial maps from
an FE-acyclic spectrum into B. Finally, a spectrum Y is an E-localization of X if
it is E-local and there is a map X — Y that is an equivalence after smashing with
FE. This localization is denoted Ly X or Xg.

The localization L, X := Lz, X of a spectrum X at the mod p Moore spec-
trum is the p-completion of X (when X is connective); we denote this localization
map 7, : X = LpX. The localization LgX := LygX at the rational Eilenberg-
MacLane spectrum is the rationalization of X; we denote this localization map
nQ : X = LQX.

Any spectrum X can be reconstructed from its p-completion and rationaliza-
tion by means of the ‘Sullivan arithmetic square’, which is the following homotopy
pullback square:

[T

X I1, Ly X

Lox el o (11, £

The above pullback square is a special case of the localization square

LpvpX — 2 LpX

7]FJ lﬁF
L
LpX —228) p DX,

which is a homotopy pullback square if one assumes that F,(LpX) = 0.
An application of this localization square gives the so-called ‘chromatic fracture
square’:

MK (2)
Lgaywr@eX ———— L@ X

77K(1)J/ Jﬂx(l)
Ly (MK 2))

Here K(1) and K (2) are the first and second Morava K-theory spectra.
When the spectrum in question is an elliptic spectrum, the above square sim-
plifies into the ‘Hasse square’: for any elliptic spectrum F, there is a pullback
11
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square

LyE ——> Lg)E

| |

By means of the arithmetic square, the construction of the sheaf O*P is reduced
to the construction of its p-completions, of its rationalization, and of the comparison
map between the rationalization and the rationalization of the product of the p-
completions. In turn, the construction of the p-completion O;,Op of the sheaf OtoP
is reduced to the construction of the corresponding K (1)- and K (2)-localizations
and of a comparison map between the K (1)-localization and the K (1)-localization
of the K(2)-localization.

Chapter 7: The local structure of the moduli stack of formal groups.
By Landweber’s theorem, flat maps Spec(R) — M pg to the moduli stack of one-
dimensional formal groups give rise to even-periodic homology theories:

X +— MP,(X) @up, R.

Here, MP is periodic complex bordism, M Py = MU, = Z[uy, us,...] is the Lazard
ring, and the choice of a formal group endows R with the structure of algebra
over that ring. We wish to understand the geometry of M pg with an eye towards
constructing such flat maps.

The geometric points of M pg have a simple description. If k is a separably
closed field of characteristic p > 0, then formal groups over k are classified by their
height, where again a formal group has height n if the first non-trivial term of its
p-series (the multiplication-by-p map) is the one involving zP". Given a formal
group of height n, classified by Spec(k) — Mpg, one may consider ‘infinitesimal
thickenings’ Spec(k) — B, where B is the spectrum of a local (pro-)Artinian algebra
with residue field k, along with an extension

Spec(k) —— Mpg.

-z
e
e
e
e

e

B

This is called a deformation of the formal group. The Lubin—Tate theorem says
that a height n formal group admits a universal deformation (a deformation with a
unique map from any other deformation), carried by the ring W(k)[[v1, ... vn-1]].
Here, W(k) denotes the ring of Witt vectors of k. Moreover, the map from B :=
Spf(W(E)[[v1, ... vn-1]]) to Mg is then flat.

The formal groups of interest in elliptic cohomology come from elliptic curves.
The Serre-Tate theorem further connects the geometry of M;; with that of M pq,
in the neighborhood of supersingular elliptic curves. According to this theorem, the
deformations of a supersingular elliptic curve are equivalent to the deformations of
its associated formal group. The formal neighborhood of a point Spec(k) — My
classifying a supersingular elliptic curve is therefore isomorphic to Spf(W(k)[[v1]]),
the formal spectrum of the universal deformation ring.
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Chapter 8: Goerss—Hopkins obstruction theory. Goerss—Hopkins ob-
struction theory is a technical apparatus for approaching questions such as the fol-
lowing: for a ring spectrum E and a commutative F,-algebra A in E, E-comodules,
is there an F..-ring spectrum X such that E,X is equivalent to A7 What is the
homotopy type of the space of all such E,-ring spectra X7

That space is called the realization space of A and denoted BR(A). The main
result here is that there is an obstruction theory for specifying points of BR(A),
and that the obstructions live in certain André—Quillen cohomology groups of A.
More precisely, there is a Postnikov-type tower

... > BRu(A) = BR,-1(A) = ... = BRy(A)

with inverse limit BR(A) whose layers are controlled by the André—Quillen co-
homology groups of A, as follows. If we let H""2(A; Q" A) be the André-Quillen
cohomology space (the Eilenberg—MacLane space for the André—Quillen cohomol-
ogy group) of the algebra A with coefficients in the nth desuspension of A, then
H"2(A;Q"A) is acted on by the automorphism group of the pair (A4,Q2"A) and
we can form, by the Borel construction, a space 7/-2”+2(A; Q™ A) over the classifying
space of Aut(A,Q"A). This is a bundle of pointed spaces and the base points pro-
vide a section BAut(A, Q" A) — H"T2(A; Q" A). The spaces BR,,(A) then fit into
homotopy pullback squares

BR,(A) BAut(A, Q" A)

| |

BRy_1(A) —= H"2(A; Q" A).

Chapter 9: From spectra to stacks. We have focussed on constructing
spectra using stacks, but one can also go the other way, associating stacks to spectra.
Given a commutative ring spectrum X, let M x be the stack associated to the Hopf
algebroid

(MU, X, MUMU @pp, MUX).
If X is complex orientable, then M x is the scheme Spec(m,X)—the stackiness of
M x therefore measures the failure of complex orientability of X. The canonical
Hopf algebroid map (MU,, MU,MU) — (MU, X, MU.MU &y, MU, X) induces
a map of stacks from Mx to M;%, the moduli stack of formal groups with first
order coordinate. Moreover, under good circumstances, the stack associated to a
smash product of two ring spectra is the fiber product over M;%

Mxpy = Mx XM(l) My
FG

It will be instructive to apply the above isomorphism to the case when Y is
tmf, and X is one of the spectra in a filtration

SO=X(1) = X(2) = ---X(n) = - — MU

of the complex cobordism spectrum. By definition, X (n) is the Thom spectrum

associated to the subspace QSU(n) of QSU ~ BU; the spectrum X (n) is an Fa-

ring spectrum because QSU(n) is a double loop space. Recall that for a complex

orientable theory R, multiplicative maps MU — R correspond to coordinates on

the formal group of R. There is a similar story with X (n) in place of MU, where the

formal groups are now only defined modulo terms of degree n+1, and multiplicative
13
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maps X (n) — R correspond to coordinates up to degree n. Using this description,

one can show that My, is the stack /\/lg.;g, the classifying stack of formal groups
with a coordinate up to degree n. The map from Mgl(); to ./\/lgg; is the obvious

forgetful map.

The stack My, associated to ¢tmf is the moduli stack of generalized elliptic
curves (both multiplicative and additive degenerations allowed) with first order
coordinate. The stack M x (4)n¢ms can therefore be identified with the moduli stack
of elliptic curves together with a coordinate up to degree 4. The pair of an elliptic
curve and such a coordinate identifies a Weierstrass equation for the curve, and so
this stack is in fact a scheme:

Mx ayrems = Spec Zlay, az, az, as, ag).

Here, a1, a2, a3, a4, ag are the coefficients of the universal Weierstras equation. By
considering the products X (4) A ... A X(4) A tmf, one can furthermore identify
the whole X (4)-based Adams resolution of ¢mf with the cobar resolution of the
Weierstrass Hopf algebroid.

Chapter 10: The string orientation. The string orientation, or o-orientation
of tmf is a map of F.,-ring spectra

MO(8) — tmf.

Here, MO(8) = MString is the Thom spectrum of the 7-connected cover of BO, and
its homotopy groups are the cobordism groups of string manifolds (manifolds with
a chosen lift to BO(8) of their tangent bundle’s classifying map). At the level of
homotopy groups, the map MO(8) — tmf is the Witten genus, a homomoprhism
[M] — ¢w (M) from the string cobordism ring to the ring of integral modular
forms. Note that ¢y (M) being an element of 7, (¢mf) instead of a mere modular
form provides interesting congruences, not visible from the original definition of the
Witten genus.

Even before having a proof, there are hints that the o-orientation should exist.
The Steenrod algebra module H*(tmf,Fs) = A//A(2) occurs as a summand in
H*(MString,Fs). This is reminiscent of the situation with the Atiyah—Bott—Shapiro
orientation MSpin — ko, where H*(ko,Fy) = A//A(1) occurs as a summand of
H*(MSpin,Fy).

Another hint is that, for any complex oriented cohomology theory E with
associated formal group G, multiplicative (not E+,) maps MO(8) — E correspond
to sections of a line bundle over G* subject to a certain cocycle condition. If G is the
completion of an elliptic curve C, then that line bundle is naturally the restriction
of a bundle over C3. That bundle is trivial, and because C? is proper, its space of
sections is one dimensional (and there is even a preferred section). Thus, there is a
preferred map MO(8) — E for every elliptic spectrum E.

A not-necessarily Eo, orientation MO(8) — tmf is the same thing as a nullho-
motopy of the composite

BO(8) — BO L BGL(S) — BGL:(tmf),

where BG L1 (R) is the classifying space for rank one R-modules. An E, orientation
MO(8) — tmf is a nullhomotopy of the corresponding map of spectra

bo(8) — bo L Tgly(S) — Sgly (tmf).
14
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In order to construct that nullhomotopy, one needs to understand the homotopy
type of gli (¢tmf)—this is done one prime at a time. The crucial observation is that
there is a map of spectra gl (¢tmf), — tmf,, the ‘topological logarithm’, and a
homotopy pullback square

gl (tmf) ——2——+ tmf

]

Lg 1y (tmf) — L1y (tmf)

where U, is a topological refinement of Atkin’s operator on p-adic modular forms.
The fiber of the topological logarithm is particularly intriguing: Hopkins speculates
that it is related to exotic smooth structures on free loop spaces of spheres.

Chapters 11 and 12: The sheaf of E, ring spectra and The construc-
tion of tmf. We outline a roadmap for the construction of ¢mf, the connective
spectrum of topological modular forms. The major steps in the construction are
given in reverse order.

e The spectrum ¢mf is the connective cover of the nonconnective spectrum
Tmf,
tmf = 1>0 T'mf,
and T'mf is the global sections of a sheaf of spectra,

Tmf = pr(ﬂeu),

where M is the moduli stack of elliptic curves with possibly nodal sin-
gularities. This stack is the Deligne-Mumford compactification of the
moduli stack of smooth elliptic curves. Here, OP is a sheaf on M,y
in the étale topology. Also, TMF is the global sections of Q%P over the
substack M;; of smooth elliptic curves,

TMF = O"P(M ).

The uppercase ‘T in T'mf signifies that the spectrum is no longer connective (but
it is also not periodic). The ‘top’ stands for topological, and OP can be viewed as
a kind of structure sheaf for a spectral version of M ;.

We are left now to construct the sheaf of spectra O%°P. The first step is to isolate
the problem at every prime p and at Q. That is, one constructs Of,"p , a sheaf of

spectra on the p-completion (M), and then pushes this sheaf forward along the

inclusion map ¢, : (Mey)p = Mey. One then assembles these pushforwards to
obtain 0P, as follows.

e The sheaf O'P is the limit in a diagram

top top
@ Hp lp,* Op

| |

120" — (I, 1.-0}") |

for a given choice of map agritn : L@,*ng — (Hp Lp’*O;Op) .
Q
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Once O has been constructed, it will turn out that O} is the p-completion of

0P and O(g’ P is its rationalization, so that the above diagram is the arithmetic

square for OP. This thus leaves one to construct each O/’ and Og’ P and the gluing

map Qgrith. LThe sheaf (98) P is not difficult to construct. Its value on an étale map
Spec(R) — (Mg is given by O&Op(Spec R) = H(R,), the rational Eilenberg—
MacLane spectrum associated to a certain evenly graded ring R.. This ring is
specified by Rt := I'(w®*|spec r), Where w is the sheaf of invariant differentials.

The construction of Ofo"p is more subtle. The first step in its construction is

to employ a natural stratification of (M.;;),. Each elliptic curve has an associated
formal group which either has height equal to 1 if the curve is ordinary, or equal to
2 if the curve is supersingular. This gives a stratification of the moduli space with
exactly two strata:

d lor o wi lss
M =S (M) €2 M3,

The sheaf (9]’59"” is presented by a Hasse square, gluing together a sheaf Oi?fl) on

MO and a sheaf (’);?1(72) on M?#3,. (This notation is used because the sheaves O?’(’i)
are also the K (i)-localizations of 0P where K (i) is the ith Morava K-theory at
the prime p.)

o OP is the limit

top top
O, LSS’*OK(Q)

| |

to to;
Lord,*oKﬂ) > (Lssx*OKZ(E))K(l)

for a certain ‘chromatic’ attaching map
t t
Qchrom * Lord,*oigﬁ) — (LSS7*OI?‘?2))K(1)'

The sheaf Of,"p is thus equivalent to the following triple of data: a sheaf (’);?1(’1)

on /\/lglrld, a sheaf O??Q) on M?j;, and a gluing map achrom as above. We have
now arrived at the core of the construction of ¢mf: the construction of these three
objects. This construction proceeds via Goerss—Hopkins obstruction theory.

That obstruction theory is an approach to solving the following problem: one
wants to determine the space of all E..,-ring spectra subject to some conditions,
such as having prescribed homology. More specifically, for any generalized homol-
ogy theory FE,, and any choice of F,-algebra A in E, E-comodules, one can calculate
the homotopy type of the moduli space of E.-ring spectra with F,-homology iso-
morphic to A. Goerss and Hopkins describe that moduli space as the homotopy
limit of a sequence of spaces, where the homotopy fibers are certain André—Quillen
cohomology spaces of A. As a consequence, there is a sequence of obstructions
to specifying a point of the moduli space, i.e., an E,-ring spectrum whose FE,-
homology is A. The obstructions lie in André-Quillen cohomology groups of F,-
algebras in F, F-comodules. That obstruction theory is used to build the sheaf
Olay:
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There is also a ‘global’ version of this obstruction theory, where one tries to
lift a whole diagram I of E-algebras in E,FE-comodules to the category of F.-
ring spectra. Here, in general, the obstructions live in the Hochschild—Mitchell
cohomology group of the diagram I with coefficients in André—Quillen cohomology.
This diagrammatic enhancement of the obstruction theory is used to build the sheaf

to
o .

Obstruction theory for (’)’;”(’2): The stack M?], is a 0-dimensional substack

of M. More precisely, it is the disjoint union of classifying stacks BG where G
ranges over the automorphism groups of the various supersingular elliptic curves.
The Serre-Tate theorem identifies the formal completion of these groups G with the
automorphism groups of the associated formal group. Consequently, to construct
the sheaf O;?p 5y on the category of étale affines mapping to M(j,, it suffices to
construct the stalks of the sheaf at each point of M?$j,, together with the action
of these automorphism groups. The spectrum associated to a stalk is a Morava
E-theory, the uniqueness of which is the Goerss—Hopkins-Miller theorem: that
theorem says that there is an essentially unique (unique up to a contractible space
of choices) way to construct an E..-ring spectrum E(k,G), from a pair (k,G) of a
formal group G of finite height over a perfect field k, whose underlying homology
theory is the Landweber exact homology theory associated to (k,G). Altogether
then, given a formal affine scheme Spf(R), with maximal ideal I C R, and an étale
map Spf(R) — M, classifying an elliptic curve C over R, the value of the sheaf
O;?Ié) is

0?(12) (Spf(R)) := H E(ks, aéi))~

In this formula, the product is indexed by the set i in the expression of the quotient
R/I =T, k; as a product of perfect fields, and C is the formal group associated
to the base change to k; of the elliptic curve Cy over R/I.

Obstruction theory for O;?fl): We first explain the approach described

in Chapter 11. Over the stack M, there is a presheaf of homology theories
given by the Landweber exact functor theorem. This presheaf assigns to an el-
liptic curve classified by an étale map Spec(R) — M9 the homology theory
X = BP,(X)®pp, R. Ordinary elliptic curves have height 1, and so the represent-
ing spectrum is K (1)-local. In the setup of the Goerss—Hopkins obstruction theory
for this situation, we take F, to be p-adic K-theory, which has the structure of a
0-algebra. The moduli problem that we are trying to solve is that of determining

the space of all lifts:

Eoo-rings (1)
-

—
—~ A
—~ K
_ P
>
—

I = (Aff /M), —— Alg,.

In the general obstruction theory, the obstructions live in certain Hochschild—

Mitchell cohomology groups of the diagram I. For this particular diagram, the

obstruction groups simplify, and are equivalent to just diagram cohomology of I

with coefficients in André—Quillen cohomology. The diagram cohomology of I is
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in turn isomorphic to the étale cohomology of the stack M4, In the end, the
essential calculation is

HI (M w®F) =0 for s>0,

where k£ € Z and w is the line bundle of invariant differentials on M,;. At odd
primes, the obstruction groups vanish in the relevant degrees, thus proving the
existence and uniqueness of 0;21(01). Unfortunately, the higher homotopy groups of
the space of lifts are not all zero, and so one doesn’t get a contractible space of
choices for the sheaf (’);?fl). At the prime p = 2, one needs to use real instead of
complex K-theory to get obstruction groups that vanish.

The same obstruction theory for F..-ring spectra also applies to E..-ring maps,
such as the gluing maps acprom and agritp for the Hasse square and the arith-
metic square. For acprom, one considers the moduli space of all E.,-ring maps
LO,«d,*O%’l) — Lss,*(O;?fQ)) k(1) Whose induced map of theta-algebras is prescribed,
and one tries to compute the homotopy groups of this moduli space. The obstruc-
tion groups here vanish, and there is an essentially unique map. For aggin, the
map is of rational spectra and the analysis is much easier; the obstruction groups
vanish, and again there is an essentially unique map.

The approach presented in Chapter 12 is a somewhat different way of construct-

ing O;?Igl). In that other approach, one directly applies the K (1)-local obstruction

theory to construct Ly (1ytmf, and then works backwards to construct Otr. That
approach allows one to avoid the obstruction theory for diagrams, but is more dif-
ficult in other steps—for instance, it requires use of level structures on the moduli
stack M j; to resolve the obstructions.

Chapter 13: The homotopy groups of tmf and of its localizations.
The homotopy groups of tmf are an elaborate amalgam of the classical ring of
modular forms M F,, and certain pieces of the 2- and 3-primary part of the stable
homotopy groups of spheres 7, (S).

There are two homomorphisms

7 (S) = 7 (tmf) — MF.

The first map is the Hurewicz homomorphism, and it is an isomorphism on g
through mg. Conjecturally, this map hits almost all of the interesting torsion classes
in 7, (tmf) and its image (except for the classes 1, n?, and v) is periodic with period
576 (arising from a 192-fold periodicity at the prime 2 and a 72-fold periodicity
at the prime 3). Among others, the map is nontrivial on the 3-primary stable
homotopy classes o € m3(S) and S € m19(S) and the 2-primary stable homotopy
classes 1, v, €, k, R, ¢ € «(S). The second map in the above display is the composite
of the inclusion 7, tmf — m, T'mf with the boundary homomorphism in the elliptic
spectral sequence
H* (Mo mO*P) = m_o(Tmf).
This map m.(tmf) — MF, = Z[ca, cs, A]/(c3 — c2 — (12)3A) is an isomorphism
after inverting the primes 2 and 3. The kernel of this map is exactly the torsion in
7. (tmf) and the cokernel is a cyclic group of order dividing 24 in degrees divisible
by 24, along with some number of cyclic groups of order 2 in degrees congruent to
4 mod 8. In particular, the map from 7, (¢mf) hits the modular forms ¢4, 2¢g, and
24A, but ¢g and A themselves are not in the image. The localization . (tmf)(,) at
any prime larger than 3 is isomorphic to (M F.)(,) = Z)|ca, ).
18
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The homotopy of tmf can be computed directly using the Adams spectral
sequence. Alternatively, one can use the elliptic spectral sequence to compute the
homotopy of T'mf. The Adams spectral sequence has the form

= EXtAznf(Fp,Fp) = 7T*<lfmf);)7

where Azt,mf := hoMypf—modules(HFp, HF,) is a tmf-analog of the Steenrod algebra.

At the prime 2, the map A;mf — A = A, to the classical Steenrod algebra is
injective, and the ¢tmf-module Adams spectral sequence can be identified with the
classical Adams spectral sequence

E2 = EXtA(H*(tmf),]Fg) = EXtA(A//A(2),F2) = EXtA(Q)(]FQ,FQ) = W*(tmf);

The elliptic spectral sequence has the form H*(M .y, 7:O*P) = m;_(Tmf). The
homotopy m;O*P is concentrated in even degrees and is the ¢/2-th power of a line

bundle w; the spectral sequence thus has the form H?(M ; w®P) = ma,_o(Tmf).

Part 11

The manuscripts. The book concludes with three of the original, previously
unpublished, manuscripts on ¢mf: “Elliptic curves and stable homotopy I” (1996)
by Hopkins and Miller, “From elliptic curves to homotopy theory” (1998) by Hop-
kins and Mahowald, and “K(1)-local E, ring spectra” (1998) by Hopkins. The
first focuses primarily on the construction of the sheaf of (associative) ring spectra
on the moduli stack of elliptic curves, the second on the computation of the homo-
topy of the resulting spectrum of sections around the supersingular elliptic curve at
the prime 2, and the third on a direct cellular construction of the K (1)-localization
of tmf. These documents have been left, for the most part, in their original draft
form; they retain the attendant roughness and sometimes substantive loose ends,
but also the dense, heady insight of their original composition. The preceding chap-
ters of this book can be viewed as a communal exposition, more than fifteen years
on, of aspects of these and other primary sources about tmf.

4. Reader’s guide

This is not a textbook. Though the contents spans all the way from classical
aspects of elliptic cohomology to the construction of t¢mf, there are substantive
gaps of both exposition and content, and an attempt to use this book for a lecture,
seminar, or reading course will require thoughtful supplementation.

Reading straight through the book would require, among much else, some fa-
miliarity and comfort with commutative ring spectra, stacks, and spectral sequences.
Many of the chapters, though, presume knowledge of none of these topics; instead
of thinking of them as prerequisites, we suggest one simply starts reading, and as
appropriate or necessary selects from among the following as companion sources:

Commutative ring spectra:

e May, J. Peter. E, ring spaces and Eo, ring spectra. With contributions by
Frank Quinn, Nigel Ray, and Jrgen Tornehave. Lecture Notes in Mathematics,
Vol. 577. Springer-Verlag, Berlin-New York, 1977.
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e Rezk, Charles. Notes on the Hopkins-Miller theorem. Homotopy theory via
algebraic geometry and group representations (Evanston, IL, 1997), 313-366,
Contemp. Math., 220, Amer. Math. Soc., Providence, RI, 1998.

e Schwede, Stefan. Book project about symmetric spectra. Book preprint. Avail-
able at http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf

Stacks:

e Complex oriented cohomology theories and the language of stacks course notes
for 18.917, taught by Mike Hopkins (1999), available at http: //www.math.rochester.
edu/people/faculty/doug/otherpapers/coctalos.pdf

e Naumann, Niko. The stack of formal groups in stable homotopy theory. Adv.
Math. 215 (2007), no. 2, 569-600.

e The Stacks project. Open source textbook, available at http: //stacks.math.columbia.
edu

e Vistoli, Angelo. Grothendieck topologies, fibered categories and descent theory.
Fundamental algebraic geometry, 1104, Math. Surveys Monogr., 123, Amer.
Math. Soc., Providence, RI, 2005.

Spectral sequences:

e Hatcher, Allen. Spectral Sequences in Algebraic Topology. Book preprint.
Available at http://www. math.cornell.edu/~hatcher/SSAT /SSATpage.html

e McCleary, John. A wuser’s guide to spectral sequences. Second edition. Cam-
bridge Studies in Advanced Mathematics, 58. Cambridge University Press,
Cambridge, 2001. xvi+561 pp. ISBN: 0-521-56759-9

e Weibel, Charles A. An introduction to homological algebra. Cambridge Studies
in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
xiv+450 pp. ISBN: 0-521-43500-5; 0-521-55987-1

The contents of this book span four levels: the first five chapters (elliptic co-
homology, elliptic curves, the moduli stack, the exact functor theorem, sheaves in
homotopy theory) are more elementary, classical, and expository and we hope will
be tractable for all readers and instructive or at least entertaining for all but the
experts; the next three chapters (the Hasse square, the local structure of the moduli
stack, obstruction theory) are somewhat more sophisticated in both content and
tone, and especially for novice and intermediate readers will require more deter-
mination, patience, and willingness to repeatedly pause and read other references
before proceeding; the last five chapters (from spectra to stacks, string orientation,
the sheaf of ring spectra, the construction, the homotopy groups) are distinctly
yet more advanced, with Mike Hopkins’ reflective account of and perspective on
the subject, followed by an extensive technical treatment of the construction and
homotopy of ¢mf; finally the three classic manuscripts (Hopkins—Miller, Hopkins—
Mahowald, Hopkins) illuminate the original viewpoint on tmf—a careful reading
of them will require serious dedication even from experts.

In addition to the references listed above, we encourage the reader to consult
the following sources about ¢tmf more broadly:
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e Goerss, Paul. Topological modular forms [after Hopkins, Miller, and Lurie].
Séminaire Bourbaki (2008/2009). Astérisque No. 332 (2010), 221-255.

e Hopkins, Michael. Topological modular forms, the Witten genus, and the theo-
rem of the cube. Proceedings of the International Congress of Mathematicians
(Zurich 1994), 554-565, Birkh&user, Basel, 1995.

e Hopkins, Michael. Algebraic topology and modular forms. Proceedings of the
International Congress of Mathematicians (Beijing 2002), 291-317, Higher Ed.
Press, Beijing, 2002.

e Rezk, Charles. Supplementary notes for Math 512. Available at http://www.
math.uiuc.edu/~rezk /512-spr2001-notes.pdf
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Elliptic genera and elliptic cohomology

Corbett Redden

The goal of this overview is to introduce concepts which underlie elliptic coho-
mology and reappear in the construction of ¢tmf. We begin by defining complex-
oriented cohomology theories and looking at the two special cases of complex cobor-
dism and K-theory. We then see that a complex orientation of a cohomology theory
naturally leads to a formal group law. Furthermore, Quillen’s theorem states that
the universal complex-oriented theory (complex cobordism) encodes the universal
formal group law. This implies that complex genera, or homomorphisms from the
complex cobordism ring to a ring R, are equivalent to formal group laws over R.
The group structure on an elliptic curve naturally leads to the notion of an elliptic
genus. Finally, we use the Landweber exact functor theorem to produce an elliptic
cohomology theory whose formal group law is given by the universal elliptic genus.

Elliptic cohomology was introduced by Landweber, Ravenel, and Stong in the
mid-1980’s as a cohomological refinement of elliptic genera. The notion of elliptic
genera had previously been invented by Ochanine to address conjectured rigidity
and vanishing theorems for certain genera on manifolds admitting non-trivial group
actions. Witten played an important role in this process by using intuition from
string theory to form many of these conjectures. He subsequently interpreted the
elliptic genus as the signature of the free loop space of a spin manifold, beginning a
long and interesting interaction between theoretical physics and algebraic topology
that is still active today. While we don’t have the space to adequately tell this story,
there are already several excellent references: the introductory article in [Lan] gives
the history of elliptic genera and elliptic cohomology, [Seg] explains how they should
be related to more geometric objects, and [Hop] summarizes important properties
of tmf. Finally, both [Lur| and [Goe] give a detailed survey of elliptic cohomology
and tmf from the more modern perspective of derived algebraic geometry.

1. Complex-oriented cohomology theories

A generalized cohomology theory E is a functor from (some subcategory of)
topological spaces to the category of abelian groups. This functor must satisfy all
the Eilenberg—Steenrod axioms except for the dimension axiom, which states the
cohomology of a point is only non-trivial in degree 0. Any cohomology theory is
represented by a spectrum which we also call F/, and from a spectrum the reduced

1
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homology and cohomology groups of a finite CW complex X are given by
Eo(X) = lim 7k (X A Ey),
k— o0
E™(X) = lim [2*X, E, 4.
k—o00

The coefficient groups are abbreviated by E* = E*(pt) and E. = FE.(pt), and
they are naturally related by m.EF = E, & E~*. We restrict to theories with a
graded commutative ring structure E¢(X) x E/(X) — E“7(X) analogous to the
cup product in ordinary cohomology. They are known as multiplicative cohomology
theories and are represented by ring spectra.

ExaMPLE 1.1 (Cobordism). A smooth closed (compact with no boundary)
manifold M is said to be null-bordant if there exists a compact manifold W whose
boundary is M. A singular manifold (M, f) in X, where f: M — X is a continu-
ous map, is null-bordant if there exists a singular manifold (W, F') with boundary
(M, f). The n-th unoriented bordism group of X, denoted by Q9 (X), is the set of
smooth closed singular n-manifolds in X modulo null-bordism; the group structure
is given by the disjoint union of manifolds.

Let {G:} be a sequence of topological groups with representations {Gy 2%
O(k)} which are compatible with the inclusion maps. We define a G-structure on
M as a stable lift of the structure groups to Gy, for the stable normal bundle vy,.
Suppose a manifold W with OW = M has a G-structure on vy that extends to
the G-structure on vy,. This is considered a null-bordism of M as a G-manifold.
The abelian group Q& (X) is then defined as before; it is the set of smooth closed
singular n-manifolds on X with G-structure on v, modulo null-bordism. Up to
homotopy, G-structures on the stable tangent bundle and stable normal bundle are
equivalent; we later use this fact in geometric constructions.

The functors QF are examples of generalized homology theories, and the Pontryagin—
Thom construction shows they are represented by the Thom spectra MG = { MGy} =
{Th(p;&)}. Here, & — BO(k) is the universal k-dimensional vector bundle
(& = EO(k) x o) R¥), and for any vector bundle V' — X the Thom space Th(V')
is defined as the unit disc bundle modulo the unit sphere bundle D(V)/S(V'). Par-
ticularly common examples of G-bordism include oriented bordism, spin bordism,
and complex bordism, corresponding to the groups SO(k), Spin(k), and U(k), re-
spectively. Bordism classes in these examples have an orientation, spin structure,
or complex structure on the manifold’s stable normal bundle (or stable tangent
bundle).

The spectrum M G defines a generalized cohomology theory known as G-cobordism.
It is also a multiplicative cohomology theory (assuming there are maps G, X Gy, —
G, +k, compatible with the orthogonal representations). The coefficient ring of MG
is simply the bordism ring of manifolds with stable G-structure,

MG~ (pt) = MG.(pt) = QF,

and the product structure is induced by the product of manifolds. Of particular in-
terest to us will be oriented cobordism and complex cobordism. The first coefficient
calculation is due to Thom, and the second is from Thom, Milnor, and Novikov:

(1) MSO* ® Q = Q[[CP?], [CP,.. ]
MU*%’Z[al,ag,...]; |a1‘:—2l

2
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Rationally, MU* ® Q is generated by the complex projective spaces CP? for i > 1.
The book [Sto] is an excellent source of further information on cobordism.

ExaMPLE 1.2 (Complex K-theory). Isomorphism classes of complex vector
bundles over a space X form an abelian monoid via the direct sum & operation. For-
mally adjoining inverses gives the associated Grothendieck group known as K (X)
or K%(X); elements in K(X) are formal differences of vector bundles up to iso-
morphism. The reduced group K°(X) is naturally isomorphic to [X,Z x BU], and
Bott periodicity gives a homotopy equivalence Q?(Z x BU) ~ Z x BU. Therefore,
we can extend Z x BU to an Q-spectrum known as K, where

Ky, =7 x BU,
K2n+1 = Q(Z X BU) ~ U.
This defines the multiplicative cohomology theory known as (complex) K-theory,

with ring structure induced by the tensor product of vector bundles. A straightfor-
ward evaluation shows that the coefficients 7, K are

K (pt) 2 no(Z x BU) = Z,
K (pt) = mo(U) = 0.
Furthermore, Bott periodicity is manifested in K-theory by the Bott class 8 =
[€] =1 € K(S?) =2 K ?(pt), where ¢ — S? is the Hopf bundle and 1 is the

isomorphism class of the trivial line bundle. The class § is invertible in K*, and
multiplication by 3 and 37! induces the periodicity in general rings K*(X).

The periodicity in K-theory turns out to be a very convenient property, and it
motivates the following definition.

DEFINITION 1.3. A multiplicative cohomology theory FE is even periodic if
Ei(pt) = 0 whenever i is odd and there exists 3 € E~2%(pt) such that 3 is in-
vertible in E*(pt).

The existence of 37! € E?(pt) implies that for general X there are natural
isomorphisms

®

E2(X) o EYX).

L1
given by multiplication with 8 and 87!, so E is periodic with period 2.
A number of cohomology theories, such as ordinary cohomology, are even (i.e.
E°dd(pt) = 0) but not periodic. Given an arbitrary even cohomology theory, we
can create an even periodic theory A by defining

AMX) =[] B"TR(X).
keZ

For example, if we perform this construction on ordinary cohomology with coeffi-
cients in a ring R, we obtain a theory known as periodic ordinary cohomology. The
coefficients of MU in (1) show that MU also is even but not periodic. We define
periodic complex cobordism MP by

MP"(X):= [[ MU (X),

keZ
3
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Letting |3] = —2, we could equivalently define MP™(X) Cc MU*(X)[3,87'] as
formal series which are homogeneous of degree n.

DEFINITION 1.4. In E-cohomology, a Thom class for the vector bundle V' — X
(with dimg V' = n) is a class Uy € E™(Th(V)) such that for each z € X there
exists ¢, : R™ — V,, so that Uy +— 1 under the following composition:

E™(Th(V)) —= E™(Th(V,,)) % En(S™) —= > EO(pt)

Uy + 1

Thom classes give rise to Thom isomorphisms
EX(X) Y Bt (Th(V)).

The existence of Thom isomorphisms allows one to construct pushforward maps
in cohomology theories, which in turn gives important invariants generalizing the
Euler class. Ordinary cohomology with Z/2 coefficients admits Thom classes for
all vector bundles, but only oriented bundles have Thom classes in H*(—;Z). In
general, we would like to functorially define Thom classes compatible with the &
operation. Such a choice for vector bundles with lifts of the structure group to Gy, is
called a G-orientation of the cohomology theory F, and FE is said to be G-orientable
if there exists such an orientation. A specific orientation will be given by universal
Thom classes in E"(MG,,) and is equivalent (at least up to homotopy) to a map
of ring spectra MG — E. We will mostly be concerned with complex orientable
theories, and summarizing the above discussion gives the following definition.

DEFINITION 1.5. A complex orientation of E is a natural, multiplicative, col-
lection of Thom classes Uy € E2"(Th(V')) for all complex vector bundles V — X,
where dim¢ V' = n. More explicitly, these classes must satisfy

L4 f*(UV) = Uf*v for f Y - X,
i uVlEBV2 = Z’{Vl 'uVQa
e For any = € X, the class Uy maps to 1 under the composition®

E?(Th(V)) = E*(Th(V,)) = E*(S*") 5 E°(pt).

Given a complex orientation, we can define Chern classes in the cohomology
theory E. Because the zero-section CP* — ¢ induces a homotopy equivalence
CP*™ = Th(€), the universal Thom class for line bundles is naturally a class ¢; €
E2(CP*), and it plays the role of the universal first Chern class. If one computes
E*(CP*), the existence of ¢; implies the Atiyah—Hirzebruch spectral sequence must

collapse at the Fy page. This implies the first part of the following theorem.
THEOREM 1.6. A complex orientation of E determines an isomorphism
E*(CP*) = E*(pt)[e1],

and such an isomorphism is equivalent to a complex orientation. Furthermore, any
even periodic theory is complex orientable.

IThe complex structure induces an orientation on V, hence there is a canonical homotopy class
of map @, : R?" — V.
4
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In addition to the above proposition, the splitting principle carries over, and
the class ¢; uniquely determines isomorphisms

E*(BU(n)) = (E*(CP* x --- x CP™))%n = (E*(pt)[z1, - - ,wn]])zn
>~ E*(pt)[e, -+ s enls

where ¢, € E*(BU(n)) is the k-th elementary symmetric polynomial in the vari-
ables x;. This gives us a theory of Chern classes analogous to the one in ordinary
cohomology.

2. Formal group laws and genera

A complex orientation of F determines Chern classes for complex vector bun-
dles. As in ordinary cohomology, the Chern classes satisfy the properties of natu-
rality and additivity. In ordinary cohomology, the first Chern class of a product of
line bundles is given by

Cl(Ll & Lg) = Cl(Ll) + (LQ)

For a general complex-oriented cohomology theory, this relation no longer holds
and leads to an interesting structure.
The universal tensor product is classified by

ERE—¢

| l

CP* x CP>* —— CP*°.
The induced map in cohomology,
E*(CP*) ® E*(CP*) +—E*(CP*)
F(xl, .TQ) <—iCy
where F'(x1,x9) is a formal power series in two variables over the ring E*, gives the
universal formula
Cl(Ll X LQ) = F(Cl(Ll), Cl(LQ)).
This formal power series F' is an example of a formal group law over the graded
ring E*.
DEFINITION 2.1. A formal group law over a ring R is a formal power series
F € R[]z, x2] satisfying the following conditions:
o F(x,0) = F(0,z) = = (Identity)
o F(x1,x2) = F(x2,21) (Commutativity)
o F(F(x1,x2),23) = F(x1, F(x2,23)) (Associativity)
If R is a graded ring, we require F' to be homogeneous of degree 2 where |z;| =
“’EQ‘ = 2.

One easily verifies that the power series giving ¢1(L; ® Lo) is a formal group
law. The three properties in the definition follow immediately from the natural
transformations which give the identity, commutativity, and associativity properties
of the tensor product.
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ExXAMPLE 2.2. As noted above, the formal group law obtained from ordinary
cohomology is Fy = F(x1,22) = 21 +2, and is known as the additive formal group
law.

EXAMPLE 2.3. The multiplicative formal group law is defined by
Fy (Il,l‘g) =1+ T2 — T12T2.

One can explicitly verify it satisfies the definition of a formal group law. One can
also see that it is obtained from the standard complex orientation of K-theory.
Since K-theory is even periodic, we place the classes ¢ in degree 0. The resulting
formal group law is over the ring K°(pt) = Z and involves no grading. (Though,
we could use the Bott element and its inverse to maintain the grading |c;| = 2 if
we wish.)

To the universal line bundle £ — CP*°, we define the universal first Chern class
to be 1—[¢] € K°(CP*). The term 1 is included so that trivial bundles have trivial
first Chern class. Hence, for any line bundle L — X,

(L) =1-[L] € K°(X).
A simple calculation demonstrates

Cl(Ll X LQ) =1—-L1® Ly
(= L)+ (1= L) = (1= L)1 - Lo)
=c1(L1) 4+ c1(L2) — ¢1(L1)er(La),

demonstrating that the multiplicative formal group law is obtained from K-theory.

Any ring homomorphism R — S induces a map of formal group laws FGL(R) —
FGL(S). In fact, there is a universal formal group law Fy,i, € Ryuniv[21,22] such
that any FF € FGL(R) is induced by a ring homomorphism R,,;, — R. The
existence of Ry, is easy, since one can construct it formally by

Runiv - Z[a%]]/ ~

where a;; is the coefficient of xllz%, and ~ represents all equivalence relations in-
duced by the three axioms of a formal group law. Though this description is quite
unwieldy, a theorem by Lazard shows that this ring is isomorphic to a polynomial
algebra; i.e.

Ryniw 2 L = Z[al, a, .. ]

where |a;| = —2i if we include the grading.

A complex orientation of E therefore induces a map L — E* defining the formal
group law. Earlier we noted that complex orientations are basically equivalent to
maps of ring spectra MU — E, so MU has a canonical complex orientation given
by the identity map MU — MU. The following important theorem of Quillen
shows that in addition to MU being the universal complex oriented cohomology
theory, it is also the home of the universal formal group law. It also explains the
grading of the Lazard ring.

THEOREM 2.4. (Quillen) The map L — MU”™ induced from the identity map
MU — MU is an isomorphism.
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To summarize, we have maps
{MU* - E*}
/
{MU—=FE} iQuillen
FGL(E*)

where E* can be any graded ring. Given a formal group law, can we construct a
complex oriented cohomology theory with that formal group law? We will return
to this question in Section 4 and see that in certain cases we can construct such a
cohomology theory.

First, we discuss formal group laws from the slightly different viewpoint of
complex genera. A genus is some multiplicative bordism invariant associated to
manifolds. There are two main types of genera, and this is due to the description
of the cobordism groups from (1).

DEFINITION 2.5. A complex genus is a ring homomorphism
p: MU* — R.
An oriented genus (or usually just genus) is a ring homomorphism
p: MSO*®Q — R,

where R is a Q-algebra. More explicitly, ¢(M) only depends on the cobordism class
of M and satisfies

o(My U M2) = @(M) + o(Ma), o(My x Ma) = @(M1)p(Mz).

Quillen’s theorem implies there is a 1-1 correspondence between formal group
laws over R and complex genera over R. We introduce some common terminology
which will make this correspondence more concrete.

First, a homomorphism between formal group laws F’ EN G (over R) is a power
series f(z) € R[z] such that

[P (z1,22)) = G(f(21), f(22)).

If f is invertible then it is considered an isomorphism, and f is a strict isomorphism
if f(z) = x + higher order terms.

ExAMPLE 2.6. We could have chosen complex orientation of K-theory so that
c1(L) = [L] — 1 as opposed to 1 — [L]. The resulting formal group law would
have been F(z1,22) = 21 + 22 + z1x2, which is also sometimes defined as the
multiplicative formal group law. These two formal group laws are (non-strictly)
isomorphic, with isomorphism given by f(x) = —z. Our original choice, though,
coincides with the Todd genus and with conventions in index theory.

REMARK 2.7. In general, our formal group law depends on the particular com-
plex orientation. Two different orientations will lead to an isomorphism between
the formal group laws. More abstractly, to any complex orientable theory is canon-
ically associated a formal group. The choice of orientation gives a coordinate for
the formal group, and the formal group expanded in this coordinate is the formal
group law.
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Over a Q-algebra, any formal group law is uniquely (strictly) isomorphic to the
additive formal group law F';. We denote this isomorphism by log and its inverse
by expp:

log -
F_ F,

~—
XpPp

The isomorphism log can be solved by the following:

f(F(z1,32)) = fz1) + f(22)

0 1o}
9uz],, U F@ ) = G| () + fea)
, OF,
f@) (.0 = 1
z dt
2) log(z) = /() = [ o

Going from the third to fourth line involves inverting a power series, so one must
work over a Q-algebra. If R is torsion-free, then R — R ® Q is an injection, and
we lose no information in considering logy instead of F' itself.
Over the ring MU™ ® Q, the universal formal group law Fj;y coming from
complex cobordism has the particularly nice logarithm
[CP"]

logp,,, (2) = Z mx”
n>0

Therefore, a formal group law F (or a complex genus) induced by ¢ : MU* — R
has a logarithm

logp(x) = Z Mz”

"0 n—+1

While (modulo torsion in R) the logarithm encodes the value of a genus on any
complex manifold, in practice it is difficult to decompose the bordism class of a
manifold into projective spaces. However, there is an easier approach to calculating
genera due to work of Hirzebruch.

PROPOSITION 2.8. (Hirzebruch) For R a Q-algebra, there are bijections
{Q(x) =1+ a1z + asr? + -+ € R[z]} +— {¢: MU*®Q — R}
{Q(z) = 1+ agx® + agx* +--- € R[z] | apgq = 0} +— {¢ : MSO* ® Q — R}

The first bijection is given by the following construction. Given Q(z), to a
complex line bundle . — X assign the cohomology class

pqQ(L) == Q(cr(L)) € H*(X; R).
Using the splitting principle, ¢ extends to a stable exponential characteristic class
on all complex vector bundles. The complex genus ¢ generated by Q(zx) is then
defined by
(M) := (pQ(TM),[M]) € R,
where M is a stably almost complex manifold, (,) is the natural pairing between
cohomology and homology, and [M] is the fundamental class (an almost complex
8
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structure induces an orientation). Going the other direction, the series Q(z) is
related to the formal group law by

Q) =

_r
exp,, (z)’
where exp,, () is the inverse to log,(x). The second bijection follows in the same

manner, but one needs an even power series to define the stable exponential char-
acteristic class for real vector bundles.

EXAMPLE 2.9 (K-theory and F ). From (2), the logarithm for the multiplica-
tive formal group law F (x1,22) = 1 + 22 — 2122 is given by
rodt
log, () :/ —— = —log(l — z).
o 1—t
Therefore,
expy(z)=1—€e"7,
and the associated power series

x €T X 172 4

X
= = 1 —_— —_—— — ...
op(0) 1—e=r ‘tati g el

Qx(r) =

generates the Todd genus T'd. When we evaluate the Todd genus on a Riemann
surface M? with genus g,

TA(M?) = (Qer (TM)), [M]) = (1+ 51 (TAD) 4+, [M])
= e ™M), (M) = 1.

In this situation, the Todd genus recovers the standard notion of genus.

Note that even though we started with a Z-valued complex genus, the power
series Q(z) has fractional coefficients. If one is only given Q(z), it is quite surprising
that Todd genus gives integers when evaluated on manifolds with an almost complex
structure on the stable tangent bundle. Another explanation for the integrality is
given by the following important index theorem. In fact, most of the common
genera are equal to the index of some elliptic operator on a manifold (possibly with
G-structure).

THEOREM 2.10. (Hirzebruch-Riemann-Roch) Let M be a compact complex man-
ifold, and let V' be a holomorphic vector bundle. Then, the index of the Dolbeault
operator O + 0* on the Dolbeault complex {A%* @ V'}, which equals the Euler char-
acteristic in sheaf cohomology H*(M,V), is given by

index(d + 8) = (M, V) = (Td(M)ch(V), [M)) € Z.

3. Elliptic genera

Another example of a formal group law comes from the group structure of the
Jacobi quartic elliptic curve. We first start by working over C. Assume §,¢ € C
and the discriminant A = €(6% — €)? # 0. Letting the subscript J stand for Jacobi,
we define

v dt ©dt
) log; (@) := /0 VI_20 retd /o VER()
9
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Here, log ;(x) is an example of an elliptic integral, and it naturally arises in physical
problems such as modeling the motion of a pendulum. Expanding log; as a power
series in x produces a formal group law with a nice geometric description. Inverting
the function log ;(z) gives

f(2) = exp,(2) = (log ;)" (2),

which is an elliptic function (i.e. periodic with respect to a lattice A C C) satisfying
the differential equation (f')?(2) = R(z). Hence, it parameterizes the elliptic curve
C defined by the Jacobi quartic equation

y*> = R(x) = 1 — 202 + ex* C CP?
via the map

C/A — CP?
2+ [2(2),y(2), 1] = [f(2), f'(2),1].

The additive group structure on the torus C/A induces a natural group struc-
ture on the elliptic curve C. This group structure coincides with the one given in
Chapter 2, defined by P + @ + R = 0 for points P,Q, R on a straight line. Near
the point [0, 1, 1], the group structure is given in the parameter x by

Fy(zy,x2) = f(f 7 (z0) + [ (22)) = exp, (log (21) + log (w2)).
The formal group law F; defined by the logarithm log; can therefore be expressed
by
/11 dt T2t Frleve) gy
7t h vam |
0 R(t) 0 R(t) 0 R(t)

Despite the integral log ; having no closed form solution, the formal group law was
solved for explicitly by Euler.

THEOREM 3.1. (Euler)

. l‘l\/R(J?g) + .’132\/R($1)

F =
J(@1,2) 1 — ex?a3

While we previously worked over the field C, the Jacobi quartic is defined over
an arbitrary ring, and the universal curve is defined by the same equation over the
ring Z[J, €]. The formal group law F; can be expanded as a power series in the ring
Z[%, J,€]. Any genus whose logarithm is of the form (3) is called an elliptic genus,
and the universal elliptic genus ¢ corresponds to Euler’s formal group law F; over
Z[3,0,€]. When considering the grading, |§| = —4 and |¢[ = —8, so ¢ also defines
an oriented genus. In fact, one can calculate that

07 (CP?) =6, @ (HP?) =e.

EXAMPLE 3.2. The geometric description of F; assumed A = (6% —¢€)2 # 0
so that the curve C has no singularities. However, the degenerate case 6 = ¢ = 1
gives the L-genus, which equals the signature of an oriented manifold:

Toodt
10g(l’) = / 1—7t2 = tanh_l(:r),
0

Qz) = —

~ tanhz
10
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Similarly, letting § = —é, e = 0, we recover the ﬁ—genus, which for a spin manifold
is the index of the Dirac operator:

* dt .1 .
log(l‘) = /(; W = 2sinh (.’I}/Q),
o x/2
Q) = sinh(z/2)"

The genera L and A are elliptic genera corresponding to singular elliptic curves.
This is explicitly seen in the fact that their logarithms invert to singly-periodic
functions as opposed to doubly-periodic functions.

The signature was long known to satisfy a stronger form of multiplicativity,
known as strict multiplicativity. If M is a fiber bundle over B with fiber F' and
connected structure group, then L(M) = L(B)L(F). The same statement holds
for the g—genus when F' is a spin manifold. As more examples were discovered,
Ochanine introduced the notion of elliptic genera to explain the phenomenon and
classify strictly multiplicative genera.

THEOREM 3.3 (Ochanine, Bott-Taubes). A genus ¢ satisfies the strict mul-
tiplicativity condition (M) = @(B)p(F) for all bundles of spin manifolds with
connected structure group if and only if ¢ is an elliptic genus.

There is extra algebraic structure encoded within the values of the universal
elliptic genus. Using the Weierstrass o function, to a lattice A, = Z7 + Z we can
canonically associate coefficients €(7) and (7) satisfying the Jacobi quartic equa-~
tion. The functions €(7) and §(7) are modular forms, of weight 2 and 4 respectively,
on the subgroup I'g(2) := {A € SL2(Z) | A= ({ ;) mod 2} C SLy(Z). Therefore,
the elliptic genus ¢ associates to any compact oriented 4k-manifold a modular
form of weight 2k on the subgroup I'g(2). Because modular forms are holomorphic
and invariant under the translation 7 — 7+ 1, we can expand them in the variable
q = e*™7 and consider ¢ ;(M) € Q[q].

Using insights from quantum field theory, Witten gave an alternate interpreta-
tion of the elliptic genus which illuminated several of its properties. His definition
of ¢ is as follows. Let M be a spin manifold of dimension n with complex spinor
bundle S(TM®). To a complex vector bundle V' — X, use the symmetric and
exterior powers to define the bundle operations

SV =1+tV+t2V®2 ... c K(X)[t], AV =14+tV+£2A2V +--. € K(X)[t].
Then, the power series in ¢ defined by

<.Z(TM)ch (S(TMC) é Sy (TME —C") @ é Agt (TME — cn)) [M"]> € Q[q]
=1 =1

is equal to the g-expansion of the elliptic genus ¢ ;. When M is a spin manifold,
Witten formally defined the signature operator on the free loop space LM, and he
showed its Sl-equivariant index equals ¢ (up to a normalization factor involving
the Dedekind 7 function). The S'-action on LM = Map(S*, M) is induced by the
natural action of S' on itself.

Witten also defined the following genus, now known as the Witten genus:

ow (M) = <E<TM>ch(<§> 5(r21° — ) ). (")) < Qla)
=1
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When M admits a string structure (i.e. M is a spin manifold with spin characteristic
class BL(M) = 0 € H*(M;Z)), Witten formally defined the Dirac operator on LM
and showed its S'-equivariant index equals ¢y (M), up to a normalization involving
1. If M is spin, then the g-series ¢ ; (M) and pw (M) both have integer coefficients.
If M is string, ow (M) is the g-expansion of a modular form over all of SLy(Z).
Note that the integrality properties can be proven by considering ¢y and ¢y as a
power series where each coefficient is the index of a twisted Dirac operator on M.

For more detailed information on elliptic genera, an excellent reference is the text
[HBJ].

4. Elliptic Cohomology

There is an important description of K-theory via Conner-Floyd. As described
in Section 2, the formal group law for K-theory is given by a map MP°(pt) —
K%pt) 2 Z or MU* — K* = Z[B, 8~'], depending on our desired grading conven-
tion. From this map of coefficients encoding the formal group law, one can in fact
recover all of K-theory.

THEOREM 4.1. (Conner-Floyd) For any finite cell complex X,
K*(X) = MP*(X) @ po Z = MU*(X) @pu+ Z[B, 871

In general, Quillen’s theorem shows that a formal group law F' over a graded
ring R is induced by a map MU* — R. Can we construct a complex-oriented
cohomology theory E with formal group law F over E* = R? Imitating the Conner-
Floyd description of K-theory, we can define

E*(X):= MU*(X)®@pmu~ R.

While E is a functor satisfying the homotopy, excision, and additivity axioms of
a cohomology theory, the “long exact sequence of a pair” will not necessarily be
exact. This is due to the fact that exact sequences are not in general exact after
tensoring with an arbitrary ring. If R is flat over MU™, then E will satisfy the long
exact sequence of a pair and will be a cohomology theory.

The condition that R is flat over MU™ is very strong and not usually satisfied.
However, the Landweber exact functor theorem states that R only needs to satisfy a
much weaker set of conditions. This criterion, described in more detail in Chapter 5,
states one only needs to check that multiplication by certain elements v; is injective
on certain quotients R/I;. In the case of the elliptic formal group law, the elements
v; and ve can be given explicitly in terms of € and §, and the quotients R/I,, are
trivial for n > 2. Therefore, one can explicitly check Landweber’s criterion and
conclude the following.

THEOREM 4.2. (Landweber, Ravenel, Stong) There is a homology theory Ell
1
ElL(X) = MU.(X) ®uv. Z5, 6,6, A7)

whose associated cohomology theory is complex oriented with formal group law given
by the Fuler formal group law. For finite CW complezes X,

Bl*(X) = MU*(X) @ mu- Z[%, 5,6, AT
In EllI*, |6] = —4, |¢| = —8.

12
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The theory Ell was originally referred to as elliptic cohomology, but it is now
thought of as a particular elliptic cohomology theory. If we ignore the grading of
§ and €, we can form an even periodic theory by MP(—) ®@yp Z[5,8,¢, A~]. This
motivates the following definiton.

DEFINITION 4.3. An elliptic cohomology theory E consists of:

e A multiplicative cohomology theory E which is even periodic,

e An elliptic curve C' over a commutative ring R,

e Isomorphisms E°(pt) = R and an isomorphism of the formal group from
FE with the formal group associated to C.

The even periodic theory associated to Ell is an elliptic cohomology theory
related to the Jacobi quartic curve over Z[%,&E,A’l]. An obvious question is
whether there is a universal elliptic cohomology theory; this universal theory should
be related to a universal elliptic curve. Any elliptic curve C' over R is isomorphic
to a curve given in affine coordinates by the Weierstrass equation

y2 + a12y + azy = 22+ agx® + asx + ag, a; € R.

However, there is no canonical way to do this since the Weierstrass equation has
non-trivial automorphisms. There is no single universal elliptic curve, but instead
a moduli stack of elliptic curves, as seen in Chapter 4. Because of this, there is no
universal elliptic cohomology theory in the naive sense.

What one does end up with as the “universal elliptic cohomology theory” is
topological modular forms or tmf. Its mere existence is a difficult and subtle the-
orem, and it will take the rest of these proceedings to construct ¢tmf. Roughly
speaking, one uses the Landweber exact functor theorem to form a pre-sheaf of el-
liptic cohomology theories on the moduli stack of elliptic curves. One then lifts this
to a sheaf of E,, ring-spectra and takes the global sections to obtain the spectrum
tmf. While constructed out of elliptic cohomology theories, tmf is not an elliptic
cohomology theory, as evidenced by the following properties.

There is a homomorphism from the coefficients ¢tmf ™ to the ring of modular
forms MF. While this map is rationally an isomorphism, it is neither injective
nor surjective integrally. In particular, ¢tmf ™" contains a large number of torsion
groups, many of which are in odd degrees. Topological modular forms is therefore
not even, and the periodic version TMF has period 242 = 576 as opposed to 2 (or
as opposed to 24, the period of Ell). Furthermore, the theory ¢tmf is not complex
orientable, but instead has an M O(8) or string orientation denoted o. At the level
of coefficients, the induced map M String=* — tmf " gives a refinement of the
Witten genus ¢ .

tmf~*
el
M String™* N MF

While a great deal of information about ¢tmf has already been discovered, there
are still many things not yet understood. As an example, the index of family of
(complex) elliptic operators parameterized by a space X naturally lives in K(X),
and topologically this is encoded by the complex orientation of K-theroy. Because
of analytic difficulties, there is no good theory of elliptic operators on loop spaces.
However, it is believed that families indexes for elliptic operators on loop spaces
should naturally live in tmf and refine the Witten genus. Making mathematical

13

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



sense of this would almost certainly require a geometric definition of tmf, which
still does not yet exist despite efforts including [Seg, ST].
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Elliptic Curves and Modular Forms

Carl Mautner

We introduce elliptic curves as certain smooth curves in P?. We then consider
the group law on their points and formulate an equivalent definition of elliptic
curves as projective one dimensional group varieties, sketching the equivalence. We
conclude by considering the more general notion of a pointed curve of genus 1 over
an arbitrary base scheme and define the notion of a modular form. The first two
sections follow parts of Silverman’s books [Sil, Si2] and the third section is based
on the short note [De] by Deligne.

1. Elliptic curves as cubics in P2...

DEFINITION 1.1. An elliptic curve defined over a field K is a nonsingular curve
C in P? defined by a cubic equation such that C NPL = [0 : * : 0] (where PL_ is
the curve [ : % : 0]).

Any such curve can be expressed in projective coordinates [ X, Y, Z], after rescal-
ing X and Y, as

Y2Z + a1 XYZ 4+ asYZ% = X3+ as X% Z + ay X Z° + a6 Z°>

for some ay,asg,...,as € K. Conversely, any such equation will cut out a (possibly
singular) cubic curve such that C NPL = [0:x:0].
In affine coordinates, this becomes the so-called Weierstrass form:

y2 + a1y + asy = 2> + a2x2 + asx + ag.

If char(K) # 2, then we can complete the square on the left hand side and use the
change of coordinates

1
y=5 —azr - as)
to obtain the equation:
y% = 42 + by + 2buz + b,

by = a? + 4as,
where by = 2a4 + ajas,
b(; = a% + 4(16.

Of course, these elements of K can be defined without any restrictions the char-
acteristic. Similarly, one can define the following objects associated to a fixed
Weierstrass equation.
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bs = a2ag + 4asag — ajazay + a2a§ — a3,

Cq = b% — 24b4,

c6 = b3 + 36byby — 216b,

A = —b3bg — 8b3 — 27b2 + babybg,

j=ci/A,

w=dz/(2y + a1z + az) = dy/(32% + 2a2z + a4 — ary).

The last three have names. A is called the discriminant, j is the j-invariant, and
w is the invariant differential.

If the characteristic is neither 2 nor 3, then by the following change of coordi-
nates:

To = (331 — 3b2)/36
y2 = y1/108,

we obtain

Y5 = a5 — 2Tcawy — Hdcg.

One is really interested in the curve itself, as opposed to the various equations
which cut it out. Thus we must understand how these quantities change under
changes of variables preserving Weierstrass form and fixing the point [0 : 1 : 0].

Any such change of variables is of the form:

(1) z=uz +r
y =udy +ulsz’ +t,

where 7,s,t € K and v € K*. This changes the quantities above as shown in
Table 1.

ual = ay +2s

u?al, = as — sa; +3r —s
udal = az +ra; + 2t
utal = a4 — saz + 2ras — (t +rs)a; + 3r? — 2st

ubay = ag + ras + rlag + 13 —taz — t? — rtay

2

4. _
u?bly = by + 12r UGC? B “
utbly = by + rby + 612 ?223, B ﬁ
uSbjy = b + 2rby + 1r2bg + 413 v g
uBby = bs + 3rbg + 312y + r3by + 3r? u’lzf/ B i

TABLE 1. a,b,c’s under the change of coordinates given in equation (1).

As an excuse to draw some pictures, we include the plots of the real points of
some Weierstrass equations:
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u

Real points of the elliptic curve y? = 23 — 2 and the singular cubic y? = 3.

We conclude the section with a few easy facts, proofs of which can be either provided
by the reader or found in [Sil]:

1. A Weierstrass curve is singular if and only if A = 0.

2. Two elliptic curves over a field K, C and C’, are isomorphic over K if and
only if the have the same j-invariants, i.e., j(C) = j(C").

3. The invariant differential w has no poles and no zeros.

2. ...and as one dimensional group varieties

As an elliptic curve C is defined by a cubic, intersecting with any line in P2
will provide three points (when counted with multiplicity) of C. It turns out that
one can define a group law on the points of C' by declaring that any three points of
C obtained from intersection with a line should sum to the identity element. More
directly, given two points P and @ on C', we define their sum as follows:

(1) Find the line L containing P and @ (or tangent to C at P if P = Q) and
let R be the third point on L N C. (2) Take the line L’ passing through R and
e =[0,1,0] and define P + @ to be the third point of intersection in L' N C.

A picture illustrating this group law is shown in Figure 3.

3
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=

Group law on an elliptic curve.

THEOREM 2.1. The law defined above provides an abelian group structure on
the points of C' with identity element e = [0,1,0]. In fact, the maps

+:ExFE—FE —-—:F—F
are morphisms.

Proof: See [Si1] III.2-3.

COROLLARY 2.2. An elliptic curve C over K is a one dimensional group variety
over K.

In fact, there is a rather strong converse to this statement.

THEOREM 2.3. Let G be a one dimensional (connected) group variety over an
algebraically closed field K. Then either:

(i) G = G, the additive group,

(i) G = G, the multiplicative group,

or (i) G is an elliptic curve.

Remark: Over a non-algebraically closed field, a very similar statement is true,
the only modification being that there can be ‘more multiplicative groups.’

We will only sketch a proof, for more details see [Si2]. We begin by recalling a
lemma which we will not prove.

LEMMA 2.4. Let B be a non-singular projective curve of genus g and S C B a
finite set of points such that:

(i) #S >3 ifg=0, (i) #S > 1 if g =1, and (i) S is arbitrary if g > 2.

Then, Aut(B;S) := {¢ € Aut(B)|p(S) C S} is a finite set.

Assume first that we knew the lemma held. Note that as G is a group, it is
non-singular and irreducible. This together with the fact that G is one dimensional
implies that it embeds as a Zariski open subset in a non-singular projective curve
G C B (cf. [Ha] 1.6).

Let S = B — G. Now each point P € G provides a different translation
automorphism 7p : G — G of G as a variety. This extends to a rational map from
B to B and as B is non-singular, an element of Aut(B;.S). This gives an injection

4
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of G into Aut(B;.S) so this set can not be finite. Applying the lemma above shows
that either G if P! with 0,1, or 2 points removed or a genus one surface.

A simple argument shows that P! does not admit a group structure (even
topologically!), and the only group structure on A! (resp. A! —0) is G, (resp.
Gyn). Tt then remains to show that a genus one curve G with a base point e is
isomorphic to an elliptic curve and that the only possible group structures on the
genus one surface arise from such an isomorphism. We will ignore the second issue
and focus on the first as we will want to generalize the argument later.

THEOREM 2.5. Let (B, e) be a genus one curve with marked point e € B. Then
(B, e) is an elliptic curve, i.e. there exist functions x,y € K(B) such that the map

¢: B — P?
defined by ¢ = [x,y,1] is an isomorphism of B/K onto the elliptic curve
C':y2+a1xy+a3y:x3+a2x2+a4x+a6
for some ay, ... a5 € K.

To prove this theorem, we use the following special case of Riemann-Roch.

THEOREM 2.6. Let B be a curve of genus 1. If D € Div(B) has positive degree
and L (D) ={f € K(C)*: div(f) > =D} U {0}, then dimZ (D) = degD.

Now apply this version of Riemann-Roch to the sequence of divisors: e, 2¢, 3e, .. ..

Applied to e we find that dim.Z(e) = 1 so £ consists of the constant functions
K. %(2e) is 2 dimensional and thus will contain a function x with pole of order
2 at e. Similarly, .Z(3e) is three dimensional and thus have another function y
with a pole of order 3 at e. Continuing on, we see that (1,x,y,z?) is a basis for
Z(4e) and (1,z,y,22, 2y) a basis for .Z(5e). However, the dimension of £ (6e) is
6 and it must contain the functions (1,z,y, 2%, xy,y?,#3). Thus there must exist
a linear combination of these such that the coefficients of y? and z* are non-zero.
Rescalling = and y appropriately, we obtain a Weierstrass equation.

It remains to show that the map ¢ defined in the statement of the theorem
is (1) a surjective morphism, (2) a degree 1 map onto its image C, and (3) C is
smooth.

To see (1) we note that ¢ is a rational map from a smooth curve, and therefore
a morphism. Moreover, any morphism between connected curves is surjective.

For (2) it is equivalent to show that K(B) = K(x,y). First consider the map
[,1] : B — PL. It has a pole of order 2 at e and no others, so is of degree 2, i.e.,
[K(B) : K(z)] = 2. On the other hand, mapping E to P! by [y, 1] we see that
[K(B): K(y)] = 3. As 2 and 3 are relatively prime, [K(B) : K(z,y)] = 1 and thus
K(B) = K(xz,y).

Lastly, suppose that C' were singular. Then there would be a rational map to
P! of degree one. But composing this with ¢ would give a degree one map between
smooth curves from B to P'. Any degree one map between smooth curves is an
isomorphism which would imply that B was of genus zero, a contradiction.

3. Elliptic curves over arbitrary schemes

Now that we have a sense of what an elliptic curve looks like, we would like to
understand how they behave in families. Once we do so, it makes sense to allow
some singularities. For example, if one wants to understand the rational points
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of an elliptic curve, say y?> = 23 + 222 4 6, one might wish to consider the curve
reduced modulo a prime. However, in characteristic 2 (respectively 3), the curve
becomes singular as y? = 2% + 222 + 6 = 23 (resp. y? = 2% + 222). If we think of
our curve as being a scheme over Spec Z, over most primes the geometric fiber will
be an elliptic curve, but over 2 and 3 for example, it will become singular.

This motivates the following definition.

DEFINITION 3.1. A pointed curve of genus 1 over a scheme S is a proper, flat,
finitely presented morphism p : C' — S together with a section e : S — C' such that
the section is contained in the smooth locus of the fibers and every geometric fiber
of p is either

(i) an elliptic curve,

(ii) a singular cubic in P? with a node, or
(iii) a singular cubic in P? with a cusp.

A fiber of the form (ii) (resp. (iii)) is said to be multiplicative (resp. additive).

ExXAMPLE 3.2. Consider the scheme over SpecZ given in affine coordinates as
Ci : y? = 23 + 222 4+ 6. The discriminant of this curve is —18624 = —26.3.97. It
follows that C; is singular only over the primes (2), (3), (97). As we saw above, C
has a cusp over (2) and a node over (3), similarly one can check that it also has a

node over (97). See Figure (4).

@ [©) (5) @ = (97 ©

The curve C; : 4% = 2% 4+ 222 + 6 over SpecZ.

EXAMPLE 3.3. Over the base Spec(C(\)) = A! we can consider the scheme
Co :y?> = x(x — 1)(z — X). Over 0 and 1, the fibers are multiplicative and all other
fibers are smooth. See Figure (5).

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



K@ o sl : 5@
5l

The curve Cy : y? = z(z — 1)(z — \) over Spec(C[)\]) = AL.

DEFINITION 3.4. Let w be the invertible sheaf w = e*Qlc/S.

In other words, w is the sheaf over S whose stalk at a closed point s € S is the
restriction of the cotangent space of the geometric fiber over s to e(s).

The section e is a relative Cartier divisor of C' over S (i.e., a closed subscheme,
flat over S whose ideal sheaf is an invertable Oc-module [KM, 1.1]). One has a
short exact sequence for all n > 0:

0— O(ne) = O((n+1)e) = O((n+1)e) — 0.

Using the residue pairing between Qf /s and O.(e), we can identify p,O.(e)
and w~!. Also, one can check fiber-by-fiber, that R'p,O(ne) = 0 for all n > 0.
Thus the long exact sequence obtained by pushing forward will begin with the short
exact sequence:

0 — p.O(ne) = p.O((n +1)e) —» WD 0,

Riemann-Roch tells us that p,.O(ne) is locally free of rank n. Further one can
check fiber by fiber that Og is isomorphic to p.O(e). Putting this together we see
that we have a filtration of p.O(ne) by p.O(me) for 1 < m < n with associated
graded

Gr p.O(n (95@@w® i

We will use this to show that we can (locally) embed any pointed curve of
genus 1 into P% by a Weierstrass equation, just as we did for genus 1 curves over
algebraically closed fields.

Let m be an invertible section of w. In analogy to the simpler case, we choose
a basis {1,z,y} of p.O(3e) such that z € p.O(2¢) C p.O(3e) and under the
projections to the pieces of the associated graded:

p.(0(3e)) — w®3
y > w®3
P.(O(2e)) = w®=2
x> @2
7
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If instead of w, we had chosen a different section 7’ = ur where u is an invertible
function, then all such bases with respect to v’ can be written in terms of the old
as

x=ulz +r
y = udy + su’x’ +t.

Note that this is a global version of formula (1) from the first section and that
all of the formulas in Table 1 still hold. Moreover, the section of w®* given by
cam®* changes to ¢ (7')®4, so it does not depend on the choice of 7, z, and y. The
same goes for cgm®% and A7®'2 which are sections respectively of w® and w'2. This
suggests the following definition.

DEFINITION 3.5. An integral modular form of weight n is a law associating
to every pointed curve of genus 1 a section of w®™ in a way compatible with base
change.

From the discussion above, examples of integral modular forms of weight 4, 6,
and 12 are c4m®%, cgm®8, and An®12,

REMARK 3.6. The product of two integral modular forms f and g of weights
n and m produces an integral modular form of weight n 4+ m. If we let modular
forms live in the direct sum of the tensor powers of w, we can then consider integral
modular forms as making up a ring.

REMARK 3.7. As any pointed curve of genus 1 embeds locally in P% by a
Weierstrass equation, the curve C : y? 4+ a12y + azy = =3 + axx? + a4z + ag defined
over Spec Z[a, az, as, ay, ag] is universal and any modular form will be a polynomial
in the a;.

As we saw in section 1, if we only consider bases in which 2 and 3 are invertible
(i.e., if we work over Z[1/6]), then for a fixed choice of 7, there exists a unique
choice of z,y such that a; = a2 = a3 = 0. In analogy to the previous remark,
this says that the curve given by y? = 23 — 27cyz — 5dcg defined over Z[1/6][cy, cg]
is universal over Z[1/6]. This then implies that every Z[1/6]-modular form is a
polynomial in Z[1/6][c4, c¢]. But as both ¢4 and cg are integral modular forms as
shown above, we are left with the following theorem.

THEOREM 3.8. The ring of Z[1/6]-modular forms is the polynomial ring Z[1/6][c4, ce].
With a little more work the ring of integral modular forms can be calculated.

THEOREM 3.9. The ring of integral modular forms is generated over Z by cy4, cg,
and A and has only one relation:

¢y —cg = 1728A.
The proof can be found in [De].

References

[De] P. Deligne. Courbes elliptiques: formulaire d’apres J. Tate. In Modular functions of one
variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 53-73.
Lecture Notes in Math., Vol. 476. Springer, Berlin, 1975.

[Ha] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in
Mathematics, No. 52.

[KM] Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves, volume 108 of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.

8

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



[Sil] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.

[Si2] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



The Moduli stack of elliptic curves

André Henriques

1. The geometry of M.y,

1.1. M, over the complex numbers. Over the complex numbers, any
elliptic curve C is isomorphic to C; := C/Z{1,7} for some complex number 7
in the upper half plane H. Two elliptic curves C; and C. are then isomorphic
if and only if 7/ = g -7 for some element g € SLy(Z), where the (non-faithful)

action of SLy(Z) on H is given by (f;) ST = f:is More precisely, there is a

bijective correspondence between isomorphisms C, — C,/, and group elements
g € SLy(Z) satisfying 7" = g - 7. The map corresponding to g = (Zs) is then given

by Cr - Crr: 2z — ﬁ. It follows that M,y is the quotient stack

My = [H/SLa(Z)).

The automorphism group of the elliptic curve C; then corresponds to the stabilizer
group of 7 by the action of SLy(Z).

The j-invariant provides an algebraic map Mg — C, expressing C as the
coarse moduli space of M. By definition, this means that the above map is
initial among all maps from M. to a variety. By a generalized elliptic curve we
mean a curve that is either an elliptic curve or isomorphic to the multiplicative
curve G,,, = C*. The moduli space M,y of generalized elliptic curves can then be
thought as the one point compactification of M, and the j-invariant extends to
a map mell — Cpl

There are two distinguished j-invariants, corresponding to curves with extra
symmetries. These are 57 = 0, which corresponds to the elliptic curve obtained by
modding out C by an equilateral lattice, and j = 123 = 1728, which corresponds
to the elliptic curve C; = C/Z{1,i}. Those elliptic curves have automorphism
group Z/6 and Z/4, respectively, while all the other generalized elliptic curves have
automorphism group Z/2. Depending on one’s taste, one might then draw M,

1
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as
int
j=1728

- 1728
or

The first one of the above pictures is the most geometric, but it is only the third
one that we will be able to generalize to the case when our base is Spec (Z).

1.2. Mg over the integers. Over Spec(Z), the coarse moduli spaces of
My and Mgy are still isomorphic Al and P!, respectively. However, Spec(Z)
being one-dimensional, it is now preferable to draw Aépec (z) 3 & plane, as opposed
to a line. The elements 0,123 € Z then correspond to sections of the projection
map Aépcc @ Spec(Z). Note that, since the difference 122 — 0 is divisible by 2
and 3, the values of those two sections agree over the points (2), (3) € Spec(Z).

The elliptic curves {y%2+y = 23} and {y? = 23—} have j-invariants 0 and 123,
respectively. Their discriminants are —27 and —64. Therefore, as elliptic curves,
they are actually only defined over Z 3y and Z ), respectively. By definition of M.y,
an elliptic curve defined over a ring R gives rise to a map Spec(R) — M. So
the above elliptic curves correspond to maps Spec(Z3)y) — My and Spec (Zay) —
My

j=1728 L E0

Mell

dar

@ 6 O (©)
¢ ¢ ; ; Spec(Z)

Given a variety X defined over I, one typically needs to base change to ]Fp in
order to “see” all the automorphisms of X. But for elliptic curves it turns out that
2 is always enough. The automorphism groups of an elliptic curve C' defined over
a finite field F containing IF,» are given by:

72 if j#0,123

Z)6  if j=0, p#2,3

Aut(C) = Z)4 if j =123, p#2,3
ZJAXZ/3 if j=0=12% p=3

Z/3x Qs if j=0=123, p=2
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The last group is the semi-direct product of Z/3 with the quaternion group Qs,
where the action permutes the generators i, j and k.

If C is defined over [, then it is better to view Aut(C) as a finite group scheme,
as opposed to a mere finite group. In general, the data of a finite group scheme over
some field k is equivalent to that of a finite group and an action of Gal(K/k) by
group automorphisms, where K is some finite extension of £. In our case, k = F,,
K =TF,2, and Aut(C) is given by Aut (C X gpec (F,) Spec (Fp2)), along with its action
of Z/2 = Gal(F,2 /F,). The actions of Z/2 on the above groups is given by:

Z]2 : the trivial action;

76 : trivial iff 3 divides p — 1;

Z/4 : trivial iff 4 divides p — 1;

Z/4x Z/3 : mnon-trivial on Z/4, trivial on Z/3;

7/3% Qs non-trivial action on Z/3; the action on Qg

exchanges i <> —i, j <> —k, and k & —j.

Note that the group schemes corresponding to the first three rows of the above list
are isomorphic to us, g, and uy4, respectively.

2. Multiplication by p

Let C be an elliptic curve defined over a field F. Like any abelian group, it has
a natural endomorphism [p] : C' — C given by  — x + --- + x (p times). Clearly,
the derivative of [p] at the identity element is multiplication by p. If p is invertible
in F, then the derivative of [p] is non-zero at the identity element, and therefore
everywhere non-zero since it is a group homomorphism. On the other hand, if F
has characteristic p, then the derivative of [p] is identically zero.

Let C[p] denote the scheme-theoretical kernel of [p]. From the above discussion,
we see that Clp] is a reduced scheme if and only if p # 0. The number of geometric
points of C[p| can vary. But if we count points with multiplicities, then that number
is always p2.

THEOREM 2.1. Let C be an elliptic curve defined over a field F. Then [p]:C —
C has degree p?. Equivalently, the vector space T'(C|p], ©) has dimension p?.

PROOF. We begin by the observation that, if C; and Cy are smooth curves
over a field F, then any non-constant map f:C; — C5 is flat. Indeed, flatness can
be checked on formal neighborhoods of points. So without loss of generality, we
may replace C; and Cs by their completions around some given points. The map
f can then be written locally as

f - Spf (F[[z]]) — Spf (F[[y]])
(1) Fllz]] « Flyl] : f*
ffly) <« y

The power series f*(y) € F[[z]] is non-zero by assumption, so can be written as
f*(y) = az? + (higher terms) for some a # 0. One then checks that F[[z]] is a free
F[[y]] module with basis {1,,...,2971}. In particular, it is flat.
Now let C be an elliptic curve defined over a field. Since [p]:C — C is not the
constant map [Si, Prop. 111.4.2], it is flat.
3
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It will be useful to allow more general base schemes. Recall [Gro, section
11.3.11] that given a diagram

X 4f> Y
S
where X and Y are flat and of finite type over S, the map f is flat iff for every field F
and every map Spec (F) — S, the pullback map f : X x g Spec(F) — Y xg Spec (F)
is flat. Let Cweier denote the universal Weierstrass elliptic curve, defined over the

ring Z[ay,az, a3, as,a6)][A71]. By the above criterion, and using our knowledge
about elliptic curves over fields, we see that

C'V\/eier [p] C1VVeier

o~

Spec (Z[a;]|A™1])

is flat.

Fix a map ¢:Spec(C) — Spec(Z[a;][A™]), and let Cy, be the elliptic curve it
classifies. Since C,, is topologically isomorphic to S x S1, one sees immediately
that Cy,[p] ~ (Z/p)?. Now consider the following commutative diagram:

C¢ [p} CWeier [P] E—— Spec (Z[az] [Ail})

J{ - i J[p] \Lzero section

Cga CVVeier C(V\/'eier

LN

Spec(C) Spec (Z[a;][A71])

Being an elliptic curve, Cyyeier is proper over Spec(Z[a;][A71]). Any map be-
tween proper schemes is proper, and so [p] is proper. The projection Ciweier[p] —
Spec (Z[a;][A71]) is pulled back from [p]. It is therefore flat and proper, and in
particular, it has constant relative dimension. To compute the latter, we note
that the relative dimension of a map is left unchanged by pullbacks, and that
Cy[p] — Spec (C) is of relative dimension zero.

We have shown that Cyyeier[p] — Spec (Z[a;][A1]) is proper, flat, and of relative
dimension zero. It is therefore a finite map. Being flat and finitely generated, the
Za;][A™1] module T'(Cweier [p]; O) is therefore projective of finite rank. The rank of
a projective module is stable under pullbacks. It is therefore equal to the complex
dimension of I'(C,[p]; O), namely p>.

Now let C be an arbitrary elliptic curve, defined over a field F. By the following
pullback square

C [p] Cweier [p]

Lo
Spec (F) —> Spec (Zfa][A~1)

4
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we see that the dimension of T'(C[p]; O) is equal to the rank of T'(Cweier[p]; O),
which is p?. [

The scheme theoretic cardinality of C[p] is always p?. Since C[p] is a group, the
number of connected components of C[p] is therefore either p?, p, or 1. All those
cases can occur. The first one happens iff C[p] is reduced, namely iff the base field
is of characteristic different from p. The two other cases happen in characteristic
p.

DEFINITION 2.2. Let F be a field of characteristic p, and C' an elliptic curve
defined over F. Then C is called ordinary if C[p] has p connected components, and
supersingular if Cp] is connected.

If C is an elliptic curve defined over an arbitrary base scheme S, then there is a
natural stratification of S: the stratum over which the fibers of the map C[p] — S
have cardinality p?, the one over which they have cardinality p, and the one over
which they consist of a single thick point. The first of the above three strata is the
Zariski open set {p # 0}. The other two strata are called the ordinary locus and
the supersingular locus.

p=0 dar

3. The relative Frobenius

In characteristic zero, the derivative of a non-constant map f:C7 — C3 can
only vanish at a finite number of points. But in characteristic p, the derivative of
f can vanish identically without f being constant. For example, this is the case for
the map [p]: C — C, where C is an elliptic curve. The prototypical example of a
map whose derivative vanishes identically is the relative Frobenius.

5
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DEFINITION 3.1. Let C be a curve defined over a perfect field F of characteristic

p. Define C?) to be the scheme with same underlying space as C, but with structure
sheaf

OC(p)(U) = {(ﬂp | x € Oc(U)}
The relative Frobenius of C' is the map
¢:C—» CP

given by the identity on the underlying spaces, and by the inclusion Oy — Oc¢
at the level of structure sheaves.

In local coordinates, the relative Frobenius is given by

¢ : Spf(F[[z]]) — Spf(F[[z]])” = Spf(F[[y]])  (where y =2?)
zP i y

We see in particular that its derivative ¢’ vanishes identically.

REMARK 3.2. If C is defined by equations in P", then C'®) can be identified
with the curve defined by those same equations, but where all the coefficients have
been replaced by their pth powers. In those coordinates, the relative Frobenius is
given by ¢([zo,...,z,]) = [25,...,22]. Using that as our working definition, we
could have removed the condition that F be perfect in Definition 3.1.

In the rest of this chapter, we assume for convenience that the base field F is
perfect. All the statements remain true without that assumption.

PRrROPOSITION 3.3. Let C1, Cy be curves defined over a perfect field of char-
acteristic p, and let f : C1 — Cs be a map whose derivative vanishes identically.
Then the map f can then be factored through the relative Frobenius of C1:

o !

(2) N A

Cip)

Csy .

PROOF. In local coordinates, the map f is given by some power series expan-
sion, as in (1). Since f*(y) = > a;z* € F[[z]] has zero derivative, it follows that
a; = 0 for all ¢ not divisible by p.

Now, let g € T'(U,O¢, ) be a function in the image of f : f*Oc, = Oc¢,. Its
derivative ¢’ is identically zero, so g admits a pth root (a priori, this is only true
locally, but the local pth roots are unique, so they assemble to a pth root defined
on the whole U). It follows that g € (9(6?1 ). We have shown that f*Oc, = O¢,

factors through (’)g)l)7 which is equivalent to the statement that f factors through
). O

COROLLARY 3.4. Let C be an elliptic curve defined over a perfect field of char-
acteristic p, Then the map [p] : C — C factors through ¢.
6
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Define inductively C®" ") := (C®"))®) Given a non-constant map f : C; —
C5, there is a maximal number n such that we get factorizations

/

Note that since deg(¢)

¢ C(P ).

= p, it follows that deg(f)

= p" deg(f).

If C is an elliptic curve and f is the map [p]: C — C, then by Theorem 2.1
Either C' is ordinary, in which case n =
f:C®) — C is an étale cover of order p, or C' is supersingular, in which case n = 2
and f:C(p2) — (C'is an isomorphism.

two cases can occur.

C(p)

N

étale cover
of degree p

C' is ordinary

)

C' is supersingular

1 and the map

Py

o®@)

LEMMA 3.5. If C is a supersingular elliptic curve defined over a perfect field
. In particular,

F of characteristic p, then its j-invariant is an element of F N Fp2
there are at most p* isomorphism classes of supersingular elliptic curves.

PRrOOF. By (3), we see that C®*) is isomorphic to C. It follows that j(C(pQ)) =

J(O) = 4(0).

O

In fact, there are roughly p/12 isomorphism classes of supersingular elliptic

curves [Si, Theorem V.4.1].

More precisely, if we count each isomorphism class
with a multiplicity of 1/] Aut(C')|, then one has the following formula:

p—1

Z 1

[C]:

Cis

supersingular

| Aut(C)]

24

For small primes, the number of supersingular curves is recorded in the following

table:
p= 213|517 11 13 17 19 23 29
#ofsscurves || 1 | 1 |1 ]1 2 1 2 2 3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
YTaw©y ||| |s|i|iTs|3|2ts|3ti|stits|ztats

4. Formal groups

Given an elliptic curve C, let C denote its formal completion at the identity.
Then C has the structure of a formal group.

Author's final version made available with permission of the publisher, American Mathematical Society.
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DEFINITION 4.1. A (one dimensional, commutative) formal group over S is a
formal scheme G — S which is isomorphic to the formal completion of a line bundle
along its zero section, and which comes equipped with an addition law

+:GxsG—= G,

making it into an abelian group object, with neutral element given by the zero
section S — G.

Given a formal group G, one can consider the multiplication-by-p map [p]: G —

G.

LEMMA 4.2. Let G be formal group over a perfect field F of characteristic p,
and let us assume that the map [p]:G — G is not constant. Then, after picking an
identification of G with Spf(F[[z]]), the power series expansion of [p| is of the form

(4) [p](z) = a1x?" + ana??" + agxgpn + ...
for some integer n > 1, and elements a; € F, a; # 0.

PROOF. The first derivative of [p] vanishes identically, so we can factor [p] as in
(2). Letting n be the biggest number for which we get a factorization [p] = f o ¢,
the power series expansion for [p] then looks as in (4). We need to show that a; # 0.
Since ¢ is a surjective group homomorphism, f is also a homomorphism. The
first derivative of f is therefore either everywhere non-zero or identically zero. If
f =0, then by Proposition 3.3, we get a further factorization by ¢, contradicting

the maximality of n. So f’(0) = a; # 0. O

The power series (4) is called the p-series of G. By the above lemma, we see
that the first non-zero coefficient of the p-series is always that of some z?".

DEFINITION 4.3. Let G be formal group over a field of characteristic p. The
height of G is the smallest number n such that the coefficient of zP" in the p-series
of GG is non-zero. If the p-series is identically zero, then we declare G to have height
00.

Writing the p-series as [p](z) = > a;2%, we see by Lemma 4.2 that the condition
of being of height greater than n is given by exactly n equations:

ap, =0, apz =0, aps =0, e apn = 0.
It is customary to write v, for the coefficient a,n.
If C is an elliptic curve over a field of characteristic p, then by (3), the only

possible heights for C are 1 and 2. The height is 1 if C' is ordinary, and 2 if is C' is
supersingular.

THEOREM 4.4 (Lazard [Laz]). Let F be an algebraically closed field of charac-
teristic p. Then the height provides a bijection between the isomorphism classes of
formal groups over F, and the set {1,2,3,...} U {oco}. O

Given a formal group G defined over a scheme S of characteristic p, one can
consider the heights of the fibers G|, at the various closed points « € S. This
yields a partition of S into strata S, := {z € S : ht(G|,) = n}. The closed subsets
Son = Umsrn Sm then form a decreasing sequence

S=850D281D82D-,
8
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where each one is of codimension at most one in the previous one. Let Mpg
denote the the moduli space of formal groups. From the above discussion, we see
that Mpg|spec (r,) looks roughly as follows:

§§§§@d - ht=inf

Namely, it consists of a countable sequence of stacky points, each point containing
all the next ones in its closure, and each point being of codimension one in the
previous one.

When considering formal groups over schemes S that are not necessarily of
characteristic p, then one has many heights: one for each prime p. By convention,
we let the p-height be 0 whenever p # 0. Here’s a picture of M pg over Spec(Z):

The assignment C' — C defines a map My, — Mpg. As we have seen, that
map only hits the first three layers of (5), namely the ones where the p-heights are
0, 1, and 2.

To complete the picture, we give some examples of formal groups of height n.
The following result of Lazard will be useful to us.

PROPOSITION 4.5 (Lazard [Laz]). Let R be a ring, and let
+r : Spf(R[[z]])* = Spf(R[[z,]]) — Spf(R[[x]))

be a binary operation satisfying the axioms for abelian groups, modulo error terms
of total degree > d. Then there exists another operation 4+, which does satisfy the
abelian group axioms, and which agrees with +r modulo terms of degree > d. [

Let R be any ring, and consider the example:

- x4+ y)? — gl — 4
cTpy =ty y)p v

9
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where ¢ = p™, and p is a prime. It satisfies commutativity, unitarity, and associa-
tivity modulo terms of degree > 2q — 1:

(x+y)—at—yr

(mod deg > 2q — 1)

(m'T‘Fy)'T‘FZZ$+y+ » + z
z+y)?—z?—y? q (z4y)?—xT—y?\q
p
) q q
1 — 7 —yl r+y+z) —(z+ — 29
SRS ) et A it Ml G )
p p
rT+y+2)—z?—y?—21
=$+y+z+( y+2) Y
p
=X —T—F (y I—F Z) (mod degree > 2¢ — 1)

So, by the above proposition, there exists an abelian group law on Spf(R[[z]]) of
the form:

a9 _ 9 _ ¢4
(7) T +Fpy = J;—i—y—|—<x+y) > x Y + (termsofdegreeZQq—l).

Generalizing the computation (6), it is easy to get the following formula:

Sai)! =Y al

1 +F X2 +F - FF Ty = Z(Ei—l— ( » (mod degree22q71).

In particular, if R =T is a field of characteristic p, then the p-series of (7) looks as
follows:

(px)q — pmq

= —z9 (mod degree > 2q — 1).
p

[pl(z) = px+

The first non-zero coefficient is that of 29 = xP’, therefore (7) defines an abelian
group law of height n on Spf(F[[z]]).
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The Landweber exact functor theorem

Henning Hohnhold

1. Introduction

The goal of this chapter is the construction of the presheaf of elliptic homology
theories on the moduli stack of elliptic curves M. This sets the stage for many of
the later chapters where the objective will be to turn this presheaf into to a sheaf
of E-ring spectra (using obstruction theory).

Even though we use the language of stacks, much of this chapter is closely
related to the classical story of elliptic cohomology. Constructing a presheaf of
homology theories on M,;; means to associate to every elliptic curve C (satisfying
a certain flatness condition) a homology theory ElI°. The construction of ElI°
is based on Landweber’s exact functor theorem, and we verify the assumptions of
Landweber’s theorem using the argument given by Landweber, Stong, Ravenel, and
Franke, sece [LRS], [Fr]. However, in the approach we describe (due to Hopkins
and Miller) the use of Landweber’s theorem is elegantly hidden in the statement
that the morphism

§: Mey = Mpg

given by associating to an elliptic curve its formal group is flat. This result is the
main ingredient in the construction of the presheaf of elliptic homology theories on
My

Let us briefly outline the content of this chapter. In Section 2 we first review
some generalities concerning even periodic cohomology theories and their formal
groups. After that we turn to Quillen’s theorem, the fundamental link between
complex cobordism and formal group laws. We state a version of the theorem that
indicates how the moduli stack of formal groups M pg comes up in connection with
complex cobordism. We conclude Section 2 by describing Landweber’s exactness
condition and his exact functor theorem which gives a nice criterion for when it is
satisfied.

We begin Section 3 by introducing some basics about stacks that are needed
for the construction of the presheaf of elliptic homology theories. We then express
Landweber’s exactness condition in the language of stacks: a formal group law over
a ring R is Landweber exact if and only if the corresponding map Spec R — Mpg
is flat. Using this and the flatness of the map § : M¢; — Mpg we see that every
flat morphism C : Spec R — Mgy gives rise to a homology theory ElI°. We also
explain how these fit together to give a presheaf of homology theories on M.y;.

1
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Finally, in Section 4 we prove, following Hopkins and Miller, that the map § is
flat. The proof is based on some facts about elliptic curves and their formal group
laws and the Landweber exact functor theorem.

Before getting started, let us fix some terminology. Whenever we talk about
stacks, we mean stacks defined on the Grothendieck site Aff of affine schemes with
the flat topology. In this Grothendieck topology, a covering is a faithfully flat map
Spec.S — Spec R. Since we will not be able to supply all the details about stacks
that are needed, we will occasionally refer the reader to the papers [Goe] and [Naul]
by Goerss and Naumann. Throughout this chapter, we will refer to 1-morphisms
between stacks simply as morphisms.

2. Periodic cohomology theories, formal groups, and the Landweber
exact functor theorem

We begin by outlining the relationship between even periodic cohomology the-
ories and formal groups.

DEFINITION 2.1. A multiplicative cohomology theory h* is even periodic if
h*(pt) = 0 for odd integers k and if there exists a unit u € h*(pt) of degree |u| = 2.

REMARK 2.2. Let h0 := h%(pt).

(1) Using the Atiyah-Hirzebruch spectral sequence we obtain (non-canonical)
isomorphisms

ue  RO((CPY) S 0Oz, ..., m]).

The choice of ¢ := ¢; determines in a canonical way a choice of ¢ for
k> 1.

(2) The map p : CP™ x CP>* — CP™ classifying the (exterior) tensor product
of two copies of the universal line bundle induces a map

hO[[z]] > RO (CP™) - RO(CP™ x CP*) = hO[[x1, 22]).

The image Fj(x1,x2) of  under this map defines a formal group law over
the ring A°.
(3) The formal group underlying the formal group law Fj,(x1,z2) is indepen-
dent of the choice of ¢+ and is called the formal group associated with
h*.
More information about this can be found in [Re]. The formal group associated
with h* can also be defined without choosing the coordinate ¢ : h?(CP>)) = h0[[z],
see [Lu].
EXAMPLES 2.3.
(1) The formal group associated with the periodic Eilenberg-MacLane spec-
trum
HP:=\/ 2*"HZ
meEZ

is the additive formal group.
(2) The formal group associated with complex K-theory is the multiplicative
formal group.
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(3) The periodic complex cobordism spectrum

MP = \/ 2*"MU.
meZ
has a canonical complex orientation and the associated formal group law
Fuyp(z1,x2) over MPy = MPY is, according to Quillen’s theorem, the
universal formal group law.

REMARK 2.4. As in the case of MU, one can show that
MPy = MPyMP

is a Hopf algebroid and that MP.(X) is a Z-graded comodule over it for all spaces
X.

Recall that every Hopf algebroid L = W defines a functor from rings to groupoids
by associating to a ring R the groupoid Pz, w)(R) whose set of objects is Hom(L, R)
and whose set of morphisms is Hom(W, R). The structure maps of Pz ) (R) (for
example, the source and target maps Hom(W, R) = Hom(L, R)), are induced by
the structure maps of L = W. We chose the notation Py, 1) here, since the asso-
ciation

Spec(R) — P,w)(R)

defines a prestack on Aff.

Now, consider the functor FGL from rings to groupoids that associates to a ring
R the category of formal group laws over R and their isomorphisms; on morphisms,
FGL is defined by pushforward. The following theorem is the fundamental link
between formal groups laws and complex cobordism.

In the remainder of this section, we will use the short-hand (L, W) := (MPy, MPoMP)
for the Hopf algebroid associated with periodic complex cobordism.

THEOREM 2.5 (Quillen, Landweber, Novikov). The Hopf algebroid (L, W) corep-
resents the functor FGL, i.e. we have a natural isomorphism of functors FGL =2

For a proof in the non-periodic case we refer to [Ad] and [Ko]. More informa-
tion about the periodic case can be found in [St].

Translating the theorem into the language of stacks, we obtain the following
result.

COROLLARY 2.6. The stack of formal groups M pq is equivalent to the the stack
associated to the Hopf algebroid (L, W).

PROOF. The theorem tells us that the prestack of formal group laws is iso-
morphic to Py, ). Note that there is a morphism from the stackification of the
prestack of formal group laws to the stack of formal groups given by forgetting the
choice of a (local) coordinate. Furthermore, since every formal group locally admits
a coordinate, this morphism is an equivalence. This implies the claim. (I

We have seen that every even periodic cohomology theory gives rise to a formal
group. Conversely, let us now try to associate to a formal group law F' a cohomology
theory. Recall that, according to Quillen’s theorem, a formal group law over a ring
R is the same as a ring homomorphism F' : L — R. One way to get a cohomology
theory from F is to start with the cohomology theory MP* corresponding to the
universal formal group law and to tensor it with R, using the L-algebra structure on

3

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



R defined by F. The functor R®;, MP*(_) is again a cohomology theory, provided
the exactness of the Mayer-Vietoris sequence is preserved.

We will describe Landweber’s theorem in the homological setting, i.e. we ad-
dress the question when the functor R ®; MP.(_) is a homology theory. This is
certainly the case if R is flat over L. However, a much weaker condition will do.
The point is that the L-modules MP,(X) that we tensor with R are of a very spe-
cial type: as we remarked above, they are comodules over (L, W). This motivates
the following definition.

DEFINITION 2.7. A formal group law F' : L — R is Landweber ezxact if the
functor

M— R, M

is exact on the category of (L, W)-comodules.

Using this language, we have: if F' is a Landweber exact formal group law, then
the functor

X+ R®y MP.(X)

defines a homology theory. We now formulate Landweber’s theorem, which gives
a useful characterization of Landweber exact formal group laws. For any prime
p, write the p-series of the universal formal group law F,, over L, [p|p,(z) =
z+p, ... +5,  (Summing p copies of x), as

(@) = Y a,”

n>1

and let v; := a,: for all i > 0. Note that the definition of a formal group law implies
vg = p. Define ideals I,, C R by I, ;== voR + ... + v,_1 R for all n > 0.

THEOREM 2.8 (Landweber, 1973). If for all primes p and for all integers n > 0
the map

vn : R/I, = R/I,

is injective, then F is Landweber exact.

For the proof we refer to [La]. Note that Landweber only considers the functor
M — R®p, M on the category of (L, W)-comodules that are finitely presented as
L-modules. However, since every (L, W)-comodule is a direct limit of comodules of
this type, the result holds in general, cf. Remark 9.6 in [Mi].

ExXAMPLES 2.9.

(1) The additive formal group over Z is not Landweber exact. However, it
is Landweber exact over Q. The corresponding cohomology theory is
ordinary cohomology with rational coeflicients.

(2) The multiplicative formal group over Z is Landweber exact. The corre-
sponding cohomology theory is complex K-theory.

(3) We will see that many formal group laws arising from elliptic curves are
Landweber exact. They give rise to so-called elliptic cohomology theories.
In the next section we will see that all these theories can be put together
to form a presheaf of (co)homology theories on the moduli stack of elliptic
curves.
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3. Landweber exactness, stacks, and elliptic (co)homology

The goal of this section is to express Landweber’s exactness condition in the
language of stacks and to construct the presheaf of elliptic homology theories on the
moduli stack of elliptic curves M;;. We will begin with some preliminary material
about stacks with a focus on stacks arising from Hopf algebroids. In this section,
(L, W) denotes a general Hopf algebroid, but the case we are mainly interested in
is (L,W) = (MPy, MPyMP), just as in Section 2.

REMARK 3.1. Fibered products! exist in the 2-category of stacks. Given mor-
phisms of stacks F : M — N and G : M’ — N we have a 2-categorical pullback
diagram

MXNM/ M

l 5

M —9 5N,

where the fibered product M X M’ is defined as follows. For an affine scheme
U, the objects of the groupoid M x xr M'(U) are given by triples (m,m’, ¢), where
m € M(U), m' € M'(U), and ¢ is an isomorphism ¢ : F(m) = G(m'). Morphisms
(m1,m}, $1) = (ma, mbh, P2) are pairs (1,9’'), where 1) : my — mg and ¢’ : mj —
m4 such that G(¢')d1 = G2 F ().

ExAMPLE 3.2. If the stacks involved come from Hopf algebroids, we can com-
pute the fibered product in terms of a pushout of Hopf algebroids, i.e. we have a

pullback square
Msay —— M)

! !

M Lyws) — Mw),
where S = L1 QW Q®p Ly and T = W, @ W ®p Ws.

REMARK 3.3. We will frequently use the following fact. If M w) is a stack
associated with a Hopf algebroid and a : Spec A — Mz w) is any morphism of
stacks, then a factors locally through the canonical map ¢ : Spec L — M, wy. This
means that there exists a covering, i.e. a faithfully flat map &k : Spec.S — Spec A,
such that ak : Spec S — Mz, w factors through c. This follows from the definition
of the stackification functor.

DEFINITION 3.4.

(1) A morphism F : M — N is representable if for all morphisms a :
Spec A — N from an affine scheme to N the fibered product M x rSpec A
is equivalent to an affine scheme Spec P.

(2) In this case, we call F flat (resp. a covering) if for all a the morphism of
affine schemes F, in the pullback diagram

SpecP —— M

L
SpecA —— N

is flat (resp. a covering).

1 Also known as ‘pullbacks’, ‘homotopy pullbacks’, or ‘2-category pullbacks’.
5
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REMARK 3.5.

(1) In the case N' = My w) it suffices to check the representability of F :
M — N on the morphism ¢ : Spec L — M, wy = N. To see this, assume
that M ®ar Spec L = Spec P is affine. If the morphism a : Spec A — N
factors through Spec L, then M ®x Spec A = Spec P ®gpec 1 Spec A is
affine. In the general case, we can find a covering k : Spec S — Spec A
such ak factors through ¢. Hence the pullback of M to Spec.S is affine
and it follows from descent theory for affine schemes that the same is true
for the pullback of M to Spec A.

(2) Similarly, we can check whether a representable morphism F : M —
M, wy is flat (or a covering) by checking on c. Since the properties ‘flat’
and ‘faithfully flat’ are local for the flat topology, it suffices to prove that
Fe (faithfully) flat implies that F, is flat for any a : Spec A — M w) in
the case in which a factors through c. In this case, however, this follows
since ‘flat” and ‘faithfully flat’ are stable under base change.

EXAMPLES 3.6.

(1) The description of the fibered product of stacks coming from Hopf alge-
broids given in Example 3.2 implies that every map Spec R — M w) is
representable. In particular, it always makes sense to ask whether or not
a map from an affine scheme to the stack Mrc = M yp,, mp,mp) is flat.

(2) Let (L, W) be a Hopf algebroid and consider the canonical map ¢ : Spec L —
M1, wy. From Example 3.2 we see that

SpecW —™ 5 SpecL

lnR l
SpecL —=— M. w)y

is a pullback diagram. Hence, if 1y, (or, equivalently, nr) is a faithfully
flat map, then c : Spec L — M, w) is a covering. In particular, we see
that Spec MPy — Mpq is a cover.

We will now define (pre)sheaves on stacks, more details can be found in [Goe].
Define the category Aff /M of affine schemes over the stack M as follows. The
objects are simply morphisms F : Spec R — M. The morphisms, say from JF;
to Fo, are 2-commutative triangles, i.e. pairs (h, ¢) consisting of a morphism A :
Spec Ry — Spec Ry and a 2-isomorphism ¢ between F; and Foh. We make Aff / M
into a Grothendieck site by declaring a morphism (h, ¢) to be a covering if h is a
covering in Aff.

DEFINITION 3.7. A presheaf on a stack M is a contravariant functor M on the
category Aff /M. A presheaf S on M is a sheaf if for every covering V' — U in
Aff /M we have an equalizer diagram

SU) = S(V)= SV xy V).
For example, the structure sheaf O 4 of the stack M is the sheaf of rings defined
by
Om(r: SpecR - M) := R.
Sheaves of modules over Oy are defined in the obvious way. The notion of quasi-

coherent sheaves of modules over O and the correspondence in the following
6
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proposition is explained in [Goe], Section 1.3; see also [Nau], Section 3.4. In the
following we assume that ny : L — W is faithfully flat, i.e. that ¢ : SpecL —
M(,w) is a covering.

PROPOSITION 3.8. The category of comodules over (L, W) is equivalent to the
category of quasi-coherent sheaves on M, w-

This implies that for every space X the comodule MP,(X) defines a quasi-
coherent sheaf over the stack Mpg.

For simplicity, we will call a sequence of quasi-coherent sheaves on Mz, w
exact if the corresponding sequence of (L, W)-comodules is exact. By definition of
the correspondence in Proposition 3.8 this is equivalent to asking that the pullback
of the sequence to Spec L under Spec L — My w) is exact. Here and in the
following the pullback functor is defined by composition: for F : Spec R — M w
and a quasi-coherent sheaf S on My, y) define the pullback by F*S(r) := S(Fr).

PROPOSITION 3.9. A morphism F : Spec R — M w) is flat if and only if the
pullback functor F* from the category of quasi-coherent sheaves on Mr, w) to the
category of quasi-coherent sheaves on Spec R is exact.

PROOF. Since both conditions are local with respect to the flat topology, we
may assume that F factors through Spec L by Remark 3.3. Now consider the
pullback diagram

Spec R@, W —Z— SpecR

| |

SpecL ;> M(L,W)-
Since c is a covering the map cr is faithfully flat. Hence F* is exact if and only
if (Fer)* = (cF.)* is exact. By our definition of exact sequences on Mz, ) this
means precisely that F is exact on (L, W)-comodules. This is certainly true if F
and hence F. are flat. Conversely, if F* is exact then the functor N — F*N =
R®p N is exact on (L, W)-comodules. Note that one can use the coalgebra structure
of W to make every L-module of the form W ®y M (for some L-module M) into
a (L, W)-comodule. Using this and the flatness of ng : L — W it follows that the
functor M — R®; W ®; M is exact on L-modules. Hence F. is flat, i.e. F is
flat. O
Recall that Mprg = Myp, mp,mp)- Hence, given a formal group law F :

MPy — R, we have a corresponding morphism of stacks

F SpecR — SpecMPO i) M(MPO,MPOMP) 2 Mpg.

COROLLARY 3.10. A formal group law F : MPy — R over R is Landweber
exact if and only if the corresponding morphism F : Spec R — Mp¢g is flat.

COROLLARY 3.11. Let F : Spec R — Mpg be any flat morphism. Then the
functor

X — F*MP.(X)
defines a homology theory.
Now we turn to the definition of the presheaf of elliptic homology theories on

M. We use the following theorem that will be proved in Section 4.
7
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THEOREM 3.12 (Hopkins, Miller). The morphism § : Moy — Mpg that maps
a familiy C of elliptic curves to the associated formal group Fc is flat.

Theorem 3.12 implies that for any flat morphism C : Spec R — M,y the
composition

Fe : Spec R — My — Mpg

is again a flat. By Corollary 3.11 we hence obtain a homology theory for every such

C.
DEFINITION 3.13. Given a flat map C : Spec R — My, define by
ElS(X) := FEMP.(X)
the elliptic homology theory associated with the elliptic curve C over R.

REMARK 3.14. Note that if F factors through the cover Spec L — M pg then,
by construction, Bl has coefficients ElIS (pt) = R @, MP,(pt) = R[u*!'] and the
associated cohomology theory is even periodic. For a general morphism F, the
theory Ellf(,) might merely be weakly even periodic, cf. [Lu], Remark 1.6.

The presheaf of elliptic homology theories is defined on the Grothendieck site
of flat affine schemes over M,;;. This is the sub-site of Aff/ M. whose objects
are flat morphisms C : Spec R — M. The value of this presheaf on an object
C is defined to be Ellf. In other words: for every space X we simply evaluate
the quasi-coherent sheaf F*MP,(X) on C. On morphisms, we define the presheaf
in the same way: for every space X and 2-commutative triangle (h, ®), say with
h : Cy — Ca, we evaluate the sheaf §* MP.(X) on (h, @) to get an induced map

ElS*(X) — ElS (X).

This is nice and functorial since §* MP,(X) is a sheaf on M ;. The work of defining
the induced maps is hidden in Proposition 3.8, which allowed us to consider the
comodule MP,(X) as a sheaf on Mpg (the explicit construction of the induced
maps can be found in [Goe], Section 1.3).

4. The map M.; — Mpqg is flat

Recall that the moduli stack of elliptic curves M,;; is an open substack of the
moduli stack of generalized elliptic curves M yyeier. The latter is isomorphic to the
stack associated with the Hopf algebroid (A,T'), where A := Z[ay, ag, as, a4, ag] is
the ring over which the universal Weierstrass curve lives and I' := A[uil,ns,t]
parametrizes isomorphisms of Weierstrass curves. The open substack of elliptic
curves My <> M peier 18 given by the locus where the discriminant A is invertible.
Consequently, Mey = M4 5y, where A := A[A"' and T := T'[A~!]. For more
information about (generalized) elliptic curves, see Appendix B in [AHS] and the
references therein.

In order to make sense of the statement that the map M.; — Mpg is flat,
we have to show that it is representable. It is easy to see that M. — M weier
is representable and hence the representability of M.; — Mpg is implied by the
following theorem.

THEOREM 4.1. The map Mweijer — Mpra, C — Fc, is representable.
8
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PrROOF. We will construct a pullback diagram of prestacks

Spec A[bg, b5, ...] —— Spec A —— Pa )
Spec L — Ppgesy — Paw)-

Stackifying this diagram yields the corresponding pullback diagram of the associ-
ated stacks.? It will be clear from the definition of the horizontal arrows in the
bottom row that their composition is the usual cover ¢ : Spec L — Mpq. This
implies the claim since the representability of M weier — M pg can be checked on
the cover ¢, see Remark 3.5.

The prestack Prqe) of formal group laws with a parameter modulo degree 5 in
the bottom row is corepresented by the Hopf algebroid

FGO) .= (L) LOtE 1), s, ...]),

where L) := L{ui"!, ug, us, ua).

In order to complete the proof it suffices to show that the square on the right
hand side is a pullback diagram. It then follows from the formula in Example 3.2
that the prestack in the top left of the diagram is isomorphic to an affine scheme
(which turns out to be Spec Alby, b5, ...]).

We need the following lemma.

LEMMA 4.2. Given a Weierstrass curve C over R with a local parameter u
modulo degree 5 near the identity, there exists a unique Weierstrass curve C over
R and a unique isomorphism

Y:C— 4
that maps u to the canonical local parameter x/y near the identity (modulo degree

5).

PrOOF. We will show that there is a unique transformation  that maps u to
v = z/y. C is then defined of be the image of C under ). Recall that isomor-
phisms of Weierstrass curves over R are given by transformations of 2-dimensional
projective space over R that are of the form

w2 0 7
M(u,s,m,t)= | su u® t |,
0 0 1

see [AHS]. It is not difficult to compute that the following expansions hold near
the identity:

U, = M(u,0,0,0)  satisfies  U,(v) = u v+ O0(w?)
Ss =M(1,0,s,0) satisfies Ss(v) = v—s02+0(?)
> = M(1,7,0,0) satisfies RT(v) = v+rvd+ 0
T, = M(1,0,0,t) satisfies Tiy(v) = v—to*+0(P).
-1

In order to prove the last two, one uses that y~! = v® + O(v*) near the identity,
see [Si], IV §1. Now, given any local parameter u = ujv + uv? + ... modulo degree
5, we can apply the transformation U, to make u; = 1. Similarly, we can apply
transformations S, R,, and T; to achieve us = uz = uq = 0. The composition of

2Readers comfortable with stacks might prefer to argue directly on the level of stacks, using
essentially the same argument we use for the prestacks, but working ‘locally’ whenever appropriate.

9
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these transformations is the isomorphism 1 we wanted to construct. Furthermore,
from the expansions for U,, Ss, R, and T} given above it is clear that the choices
for u, s,r, and t are unique. Since any transformation M (u,r,s,t) can be written
as

M(u,r,s,t) = Ty R, S:U,

for unique elements ¢, 7, s,u € R this implies that ¥ is unique. ([

Now we can explain the pullback square on the right hand side of the dia-
gram. Recall that for an affine scheme U = Spec R the objects of the groupoid
Par) XP w, Prae (U) are quadruples (C, F,u, ¢), where C : A — R is a Weier-
strass curve, F': L — R is a formal group law, u : Z[u%l,ug, us, uq] — R is a local
parameter modulo degree 5 for F', and ¢ : Fr — F' is an isomorphism of formal

group laws. We claim that the functor
iv : Spec A (U) = Par) XPw) Prao (U), C— (C, Fe,x/y,id),

is an equivalence of categories. To see this, note that the inclusion of the full sub-
category of Pa,ry Xp, w, Pra (U) whose objects are of the form (C, F¢, u,id) is
obviously essentially surjective. This together with the existence of ¢ in Lemma 4.2
shows that i;; is essentially surjective. Furthermore, the uniqueness of ¥ means that
iy is fully faithful, so i;; is an equivalence of categories. The functors iy fit together
to give an equivalence of prestacks i : Spec A — P4 ) XPw) Prae) . Thus we
have constructed the pullback square on the right hand side. ([l

Now that we have shown that M.; — Mp¢ is representable, we are ready to
prove that it is flat. The crucial ingredient is the following lemma.

LEmMA 4.3 (Franke, Landweber, Ravenel, Stong). The formal group law
F:L— A

of the universal smooth Weierstrass curve Cypiy over A= A[A™1] is Landweber
exact.

PrOOF. We apply Theorem 2.8, the Landweber exact functor theorem. We
have to check that for all primes p and integers n > 0, the map v, : A/In — fl/[n
is injective. This can be done as follows.

(1) Since A is torsion-free, multiplication by vy = p defines an injective endo-
morphism of A.

(2) Consider the endomorphism of A/pA = F,[a1, a1, ...,as, A~ given by ;.
Since 121/ pA is an integral domain, v is injective if and only if the image
of v1 in A/ pfl is not zero. This, in turn, is equivalent to the condition
that the mod p reduction of Cy,pn;v has a fiber that is not supersingular.
This is certainly true; in fact, most elliptic curves are not supersingular.

(3) We finish the proof by showing that the image of vy in A/(pA 4 v, A) is
a unit. This shows that multiplication by vy is injective as required and
that the conditions for all v,, n > 3, are trivial, since the ring A/(pA +
v1 A4 vy A) is zero. Assume the image of v, is not a unit in A/(pA+ v, A).
Then there exists a maximal ideal m C A containing (the images of) p,
vy, and vy. Hence the quotient A/m is a field (of characteristic p) and
the reduction of Cy,;v defines an elliptic curve over fl/ m whose associated
formal group law has height > 2. This contradicts the fact that the height
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of the formal group law of an elliptic curve over a field of characteristic

p > 0 is either 1 or 2, see [Si], Chapter IV, Corollary 7.5. O

Now we are ready to complete the proof of Theorem 3.12. Since the structure

maps A = I of the Hopf algebroid (/:i,f‘) are faithfully flat, the canonical map

c: Spec[l — My is a covering. Hence § : M — Mpg is flat if and only the
composition

F :Spec A — Moy — Mpa
is flat. By Corollary 3.10, F is flat if and only if the formal group law F : L — A
is Landweber exact, which was shown in Lemma 4.3. ([l

REMARK 4.4. In the following chapters we will see that the presheaf Ell on
M can be turned into a sheaf of E.-ring spectra (if we replace the flat topology
by the étale topology). The spectrum TMF is defined as the global sections of
this sheaf. It can be shown that the presheaf Fll and the corresponding sheaf of
E.-ring spectra extend to the Deligne-Mumford compactification M.j; of M ;.
The (-1)-connected cover of the global sections of this sheaf is tmf.
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Background and Motivation

In the chapter on the Landweber Exact Functor Theorem, we constructed a
presheaf O"°™ of homology theories on the moduli stack of elliptic curves, as follows.
A map f : Spec(R) — M,y from an affine scheme to the moduli stack of elliptic
curves provided an elliptic curve C' over the ring R, and this elliptic curve had an
associated formal group C' : MPy = MU, — R. Provided the map f : Spec(R) —
My was flat, the functor Ellc/p(X) = MP.(X) ®p, R was a homology theory.
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The value of the presheaf O"™ on an elliptic curve was defined to be the homology
theory associated to the formal group of that elliptic curve: OP°™(f) = Ellc/g.
Recall that such a presheaf is by definition simply a contravariant functor:

(Affine Schemes/(M z;))°" orn, Homology Theories
C/R — Ellc/R

The presheaf O"™ nicely encodes all the homology theories built from the
formal groups of elliptic curves. The only problem is that there are many such
theories, and they are related to one another in complicated ways. We would
like instead a “global” or “universal” elliptic homology theory. The standard way
of building a global object from a presheaf is of course to take global sections.
Unfortunately, the site of affine schemes over the moduli stack of elliptic curves
has no initial object, and therefore no notion of global sections. We would like to
find a homology theory O"™(M,;;) associated to the whole moduli stack. One
might guess that this homology theory should be the limit limgeg O"™(U) of the
theories O"™(U), where 4 is an affine cover of the moduli stack. The category of
homology theories is not complete, though, and this limit does not exist.

Thanks to Brown representability, we know that homology theories can be
represented by spectra. The category of spectra is rather better behaved than the
category of homology theories—for instance, it has limits and their homotopically
meaningful cousins, homotopy limits. If we can show that the presheaf O"™ is the
presheaf of homology theories associated to a presheaf QP of spectra, then we can
build a global spectrum, thus have a global homology theory, using a homotopy limit
construction. The main theorem is that there is indeed an appropriate presheaf of
spectra:

THEOREM 0.1 (Goerss-Hopkins-Miller). There exists a sheaf O'°P of Eo, ring
spectra on (Mey) e, the moduli stack of elliptic curves in the étale topology, whose
associated presheaf of homology theories is the presheaf O™™ built using the Landwe-
ber Ezxact Functor Theorem.

That OP is a sheaf and not merely a presheaf entails, for example, that its
value O%P(M,y;) on the whole moduli stack is determined as a homotopy limit
holimg ey OP(U) of its value on the open sets in a cover $l of the moduli stack.
The spectrum O'P(M,,;) represents the homology theory we were hunting for, and
warrants a special name:

DEFINITION 0.2. TMF := O%P(My).

The first goal of this chapter is to explain what it means to have a sheaf of
E, ring spectra on the moduli stack of elliptic curves. Note that we would have
been happy with a sheaf of (not necessarily E, ring) spectra. That the theorem
produces a sheaf of F., ring spectra is an artifact of the ingenious proof: it turns
out to be easier to handle the obstruction theory for sheaves of F., ring spectra
than the obstruction theory for sheaves of ordinary spectra.

Once we have the sheaf O%P, we would like to understand the global homol-
ogy theory TMF. In particular, we would like to compute the coefficient ring
TMF, = 7, (O%*P(M,y;)). The spectrum O%P(M,y;) is, as described above, built
as a homotopy limit out of smaller pieces {O*P(U)}yey. There is a spectral se-
quence that computes the homotopy groups of the homotopy limit O%P(M,y;) in
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terms of the homotopy groups of the pieces O*P(U). The E, term of this spec-
tral sequence is conveniently expressed in terms of the sheaf cohomology of the
sheafification of the presheaf on M given by U — 7, (O*P(U)).

ProproOSITION 0.3. There is a strongly convergent spectral sequence
Ey = HY(M .y, m}O'P) = 71, TMF.
Here W;f,OtOP is the sheafification of the presheaf w,O*P.

The second goal of this chapter is to construct this “descent spectral sequence”.
In the chapter on the homotopy of TMF we will evaluate the Es term of this
and related spectral sequences, and illustrate how one computes the numerous
differentials.

In the following section 1, we review the classical notion of sheaves, discuss
a homotopy-theoretic version of sheaves, and describe stacks as sheaves, in this
homotopy sense, of groupoids. Then in section 2 we describe what it means to have
a sheaf on a stack and recall the notion of homotopy limit needed to make sense, in
particular, of sheaves of spectra. In the final section 3, we discuss sheaf cohomology
and Cech cohomology on a stack and construct the descent spectral sequence for a
sheaf of spectra on a stack.

In writing this chapter, we have benefited enormously from discussions with
Andrew Blumberg and Andre Henriques, and from reading work of Dan Dugger,
Phil Hirschhorn, Paul Goerss and Rick Jardine, and, of course, Mike Hopkins.

1. Sheaves and Stacks

A sheaf S of sets on a space X is a way of functorially associating a set S(U) to
each open subset U of X. It is natural to generalize this notion in two directions, by
considering sheaves of objects besides sets and by considering sheaves on objects
besides spaces. Stacks are, at root, representing objects for moduli problems in
algebraic geometry, and as such might seem to have little to do with sheaves.
However, stacks can naturally be viewed as sheaves of groupoids on the category
of schemes, and this perspective is useful when discussing, as we will in section 2,
sheaves on a stack.

1.1. Sheaves. We begin with the classical notions of presheaves and sheaves
of sets on a space.

DEFINITION 1.1. Given a space X, let X denote the category whose objects are
open subsets U of X and whose morphisms are inclusions U < V of open subsets.
A presheaf of sets S on the space X is a contravariant functor from the category
X to the category Set of sets.

Explicitly, the presheaf provides a set S(U) for each open U and a restriction map
S(V) % S(U) for each inclusion U < V such that the composite S(W) 4%
S(V) ™Y S(U) is the restriction map ryy. The prototypical example is the
presheaf of real valued functions on the space: S(U) = Map(U, R); here the restric-
tion maps are restriction of functions. This presheaf has the special property that
an element of S(U), that is a function, is uniquely determined by its restriction to
any open cover of U by smaller open sets {U; < U };c;—such a presheaf is called
a sheaf.
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DEFINITION 1.2. A sheaf of sets on a space is a presheaf of sets S on a space
X such that for all open sets U C X and all open covers {U; < U};ecr of U, the
set S(U) is given by the following limit:

S(U) =lim <HS(Ui) = [[swi) = 11 sWijx) 3 )
i i i,k
Here the intersection U; N U; is denoted Us;j, the triple intersection U; NU; N Uy, is
denoted Ujjk, and so forth. To be clear, the products above occur over unordered
tuples of not-necessarily-distinct elements of the indexing set I, and the diagram
indexing the limit is the full standard cosimplicial diagram.

REMARK 1.3. We emphasize that the limit diagram in this definition does con-
tain codegeneracy maps, despite their frequent omission from the notation. For ex-

ample, if the index set has order two, then the limit, written out, is lim <S(U1) x S(Us) E; S(Ui2) x S(Ur1) x S(U

not lim (S(Ul) x S(U2) 3 S(U12) 3 + = )

REMARK 1.4. The classical definition of a sheaf demands that S(U) be the limit
lim (Hl S(U:) = 11, S(Uij)). This truncated limit is equal to the limit in defini-

tion 1.2. However, only the full limit generalizes well when we consider sheaves of
objects other than sets.

We can define a presheaf of sets on a category C, not necessarily the category of
open subsets of a space, simply as a contravariant functor from C to Set. Moreover
we can give a definition of sheaves of sets on C provided we have a notion of covers
in the category. A Grothendieck topology on a category C provides such a notion:

DEFINITION 1.5. A Grothendieck topology on a category C is a collection of sets
of morphisms {{U; = U};cr}; these sets of morphisms are called covering families.
The collection of covering families is required to satisfy the following axioms: 1)
{f :V — U} is a covering family if f is an isomorphism; 2) if {U; — Ul}cs is a
covering family, and g : V' — U is a morphism, then {¢g*U; — V} is a covering
family; 3) if {U; — U} is a covering family and {V;; — U} is a covering family
for each ¢, then {V;; — U} is a covering family. A pair of a category C and a
Grothendieck topology on C is called a Grothendieck site.

The basic example of a Grothendieck site is of course the category of open
subsets of a space, with morphisms inclusions, together with covering families the
sets {U; — U} where {U;} is an open cover of U. More interesting are the various
Grothendieck topologies on the category Sch of schemes. For example, in the étale
(respectively flat) topology, the covering families are the sets {U; — U} such that
L[, Ui — U is an étale (respectively flat) covering map. A sheaf on a Grothendieck
site C is of course a presheaf S : C°P — Set such that for all covering families {U; —
U} of the site, the set S(U) is the limit lim (Hl S(U:) = 11, 5(Ui) 3 )

Next we consider sheaves on a Grothendieck site C taking values in a category
D other than sets. We are interested in categories D that have some notion of
homotopy theory—these include the categories of groupoids, spaces, spectra, and
FE ring spectra. More specifically, we need the category D to come equipped with
a notion of homotopy limits and a notion of weak equivalences. We will discuss
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homotopy limits in detail in section 2.3. For now we content ourselves with a brief
example illustrating the idea that homotopy limits in, for example, spaces behave
like limits with a bit of homotopical wiggle room:

EXAMPLE 1.6. Suppose we are interested in the diagram of spaces X =X Y,
where the two maps are f and g. The limit of this diagram is the space of points
of X whose image in Y is the same under the two maps: lim(X =2Y) = {x €
X s.t. f(x) = g(z)}. The homotopy limit, by contrast, only expects the two images
to be the same up to chosen homotopy:

holim(X =2 V) = {(z € X, hy : [0,1] = Y) s.t. 7a(0) = f(z), ha(1) = g()}.

A presheaf on the site C with values in the category D is a contravariant functor
F : C°? — D. These presheaves are also referred to as presheaves of objects of D on
the site C: for example, “presheaves of sets”, “presheaves of spaces”, “presheaves
of spectra”.

DEFINITION 1.7. A sheaf on the site C with values in the category D is a
presheaf F' such that for all objects U of C and all covers {U; — U };¢r, the map

F(U) = holim (HF(UO = [[Fws) = 11 FWis) § >
i i,j W4,k
is a weak equivalence. The products here occur over unordered tuples of not-
necessarily-distinct elements of the indexing set I; in particular, the indexing dia-
gram does contain codegeneracy maps.

We will be particularly interested in the case where C is the étale site (My;)et
on the moduli stack of elliptic curves and D is the category of E. ring spectra.
We describe this particular site in section 2.2 and discuss homotopy limits of (Eo,
ring) spectra in section 2.3.

1.2. Stacks. A scheme X represents a functor Sch®® — Set by Y — Hom(Y, X).
A moduli problem, such as “What are the elliptic curves over a scheme?”, also
associates a set to each scheme, for example by ¥ — {ell curves/Y}/iso. Un-
fortunately, many such moduli problems are not representable by schemes. To
manage this situation, we keep track of not just the moduli set but the moduli
groupoid. We therefore consider, for example, the association taking Y € Sch to
{ell curves/Y, with isoms} € Gpd. This association is very nearly a presheaf of
groupoids on the category of schemes; (it is not a presheaf because pullback is only
functorial up to isomorphism.) It moreover has the sheaf-like property that elliptic
curves over a scheme Y can be built by gluing together elliptic curves on a cover of
Y. Altogether, this suggests that sheaves of groupoids are a reasonable model for
studying moduli problems.

DEFINITION 1.8. A stack on the site C is a sheaf of groupoids on C.

Recall that this definition means that for a presheaf F' : C°? — Gpd to be a
stack, the map F(U) — holim (HZF(UZ) = L, FU;) 3 ) must be a weak
equivalence for all covers {U; — U}. In order to unpack this condition, we need to
know what the weak equivalences and the homotopy limits are in the category of
groupoids. A weak equivalence of groupoids is simply an equivalence of categories.
The following proposition identifies the needed homotopy limit.
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PROPOSITION 1.9 ([Hol]). The homotopy limit of groupoids holim (Hz F(U;) = 11, F(Uy) 3 e

associated to a cover s = {U; — U} is the groupoid Desc(F, i) defined as follows.
The objects of Desc(F, ) are collections of objects a; in ob(F(U;)) and morphisms
aij : ailu, = ajlu,; i mor(F(Usy)) such that ajrai; = aup. The morphisms in
Desc(F, 1) from {a;, a;;} to {b;, Bi;} are collections of morphisms m; : a; — b; in
mor(F(U;)) such that B;jm; = mjc;.

Stacks are often defined to be presheaves of groupoids such that the natural
map F(U) — Desc(F,4l) is an equivalence of categories for all covers i of U. The
above proposition establishes that the more conceptual homotopy limit definition
agrees with the descent definition.

ExamPLE 1.10. We will be concerned primarily with the moduli stack of elliptic
curves M. This is a stack on the category of schemes in any of the flat, étale,
or Zariski topologies. Roughly speaking, the stack associates to a scheme Y the
groupoid of elliptic curves over Y. (Precisely, this association must be slightly
rigidified, a la [Hop, p.26].) Alternately, M, is the stack associated to the Hopf
algebroid (A,T) := (Z[ay, az, as, a4, ag][A7Y], Alu™t, r, s, t][AY]).

2. Sheaves on Stacks

We would like to understand sheaves of spectra on the moduli stack of elliptic
curves in the étale topology. First we consider the general notion of a sheaf on a
stack, then describe the étale site of the moduli stack of elliptic curves, and finally
discuss sheaves of spectra in particular.

2.1. The Site of a Stack. Suppose C is a Grothendieck site and X is an
object of C. We have a notion of sheaves on X, which are by definition sheaves on
the site C/X whose objects are maps Y — X in C and whose covers are inherited
from C. We would like a notion of sheaves on a stack M on the site C. In order
to consider objects of C over M, we need objects of C to live in the same place as
stacks on C. This is accomplished by the following functors:

C — PreC — Pregpg C
U — Hom(—,U) — Hom(—,U) with id

Thinking of object of C as the presheaves of groupoids they represent, we can
consider the site of objects over M.

DEFINITION 2.1. Let M be a stack on the site C. The site C/M has objects

the morphisms U — M in presheaves of groupoids on C. The morphisms in C/M

from U % M to V 2% M are the pairs (¢, ¢) where ¢ : U — V is a morphism of

C and ¢ is a natural isomorphisms between the functors a and bc. The covering

families of U — M in C/M are the sets of morphisms {¢; : U; — U, ¢;} such that
6
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{¢;} is a covering family in C. Schematically, the definition is

obj = {U — M in Preg,aC}
U o
mor = ci‘ﬁ/ M
JR— /
C/M = yvoo
Ui L U;
cov = i/ M 7 s.t. V cov in C
v U

DEFINITION 2.2. For a stack M on the site C, a sheaf on M with values in D
is a sheaf on C/M with values in D.

For example, we might consider M;; as a stack on schemes in the étale topology
Sch¢y and then consider sheaves on M, with values in the category of spectra.
However, in the end this is not the notion of sheaves on the moduli stack that we
want, so we need to modify the site Schgt/ M.

2.2. The site (My)st. We adjust the site Schey /M in two ways. First, to
enable later obstruction theory arguments we need to restrict the objects of our site
to be étale, not arbitrary, maps to the moduli stack. Second, it will be convenient
if our sheaves take values not only on schemes over the moduli stack but also on
stacks over the moduli stack; in particular we will then be able to evaluate a sheaf
on the moduli stack itself, producing a spectrum of global sections.

We will be interested in étale maps between stacks and étale covers of stacks.
These notions are derived from the corresponding notions for schemes. Recall that
a map X — Y between schemes is étale if it is flat and unramified or equivalently
smooth of relative dimension zero. The topologist can think of étale maps as being
the algebro-geometric analog of local homeomorphisms. A collection of étale maps
{U; — U} is an étale cover if for all algebraically closed fields k and all maps
f :Speck — U there exists an i with a lift of f to a map f : Speck — Us:

.U
Ui af ,

¢ étale cover if P ¢
U Speck T8 U

Note that these collections are the covers in the site Schg;.

DEFINITION 2.3. A map of stacks f : N'— M is étale if for all maps V — M
from a scheme to M, the pullback f*V is a scheme and the induced map f*V — V
is étale:

vy
N L Meétaleit | |

Etale maps N — My to the moduli stack of elliptic curves will be the objects
of the étale site of the moduli stack. Roughly, the morphisms are maps of stacks
N’ — N over the moduli stack, and covers are collections of maps {N; — N} over
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the moduli stack that are étale covers in their own right. (A collection of maps of
stacks is an étale cover if it satisfies a lifting property precisely analogous to the
one for étale covers of schemes.) In more detail, the étale site is defined as follows.
Note that we are considering all stacks, the moduli stack M;; included, as stacks
on the étale site of schemes Schy;.

DEFINITION 2.4. The objects of the étale site of the moduli stack of elliptic
curves (M )¢t are the étale morphisms N — M,y from a stack N to the moduli

stack. The morphisms from N % M, to N7 LN My are equivalence classes of
pairs (c, @), where ¢ : N' — N is a map of stacks and ¢ is a natural isomorphism
between a and bc. A natural isomorphism ¥ from ¢ : N = N tod : N = N’
can be viewed as an isomorphism from the pair (¢, ¢) to the pair (d,1¢)—these
two pairs are therefore considered equivalent as morphisms between N — M ;; and
N — My. A collection of morphisms {[(¢; : N; — N, ¢;)]} of stacks over M, is a
cover of (M) if for all algebraically closed fields k and all maps f : Speck — N,
there exists an 4, a representative (¢, ¢) of the equivalence class [(¢;, ¢;)], and a lift
of f to amap f : Speck — N; such that f = ¢f. Schematically, we have

obj = N Mo}
./\/\(L N
mor = cl‘ﬁ/ Mo ¢/ d(é)c
(Men)st = N =t N
i P N
cov = Cl(ﬁ/\—\ M.u s.t. /3i1 ¢
J\f/ Speck W)N

Though the definition of this étale site (Mg;)es is complicated by the introduc-
tion of stacks over the moduli stack, the site (M y;)gt still contains the fundamental
objects of study, namely elliptic curves over schemes; sheaves on (My)e should
be thought of primarily as assignments of sets (or, in a moment, spectra) to these
elliptic curves.

We are hunting for a sheaf of spectra O%P on the étale site (M)t of the
moduli stack of elliptic curves. Such a sheaf was defined in section 1.1 as a presheaf
F: (Men)gt — Spec such that, for all objects U of (M )¢, the natural map

F(U) — holim (HF(Ui) = [[Fwy) = T] FUan) § : )
i .7 .3,k
is a weak equivalence. We need therefore to understand in detail the notion of
homotopy limits in the category of spectra.

2.3. Homotopy Limits and Sheaves of Spectra. A sheaf of sets on a space
X is a functor F': {U C X}°P — Set whose value on large open sets is determined
as a limit of the value on smaller open sets. We could take a similar definition
for sheaves of spectra F : {U C X}°P — Spec, but the limit condition ignores the
topological structure of spectra, and the value of the sheaf on large open sets would
not capture any information about the topological behavior of the sheaf on small
open sets. Instead of “gluing” the values of F' together with a limit, we glue them
together with a homotopy limit. The homotopy limit takes the various values of F'
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and thickens them up with a bit of padding, so that they aren’t too badly damaged,
homotopically speaking, by the gluing process.

In section 2.3.1, we describe colimits and limits in terms of tensors and coten-
sors, and use this framework to give a concise description of homotopy colimits
and limits. In section 2.3.2, we fess up to the fact that even the homotopy limit is
not always appropriately homotopy invariant, and this leads us into a discussion of
derived limits and corrected homotopy limits. In section 2.3.3, we specialize to the
case of spectra, describing the categories of orthogonal spectra, symmetric spec-
tra, and S-modules and specifying the tensors and cotensors needed for homotopy
colimits and limits in these categories.

2.3.1. Limits and Homotopy Limits. Limit and colimit are brutal operations in
the category of spaces: they tend to destroy homotopical information, and they are
not invariant under homotopies of maps. For example, the colimit of the diagram
% < 52 — x is a point and has no recollection of the homotopy type of the middle
space S?; the limit of the diagram * = [0, 1], where both maps send the point to 0,
is also a point, but becomes empty if we deform one of the two maps away from 0.

We would like homotopy versions of limit and colimit that have more respect
for the homotopical structure of spaces. We take our cue from two fundamental
examples.

EXAMPLE 2.5. The colimit of the diagram of spaces A Lo Bis (AU
B)/(f(c) ~ g(c),c € C). We can homotopify this construction by, instead of
directly identifying f(c) and g(c), putting a path between them. This is the double
mapping cylinder construction and is an example of a homotopy colimit:

hocolim(A <~ ¢ % B) = colim (A + C — C x [0,1] + C — B)
= (AUC x[0,1]UB)/{(c,0) ~ f(c), (e, 1) ~ g(c)}.

The suspension functor is a special case of this homotopy colimit, when A = B = .

EXAMPLE 2.6. The limit of the diagram of spaces X L7288 yvis {(z,y) €
X xY|f(x) = g(y)}. Instead of expecting f(z) and g(y) to be equal in this limit,
we can merely demand that they be connected by a chosen path. This is the double
path space construction and is a homotopy limit:

holim(X %5 Z &£ ) = lim (X S Z e 700 g Y)
= {(z,m :[0,1] = Z,y)| f(z) = m(0),9(y) = m(1)}.

The loop functor is the special case of X =Y =x* and f =g.
9
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Z

In order to generalize these homotopical constructions to other colimits and
limits, it is convenient to have a concise description of the colimit and limit func-
tors. Let C be the category we are working in, typically spaces or spectra or more
generally a simplicial model category, let I be a small category, and let X : I — C
be a diagram in C indexed by I. The colimit and limit can be explicitly constructed
as follows:

COlimIX = X®I X1
lim; X = homl(*I,X)

Here x; is the I-diagram of simplicial sets with %7(i) = % for all ¢ € I. (Full
disclosure: here we are using *; to refer both to this trivial I-diagram and to the
trivial J°P-diagram.) The constructions ®; and hom’ are the tensor and cotensor
on the diagram category C’; these are special cases of, respectively, coends and
ends, and are discussed in the following remark and example.

REMARK 2.7. We recall the tensor and cotensor on the diagram category C7,
following Hirschhorn [Hi, §18.3.1]. For X an I-diagram in C and A an I°P-diagram
in simplicial sets, the tensor of X and A is as follows:

X@rA:=colim [ [] X(i)® A(j) = [[X () ® A3)
i3 ‘
This is the coend [ " X (i) ® A(i). Here ® is the tensor action of simplicial sets on
the category C.

For X again an I-diagram in C and A an [-diagram in simplicial sets, the
cotensor of A and X is as follows:

hom' (4, X) :=1lim | [Jx(0)*P = J] x(6)*®
‘ i
This is the end fl X (4)4(®), Here the superscript refers to the cotensor coaction of
simplicial sets on the category C.

ExAMPLE 2.8. When C is the category of spaces, the colimit tensor expression
X ®; #1 boils down to the space ([[;c; X (1)) /{z ~ a(z)V (i = j) € I,z €
X (7) }—this is the disjoint union of all the objects in the diagram, mod equivalences
introduced by the arrows of the diagram. Similarly, the limit cotensor hom? (x;, X)
is simply {(2;) € [l;c; X(@)|a(z;) = 2;V (j = i) € I}. This last space can
conveniently be thought of as the space of maps of diagrams from the trivial I-
diagram to X, and this justifies the “hom” notation for the cotensor.

The point of all this abstract hoopla is that we can replace *; in the construc-
tions X ®; #; and hom’ (*r,X) by a diagram of larger contractible spaces—this
10

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



replacement gives us the homotopical wiggle room we were looking for and pro-
duces the homotopy colimit and homotopy limit. The minimal natural choices for
these contractible spaces come from the nerves of over and under categories in the
diagram. Specifically we have the following definitions:

hocolim; X := X @ N(—/I)°P
holim; X := hom’ (N(I/-), X)

Here N(I/—) and N(—/I)°P are respectively the functors taking ¢ to the nerve of
the over respectively opposite under categories I/i and (i/I)°P. See section 2.3.2
for a discussion of why these are sensible replacements for the trivial diagram ;.
It is worth writing out this tensor and cotensor:

DEFINITION 2.9. For X an [-diagram in the simplicial model category C, the
homotopy colimit and limit are defined as follows:

hocolim; X = colim | ] X (i) @ N(j/1)** = ]_[X Y@ N(i/I)°P
z—)g

holim; X =1lim | [[x@)N*D = T[] x@)NU/D
4 J—i

The casual reader can safely ignore the “op” here, referring if desired to Hirschhorn [Hi,
Remark 18.1.11] for a description of how and why it arises and also for a comparison

of these definitions to the original treatment of homotopy colimits and limits by
Bousfield and Kan.

The reader is invited to check that this definition specializes to the description
of the homotopy colimit and limit in example 2.5 and example 2.6. Such a special-
ization requires, of course, knowing the tensor and cotensor on spaces, namely, for
a space Y and simplicial set B, that Y ® B =Y x |B| and Y® = Map(|B|,Y).

To pin down the homotopy limit and colimit of spectra, it remains only to spec-
ify the tensor and cotensor on some particular category of spectra—see section 2.3.3
for these constructions in orthogonal spectra, symmetric spectra, and S-modules.
Note that once we have a complete picture of homotopy limits of spectra, we have,
combining definitions 1.7 and 2.4, our desired notion of sheaves of spectra on the
moduli stack of elliptic curves.

2.3.2. Derived Limits and Corrected Homotopy Limits. Unfortunately, the above
definitions of homotopy limit and colimit do not always behave as well as we would
like, particularly when we are working in categories other than spaces or simplicial
sets. In particular, they are not always homotopy invariant and so do not induce
functors on the level of homotopy categories. Problems tend to arise when the
objects of our diagram are not fibrant or not cofibrant. In this section we discuss
these technicalities and describe and differentiate the four relevant notions: limits,
derived limits, homotopy limits, and corrected homotopy limits (and, of course,
their co- analogs).

11
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As before, let C be a simplicial model category, I a small category, and X :
I — C an I-diagram in C. As discussed above, the limit is the functor

lim:C¢f - ¢
X — hom’ (%7, X)

This functor is not homotopy invariant, in that an objectwise weak equivalence
X 55 Y of I-diagrams need not induce a weak equivalence of their limits. The
most straightforward way to attempt to fix this problem is to derive the limit
functor.

The diagram category C! can itself have a model structure, and it may even have
several depending on particular properties of C and I. If C is a combinatorial model
category, then C! has an injective model structure, where the weak equivalences and
cofibrations are detected objectwise [Be, Lur, Shu]. If C is merely a cofibrantly
generated model category, then C! has a projective model structure, where the weak
equivalences and fibrations are detected objectwise [Hi, p.224]. If the diagram I
is Reedy, then for any model category C, the category of diagrams C’ has a Reedy
model structure, where only the weak equivalences are detected objectwise. In the
following, we assume without comment that C and I have appropriate structure to
ensure the existence of injective, projective, or Reedy model structures, as needed.

Limit is a right Quillen functor from the injective model structure on C! to
C [Shu, p.16]. It therefore makes sense to take the total right derived functor of
the limit:

Rlim : Ho(C') — Ho(C)
[X] — [hom (x;, FX)]

Here F is fibrant replacement in the injective model structure, and brackets refer
to the object in the homotopy category. By construction this derived limit is
homotopy invariant and so is in a sense the “right” replacement for the limit. The
derived limit and the homotopy limit are occasionally conflated in the literature,
but they are distinct functors and are easy to tell apart because the derived limit
is a functor from Ho(C!) to Ho(C), while the homotopy limit is a functor from
C! to C. In retrospect, it might have made more sense to call the derived limit
the “homotopy limit” and to have a different name for the particular not-always-
homotopy-invariant functor now called the homotopy limit—but it is much too late
for a terminological switcheroo.

The biggest disadvantage of the derived limit is that it can be quite difficult
to calculate the fibrant replacement F'.X. In general, such a calculation is hopeless,
but if the diagram is particularly simple, we can proceed as follows. Suppose the
diagram I is Reedy and has cofibrant constants. (A diagram I is said to have
cofibrant constants if the constant I-diagram at any cofibrant object of any model
category is Reedy cofibrant.) In this case, the limit is right Quillen not only with
respect to the injective model structure, but also with respect to the Reedy model
structure [Hi, Thm 15.10.8]. The derived limit (which up to homotopy does not
depend on the model structure we use) can therefore be described as Rlim X =
[homI (1, FrX)], where Fg is fibrant replacement in the Reedy model structure.
We can then go about explicitly calculating the Reedy fibrant replacement of our
diagram.

12
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ExXAMPLE 2.10. If the diagram X is Y ENy ] W, then a Reedy fibrant

replacement FrX is a diagram Y’ I 77 & W with an objectwise weak equiva-
lence X — FrX such that Y’, Z’, and W' are fibrant, and f’ and ¢’ are fibrations.
The derived limit R1im X of the original diagram is the limit lim Fr X of the new
diagram. Notice that this method, replacing maps by fibrations and then taking
the ordinary pullback, is the usual means for calculating homotopy pullbacks. It
happens to be the case that it is often enough to convert only one of the two maps
to a fibration.

All this said, we would be better off if we could avoid replacing X in either the
injective or Reedy model structures.

The homotopy limit is a compromise solution: it avoids the fibrant replacement
that plagues the derived limit and is therefore more explicit and calculable, at the
expense of some weakening of homotopy invariance. It has the further advantage
that it is a “point-set level” functor, not a functor on homotopy categories. Here
the key motivation for the homotopy limit comes from shifting attention from the
injective to the projective model structure. The derived limit was [homI (1, FX)].
Though this cotensor hom! is not in fact a mapping space, it behaves rather like
one. In particular note that *; is cofibrant in the injective model structure on
sSet’, and FX is by definition fibrant in the injective model structure on C’, and
So we expect hom! (*7, FX) to have, as it does, a well behaved homotopy type.
Suppose that instead of fibrantly replacing X in the injective model structure on
C!, we cofibrantly replace *; in the projective model structure on sSet!. That
is, consider the cotensor hom’(C(x;), X), where C is cofibrant replacement in the
projective model structure. Provided X is objectwise fibrant (therefore fibrant in
the projective model structure), we might expect this cotensor to have a reasonable
homotopy type. Indeed this is the case:

LEMMA 2.11. If the I-diagram X in C is objectwise fibrant, then the cotensors
hom (%7, FX) and hom’ (C(x;),X) are weakly equivalent, where F is fibrant re-
placement in the injective model structure on CT and C is cofibrant replacement in
the projective model structure on sSet! .

The lemma is also true if we substitute the Reedy model structure fibrant replace-
ment FrX (if it makes sense) in place of the injective model structure fibrant
replacement F'.X.

Note that the construction hom’(C(%7), X) has the huge advantage that the
replacement C(x7) only depends on the category I and not on the category C or
the particular diagram X. We can therefore make such a choice of replacement
once and for all. The nerve N(I/—) of the overcategory is a cofibrant object in the
projective model structure on sSet” and so provides such a choice [Hi, Prop 14.8.9].
The definition of homotopy limit follows:

holim : ¢ — C
X — hom!(N(I/-), X)
We reiterate that this is a point-set level functor, and is functorial both with respect
to the diagram X and with respect to the category I; this would have been difficult
to arrange using the cotensor hom’ (+7, F X) because we would need to have made a

choice, compatible for all diagram categories C!, of a functorial fibrant replacement
13
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functor F'. Instead, we make use of the simple functorial cofibrant replacement
C(s1) = N(I/-).

The main disadvantage of the homotopy limit is, as one might guess from
Lemma 2.11, that it is not homotopy invariant when the diagram X is not objectwise
fibrant. In some categories, such as spaces, this does not present a problem (and
indeed the proper behavior of holim on spaces probably accounts for its widespread
use and the general lack of clarity concerning its deficiencies). As we intend to
work in categories of spectra and ring spectra, though, we must correct this lack
of invariance by precomposing with a functorial fibrant replacement. The resulting
functor is called the corrected homotopy limit:

corholim : ¢! — C
X = hom! (N(I/-), Fop;i X)

Here Fip; is objectwise functorial fibrant replacement. According to the extent
that one views objectwise fibrant replacement as a minor adjustment, one might
welcome or disdain the occasional conflation of holim and corholim.

The corrected homotopy limit brings us full circle in so far as it represents
the derived functor of the limit: by Lemma 2.11, the cotensor hom’(x;, FX) (or
hom? (*, FrX) in the case of a Reedy diagram, either of which represent the derived
limit) is weakly equivalent to the corrected homotopy limit hom (N (1/—), Fyp; X).

REMARK 2.12. The reader may be wondering why we did not define sheaves
to be presheaves satisfying a corholim, rather than a holim, condition. Indeed, in
all respects that probably would have been wiser, but for reasons of convention we
stick to the holim definition. We can get away with this because in the end we will
restrict our attention to presheaves of fibrant objects, in which case a holim and a
corholim condition amount to the same thing.

We briefly describe the colimit analog of the above discussion. The ordinary
colimit is, as before, the functor

colim:C! = C
X|—>X®I*I

This functor is not homotopy invariant. It is, though, a left Quillen functor from
the projective model structure on C! to C, and therefore has a total left derived
functor:

L colim : Ho(C') — Ho(C)
[(X] = [CX @5 #1]

Here C is cofibrant replacement in the projective model structure.

This cofibrant replacement can be painful to calculate, so instead of replacing
X we replace x;. If X is objectwise cofibrant, then CX ®; *; and X ®; C(x1)
are weakly equivalent—here C'X is, as before, the cofibrant replacement in the
projective model structure on C!, while C(*;) is the cofibrant replacement in the
projective model structure on sSet""). The nerve N(—/I)° is cofibrant in the
projective model structure on sSet"™™) and so provides a particular choice of the
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latter cofibrant replacement, and thereby the definition of homotopy colimit:
hocolim : ¢! — C
X—=X®r N(—/I)®

We can reestablish homotopy invariance by precomposing this functor with an
objectwise cofibrant replacement; the result is the corrected homotopy colimit:

corhocolim : CT — C
X = Cobj X @ N(—/1)°P

The corrected homotopy colimit represents the derived functor, as desired: the ten-
sor CX ®; x5 (which represents the derived colimit) is weakly equivalent to the
corrected homotopy colimit Conj X @5 N(—/I)°P. Here C'X is the cofibrant replace-
ment in the projective model structure on C’, and Cobj is objectwise functorial
cofibrant replacement.

ExaMPLE 2.13. If the diagram I is Reedy and has fibrant constants (that is
every constant I-diagram at a fibrant object is Reedy fibrant), then the colimit is a
left Quillen functor from the Reedy model structure on Cf [Hi, Thm 15.10.8]. We
can therefore calculate the derived colimit using a Reedy cofibrant replacement:

Lcolim X = [CrX ®; *]. If the diagram X has the form B Lak C, a Reedy

cofibrant replacement CpX is a diagram B’ <— A’ Ky ¢ with an objectwise

weak equivalence CgX — X such that B/, A’, and C' are cofibrant and j' and
k' are cofibrations. The derived limit is the pushout colim CrX of this modified
diagram. Indeed, replacing maps by cofibrations in such a diagram is the usual way
to calculate homotopy pushouts. Note that it is often sufficient to convert one of
the two maps to a cofibration.

REMARK 2.14. A last important distinction between the homotopy limit and
colimit and their corrected versions is that the latter depend on a choice of model
structure on the underlying category C, while the former do not.

2.3.3. Sheaves of Orthogonal Spectra, Symmetric Spectra, and S-Modules. 1t is
time to bite the bullet and specify the particular categories of spectra in which we
intend to work. The relevant options are symmetric spectra, orthogonal spectra,
S-modules, and the categories of commutative symmetric ring spectra, commuta-
tive orthogonal ring spectra, and commutative S-algebras. We briefly review the
definitions of these various categories. Along the way we describe the tensor and
cotensor over simplicial sets that we needed in the definition of hocolim and holim.
We refer, however, to the chapter on model categories of spectra for the notions of
fibrancy and cofibrancy needed for the corrected homotopy colimit and limit.

REMARK 2.15. At the end of the day, we are trying to make sense of the notion
of a “sheaf of F, ring spectra”. By definition an E., ring spectrum in a particular
category S of spectra is an algebra in S over an E., operad. However, provided &
is for example symmetric or orthogonal spectra or S-modules, the category of E,
ring spectra in S is Quillen equivalent to the category of commutative monoids in
S. Therefore, we stick to these various categories of commutative monoids.

The reader may wonder, then, why the notion of F,, comes in at all, if the
technicalities of sheaves of commutative ring spectra are best handled directly with
commutative monoids in spectra. The answer is that the obstruction theory we
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need to actually construct such spectra uses in a fundamental way the operadic
formulation of the commutativity conditions on ring spectra.

Orthogonal spectra and symmetric spectra are both examples of diagram spec-
tra, and as such their formulations are nearly identical. We describe orthogonal
spectra and then mention the modifications for symmetric spectra. An excellent
reference for diagram spectra is [MMSS] and our discussion follows the treatment
there.

The basic “diagram” J for orthogonal spectra is the category of finite-dimensional
real inner product spaces, together with orthogonal isomorphisms. From this di-
agram, we define the category J7T of J-spaces to be the category of continuous
functors from J to based spaces, together with natural transformations between
these functors.

The key observation is that J7T is a symmetric monoidal category with product
as follows:

IT xIT S JT

(X,Y) s (V& \/ X(W)/\Y(V—W))

wcv

Note that the wedge product /iy, -y, X(W) AY(V —W) is topologized using the
ordinary topology on subspaces of V. There is a natural commutative monoid S in
JT,namely S(V) = SV; here SV denotes the one point compactification of V. The
product on S is induced by direct sum of vector spaces: \/y; -, SWASVW SV,
here V-V is the orthogonal complement of W in V and the map W x (V-W) — V
is (a,b) = i(a) +j(b) for i : W — V and j : V—W — V the inclusions. The reader
is invited to check that this monoid really is strictly commutative, simply because
direct sum of disjoint orthogonal vector subspaces is strictly commutative.

DEFINITION 2.16. An orthogonal spectrum is a [J-space with an action by the
monoid S. In other words, it is an S-module in J7. Denote the category of
orthogonal spectra by JS.

Because S is a commutative monoid, the category JS§ itself has a symmetric
monoidal structure with product denoted Ag:

X ANgY :=colimzsr(X ANSAY ZXAY)

This coequalizer is, of course, the usual way to define tensor products of modules
in algebra. Finally we have our desired notions of ring spectra:

DEFINITION 2.17. An orthogonal ring spectrum is a monoid in JS&. A com-
mutative orthogonal ring spectrum is a commutative monoid in JS.

The tensor and cotensor on the category of orthogonal spectra are particularly
simple: they are both levelwise, which is to say that for X an S-module in J7T
and A a (based) space, the tensor X ® A is given by (X ® A)(V) = X(V) A A
and the cotensor X is given by (X4)(V) = X(V)A. Note that these tensors over
topological spaces can be extended to simplicial sets via the realization functor.
The cotensors on both orthogonal ring spectra and commutative orthogonal ring
spectra are also levelwise. However, the tensors on these categories are rather less
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explicit and we do not discuss them; luckily, we only need the cotensors for our
discussion of sheaves.

The definition of symmetric spectra is entirely analogous. The diagram ¥ in
question is the category of finite sets with isomorphisms. The category X7 of X
spaces is symmetric monoidal:

ST x ST 5 uT

(X,Y) = (XAY)(N) = \/ X(M)AY(N\M)

The distinguished commutative monoid S in 7 has S(N) = S¥. A symmetric
spectrum is a Y-space with an action of S. The category of symmetric spectra
S has a smash product, given by an appropriate coequalizer, and (commutative)
symmetric ring spectra are (commutative) monoids in XS.

REMARK 2.18. Symmetric spectra are sometimes defined using the skeleton
diagram Y*°! whose objects are the rigid finite sets n = {1,...,n}, for n > 0. This
variant may look more elementary but requires a rather less intuitive formula for
the smash product of ¥¥spaces: (X AY)(n) =V, o, Sy As,, x5, . X(m) A
Y(n—m).

m<n

The tensor and cotensor on the category of symmetric spectra and the cotensors
on symmetric ring spectra and commutative symmetric ring spectra are all level-
wise, as in the case of orthogonal spectra. The tensors for (commutative) symmetric
ring spectra are not levelwise, and we leave them as a mystery.

The last category of spectra we consider is the category of S-modules. S-
modules are somewhat more technical than diagram spectra, and we give only the
most cursory treatment, closely following EKMM [EKMM]. Fix a universe, that
is a real inner product space U isomorphic to R*°. A prespectrum is an assign-
ment to each finite dimensional subspace V' C U a based space E (V') together with
compatible (adjoint) structure maps E(V) — QW =V E(W). Denote the category of
prespectra by PU or simply P. A (Lewis-May-Steinberger) spectrum is a prespec-
trum in which all the structure maps are homeomorphisms, and the category of
such is denoted SU or S. The forgetful functor S — P has a left adjoint L : P — S
called spectrification.

There is an external smash product of spectra SU x SU’ EAN SUaU"). Given
a pair of spectra (F, E’), the assignment F': V @ V' — E(V) A E'(V') defines a
prespectrum on the decomposable subspaces of U @ U’. There is a spectrification
functor here as well that produces from F' a spectrum LF on the decomposable
subspaces of U @ U’; there is moreover a left adjoint 1 to the restriction to such
subspaces, which in turn produces our desired smash EA E' :=¢LF € S(U ® U’)
indexed on all finite dimensional subspaces of U ® U’.

We would like to internalize this smash product, using the space of linear isome-
tries from U @ U to U. If we have a linear isometry f : U — U’ we can transport a
spectrum E € SU to a spectrum f,E € SU’: define f,E to be the spectrification
of the prespectrum taking V' C U’ to E(V)ASY' =) where V = f~1(V'Nim f).
Given an A-parameter family of linear isometries, that is a map o : A — Z(U,U"),
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there is a spectrum A x E € SU’ called the twisted half smash product, which is
in an appropriate sense a union of all the spectra a(a).E for a € A.

Let £(j) = Z(U’,U) be the space of all internalizing linear isometries. Given
E,F € SU, the twisted half smash £(2) x (E A F) is a canonical internal smash
product, but it is not associative. We fix this by restricting to LL-spectra: an L-
spectrum is a spectrum F with an action £(1) x E — E by the isometries £(1).
The smash product of L-spectra is M Az N := L(2) Xcyxe) (M A N). (Here
the twisted half smash over £(1) x £(1) is given by the expected coequalizer.) We
would be done, except that the category of LL-spectra doesn’t have a point-set-level
unit.

We can conjure up a unit as follows. There is a natural map A : SA; M — M,
where S is the spectrification of the prespectrum V +— SY. An S-module is by
definition an L-spectrum such that A is an isomorphism. The smash product of two
S-modules is simply their smash product as L-spectra. The category of S-modules
is our desired symmetric monoidal, unital category of spectra. S-algebras and
commutative S-algebras are simply monoids and commutative monoids respectively
in S-modules.

Given an S-module M and a based space X, the tensor S-module M ® X is
defined to be the spectrification of the prespectrum V +— M (V) A X. The cotensor
M is defined to be S Az ¢(M)X, where ¢ forgets from S-modules to spectra, and
the cotensor on spectra is EX (V) = E(V)X.

The cotensors on S-algebras and on commutative S-algebras are simply given
by taking the cotensor in S-modules. The tensors on S-algebras and commutative
S-algebras by contrast are not created in S-modules. However, the tensor on com-
mutative S-algebras has a convenient description, as follows. Given a finite set [n]
and a commutative S-algebra R, define the tensor R ® [n] := R"[".. Now for X a
finite simplicial set, the tensor R ® X in commutative S-algebras is the realization
as a simplicial S-module of the levelwise tensor R ® X,.

Picking one of the above three models for spectra, and feeding the cotensors
back into the construction of homotopy limits, we now have a precise definition of
sheaf of spectra, sheaf of ring spectra, and sheaf of commutative ring spectra.

REMARK 2.19. The reader may worry that there could be a confusing difference
between sheaves of ring spectra and presheaves of ring spectra that are sheaves of
spectra. Luckily, this is not the case: the two notions agree because the sheaf
condition is a homotopy limit condition, and this homotopy limit is built using
limits and cotensors; these limits and cotensors are, in any of the above categories
of ring and commutative ring spectra, simply computed in the underlying category
of spectra.

We invite the reader to ruminate on the fact that cosheaves of ring spectra
are very different objects from precosheaves of ring spectra that are cosheaves of
spectra.

3. The Descent Spectral Sequence

Recall that the main theorem (of Goerss, Hopkins and Miller) is that there
exists a sheaf Q%P of spectra on the moduli stack (M) & of elliptic curves in the
étale topology. Sections 1 and 2 described what it means to have such a sheaf.
In particular, section 2.2 described the Grothendieck site of the moduli stack in
the étale topology, while section 1.1 defined sheaves on such a site with values in
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a category (as presheaves satisfying a homotopy limit condition), and section 2.3
discussed the homotopy limits of spectra needed for this definition of sheaves.

Given the sheaf O'°P, we are primarily interested in understanding its spectrum
of global sections O%P(M .y )—recall that this spectrum is called TMF. By the
definition of a sheaf, information about the global sections O*P(M ;) is contained
in the spectra Ot°P(U) associated to small open subsets U of the moduli stack M .;;
the goal of this section is describe precisely how this local information is assembled
into the desired global information. In particular, we construct a spectral sequence
beginning with the sheaf cohomology of the moduli stack with coefficients in the
sheafification of the presheaf of homotopy groups of QP strongly converging to
the homotopy groups of the global spectrum O'P(M .;):

E? = HY( My, m) O'P) = m,_,O"P (M)

In the chapter on the homotopy groups of TMF, we will compute the E? term and
describe the elaborate pattern of differentials.

We begin in section 3.1 by reviewing the notions of sheaf cohomology and Cech
cohomology and discussing how they are related. Then in section 3.2 we construct a
spectral sequence beginning with Cech cohomology and converging to the homotopy
of the global sections of a sheaf of spectra. Finally, in section 3.3, we specialize to
the sheaf O'P, using properties of this particular sheaf to simplify the spectral
sequence from the preceding section.

3.1. Sheaf Cohomology and Cech Cohomology. We are studying a sheaf
O%P of spectra on the moduli stack of elliptic curves. We can consider the homotopy
groups m,(OYP(U)) of the spectra OP(U) associated to particular objects U of
the étale site of the moduli stack. These homotopy groups fit together into a
good-old down-to-earth presheaf of graded abelian groups. The spectral sequence
computing the homotopy groups of TMF will begin with the sheaf cohomology of
the sheafification of this presheaf. We review sheaf cohomology, and the related
Cech cohomology, in some generality.

Let A be an abelian category. A morphism f : X — Y in A is a monomorphism
if fg1 = fgo implies g1 = go. Recall that an object I € A is injective if for all maps
m : X — I and all monomorphisms X < Y, there exists an extension of m to Y.
The category A is said to have enough injectives if for all objects A € A there is a
monomorphism A < [ into an injective object I. We are interested, of course, in
the category of sheaves on a site:

NoOTE 3.1. For any site C, the category Shvap(C) of sheaves of abelian groups
on the site is an abelian category with enough injectives.

We can therefore use the usual definition of sheaf cohomology:

DEFINITION 3.2. For m € Shva,(C) a sheaf of abelian groups on a site C, the
sheaf cohomology of an object X € C of the site with coefficients in 7 is

HY(X,7) = Hg(0 = I°(X) = I'(X) > I*(X) = --+)
where 0 — 7|x — I — I' — I? — ... is an injective resolution of 7|y in

ShVAb(C/X)

Sheaf cohomology has a more concrete cousin, Cech cohomology, which does
not involve an abstract resolution:
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DEFINITION 3.3. Let m € Shvap(C) be a sheaf of abelian groups, and let 4 =
{U; — U} be a cover in the site C. The Cech cohomology of U with respect to the
cover 4 and with coefficients in 7 is

HY(U,7) = H, (o = [[=@) = [[7Ws) = [[7Wisn) — )

Here Uy refers to the intersection (ie fibre product over U) of the U;,i € I, and the
maps are the alternating sums of the various natural restriction maps.

Cech cohomology is computable by hand, while sheaf cohomology is evidently
independent of a particular choice of cover. If the object U of C has an acyclic
cover, then the two theories agree:

PROPOSITION 3.4. For w € Shvap(C) a sheaf of abelian groups, and U = {U; —
Utier a cover in C such that H1(U;,m) =0 for all J C I and all ¢ > 1, sheaf and
Cech cohomology agree: H1(U,m) = Hﬂ(U,ﬂ).

The proof is the usual double complex argument: build the double complex [I([], ;_, U)]
from an injective resolution I* of 7, and show that the two resulting spectral se-
quences collapse respectively to sheaf and to Cech cohomology.

REMARK 3.5. We will be interested in cases where the site C has a global
terminal object, usually denoted (confusingly) C, and from now on we assume we
are in that situation.

3.2. The Spectral Sequence for a Sheaf of Spectra. We begin with a
sheaf of spectra O on the étale site (M), of the moduli stack of elliptic curves,
and we would like to construct a spectral sequence converging to the homotopy
groups . (O(My1)). The spectral sequence is meant to start with the local data
of O; we therefore chose a cover {N; — My} of the moduli stack. In outline, we
use this cover to build a simplicial object of the site, then apply the sheaf O to get
a cosimplicial spectrum, from which we get a tower of spectra, which we wrap up
into an exact couple, and thereby arrive at our desired spectral sequence:

cover M= {N; = My} in (Mey)g,
simplicial object [[AN; & [IN;j -+ in (Men)g,
éd
cosimplicial spectrum O* = {O([[N;) = O(LIN;;) -+ }

tower of spectra - -- — (Tot O)? LN (Tot O)* LN (Tot ©)°

éb
exact couple @ mp4q(Tot O)? — @ mp4q(Tot O)? — @ mp4q(corhofib ¢,)
spectral sequence qu = }Vlgt(./\/l etl, TpO) = mp_gO(Mep)
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In this section we describe this chain of constructions in detail. In section 3.3 we
use particular properties of the sheaf O'P to compare the E? term of this spectral
sequence for 7, (O P(M ;)), which is the Cech cohomology of the presheaf m,O™P,
to the sheaf cohomology of the sheafification 71';;(9“)1’ of the presheaf 7, 0P,

We begin at the end (step a) and work our way back to the beginning (step
e). We assume the reader is familiar with the construction of a spectral sequence
from an exact couple—see McCleary [McCl] for a detailed presentation of the
construction and Boardman [Bo] for a careful treatment of convergence issues. We
therefore proceed to step b, building an exact couple from a tower of spectra.

3.2.1. The Spectral Sequence of a Filtration of Spectra and of a Tower of Spec-
tra. We are interested in towers of spectra and their associated inverse limits. Along
the way we address the slightly more intuitive situation of a filtration of spectra
and its associated direct limit.

Suppose we have a filtration of spectra:

N $o Fy 1 j2) P2 P

— — —

corhocofib ¢q corhocofib ¢ corhocofib ¢4

Denote the corrected homotopy colimit corhocolim; F; by F. We think of the
sequence F; as a filtration of F, and expect any spectral sequence constructed
from the filtration to give information about F. Take homotopy groups of the
spectra F; and of the corrected homotopy cofibres corhocofib ¢;, and wrap up the
resulting triangles into an exact couple. This produces a spectral sequence with
Ezl,q = Tptq(corhocofib ¢4). This spectral sequence is a half plane spectral sequence
with exiting differentials (in the sense of Boardman [Bo]), and converges strongly

to mpyql:

1 _ i
E,, = mptq(corhocofib ¢,) Sﬁg Tp+q corhocolim; F;.

NoOTE 3.6. Lest there be any confusion, note that for X a spectrum, by m; X we
mean the set of maps Hospec([S?], [X]) in the homotopy category of spectra between
the sphere [S?] and [X], not for instance homotopy classes of maps in the category
of spectra from a sphere S? to X. The above spectral sequence converges, a priori,
to colim; mpyqF;; we have used implicitly the equality

colim; T4 qF; = Tp4q corhocolim; F;.
In the dual picture, we begin with a tower of spectra:

P2 Fl b1 FO ¢‘O

™ ™ ™

corhofib ¢o corhofib ¢ corhofib ¢g

F2

Let F denote the corrected homotopy limit corholim; F*. Again we take homotopy
groups of the whole diagram of the F* and corhofib ¢;, and wrap up the resulting
triangles into an exact couple. The spectral sequence associated to this exact couple
has Ezl,q = mp_q(corhofib ¢¢). It is a half plane Specﬁral sequence with entering
differentials and converges conditionally to lim; m,_,F":

E;q = Tp_q(corhofib ¢,) CO:nE lim; Wp_qu.
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In general, one must address two issues: whether or not this conditionally conver-
gent spectral sequence in fact converges strongly, and whether or not lim; m,_,F"* =
Tp—oF, the latter of which is of course a lim' problem.

NOTE 3.7. The spectral sequence of a tower has target lim; m,_,F*, but we
are usually more interested in the homotopy m,_, corholim; F* of the corrected
homotopy limit of the tower. These are related by the Milnor exact sequence:

0 — lim} 7y 1 F" — m,_4 corholim; F* — lim; 7,_,F" — 0.

3.2.2. The Realization of a Simplicial Spectrum and Tot of a Cosimplicial Spec-
trum. Here we note that a simplicial spectrum leads to a filtration of spectra, and
dually that a cosimplicial spectrum leads to a tower of spectra. We also identify
the colimit (resp. limit) of the resulting filtration (tower) in terms of the homotopy
colimit (limit) of the original (co)simplicial spectrum.

NoTAaTION 3.8. We begin by fixing some notation. The cosimplicial category
A has objects [0], [1],[2], .. ., (where we think of [n] as {0,1,...,n}) and morphisms
weakly order preserving maps. The bold A will denote the standard cosimplicial
simplicial set, whose simplicial set of n-cosimplicies A(n) is the simplicial n-simplex
Al[n]; this n-simplex A[n] has k-simplicies A[n], = A([k], [n]). We use the symbol
A} to denote the full subcategory of A whose objects are [0],...,[n].

Let A be a simplicial spectrum, that is a simplicial object A : A°® — Spec in
the category of spectra. The realization of A is defined as follows:

|A| := A @p0» A = colim ( [T 4neam = J[4n® A[n]).
¢:m—m n>0

We construct a filtration whose colimit is the realization |A| as follows. Recall
that the n-skeleton sk,, A of A is the left Kan extension to A°P of the restriction of
A from A°P to (Af)°P. Intuitively, sk, A consists of the simplicies of A of dimension
less than or equal to n, together with the possible degeneracies of those simplicies;
(here “possible” means possible in a simplicial spectrum agreeing with A through
dimension n). Let |A[,, denote the realization |sk,, A|. We have the sequence

The colimit of this sequence is, by construction, the realization |A].

NOTE 3.9. We can build the skeleta of A inductively as follows. Define the
n-th latching object of A as

LnA == (Skn,1 A)n
This latching object can, roughly speaking, be thought of as the spectrum of de-
generate n-simplicies of A—in general, though, the map L, A — A, need not be
a cofibration, which means in particular that the latching object L, A may record

more degenerate simplicies than are present in A itself. We have a pushout dia-
gram [GJ, p.367]:

A, ® OA™ UL, AgaAn L, AR A" ——=sgk, 1A

l l

A, @ A" sk, A
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Here only, by “®” we mean the external tensor, taking a spectrum and a simplicial
set and giving a simplicial spectrum.

Ignoring the terms involving L,, A, the pushout says that the n-skeleton sk,, A is
built by gluing an n-simplex along its boundary onto the (n — 1)-skeleton sk, A,
for each “element” of the spectrum A, of n-simplicies. But in fact, the (n — 1)-
skeleton already includes degenerate n-simplicies, and the pushout accounts for this
by quotienting out the latching object L, A @ A™.

ExAMPLE 3.10. Consider the first stage |A|; = |sky A| of the filtration of
|A|. Ignoring degeneracies, the realization of the 1-skeleton is roughly speaking the
colimit

colim (A1 @ A"UA; @A 3 4@ A°UA; @ A').

We can schematically picture this 1-skeleton glued together as follows:
Sl
e oA

Notice that the filtration x — |A|g — |A|1 — - -+ above has colimit the realiza-
tion |A|. However, recall that the spectral sequence from section 3.2.1 converges to
the homotopy groups of the corrected homotopy colimit of the filtration. We there-
fore need to address the issue of when these two agree. Conveniently, the condition
ensuring this agreement can be expressed in terms of Reedy cofibrancy, as follows.

DEFINITION 3.11. A simplicial spectrum A is Reedy cofibrant if the maps
L,A — A, are cofibrations for all n. Roughly speaking, this is true when the
degenerate simplicies of A are freely generated, and for all n the degenerate n-
simplicies of A map by a cofibration into all the n-simplicies of A. A sequence of
spectra * — Xo — X7 — --- is Reedy cofibrant if all the maps in the sequence are
cofibrations.

If a simplicial spectrum A is Reedy cofibrant, then the morphisms |A|,—1 —
|A|, are cofibrations (see [GJ, p.385]), which is to say the realization sequence
x — |Alo — |A]1 — --- is Reedy cofibrant. In section 2.3.2, we saw that the
corrected homotopy colimit represents the derived colimit and observed that in the
case of a Reedy cofibrant diagram, this derived colimit is represented by the honest
colimit. Altogether, when the simplicial spectrum A is Reedy cofibrant, we have a
weak equivalence

corhocolim; |Al; = colim; |A]; = |A|.

The subscript “RC” will serve as a reminder that an equivalence depends on Reedy
cofibrancy.

REMARK 3.12. When the sequence * — |A|lp — |A]y — --- is Reedy cofi-
brant, all the terms in the sequence are necessarily cofibrant (though this is not,
per se, part of the Reedy condition). This objectwise cofibrancy implies that the
corrected homotopy colimit corhocolim | A|; agrees with the usual homotopy colimit
hocolim | A|;. We will not, however, need this fact.
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Confusingly, there is another homotopy colimit floating around, namely the
homotopy colimit of the A°P-diagram A itself. We also need to compare the real-
ization |A| to this homotopy colimit hocolimaer A: when we are studying a cosheaf
of spectra, we will care about the homotopy colimit of the associated simplicial
spectrum, but the spectral sequence constructed in section 3.2.1 converges, if A
is Reedy cofibrant, to the homotopy groups of the realization of this simplicial
spectrum.

Recall that the homotopy colimit of the A°P-diagram A was defined as A ®aop
N(—/A°P)°P. We might therefore expect a close relationship between the realiza-
tion and the homotopy colimit:

ProrosiTION 3.13 ([Hi, Thm 18.7.4]). If the simplicial spectrum A is Reedy
cofibrant, then there is a natural weak equivalence (the Bousfield-Kan map)

|A| < hocolimper A.

This equivalence is most plausible: the reader can note that, ignoring degeneracy
maps, the nerves N(—/A°P)°P of the overcategories in A°P are the barycentric
subdivisions of the standard simplicies of A. The Reedy cofibrancy condition will
be automatically satisfied (see Lemma 3.20) in the situation we care about, and so
need not concern us.

In summary, we have the following chain of equalities, relating the target of
our spectral sequence to the homotopy of the homotopy colimit of our simplicial
spectrum:

colim; m,|A|; = m, corhocolim; | A|; = colim; |A]; = m«|A] = T hocolimaer A.

The indicated equalities depend on A being Reedy cofibrant.

The dual, cosimplicial picture is the one that concerns us more directly. Let
B : A — Spec be a cosimplicial spectrum. The “corealization” is traditionally
called the “totalization” of the cosimplicial spectrum and is defined as follows:

Tot B := homA(A,B) = lim ( H(B”)A(n) = H (Bm)A(n)>'

n>0 ¢:n—m

Here again A is the cosimplicial standard simplex with A(n) the standard simplicial
n-simplex Aln].

The key feature of Tot of a cosimplicial spectrum is that it is the inverse limit
of a tower of spectra built from the coskeleta of the cosimplicial spectrum, and this
tower leads to our desired spectral sequence. We define the n-coskeleton cosk™ B
of a cosimplicial spectrum B : A — Spec to be the right Kan extension to A of the
restriction of B from A to Af. Intuitively, cosk™ B consists of the cosimplicies of
B of dimension between 0 and n; for & > n the coskeleton has a k-cosimplex for
every possible combination of n-cosimplicies of B that could be the image under
the codegeneracy maps of a k-cosimplex of a cosimplicial spectrum agreeing with
B through dimension n. Let Tot™ B denote the totalization Tot cosk, B of the
coskeleton of B. We have a tower

.+ = Tot? B — Tot! B — Tot’ B —

The limit of this sequence is the full totalization Tot B.
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REMARK 3.14. The above definition of Tot™ is not formally the same as the
usual one in the literature, for instance as the definition in Bousfield-Kan or Goerss-
Jardine, and we would like to spell out and emphasize the difference.

For a simplicial spectrum A, recall that the n-skeleton sk, A and n-coskeleton
cosk;,, A of A are defined respectively as the left and right Kan extensions of A| Anyop
to A°P. These are both simplicial spectra in their own right. Now, somewhat
unconventionally, for a cosimplicial spectrum B, we define the n-skeleton sk™ B
and n-coskeleton cosk”™ B to be respectively the left and right Kan extensions of
Blap to A. These are, of course, both cosimplicial spectra.

It is standard to define

|Al, = | sk, A| = sk, A @pacr A
Tot™ B := hom* (sk,, A, B)

This is unsettling for two reasons. First, here sk, A does not refer to a left Kan
extension of the cosimplicial object A, but to a levelwise left Kan extension of the
simplicial levels of A. Second, it does not express the layers Tot" as totalizations
in their own right, and moreover entirely obscures the precise duality between the
skeletal filtration and the totalization tower.

Instead we prefer

|Al, :=|skn A| = sk, A @acp A
Tot™ B := Tot cosk™ B = hom” (A, cosk™ B)

We leave it to the reader to verify that this results in the same spectrum Tot™ B
as the usual formulation.

NoTE 3.15. As we could for the skeleta of a simplicial spectrum, we can build
the coskeleta of our cosimplicial spectrum B inductively. In a classic example
of mathematical nomenclature, the duals of latching objects are called matching
objects:

M"B = (cosk™ ! B)".
Readers should be warned that this indexing is not the same as that in Goerss-

Jardine or Bousfield-Kan; instead we specialize the abstractly consistent scheme of
Hirschhorn. The inductive pullback diagram is

cosk™ B (B™)A"

|

cosk" ™' B —— (B™)?2" Xy gyoan (M"B)A"

The totalization of this diagram gives a corresponding pullback for Tot™ B in terms
of Tot" ' B.

Ignoring the terms involving matching objects, this pullback would indicate
that Tot™ B can be seen as the pairs of maps ¢ : A" — B™ and “points” @ €
Tot" ™! B that agree as maps 0 : dA™ — B"; here, ¢ determines 0 by the coface
maps of B. This idea is illustrated in the following example. More precisely, though,
the matching terms in the pullback account for the fact that the (n — 1)-coskeleton
already contains a collection of potential n-cosimplicies.
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ExXAMPLE 3.16. We consider the first stage of the Tot tower. Ignoring code-
generacy issues, the totalization of the 1-coskeleton is, roughly, the limit

lim (B x (B = (BY x (BY)')

which is to say a 0-cosimplex, together with a path of 1-cosimplicies agreeing at
the ends with the cofaces of the 0-cosimplex:

B B!

By construction the limit of the Tot tower is Tot B. There is the pesky issue
of whether this limit is the same as the corrected homotopy limit of the tower—
recall that, in the absence of lim' problems, the spectral sequence of the tower has
target the homotopy groups of the corrected homotopy limit. The condition on the
cosimplicial spectrum B that tethers the limit and the corrected homotopy limit is,
as expected, Reedy fibrancy.

DEFINITION 3.17. A cosimplicial spectrum B is Reedy fibrant if the maps
B™ — M"B are fibrations. A tower of spectra --- — Y1 — Y% — « is Reedy
fibrant if the maps in the tower are all fibrations.

When a cosimplicial spectrum B is Reedy fibrant, the maps Tot™ B — Tot" " B
are fibrations, so the Tot tower is Reedy fibrant. We saw in section 2.3.2 that
the corrected homotopy limit represents the derived limit; in the case of a Reedy
fibrant diagram, the honest limit also represents this derived limit, and the limit
and corrected homotopy limit agree. When the cosimplicial spectrum B is Reedy
fibrant, we therefore have a weak equivalence

corholim; Tot* B = lim; Tot* B = Tot B.

REMARK 3.18. When the tower - - - — Tot' B — Tot® B — « is Reedy fibrant,
all the terms in the tower are fibrant, even though this is not explicitly part of
the Reedy condition. This objectwise fibrancy implies that the corrected homotopy
limit corholim Tot® B is equal to the homotopy limit holim Tot’ B, though we do
not need to consider the latter homotopy limit.

We have a tower of spectra whose limit is the totalization of our cosimplicial
spectrum, and a spectral sequence with target the homotopy of this totalization
(provide we have Reedy fibrancy, and no lim' problem). However, in the end we
will be interested in the homotopy limit of the cosimplicial spectrum (not its total-
ization), because that homotopy limit will carry the global homotopical information
in a sheaf of spectra. Therefore, we need to compare the totalization of the tower
to the homotopy limit of the cosimplicial diagram itself:

PROPOSITION 3.19 ([Hi, Thm 18.7.4]). If the cosimplicial spectrum B is Reedy
fibrant, then there is a natural weak equivalence (again called the Bousfield-Kan
map)

Tot B = holima B.
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The totalization is hom® (A, B), while the homotopy limit is hom® (N (A/—), B).
We already remarked that, glossing over degeneracy issues, the nerves of the under-
categories N(A/—) are the barycentric subdivisions of the standard simplicies of
A, and so this weak equivalence is unsurprising. The cosimplicial spectra coming
from our sheaves of spectra will always be Reedy fibrant—see Lemma 3.20.

In summary, we have the following chain relating the target of the spectral
sequence of the Tot tower to the homotopy of the homotopy limit of our cosimplicial
spectrum:

lim; 7, Tot* B ~ m, corholim; Tot' B = 7, lim; Tot' B = m, Tot B = m, holima B.
lim! RF RF

Here the first arrow refers to the Milnor short exact sequence, and the indicated

equalities depend on B being Reedy fibrant.

3.2.3. Cosheaves and Simplicial Spectra, and Sheaves and Cosimplicial Spectra.
In the last section, we constructed a filtration of spectra out of a simplicial spectrum,
and a tower of spectra out of a cosimplicial spectrum. In either case we have an
associated exact couple and therefore spectral sequence. In this section, given a
cosheaf (resp. sheaf) of spectra, we build a simplicial (resp. cosimplicial) spectrum,
and we describe in detail the E' and E? terms of the resulting spectral sequence.

Let C be a site, for instance the étale site of the moduli stack of elliptic curves,
and let 4 = {U; — U}ier be a cover in C. Assuming we have coproducts in C, this
cover yields a simplicial object in C:

i ij i3,k
A precosheaf of spectra on C is a covariant functor G : C — Spec; similarly of

course we may have precosheaves with values in other categories. If we apply such
a precosheaf G to the simplicial object U., we get a simplicial spectrum:

g(u) = (9([Tvo) & o([Tun) £ ).

A cosheaf of spectra is a precosheaf G such that for all objects U of the site C and
for all covers U of U, the map

G(U) <= hocolimaer G(U.)

is a weak equivalence.
The spectral sequence associated to the the simplicial spectrum G(U.) has the
form

E;q = Tp4q(corhocofib(|G(U.)|4—1 — |G(U.)|q)) = mp+q corhocolim; |G(U.);.

In order to better identify both the E' term and the target of this spectral sequence,
we need to know that simplicial spectra built from precosheaves are well behaved:

LEMMA 3.20. Let G be a precosheaf on a site C with values in cofibrant ob-
jects of a (model) category D; suppose moreover that G preserves coproducts. Let
U =A{U; — U} be a cover in C, and U. = ([JU; & [1U;; E -+ ) the associated
simplicial object of C. The simplicial object G(U.) of D is Reedy cofibrant. Simi-
larly, if F is a presheaf on C with values in the fibrant objects of D, and if F takes
coproducts to products, the associated cosimplicial object F(U.) is Reedy fibrant.
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We assume our precosheaf G takes values in cofibrant spectra and preserves
coproducts. The associated simplicial spectrum G(U.) is therefore Reedy cofibrant,
and the maps |G(U.)|q—1 — |G(U.)|, are cofibrations between cofibrant spectra.
The corrected homotopy cofibres of these maps, which appear in the E' term of the
spectral sequence, are then simply ordinary cofibres. We can identify the cofibre
of [G(U.)|q—1 — |G(U.)|, explicitly as the g-fold suspension of the g-simplicies
[1g|=, 9(Uq) of the simplicial spectrum G(U.):

cofib (|G(U.)[g-1 = 1G(U.)]y) = E"( 11 Q(UQ)>-
|Ql=¢q
For example, in picture 3.10 the cofibre of the inclusion of the 0-skeleton is
evidently the 1-fold suspension of the 1-simplicies; (note that the 0-skeleton includes
degeneracies of the 0-simplicies). The E' term of the spectral sequence is therefore

Ezl)q = TP(H‘Q‘:Q G(Ugq)). Tracing the d' differential from the exact couple through

to this description of the E' term, we find the E? term of the spectral sequence
is Ezq = Hél(U, 7qG)—the Cech homology of U with respect to the cover I with
coefficients in the precosheaf of abelian groups (7,G)(V) := m,(G(V)).

Now suppose G is a cosheaf of cofibrant spectra. The simplicial spectrum G(U.)
is Reedy cofibrant, and the results of section 3.2.2 identify the target of the spectral
sequence:

corhocolim; |G(U.)|; ~ colim; |G(U.)|; = |G(U.)| ~ hocolimaer G(U.) ~ G(U).

The last equivalence here comes from the cosheaf condition. Altogether then, for
such a cosheaf of spectra we have a strongly convergent spectral sequence

qu = H’;(U, m™G) Sﬁg Tp+qG(U).

The reader can imagine how the dual story progresses. Given a presheaf F of
spectra, we have a cosimplicial spectrum

Fu) = (AT 3 F[Lv) 5 ).

The spectral sequence associated to this cosimplicial spectrum has the form:
E,, = mp_q(corhofib Tot? F(U.) — Tot?~' F(U.)) = lim; m,_, Tot" F(U.).

Suppose the presheaf F takes values in fibrant spectra, and takes coproducts
to products. The cosimplicial spectrum F(U.) is then Reedy fibrant, and the maps
Tot? F(U.) — Tot?™! F(U.) in the Tot tower are fibrations between fibrant spectra.
The corrected homotopy fibres appearing in the E' term of the spectral sequence
are therefore ordinary fibres, which are explicitly identifiable. The fibre of the
map Tot? F(U.) — Tot? ' F(U.) is, up to homotopy, the q-fold loop space of the
q-cosimplicies H|Q|= o (Ug) of our cosimplicial spectrum:

fib(Tot? F(U.) — Tot? ' F(U.)) ~ Q( [[ F(Uqe)).
|Ql=q

For example, for a cosimplicial spectrum B, the map Tot' B — Tot’ B is,
roughly speaking, projecting to the O-cosimplicies B?; the fibre over a given 0-
cosimplex is an end-fixed path space in the 1-cosimplicies B!, which (provided the
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1-cosimplicies B! are connected) has the homotopy type of the loop space Q2B'—
consider picture 3.16. The E' term of the spectral sequence associated to the
cosimplicial spectrum F(U.) is now E}, = mp([11g)=q F(Uq)). The corresponding
E? term is E2, = H{ (U, m,F), the Cech cohomology with coefficients in the presheaf
(1, F)(V) 1= m(F(V)). |

Provided there is no lim" problem, that is if lim} 7, Tot’ F(U.) = 0, the tar-
get of the spectral sequence is lim; 7,_, Tot' F(U.) = 7,_, corholim; Tot* F(U.).
Finally suppose that our presheaf F is actually a sheaf taking values in fibrant
spectra. The associated cosimplicial spectrum is Reedy fibrant, and using the re-
sults of section 3.2.2 this allows us to further identify the target spectrum:

corholim; Tot” F(U.) ~ lim; Tot* F(U.) = Tot F(U.) ~ holima F(U.) ~ F(U).

The last equivalence is the sheaf condition on F. The spectral sequence, at long
last, is
Ez%q = Hﬁ(a mF) = mpgF(U).
cond,no lim?!

3.3. The spectral sequence for w,TMF. We specialize the spectral se-
quence of Section 3.2 to the particular sheaf O'P of (fibrant) spectra on the moduli
stack (M.y)g, of elliptic curves in the étale topology. We use particular proper-
ties of this sheaf and the results of Section 3.1 to identify the E? term as a sheaf
cohomology of the moduli stack. Moreover, we address the lim' problem for the
relevant tower of spectra, thereby pinning down the target of the spectral sequence
as the spectrum of global sections O'P(M ;).

For a cover U = {U; — My} of My in the site (M), , and U. the associated
simplicial object of (My)y, the spectral sequence associated to O'P and U has
the form

E2, = HE( M.y, m,0%P) = lim; 7 Tot" O'°P(U.).

We can remove the dependence of the E? term on the particular cover { by
restricting attention to covers of the moduli stack by affine schemes.

PROPOSITION 3.21. Suppose the cover L = {U; — My} is by affine schemes

U;. In this case, for any collection of indices J = {i1,...,1;}, the value of the
presheaf 7, 0P on Uy is the same as the corresponding value of the sheafification
of m,O°P:

0P (U,) = (7 O%P)(U,).
It follows from this proposition that there is an equality of Cech cohomology groups:

Hﬁ(Mcll, ’/TpOtOp) = Hﬁ(Mella W;OtOp).

The same affine condition on the cover gets us the rest of the way to sheaf coho-
mology:

PROPOSITION 3.22. Suppose again the cover L is by affine schemes. Then for
all J, the intersection Uy is acyclic for the sheaf F;Omp, that is

H{(U,;,mfO"P) =0, i>0.
By the general Proposition 3.4, the acyclicity of U; for the sheaf ﬂ'};(DtOp implies
that in this case Cech and sheaf cohomology agree:

HY (Mg, mhOP) = HY (M oy, wH O™P).
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Having identified the E? term, we reconsider the target of the spectral se-
quence. Both the convergence properties of the spectral sequence and the potential
lim! term are controlled by the same finiteness condition on the differentials—see
Boardman [Bo]:

PROPOSITION 3.23. Let E, = m,_q(corhofib ¢y) = lim; m,_,F" be the spec-

tral sequence associated to the tower of spectra - — F? LNy LN AN If for
all p and q there are only finitely many r such that the differential originating at £,

. .1 ;
is nonzero, then the spectral sequence convergences strongly and lim; mp,_q_1 F"* = 0.

The spectral sequence associated to the sheaf O'P evaluated on an affine cover of
the moduli stack My has the feature that there are only finitely many nonzero
differentials originating at any term.

COROLLARY 3.24. For U. the simplicial object of (Meu),, associated to an

affine cover 8 of the moduli stack M.y, the lim' term in the Milnor sequence for
Tot™ O%P(U.) vanishes:

lim; 7,_,_1 Tot* O*P(U.) = 0.

The target lim; m,_, Tot’ OP(U.) of our spectral sequence is therefore equal to
Tp—q corholim; Tot” O'°P(U.), which is, in turn, equal to m,_,OP(M,y;). The
spectrum TMF is by definition this spectrum O%P (M) of global sections of the
sheaf OtP,

Though we have restricted our attention to the moduli stack M of smooth
elliptic curves, the sheaf O%P extends to the Deligne-Mumford compactification
M. The process we have described also provides a spectral sequence for the
homotopy of the spectrum O%P(M.;;) of global sections over the compactification—
this spectrum is denoted Tmf. Altogether then, we have reached the end of our
road:

PROPOSITION 3.25. There are strongly convergent spectral sequences
E2, = HY My, n)0"P) = m,_, TMF,
E;Zq S Hq(./\/le”, ﬁ;OtOP) = TMp—q Tmf.

As the spectrum ¢mf is by definition the connective cover of Tmf, the second
spectral sequence gives in particular a means of computing the homotopy groups
of tmf.

Appendix. Degenerate simplicies and codegenerase cosimplicies

We hope we are not alone in thinking that cosimplicial objects, totalization,
matching objects, and Reedy fibrancy appear at first more abstruse than the dual
notions of simplicial objects, realization, latching objects, and Reedy cofibrancy.
We think this is in part due to some missing terminology, which we advertise here.
We restrict attention to pointed model categories C that behave like the category
of based spaces in the sense that fibrations are categorical epimorphisms, and the
image of a cofibration P < @ is isomorphic to its source P.

Let A be a simplicial object in such a model category C. The object A, is called,
of course, the n-simplicies of A. This object receives degeneracy maps from the
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k-simplicies Ay, for k < n. We would like to build an object Dgnt,, A, the degenerate
n-simplicies, that contains precisely the targets of these degeneracy maps in A. In
order to do this, we first use a left Kan extension to glue together the possible
n-simplicies that could be targets of degeneracy maps from the k-simplicies Ay
for £k < n—this forms the latching object L, A, which we think of as the possible
degenerate n-simplicies of A. This latching object was described in section 3.2.2,
where we noted that “possible” refers to n-simplicies that may exist in simplicial
objects agreeing with A in levels less than n.

There is a natural map A\, : L,A — A, from the n-th latching object to the
n-simplicies. Define the object Dgnt,, A of degenerate n-simplicies of A to be the
fibre of the cofibre (that is the image) of the map \,,. The degenerate n-simplicies
Dgnt,, A are the possible degenerate simplicies that actually occur in A. (Note
that in an arbitrary model category, it would be wiser to define the degenerate
n-simplicies to be the cofibre of the fibre (that is the coimage) of A,; however, in
topological contexts coimage rarely coincides with our intuition about the target of
a map, and we scuttle the coimage formulation.)

Recall that A is Reedy cofibrant if A, : L, A — A,, is a cofibration. This occurs
precisely when the map L, A — Dgnt,, A is an isomorphism and the map Dgnt,, A —
A, is a cofibration—the first condition says that all possible degeneracies actually
occur, which is to say the degenerate simplicies are freely generated, while the
second condition says that the degenerate simplicies include into all simplicies by a
cofibration. This pair of conditions is a convenient mnemonic for Reedy cofibrancy
of simplicial diagrams.

Now let B be a cosimplicial object in the category C. The object B™ is called
the m-cosimplicies of B. The n-cosimplicies map by codegeneracy maps to the
k-cosimplicies, for k¥ < n. We would like to build an object that encodes infor-
mation about the sources of these codegeneracy maps—we will call the resulting
object Codgns™ B, the codegenerase n-cosimplicies. Note well that these are not
the “codegenerate n-cosimplicies”, a term which would refer to n-cosimplicies in
the target of codegeneracy maps, and this object also has nothing to do with coface
maps. In order to build this codegenerase object, we first use a right Kan extension
to assemble the possible n-cosimplicies that could be sources of codegeneracy maps
to the k-cosimplicies B¥ for k < n—this forms the matching object M™B, which
we think of as the possible codegenerase n-cosimplicies of B. Matching objects
were defined in section 3.2.2; the “possible” here refers to cosimplicies that could
appear in cosimplicial objects agreeing with B below level n. (Pedantically speak-
ing, we could emphasize the left versus right Kan extension by thinking of L, A as
the “copossible degenerate” n-simplicies and M"™B as the “possible codegenerase”
n-cosimplicies, but we draw a line before the term “copossible”.)

There is a natural map p™ : B™ — M"™B from the n-cosimplicies to the n-th
matching object. Define the object Codgns™ B of codegenerase n-cosimplicies of B
to be the fibre of the cofibre (that is the image) of the map p™. (Note that we
do use the image here, not as one might expect the coimage.) The codegenerase
n-cosimplicies Codgns™ B is the object of possible codegenerase cosimplicies that
actually occur in B.

The cosimplicial object B is Reedy fibrant if p : B® — M™B is a fibra-
tion. This happens exactly when the map B" — Codgns™ B is a fibration and
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the map Codgns™ B — M™B is an isomorphism—the first condition is that the n-
cosimplicies map by a fibration onto the codegenerase cosimplicies, and the second
condition is that all possible codegenerase cosimplicies occur, which is to say that
the codegenerase cosimplicies are cofreely generated. This provides a convenient
perspective on the meaning of Reedy fibrancy for cosimplicial diagrams.
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Bousfield localization and the Hasse square

Tilman Bauer

1. Bousfield localization

The general idea of localization at a spectrum E is to associate to any spectrum
X the “part of X that E can see”, denoted by LgX. In particular, it is desirable
that Lg is a functor with the following equivalent properties:

ENX 2x—=— LgX ~ %
If X — Y induces an equivalence EA X — EAY then LgX = LgY.

DEFINITION 1.1. A spectrum X is called E-acyclic if EA X ~ x. It is called
E-local if for each E-acyclic T, [T, X] = 0, where [T, X] denotes the group of
stable homotopy classes. A map of spectra f: X — Y is called an E-equivalence if
ENf: EANX — EAY is a homotopy equivalence. It is immediate that a spectrum
X is E-local iff for each E-equivalence S — T, the induced map [T, X] — [5, X] is
an isomorphism.

A spectrum Y with a map X — Y is called an E-localization of X if Y is
FE-local and X — Y is an E-equivalence.

If a localization of X exists, then it is unique up to homotopy and will be
denoted by X 2 LpX.

Localizations of this kind were first studied by Adams [Ad], but set-theoretic
difficulties prevented him from actually constructing them. Bousfield found a way of
overcoming these problems in the unstable category [Boul]; for spectra, he showed
in [Bou2] that localization functors exist for arbitrary E.

We start by collecting a couple of easy facts about localizations.

LEMMA 1.2. Module spectra over a ring spectrum E are E-local.

PROOF. Since any map from a spectrum W into an E-module spectrum M
can be factored through F A W, it follows that all maps from an F-acyclic W into
M are nullhomotopic. |

LEMMA 1.3. Ifv € m.(E) is an element of a ring spectrum E (of an arbitrary
but homogeneous degree), then Lg ~ L,-1gyg,,, where E/v denotes the cofiber of
multiplication with v and

v_lE:colim(EgEiw--)

the mapping telescope.
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PROOF. It suffices to show that the class of E-acyclics agrees with the class of
(v™'E Vv E/v)-acyclics. Since L,-1gvE/y is a module spectrum over E, E-acyclics
are clearly (v"!EV E /v)-acyclic; conversely, if E/vAW ~ x then v: EAW — EAW
is a homotopy equivalence, hence EAW ~ v 'EAW. Thus if also v ' EAW ~ x,
W is E-acyclic. ([

LEMMA 1.4. Homotopy limits and retracts of E-local spectra are E-local.

ProOF. The statement about retracts is obvious. For the statement about
limits, first observe that a spectrum X is E-local if and only if the mapping
spectrum Map(T, X) is contractible for all E-acyclic T. This is obvious because
7, Map(T, X) = [Z*T, X], and if T is E-acyclic then so are all its suspensions.

Now if F': I — {spectra} is a diagram of E-local spectra, the claim follows
from the equivalence

Map(T, holim F') ~ holim Map(T, F)

The following lemma characterizes E-localizations.

LEMMA 1.5. The following are equivalent for a map of spectra X — Y :

e X — Y is an E-localization;
® X — Y is the initial map into an E-local target;
@ X =Y is the terminal map which is an E-equivalence.

PRrROOF. Obvious from the axioms. O

This characterization suggests two ways of constructing X — LpX:
® LgX = holim Y or
X—=Y
Y E-local
® LgX = hocolim Y.
X—=Y
E-equivalence
In both cases, these limits are not guaranteed to exist because the indexing
categories are not small. This is more than a set-theoretic nuisance and requires a
deeper study of the structure of the background categories.
I will first briefly discuss what can be done with approach ®. The main con-
struction will be closer to method @.

@ Localizations as limits. For a ring spectrum FE, instead of indexing the
homotopy limit over all X — Y with Y FE-local, we could use the spaces in the
Adams tower for E:

X — Tot™ (EA(°“) A X) :

which is a subdiagram because E' A X is E-local for any X by Lemma 1.2, and E-
locality satisfies the 2-out-of-3 property for cofibration sequences of spectra. For this
cosimplicial construction to make sense, the ring spectrum E has to be associative
in a strict sense (e.g. in the framework of [EKMM]) or at least A [?]), or one can
restrict to cofacial spectra: A cofacial spectrum is a functor from Ay to spectra,
where Ay is the subcategory of A with the same objects but only injective maps.
In that case, Tot is just defined as the homotopy limit, and one can show that this
agrees with the cosimplicial Tot if the cofacial spectrum is the underlying cofacial
spectrum of a cosimplicial spectrum. Note that in this approach, no multiplication
on F is needed whatsoever — this works with any coaugmented spectrum S — F.
2
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If we are lucky, X — X =qof Tot(EN*+D A X) is an E-localization. This is
not always the case — X — X g sometimes fails to be an E-equivalence. Whether or
not LgX ~ Xz, the latter is what the E-based Adams-Novikov spectral sequence
converges to and thus is of independent interest. If Ly X can be built from E-
module spectra by a finite sequence of cofiber extensions and retracts, then LpX =~
X g [Bou2, Thm 6.10] (such spectra are called E-prenilpotent). For some spectra
FE, every X is E-prenilpotent; these spectra have the characterizing property that
their Adams spectral sequence has a common horizontal vanishing line at E, and
a horizontal stabilization line at every E,. for every finite CW-spectrum [Bou2,
Thm 6.12]. A necessary condition for this is that F is smashing, i.e., that LgX =
X A LgS° for every spectrum X.

@ Localizations as colimits. Bousfield’s approach to constructing localiza-
tions uses colimits. The basic idea for cutting down the size of the diagram the
colimit is formed over is the following observation:

To check if X is E-local, it is enough to show that for any E-equivalence S — T
with #S, #T < Kk for some cardinal £ depending only on E, [T, X] = [S, X].

At this point, it is not crucial what exactly we mean by #S. For a construction
of LgX that is functorial up to homotopy, it is enough to define #S to be the
number of stable cells.

Given this observation, Lg X can be constructed in a small-object-argument-
like fashion by forming homotopy pushouts

IIs—X

S—T
E-eq.

|

S]:IT r X(l)
E-eq.

and iterating this transfinitely (using colimits at limit ordinals). When the cardinal
k is reached, X(,) is E-local because it satisfies the lifting condition for “small”
S—T.

THEOREM 1.6. The category of spectra has a model structure with

e cofibrations the usual cofibrations of spectra, i.e. levelwise cofibrations
A,, — B,, such that

St A B, Ustaa, An+1 — Bn+1

are also cofibrations;
e weak equivalences the (stable) E-equivalences;
e fibrations given by the lifting property
The fibrant objects in this model structure are the E-local Q-spectra.

Here are some explicit examples of localization functors.

EXAMPLE 1.7. (1) E =S In this case, Lg is the functor that replaces
a spectrum by an equivalent Q-spectrum.

(2) E = M(Z,)) = Moore spectrum. In this case LgX ~ X(;) is the Bous-
field p-localization. This is an example of a smashing localization, i.e.
LpX ~ X A LgS®, which in this case is also the same as X A E.

3
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(3) E = M(Z/p). For connective X, LpX ~ X, is the p-completion functor
X; =holim{--- — X A M(Z/p*) = X A M(Z/p)}.
We write X 2 L,X for this localization X 25 LpX.
(4) E=M(Q)=HQ. Asin (2), LgX = X ALgS® = X A HQ is smashing; it
is the rationalization of X. As in the previous case, we write X BEN LoX
for this localization X 2% LpX.

2. The Sullivan arithmetic square

The arithmetic square is a homotopy cartesian square that allows one to recon-
struct a space if, roughly, all of its mod-p-localizations and its rationalization are
known. For the case of nilpotent spaces, which is similar to spectra, this was first
observed by Sullivan [Sul].

LEMMA 2.1. For any spectrum X, the following diagram is a homotopy pullback
square:

[T

Hp LPX

Lox et (I1, £,

This is a special case of

PROPOSITION 2.2. Let E, F, X be spectra with E,(LpX) = 0. Then there is
a homotopy pullback square

LpvrX — 2  LpX

T]Fl J/UF
L
LpX —r0%) o oDex

In the case of Prop. 2.1, F = \/p M(Z/p), F = HQ. To see that Lg = Hp Ly,
we have to show that there are no nontrivial homotopy classes from an E-acyclic
space to a spectrum of the form Hp L, X, which is immediate, and that

M(Z/p).(X) 2 M(Z/p). (H le)
l

is an isomorphism for all p. The latter holds because smashing with M (Z/p) com-
mutes with products since M(Z/p) is a finite (two-cell) spectrum (use Spanier-
Whitehead duality).

Furthermore, the condition E.(LrpX) = E.(HQA X) = 0 is satisfied because
H.(M(Z/p); Q) = 0.

PROOF OF THE PROPOSITION. Note that the map denoted ng in the diagram
is the unique factorization of ng: X — LgX through Lg\, X, which exists because
X — LpyrpX is an E-equivalence. The same holds for g, and furthermore, these
maps are F- and F-equivalences, respectively. Now let P be the pullback. We need

4
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to see that (1) P is (E V F)-local and (2) the induced map X — P is an E- and
an F-equivalence. For (1), take a spectrum T with E,T = F.T = 0. Then in the
Mayer-Vietoris sequence for the pullback,

o= [T,P] = [T, LgX|® [T, LrX] = [T, LpLpgX] — ...,

the two terms on the right are zero, hence so is [T, P].

For (2), observe that P — LrpX is an F-equivalence because it is the pullback
of np on Lg X, and since X — LrpX is also an F-equivalence, so is X — P. The
same argument works for P — LpX except that here, the bottom map is an E-

equivalence for the trivial reason that both terms are E-acyclic by the assumption.
d

3. Morava K-theories and related ring spectra

Given a complex oriented even ring spectrum F and an element v € w,E,
we would like to construct a new complex oriented ring spectrum E/v such that
m«(E/v) = (m«E)/(v). This is clearly not always possible. The machinery of
commutative S-algebras of [EKMM] (or any other construction of a symmetric
monoidal category of spectra, such as symmetric spectra) allows us to make this
work in many cases where more classical homotopy theory has to rely on ad-hoc
constructions (such as the Baas-Sullivan theory of bordism of manifolds with sin-
gularities).

In this section, let E be a complex oriented even commutative S-algebra and A
an E-module spectrum with a commutative ring structure in the homotopy category
of E-modules, and which is also a complex oriented even ring spectrum. Let us call
this an F-even ring spectrum. A commutative E-algebra would of course be fine,
but we need the greater generality.

THEOREM 3.1 ([EKMM, Chapter V]). For any v € m.E, v™*A carries the
structure of an E-even ring spectrum. Furthermore, if v is a non-zero divisor then
A/v is also an E-even ring spectrum.

Even if A is a commutative E-algebra (for example, A = E), the resulting
spectrum is usually not a commutative S-algebra.
Of course, this construction can be iterated to give

COROLLARY 3.2. Giwen a graded ideal I <7, E generated by a reqular sequence
and a graded multiplicative set S C w,E, one can construct an E-even ring spectrum
STYA/I with m,S~YA/I = S~ (m. A)/I.

In particular, this can be done for £ = MU. For example, BP can be con-
structed in this way by taking I = ker(MU, — BP.), which is generated by a reg-
ular sequence. It is currently not known whether BP is a commutative S-algebra.
However, the methods above allow us to construct all the customary BP-ring spec-
tra by pulling regular sequence back to £ = MU, and letting A = BP. For

example,
E(n) v Y BP/(Vpy1, Unga, ... )
K(n) = v,'BP/(p,v1,..., 00 1,Vn41,--.)
P(n) = BP/(p,v1,...,Un—1)
B(n) = wv,'BP/(p,v1,...,0n_1).

5
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Any MU-even ring spectrum A gives rise to a Hopf algebroid (A, A, A) and
an Adams-Novikov spectral sequence

E2, = Cotora, o(As, A, X) = m.X 4.

If M4 denotes the stack associated to the Hopf algebroid (A., A.A) and Fx the
graded sheaf associated with the comodule A, X, this E2-term can be expressed as

B}, = H™(Ma, Fx),

which is the cohomology of the stack M 4 with coefficients in the sheaf Fx.

In particular, if f: A — B is a morphism of MU-even ring spectra, we get a
morphism of spectral sequences, and if f induces an equivalence of the associated
stacks, then f induces an isomorphism of spectral sequences from the Fs-term on.
In particular, in this case, X 3 ~ X g if we can assure that the spectral sequences
converge strongly. Note that we do not need an inverse map B — A.

THEOREM 3.3. If f: A — B is a morphism of MU -even ring spectra inducing
an equivalence of associated stacks, then L4 ~ L.

PROOF. The argument outline above gives an almost-proof of this fact, but it
puts us at the mercy of the convergence of the Adams-Novikov spectral sequences
to the localizations L, X and LpX. We give an argument that doesn’t require
such additional assumptions. Note that it is sufficient to show that A, X = 0 if and
only if B,X = 0. Assume A,X = 0. Then the A-based Adams-Novikov spectral
sequence is 0 from E' on, thus the B-based Adams-Novikov spectral sequence is
also trivial from E? on. This time, the spectral sequence converges strongly because
it is conditionally convergent in the sense of Boardman [Boa|, which implies strong
convergence if the derived E.-term is 0 — but this is automatic since the F,.-terms
are all trivial for » > 0. Thus X g is contractible.

Now the Hurewicz map X — B A X factors as X — LgX — X5 — BA X by
the universal property @ of the localization, since X 5 is B-local. Thus X — BA X
is trivial. Using the ring spectrum structure on B, we see that BAX — BABAX LN
B A X, which is the identity, is also trivial, so B A X =~ %. |

In particular, this applies to the following cases:

THEOREM 3.4. We have
Lpm) > Lrm)
Let I, = (p,v1,...,0n—1) <BP, and E(k,n) = E(n)/I for 0 <k <n <oco. Then

LvlzlE(k,n) = LK(k) .

PROOF. The first part is due to Ravenel [Rav] and Johnson-Wilson [JW], but
they give a different proof without the Adams-Novikov spectral sequence.

To apply Theorem 3.3, it is useful to extend the ground ring of the homol-
ogy theories in question from F, to Fp», which does not change their localization
functors. The Hopf algebroids for B(n) ® Fyn and K (n) ® Fpn both classify formal
groups of height n. By Lazard’s theorem, there is only one such group over Fp»
up to isomorphism, which shows that the quotient map B(n) @ Fyn — K(n) @ Fpn
induces an isomorphism of Hopf algebroids.

The second part works similarly by considering the maps of Hopf algebroids
induced from

vg 'E(k,n) < B(k)/(Vnt1, Va2, ... ) — K(k)
6
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which again all represent the stack of formal groups of height k.

THEOREM 3.5. We have that

Lpm) = Lr©vi@v-vimn) = L, 1pp-

Proor. With the notation of Theorem 3.4, since E(n,n) = K(n) and E(0,n) =
E(n), it suffices to show that

Lekn) ~ Lrg)vEGHR+1,0)-

By Lemma 1.3, Lgn) =~ LU;IE(k7n)\/E(k+17n). By Theorem 3.4, ka—lE(k,n) ~
Lk k), and the result follows by induction.

The second equivalence can be proved by a similar argument, not needed here,
and left to the reader. O

THEOREM 3.6. There is a homotopy pullback square

MK (2)
Lgaywr@X ————— Lg@)X

UK(l)J Jnku)
L) (nx(2)

LgyX ———— Lr)Lk@X

PRrOOF. This is an application of Prop. 2.2. We need to see that K (2).(Lg1)X) =
0 for any X. To see this, let a: X¥M(Z/p) — M(Z/p) be the Adams map, which
induces multiplication with a power of v; in K(1) and is trivial in K(2). Here
k =2p—2 for odd p and k = 8 for p = 2).

Let X be K(1)-local. Then so is X A M(Z/p), and since S*X A M(Z/p) =
X A M(Z/p) is a K(1)-isomorphism, it is a homotopy equivalence. On the other
hand, .. : K(2).(S*X AM(Z/p)) — K(2).(X AM(Z/p)) is trivial, thus K (2).(X A
M (Z/p)) = 0. By the Kiinneth isomorphism, K(2).(X) = 0. O

The same result holds true for any K (m) and K (n) with m < n; M(Z/p) and «
then have to be replaced by a type-m complex and its v,,-self map in the argument.
We briefly recall some basic facts around the periodicity theorem.

DEFINITION 3.7. A finite p-local CW-spectrum X has type n if K(n).(X) #0
but K(k).(X) = 0 for k& < n. For example, the sphere has type 0, the Moore
spectrum M (Z/p) has type 1, and the the cofiber of the Adams map has type 2.

THEOREM 3.8 ([DHS, HS]). Every type-n spectrum X admits a vy-self map, 1.
e. amap f: XX — X which induces multiplication by a power of v, in K(n).(X).

The periodicity theorem implies that there exist type-n complexes for every n €
N. They can be constructed iteratively, starting with the sphere, by taking cofibers

of vg-self maps. Thus, there exist multi-indices I = (ig,...,in—1) and spectra
SY/(v!) such that BP.(SY/(v!)) = BP./(v!), where (vI) = (p',v}!,... v ).

These are sometimes called generalized Moore spectra. It is an open question what
the minimal values of I are (they certainly depend on the prime.)
7
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4. The Hasse square

In this section, we will study algebraic interpretations of K (n)-localization in
terms of formal groups and elliptic curves.

PROPOSITION 4.1. Let E be a complex oriented ring spectrum over S, and
define

E'=  holim w,'E/(p", vt ,v;”_’f).
Here v; are the images of the classes in BP of the same name under the orientation
BP — E. Then Lk E ~ E'.

ProoF. We also denote by I,, < E, the image of the ideal of the same name
in BP. As v,,'E/I, is a B(n)-module spectrum, it is B(n)-local by Lemma 1.2,
thus by Theorem 3.4 also K (n)-local. Each spectrum v, *E/(v!) (using multi-index
notation) is constructed from v, E/I by a finite number of cofibration sequences,
thus it is also K (n)-local. Since homotopy limits of local spectra are again local
(Lemma 1.4), E' is K (n)-local, and it remains to show that K (n).(E) = K(n).(E’).
The coefficient rings of the Morava K-theories K (n) are graded fields, hence they
have Kiinneth isomorphisms. Thus it suffices to show that EA X — E'A X is a
K (n)-equivalence for some X with nontrivial K (n).(X). Choose X = S°/(v”) to
be a generalized Moore spectrum of type n, for some multi-index J. Then

E'NX ~ }}%lmi;gl (0, ' E/ (") ASY/(v7)) = v B/ (v7).
Thus K(n).(EA X) = K(n).(E/v!) = K(n).(v, E/v7) = K(n).(E' A X). O

Now we will specialize to an elliptic spectrum E defined over the ring Ey with
associated elliptic curve C'g over Spec Ey. Proposition 4.1 in particular tells us that

moLg)E = 1ilmvl_1E0/(pi),

which is the ring of functions on Spf((Ep);)°"d, the ordinary locus of the formal
competion of Spec Ey at p, i.e. the sub-formal scheme over which C'g is ordinary.
In particular, if Fy is an Fj-algebra, moLg1)E = v; ' Fy is just the (non-formal)
ordinary locus of Ey. Similarly,

RoLicay B 2 lim v Eo (" 0it) = lim Eo/ (5, o}')

is the ring of functions on the formal completion of Spec Ey at the supersingular
locus at p. The last equality holds because any elliptic curve has height either 1 or
2 over F,,, thus vg is a unit in Ey/(p, v1) and hence in Ey/(p™,v7").

LEMMA 4.2. Any p-local elliptic spectrum E is E(2)-local.

PROOF. We need to show that for any W with E(2),W = 0 , we have that
E.W = 0. By Theorems 3.4 and 3.5, this is equivalent to B(#) = 0 for 0 < i < 2.
That is,

p IBP AW ~ %
v 'BP/p AW ~ %

vy 'BP/(p,v1) AW = x.
8
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Now since F is a BP-ring spectrum, the same equalities hold with BP replaced by
E. Tt follows from Lemma 1.3 that

E/(p,v)) A\W ~ v 'E/(p,v1)) AW ~x and v 'E/p AW ~x = E/pAW ~x
E/pAW ~xand p 'EAW ~% = EAW ~x.
O

COROLLARY 4.3 (the “Hasse square”). For any elliptic spectrum E, there is a
pullback square
By ——— Lk F

l |

LK(I)E —_— LK(l)LK(Q)E.

Proor. It follows from Lemma 3.6 that the pullback is Ly (1)vkx(2)E. Now
consider the arithmetic square

Lok — Lrayvke)F
Loy F — Lro)Lrxayvk@)E-

Since Ly, Ly )X = LyLgX = *, applying the p-completion functor L, we see that
top horizontal map

LyE~LyLgoywvkaywvr@f = LpLxaywk@F =~ Lrayvke)F

is an equivalence, hence the result. (Il
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The Local Structure of the Moduli Stack of Formal Groups

Jacob Lurie

Let M pgr denote the moduli stack of formal groups (always assumed to be
commutative and one-dimensional): this can be identified with the functor which
assigns, to every commutative ring R, the groupoid Mpgr(R) of formal groups
over R (and isomorphisms between them). We wish to understand the structure of
Mrpar. A natural starting point is to identify the points of Mpgr; that is, maps
Speck — Mg, where k is a field. For these we have the following classification
(at least in the case where k is separably closed):

e If k is a separably closed field of characteristic p > 0, then formal groups
G over k are classified by an invariant h = h(G), called the height of G.
The height of the formal additive group @a is 0o; otherwise h is a positive
integer, uniquely determined by the requirement that the (finite) group
scheme of p-torsion points of G has rank p”.

e If k is a field of characteristic zero, then every formal group G over k is
isomorphic to the formal additive group @a. In this case, we agree by
convention that the height of G is equal to zero.

Our interest in the moduli stack Mper is primarily that it can be used to
construct cohomology theories. More precisely, given a commutative ring R and a
flat map Spec R — M pqy, (classified by a formal group G over R), we can construct
a (weakly) even periodic homology theory A. If G admits a coordinate (in other
words, if the Lie algebra of G is trivial), then G together with this coordinate are
described by a map L — R, where L ~ Z[u,us,...,]| is the Lazard ring; in this case
A can be described by the formula Ag(X) = MU,.(X) ®r R, where we implicitly
use the isomorphism L ~ MU*(x) provided by Quillen’s theorem.

Unfortunately, a geometric point 1 : Speck — Mpgy is almost never flat
(this holds only when k is of characteristic zero). This is consistent with classical
geometric intuition: if X is a finite dimensional algebraic variety containing a closed
point z, then the inclusion ¢ : {x} C X is usually not a flat map. However, there is
a canonical factorization of i as a composition

{z} C Spec @X,z — X

where the second map is flat. Here O x o denotes the completion of the structure
sheaf of X at the point x, which encodes the structure of a formal neighborhood of
rin X.
There exists an analogous description of a formal neighborhood of 7 in Mpgy.
Let Gg be the formal group over k classified by the map 7 : Speck — Mpgr. Let R
be a local Artin ring with maximal ideal m, and let @ : R/m ~ k be an isomorphism.
1
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We let C(R) denote the category of pairs (G, @), where G is a formal group over R
and @ is an isomorphism of G Xgpec r Speck with Gg. (Here we regard Speck as
an R-scheme via the map «, but suppress mention of this in our notation.)

THEOREM 0.1 (Lubin, Tate). Let k be a perfect field of characteristic p, and
let Go be a formal group of height n < oo over k. Then:

(1) For every local Artin ring R with residue field k, the groupoid C(R) is dis-
crete (that is, the automorphism group of every object of C(R) is trivial).

Let moC(R) denote the set of isomorphism classes of objects of C(R).
(2) There exists a complete local Noetherian ring A with residue field (isomor-
phic to) k and a formal group G over A such that, for every local Artin

ring having residue field k, the base change of G induces a bijection

HOH]()(A, R) — ’/Toc(R)

Here Homg (A, R) denotes the subset of Hom(A, R) consisting of local ho-
momorphisms which induce the identity map from k to itself.

(3) The ring A is (noncanonically) isomorphic to W (k)[[v1, ..., vn_1]] where
W (k) denotes the ring of (p-typical) Witt vectors of k.

REMARK 0.2. We can rephrase assertion (1) of Theorem 0.1 as follows. Let R
be a local Artin ring, and G a formal group over R. Suppose that the residue field
k of R is a perfect field of positive characteristic, and that Go = G xgpec r Speck
has finite height. Then an automorphism of G is trivial if and only if its restriction
to Go is trivial. Note that this assertion fails drastically if k is of characteristic
zero, or if the height of Gg is infinite: the additive group @a admits a nontrivial
action of the multiplicative group R*, and the reduction map R* — k* is usually
not injective.

REMARK 0.3. The moduli stack M ggy, is far from being a scheme, since formal
groups over a ring R generally admit many automorphisms. However, assertion (1)
of Theorem 0.1 can be interpreted as saying that the “stackiness” of Mpgy is not
visible in a formal neighborhood of most points of Mpgy,.

REMARK 0.4. Once assertion (2) of Theorem 0.1 has been established, assertion
(3) is equivalent to the statement that the ring A is formally smooth over Z. To
prove this, one can argue as follows: the moduli stack M g, admits a (pro)smooth
cover by the moduli space M pgy, of formal group laws. A theorem of Lazard asserts
that M pgy, is isomorphic to an infinite dimensional affine space Spec Z[u, ua, .. .J,
which is manifestly (pro)smooth over SpecZ.

REMARK 0.5. Using assertion (3) of Theorem 0.1 and Landweber’s criterion, it
is easy to see that the formal group G over A classifies a flat map Spec A — Mpqry.

For applications to elliptic cohomology, it is important to understand the re-
lationship between the moduli stack Mpg of formal group laws and the mod-
uli stack My of elliptic curves. There is an evident map ¢ : Mg — Mpar,
which associates to each elliptic curve £ — Spec R the formal completion of FE
along its identity section. We now analyze the fiber of i over a geometric point
1 : Speck — Mpgr. There are several cases to consider:

(a) Let k be of characteristic zero. Without loss of generality, we may assume
that 7 classifies the formal additive group @a. In this case, the fiber prod-
uct My X Mg, SPec k is actually an affine algebraic variety of dimension

2
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2 over k, which classifies elliptic curves E over k equipped with a global
1-form.

(b) Let k be a field of characteristic p, and let n classify a formal group of
height 1 over k. The fiber product M X a1, Speck is again a scheme,
which is a pro-etale cover of the moduli stack of ordinary elliptic curves
defined over k (which is of Krull dimension 1).

(¢) Let k be a field of characteristic p, and let 7 classify a formal group of
height 2 over k. The fiber product M X a1, Spec k is pro-etale over k:
in other words, it is isomorphic to an affine scheme Spec k’, where k' is an
inductive limit of products of separable field extensions of k. The induced
map Spec k’ — M surjects onto the locus of supersingular elliptic curves
in characteristic p.

(d) Let k be a field of characteristic p, and let n classify a formal group of
height > 2 over k. Then the fiber product My X s, SPeck is empty.

We conclude from this that M, is a rather good approximation to M pgy, in
height 2 (that is, near a supersingular elliptic curve), but not elsewhere. In fact,
one can prove a stronger assertion of this kind, which describes not only the fiber
of the map @ over a formal group of height 2, but a formal neighborhood of that
fiber:

THEOREM 0.6 (Serre, Tate). Let R be a Noetherian ring, p a prime number
which is nilpotent in R, and I an nilpotent ideal in R. Say that an elliptic curve E
defined over R (respectively R/I) is everywhere supersingular if, for every residue
field k of R (respectively R/I), the fiber product E Xspec r Speck is a supersingular
elliptic curve. Then the diagram of categories

{everywhere supersingular elliptic curves E — Spec R} ————— {formal groups E— Spec R}

| |

{ everywhere supersingular elliptic curves Eq — Spec R/} — {formal groups Eo — Spec R/I}

is a homotopy pullback. Here the vertical arrows are given by reduction modulo I,
and the horizontal arrows are given by formal completion.

In other words, given an elliptic curve Ey over R/I and a formal group E over
R which give rise to the same formal group over R/I, we can cobble together an
elliptic curve E over R lifting Fy, having formal group E; moreover, E is uniquely
determined up to unique isomorphism.

COROLLARY 0.7. Let E be a supersingular elliptic curve over a perfect field k
of characteristic p, classifying a point n : Speck — M. Then the map i induces
an isomorphism of a neighborhood of n with the formal scheme Spf A, where A ~
W (k)[[v1]] is the universal deformation ring for the formal group E (see Theorem
0.1).
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Goerss-Hopkins obstruction theory

Vigleik Angeltveit

We develop an obstruction theory for answering the following question. Given
a spectrum FE with certain nice properties and a commutative E,-algebra A in
E, E-comodules, is there a commutative S-algebra X with F, X = A?

1. k-invariants

Let X be a 1-connected space. We usually think of the n’th k-invariant as a
map P,_1X — K(m,X,n+1) with P, X as the homotopy fiber. If we know all the
k-invariants of X we can recontruct X as the inverse limit of its Postnikov tower.
We wish to adapt this theory to build commutative S-algebras.

There are two main points we need to address when setting up the theory.
First, Postnikov towers for ring spectra work best when the spectra have no negative
homotopy groups. But many of the spectra we are interested in have lots of negative
homotopy groups. We finesse this problem by introducting an additional simplicial
direction and building our Postnikover tower in that direction.

Second, we cannot obtain the n’th stage simply as the homotopy fiber of a
map from the (n — 1)’st stage. This complication happens for spaces as well. If
X is not l-connected, we are forced to instead think of the k-invariant as a map
P,1X — K(m, X, n+1) X, x Em1 X making the following diagram into a homotopy
pullback square:

PnX B’lTlX

| |

PnleHK(ﬂ'nX,n—f— 1) Xm X E7T1X

The idea of the obstruction theory is to set up a situation where our commu-
tative S-algebra X (if it exists) is the inverse limit of its Postnikov sections P, X
and such that the existence or non-existence of the correct k-invariant for building
P, X from P,_1X can be calculated algebraically.

Let E be a homotopy commutative ring spectrum satisfying certain technical
conditions. Given a commutative F,-algebra A in E,FE-comodules, we want to
build a commutative S-algebra X with F,X = A as comodule algebras. We put
the following technical conditions on E:

(1) E.E should be flat over E.. We need this for the category of E.FE-
comodules to be well behaved.
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(2) E should satisfy the Adams condition: E = holim E,, where each E,
is a finite cellular spectrum such that F,DFE, is projective over F, and
such that the natural map [DE,, M] = Homg, —moa(FE«+DE,, M,) is an
isomorphism for every E-module M. Here DE, = Fs(E,,S) is the S-
module (or Spanier-Whitehead) dual. This condition is necessary to guar-
antee that F has a Kiinneth spectral sequence.

Instead of simply asking for the existence of such an X, we can try to understand
the realization category of all such X. An object in R(A) is a commutative S-
algebra X with F.X = A as comodule algebras, and a morphism in R(A4) is a
map X — X' of commutative S-algebras inducing an isomorphism E,X = E, X’
as comodule algebras.

Note that the isomorphism F,X — A is not part of the data. This builds the
automorphisms of X into the category. We can then consider the moduli space
BR(A), which is the geometric realization of the nerve of the category R(A4). By a
theorem of Dwyer and Kan [DK],

BR(A) = [ [ BAut(X),
[x]

where X runs over the E,-isomorphism classes of objects in BR(A) and Aut(X) is
the monoid of self equivalences of a cofibrant-fibrant model for X.

The question becomes “is BR(A) nonempty?”

As a typical example, indeed the main example, we can let £ = FE,, be the
n’th Morava FE-theory spectrum. This is the spectrum associated to the universal
deformation ring of a height n formal group law over a perfect field k£ as discussed in
the previous chapter. To be specific, one often considers the height n Honda formal
group law over IF,», though the obstruction theory works just as well in the more
general situation. By the Lubin-Tate theorem, the ring of universal deformations
of such a formal group law is isomorphic to

W) [[ugy .-y un—1]],
where W(k) denotes the Witt vectors over k. Then the Landweber Exact Functor
Theorem tells us that we can construct a 2-periodic spectrum F,, with
T B =2 W) [[u1, ..., un—1]][u, ufl]

with |u] = 2. Tt is not too hard to show that E,, is a homotopy commutative ring
spectrum. Thus this is an appropriate starting point.

2. Simplicial operads

We will attempt to construct X as an algebra over some E, operad, using that
FE-ring spectra are equivalent to commutative S-algebras. If O is an F, operad,
it is hard to understand the set of maps

Ok)4 As, X¥ = X,

To get around this problem, we introduce a simplicial direction. Let T be a simpli-
cial operad, i.e., a sequence {T},},>0 of operads connected by the usual structure
maps of a simplicial object. We will assume that
(1) Bach T, (k) is Xj-free. This means that T, (k); As, X*) — X is easy to
understand.
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(2) For each k the geometric realization |n — T, (k)| is equivalent to EXj,
i.e., a contractible space with a free Yj-action.

For example, we can let T},(k) = X', Then |T(k)| = B(Zk, X, *) is the usual
model for EY. (The Barratt-Eccles operad.)

Now we can conider the category of T-algebras in spectra. An object in T-alg
is a simplicial spectrum X, such that each X, is a T),-algebra. It follows that |X,|
is a |T'|-algebra spectrum, or in other words an E., ring spectrum.

Suppose we have a simplicial spectrum X,. Then we get a simplicial graded
abelian group E.X, = {n — E.X, }»>0, and we can use the simplicial structure
maps to define the homotopy groups 7, F, X, of this object. Note that even though
each F, X, might be nonzero in negative degrees, m; F. X, is only defined for i > 0.
This simplicial direction will be our Postnikov tower direction.

Recall that A is a commutative E,-algebra in F, FE-comodules. Let R (A) be
the realization category corresponding to the above setup. An object is a simplicial
spectrum X, € T-alg such that

mEX, =4 ?fz_zo
0 if7>0

The morphisms are maps which induce an isomorphism after applying 7. F.(—).
Let BRo(A) be the geometric realization (in the nerve direction, not the other
simplicial direction) of the nerve of this category.

THEOREM 2.1. (Goerss-Hopkins [GH]) Geometric realization and the constant
simplicial spectrum functors gives a weak equivalence

BRoo(A) S BR(A).

3. The spiral exact sequence

Given a simplicial spectrum like F A X, we can define two types of bigraded
homotopy groups. Type I, which is the one we discussed above, defined as

TpEyXe = mp(me(E N X))
and type I, which uses the simplicial sphere AP /JAP, defined as
Tp.q(E A Xe) = [APJOAP N ST E N X,).
As usual, we have a spectral sequence
B, =TpE.Xe = Epq|Xal.

This spectral sequence comes from the skeletal filtration of X,. If we package the
spectral sequence as an exact couple, the D? and E? terms of the exact couple form
a long exact sequence called the spiral exact sequence:

e 7Tp,1’q+1E ANX — 7Tp7qE ANX — FquX — 7Tp,2’q+1E ANX — ...

See [DKS] for more on how to construct the spiral exact sequence. This is where
we use that E satisfies Adams’ condition. If X € BRo(A) then every third term
in the above long exact sequence is zero, and so 7, .E A X = QPA for all p > 0.

3
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4. Building BR(A4) inductively

Now we make the following definition. Let BR,,(A) be the nerve of the category
with objects X € T-alg with 7, ,E AN X = QPA if p < n and 0 otherwise. It is
with respect to this type of homotopy groups that the category of T-algebras has
Postnikov sections. Given a T-algebra X it is possible to construct a new T-algebra
P, X with m; . P, X = m; , X if i <n and 0 otherwise by gluing on algebra cells, and
similarly after smashing with F.

We say that X is a potential n-stage for A if

A ifi=0

miE. X =
! {0 if1<i<n+1

and 7; & A X = 0 for ¢ > n. The spiral exact sequence then implies that

A ifi=0
mEX 2O A ifi=n+2
0 if i #0,n+2
and
A if0<i<
N f0<i<n
’ 0 ifi>n

Now we can try to build X € BR(A4) inductively. To get started, consider
the functor

sAlgy? — Sets

given by Y — Homa,, /e,.5(moEY,A). A version of Brown representability
implies that this is represented by some B4 € BRy(A).

If we have an A-module M in E, E-comodules, we get an object B4 (M, n) with
type II homotopy A in degree 0, and M in degree n. On the algebra side, we can
construct K4(M,n) = K(M,n) x A.

PROPOSITION 4.1. There is a natural map E.Ba(M,n) — Ks(M,n) which
induces an isomorphism

Homgpig, /g, (X, Ba(M,n)) — 1‘]07718,419,5*T/E*E/A(E*X7 Ka(M,n)).

This is where we need T to be a simplicial operad with each T, (k) X-free, to
control the homotopy type of the mapping space

MapAlng (Xm, Ba(M,n) ).

The right hand side of Proposition 4.1 is some kind of derived functors of
derivations, or André-Quillen cohomology. Now we define

H'(A; M) = HomsAlgE*T/E*E/A(A,KA(M, n))

and

~

H"(A; M) = H"(A; M) X aupca,ny EAut(A, M).
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THEOREM 4.2. (Goerss-Hopkins [GH]) The following is a homotopy pullback
square:

BR,(A) —= BAut(A, Q" A)

| |

BRy_1(A) —= H"2(4; Q" A)

PROOF. (Sketch) Given Y € BR,_1(A), it is enough to produce a map ¥ —
BA(Q2"A,n+ 1) of T-algebras over By, inducing an isomorphism on 7,41 .. Then
the fiber will have the right m, ., and be a T-algebra. By Proposition 4.1, it is
enough to produce a map

E.Y S5 Ks(Q"A,n+1)
of E,T-algebras in E, E-comodules.
E.Y is a 2-stage Postnikov tower, so it is determined by a map
A~ PEY — KA(Q"A,n+ 2).
The class of this map in
ToH" T2 (A; Q" A)
is the obstruction. O

COROLLARY 4.3. There are obstructions
0, € HomSAlgE*T/E*E/A(A, Ka(A,n+2)
to existence and
0, € Homgaigy 1/, 5/A(A Ka(A,n+1))

to uniqueness of a commutative S-algebra X with E,X = A.
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From spectra to stacks

Lecture by Michael Hopkins,
Typed by Michael A. Hill

This talk aims to explain why the language of stacks, language which was
relatively unused even in algebraic geometry around the time ¢mf was constructed,
plays such a prominent role in the theorem expressing the existence of TMF'.

Let me try to explain where it all came from... I come from an era in homotopy
theory when all that anybody did was to compute things. Doug Ravenel and others
tried to make sense of all these computations, but it was only the people in my gen-
eration who started to think about how to understand these computations in a more
conceptual way. Nevertheless, I still tend to see everything through a computational
lens.

For me, TMF came out of what I call “designer spectra” or “designer homo-
topy types”. The first examples of such designer objects are the Filenberg-MacLane
spaces: they are spaces designed to have certain homotopy theoretic properties, but
with otherwise not much geometry. The appearance of those homotopy types marked
the point when people started to make actual progress, e.g., Serre’s first computa-
tions of homotopy groups of spheres. Before that, just using geometric methods,
all that one could prove (using simplicial approximation) was that these homotopy
groups are countable. From then on, every advance in homotpy theory was spear-
headed by the appearance of some special designer objects: spectra, various forms
of K-theory, the Adams spectral sequence, Brown-Gitler spectra, etc.

One of the things about TMF that we were really proud of is that, suddenly,
this was something that we could explain in a language that did not involve any
corky, weird homotopy types, so that someone who did not know too much about
homotopy theory could come in and do stuff with TMF .

FEven tough the TMF story might make more sense from the point of view of
elliptic curves, I am going to tell you today about some of those older designer
objects, and I hope that they will help fit the story together.

Let us start by recalling the main theorem:

THEOREM 0.1. There exists a unique sheaf O°P of E.-ring spectra on (Mey)et
such that for an étale map f : Spec R — M.y, one has that O™ P(Spec R) is the
Landweber exact theory corresponding to the composite Spec R — My — Mpg.

To be more precise, the spectrum OP(Spec R) is even and periodic, its mg is
identified with R, and the formal group corresponding to it is identified with the
formal completion of the elliptic curve classified by f.
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The argument for the existence of such a sheaf is via obstruction theory: instead
of showing that the sheaf exists, one shows that it cannot not exist. Though the
resulting sheaf is unique up to isomorphism, it has automorphisms, and so it fails
to be unique up to unique isomorphism. It is therefore only unique in a weak sense.
It is however possible to uniquely specify such a sheaf, and this was accomplished
by Jacob Lurie’s construction using derived elliptic curves. We should also note
that the initial version of the theorem only produced a sheaf of A,.-ring spectra,
and it was Jacob Lurie who pointed out that OP is actually a sheaf of E..-ring
spectra. Later on, the obstruction theory could be adapted to prove that stronger
result, but this was not part of the original approach.

Since Quillen’s landmark result that MU carries the universal formal group
law, the correspondence between complex-oriented cohomology theories and for-
mal group laws has informed most of the results in stable homotopy theory. The
triumph of Miller-Ravenel-Wilson, Landweber, and many mathematicians of that
generation was finding good ways to coordinatize the formal groups and their asso-
ciated cohomology theories. They used these coordinates to successfully carry out
incredible computations, revealing many subtleties of the stable homotopy category.
For the later generations, it was impossible to “out-compute” the earlier mathe-
maticians, so people sought more conceptual formulations of what was known. This
lead naturally to looking in a coordinate-free context, focusing on formal groups
rather than formal group laws, and the culmination of that point of view was to
realize that one should really be thinking about the moduli stack M p¢.

1. Ravenel’s Filtration of MU

Given a ring spectrum R, we can identify multiplicative maps MU — R, that
is, maps of ring spectra (not to be confused with A, or E, maps), with coordinates
on the formal group associated to R. If there is a multiplicative map at all then
there is a formal group law on R, and any two multiplicative maps define isomorphic
formal groups. The formal group is therefore intrinsic to R, and it exists if and
only if there exits a multiplicative map from MU into it, that is, if and only if R
is complex orientable. For example, if a multiplicative cohomology theory is even
and periodic, then there exists such a map, which means that there exists a formal
group associated to R. There is however no preferred map MU — R, and so the
formal group does not come with any preferred choice of coordinate.

If R is complex orientable, then, by the Thom isomorphism, there is an iso-
morphism of R,-algebras

R.MU = R,.BU.

The latter is in turn the symmetric algebra over R, of R.CP> (the generator of
RyCP> being identified with the multiplicative unit). Since R is complex ori-
entable, we also know that

Hom®(MU, R) = Alg(R,MU, R,),

where Hom® denotes maps of ring spectra and Alg denotes R.-algebra maps. A

multiplicative map MU — R is therefore equivalent to an R.,-module homomor-

phism from R,CP* (reduced homology) to R,. There is also a geometric way of

stating the above facts. Recall that there is an important map CP* — BU that

classifies the virtual vector bundle L — 1, where L is the canonical line bundle, and
2
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1 the trivial complex line bundle. Passing to Thom spectra, we get a map
»2Ccp> = (cp>)EY & MU

that realizes the copy of R.CP that we see inside R, MU (for n > 0, the generator
of Ry, CP> corresponds to the 2n-cell of X~2CP>). The cells of X"2CP> there-
fore correspond to the terms in the formal power series expansion of the coordinate
on the formal group.

Ravenel introduced an important filtration {X(n)},>1 of MU, which played
a key role in the nilpotence and periodicity theorems, and also in his approach to
computing the stable homotopy groups of spheres. It is defined as follows. First
of all, by Bott periodicity, we know that BU = QSU. If we filter SU by the Lie
groups SU(n), then we get a filtration

{x}=QSU@1) C---CcQSU(n) C--- C QSU = BU.

Recall that MU is the Thom spectrum of the universal virtual bundle over BU.
Applying the Thom spectrum construction to the above filtration of BU produces
a filtration

S'=X(1) = X(2) == X(n)—=---—= MU

of MU. The spectra X (n) are homotopy commutative and their homotopy groups
are roughly as complicated as those of the sphere. They are actually Es-ring spectra
because QSU(n) — QSU = BU is a 2-fold loop map. More generally, the Thom
spectrum of a k-fold loop map is always an Fj-ring spectrum. For example:

PROPOSITION 1.1. If S is an H-space and C: S — BU is an H-map, then S¢
1S a Ting spectrum.

PROOF. We have a commutative square

Sx S BUx BU

! E

S—<>BU

which gives us two ways to describe Thom spectrum over S x S. Naturality of the
Thom spectrum produces a map

(S x §)s°* — §6.
However, since ( oy = ( ® (, we learn that
(S x §)°°H = (8 x §)5P¢ = §¢ A S¢S,
Thus we have that S¢ is a ring spectrum. (]

Although the spectra X (n) are not complex orientable (only MU is), there is
a similar story that involves them, and that has something to do with complex
orientations and formal groups. We first isolate the copy of CP™~! inside CP>°,
and build a map S* x CP"~! — SU(n), as follows. Let r: S' x CP"~! — U(n)
be the map which associates to a pair (A, £) the rotation of C™ in the line ¢ with
angle of rotation \. If we let ¢y correspond to the base point of CP"~!, then we
can make a map to SU(n) by dividing by the value at £y: our map is therefore

3
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given by (X, £) — (X, £)r(\, £o) . The points St x * and * x CP"1 all go to the
base-point in SU(n), and so this descends to a map

StACP™ ! — SU(n).

Taking the adjoint then gives us a map CP"~! — QSU(n) with the property that,
when composed with the inclusion QSU (n) < QSU = BU, it yields the classifying
map for the virtual bundle L — 1 over CP"~! (this is part of an even dimensional
cell structure on QSU(n)). Finally, applying the Thom spectrum construction to
the inclusion CP"~1 — QSU(n) gives us a map

(1) »2CP" = (CP"H)E! = X(n).

If R is complex orientable, then, by the Thom isomorphism, there is an iso-
morphism of R,-algebras

R.X(n) = R.QSU(n) = Symp_(R.CP" ') = R,[b1,...,bs1].

Moreover, multiplicative maps X (n) — R corresponds bijectively to coordinates up
to degree n (that is, modulo degree n + 1) on the formal group of R.

Now, even if R is not complex orientable, we can still make sense of multi-
plicative maps from X (n) to R. They yield “formal group law chunks”, that is,
formal group laws up to degree n. Assuming the existence of a multiplicative map
X(n) = R, we can therefore associate to R a formal group up to degree n.

Recall that a ring spectrum X is called flat if X, X is flat as an X,-module.
Even though the homotopy groups of X (n) are not known for any finite value of n,
these spectra are known to be flat, and so there is a sort of Thom isomorphism

X(n)eX(n) = X(n).QSU(n) = X(n).[b1,...,bn_1], |b;| = 2i.
In particular, the left hand side is a free X (n),-module, and it follows that
X(’I’L) A X(’I’L) = X(n)[bla EERE bn—1]7

where the last term is a wedge of suspensions of X (n) indexed by the monomials
in Z[by,...,bp—1]. Like with MU, we can recast this as saying that

X(n)«X(n) = Symy ) (X (n),CP" 7).

More precisely, X (n).X(n) is the symmetric algebra in X(n).-modules on the
X (n)-homology of X72CP", where the latter is understood modulo its (—2)-cell.
Also, the 0-cell corresponds to by = 1, and so doesn’t appear among the generators.
Note that the map including X (n),X"2CP" into X (n).X(n) is induced by the
map (1) above. As was the case for MU, the pair (X(n).,X(n),X(n)) forms a
Hopf algebroid. In particular, though we cannot compute the homotopy groups of
X (n), we can hope to study algebraically the X (n)-based Adams Novikov spectral
sequence.

2. Stacks from Spectra

In the old days, in order to talk about formal groups in homotopy theory,
one necessarily had to have a complex oriented cohomology theory. However, in
retrospect, one can get something having to do with formal groups associated to
any spectrum. In this section, given a ring spectrum X, typically not complex
orientable, we will associate to it a stack M x over Mg@-

Here, Mg,lc); denotes the stack classifying formal groups equipped with a first
order coordinate or, in other words, a non-zero tangent vector. Recall that the stack
4

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



associated to the Hopf algebroid (MU, MU, MU), equivalently, to the groupoid
Spec(MU,.MU) == Spec(MU ), is almost but not quite the stack of formal groups.
It is M(F% The rings MU, and MU, MU being Z-graded, there is an action of G,,
on that stack. The action rescales the tangent vector, and modding out by it yields
M FG-
We first consider the case when X is just a spectrum (not a ring spectrum),

and use the MU-based Adams resolution
(2)

MU X MU MUQyy MU X SMUMUQyy, MU MUQyy, MU X ---

to construct a quasicoherent sheaf Fx over Mg% We recall how this resolution
arises. Start with the cosimplicial spectrum whose k™ stage is given by MU *+1) A
X (inserting the sphere spectrum in various places and then applying the unit map
gives the coface maps, and the codegeneracies come from the multiplication on
MU), we then apply m.(—) and use repeatedly the isomorphism

T (MU A MU AX) = MU, MU ®yy. MU, X.

The first term of the above resolution is MU, X, an MU ,-module, and to it cor-
responds a quasicoherent sheaf over Spec of the Lazard ring L = MU,. Simi-
larly, the next term MU .MU ®py, MU X gives a sheaf over Spec(MU,.MU) =
Spec(L) x M Spec(L), the moduli scheme that parametrizes a pair of formal group

laws, and an isomorphism between the corresponding formal groups that respects
the chosen tangent vectors. The two maps

MU,X = MU, MU @y, MU, X

(the counit and coaction maps) are exactly what one needs to give descent data,
and so we get our sheaf Fx over /\/l;-% Note that everything is Z-graded, which is
to say, everything is acted on by G,,, and so one can also get sheaf over Mpg by
modding out that action.

If now X is a homotopy commutative ring spectrum, then the terms in the
Adams resolution (2) are commutative rings, and (MU . X, MU .MU Qppy, MU . X)
is a Hopf algebroid. We define M x to be the associated stack. By construction, it
comes equipped with a map
If we want, we could also mod out the action of G,, to get a stack over M pg. Here
are two examples:

o Mgo = /\/15;,%7 essentially by definition.
e Mxm) = Mgg, the stack of formal groups together with an n-jet, that
is, a coordinate modulo degree n + 1.

In some sense, the above construction brings all ring spectra into the world of
complex orientable cohomology theories, even if they are not themselves complex
orientable. If X is complex orientable, then M x is actually a scheme: the complex
orientation provides a contracting homotopy (in the form of a (—1)* codegeneracy
map), and the Adams-Novikov resolution collapses to 7, X . This means that M x =
Spec(m.X), with no stackiness. We can therefore view the stackiness of Mx as a
measure of the failure of complex orientability of X.

If X and Y are ring spectra, then we would like M x Ay to be the stacky pullback
(also called the 2-categorical pullback: a point of the pullback consists of a point
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of Mx, a point of My, and an isomorphism between their images in M;%)

Mxny —= Mx

. "

My ——= M},

as this would allow us to do some key computations. For that, we need to know
that MUL(XAY) 2 MU .(X)@pu, MU.L(Y). If either MU .(X) or MU .(Y) is flat
as an MU ,-module, then the Kiinneth spectral sequence for MU collapses, giving
us the desired isomorphism. In this case, when we form the resolution for X A Y,
we see that it is just the tensor product of the resolutions for X and for Y, and this
is exactly the desired stacky pullback statement. In short, if MU, X or MU.Y is
flat as MU ,-module, then (3) is a stacky pullback.
Recall that M x is the stack associated to the Hopf algebroid encoded in (2):

(4) My = Stack(MU,X,(MU A MU).X).

Here is something that is quite natural from the point of view of stacks: the above
presentation of Mx might be a really inefficient one, and it might be better to
replace it with a smaller, more efficient one before attempting any calculations.
At the end of the day we care only about the underlying stack (really, just its
cohomology), not the particular Hopf algebroid presentation. This gives us lots of
flexibility. For example, one doesn’t necessarily need to use MU above: if R is a
any commutative ring spectrum satisfying the conditions (3, i, iii) below, then we
can use R instead of MU in (4), and get an equivalent stack:

(5) Myx = Stack(R.X, (R A R).X).

In the next section, we will apply this trick with R = X (n). This fact, that for any
such R, the above resolution gives the same underlying stack, is a reformulation
of many of the classical change-of-rings theorems used for computations with the
Adams spectral sequence.
Finally, we list the technical conditions that R needs to satisfy for the above
story to work:
(i) RA X is complex orientable.
(i) R.Risaflat R.-module: this guarantees that (R.X, (RAR).X) is a Hopf
algebroid.
(iii) X is R-local, that is, RAX — RARAX =3}... is a resolution of X.
If one prefers a condition that does not depend on X, then one can ask
for the sheaf Fg to have full support (for example, if mo(R) = Z and R is
connective, then this condition is automatically satisfied).

3. Two Important Examples

3.1. The X (4)-homology of tmf. This computation will tie the Weierstrass
Hopf algebroid firmly to ¢mf for topological reasons, and it will allow us to see the
usefulness of the stacky pullback square (3). We first recall two things:

o Mx (4 is the moduli stack Mg;% of formal groups equipped with a 4-jet.
6
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o My is the moduli stack ﬂf{lﬁ” of elliptic curves with a 1-jet, where
both multiplicative and additive degenerations allowed.!

Since MU, X (n) is flat as MU ,-module, the discussion in Section 2 applies,
and so we have a stacky pullback square

MX(4)/\tmf - thf

i l

My gy ——= M.

The data classified by M x 4)a¢my is then an elliptic curve C' together with a 4-jet
(a coordinate modulo degree 5) on its formal group or, equivalently, a 4-jet on C.
This data is exactly what is needed to identify a Weierstrass equation for C. We
therefore learn that M x (4)a¢my is affine:

Mx (ayntmg = SpecZlay, az, az, as, ag),

and that

(X (4) A tmf) = Za1, ag, as, ag, ag).
Running a similar analysis for X (4) A...A X (4) A tmf, we also learn that the X (4)-
based Adams resolution of ¢mf is exactly the cobar resolution of the Weierstrass
Hopf algebroid.

3.2. The Stack My,. We now investigate the spectrum bo, the (—1)-connected
cover of KO. This spectrum has been extremely useful in stable homotopy, as com-
putations with it tend to be quite tractable. Its zeroth space is Z x BO, its 8"
space is the 7-connected cover of BO, etc. Its relationship to bu, the spectrum of
connective complex K-theory, is given by the following result:

PROPOSITION 3.1. We have an equivalence ¥ 2CP? A bo ~ bu.

PROOF. Recall that X72CP? is a cell complex with exactly two cells (a 0-cell
and a 2-cell), and attaching map 1 € 7 (S°). By the work of Bott, we know that
Q(U/O) = Z x BO. The fibration of infinite loop spaces U/O — Z x BO — Z x BU
therefore corresponds to a fibration ¥Xbo — bo — bu of connective spectra. The first
map is multiplication by 7 € m1(S°) = 71 (bo), and so

bu = cofib(n : ¥bo — bo) = cofib(n) : S! — SY) A bo = £72CP? A bo.
O

Thus, although bo is not complex orientable, the spectrum bo A X ~2CP? is. It is
therefore tempting to try to use X"2CP? for R in equation (5) in order to compute
My,. Moreover, since ¥ ~2CP? has exactly 2 cells, this indicates that My, should
admit a double cover by the scheme My, = Spec(m.bu). Unfortunately, that idea
doesn’t quite work, because X ~2CP? is not a ring spectrum. It is however possible
to embed X ~2CP? in a nice ring spectrum subject to the conditions (i, 7, iii)
above, namely R = X (2).

We first explain why X (2) Abo is complex orientable. Recall that by the Thom
isomorphism H, X (2) = H.QSU(2) = Z[b,]. It follows that X(2) is a cell complex

n our notation, the bar indicates that multiplicative degenerations are allowed, and the
plus indicates that additive degenerations are also allowed.
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with one cell in each even degree. In fact, there exists a cell complex Y, with a
single cell in each degree multiple of 4,

HY, =Zld, |d=4,
such that X (2) = Y3 A 72CP?, and therefore
X(2)Abo=Y; AXT2CP? Abo =Yy Abu
is complex orientable.
COROLLARY 3.2. As rings
X (2)xbo =Zb,c], |b] =2, |c| =4,

and
X(2).X(2) ®x(2), X(2)xbo = Z[b,c,7], |r|=2.

PRrROOF. Since X(2) Abo = Y, A bu, it follows from the Atiyah Hirzebruch
spectral sequence that X (2).bo = bu,Yy = Z[b,c], where |b|] = 2 and |¢| = 4.
Furthermore, since X (2).X(2) = X(2).[b1], base-changing and renaming b; to r
gives the second part. U

This shows that, while we cannot hope to understand 7, X (2), we can under-
stand every piece of the resolution

X(2)sbo = X (2).X(2) ®x(2). X(2):b0o =....
Our next goal is to use this to understand the stack
Mo = Stack(X (2).bo, (X (2) A X (2)).bo) = Stack(Z[b, c], Z]b, c,r]).

Since everything is torsion free, computing the right unit of the Hopf algebroid
(X(2)+bo, X (2).X(2) ®x(2), X (2).bo) turns out not to be too hard: it is given by
b+ b+2r and ¢ — ¢+ br + r? (and the left unit is course just b — b, ¢ — c).
Those formulas are exactly the transformation rules of the coefficients of 22 + bz + ¢
under the change of variable x — x + r, and so this Hopf algebroid corepresents
the following algebro-geometric objects: curves
y=2a>+bx+c,

together with the changes of coordinate x — x + r. Generically, such an equation
can be thought of as describing a form of G,,: first projectvize the curve by adding
a point at infinity (the neutral element), and then remove the locus where y = 0.
Moreover, this curve is naturally equipped with an invariant differential w = dx /vy,
or equivalently, a 1-jet at infinity. Note the similarity with elliptic curves: if we
take the above equation 4?1 = ¢ 4+ bx + ¢ and set d = 3 instead of 2, then we get
(generically) an elliptic curve.

We recall what the stack associated to (Z[b,c|, Z[b,c,r]) is. By definition, a
stack is given in terms of what it means to map into it. In our case, a map
Spec A — My, consists of 3 pieces of data:

(1) a faithfully flat extension A — B,

(2) a ring homomoprhism Z[b,c] — B, equivalently, two elements b,c € B,
which we’ll interpret as giving a curve y = 22 + bz + ¢ over B,

(3) a ring homomoprhism Z[b, ¢, 7] — B ® 4 B compatible with the left/right
actions of Z[b,c], equivalently, an element » € B ®4 B such that the
change of variable z +— z + r yields an isomorphism between the curves
over B ® 4 B gotten by base change along B —= B ®4 B,
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subject to a cocycle condition in B 4 BR 4 B. In other words, a map Spec A — My,
is descent data for a (form of the) multiplicative group over Spec A, along with a

1-jet. We denote this stack by MES). It is the moduli stack of multiplicative
groups with a 1-jet, where additive degenerations are allowed.

Replacing MU by X (2) in the definition (4) of My, was already a huge simpli-
fication, and allowed us to identify it with MES), but there is an even simpler Hopf
algebroid that represents this stack. That smaller presentation will also make it
evident that the map Spec Z[b] = My, — My, is finite of degree two, reflecting the
fact that 3 ~=2CP? has only 2 cells. Consider the map Spec Z[b] — My, representing
the curve y = 22 + bz. We want to restrict (Z[b, c], Z[b, ¢,7]) to curves of only that
form, to get a smaller but equivalent Hopf algebroid. To do so, we look at those
coordinate transformations x — x + r that preserve the property ¢ = 0, namely
those for which r satisfies r2 + br = 0. We therefore get a new Hopf algebroid

(Z[b), Z[b, r]/r* + 2r), b b+2r

that represents My,.

To know that this represents the same stack My,, we still need to check that
SpecZ[b] — My, is a flat cover. This can be checked after pulling back along the
cover Spec Z[b, ¢] — My, (representing the universal curve y = 22 + bz + ¢):

Spec Z[b, ¢, 7] /r? + br + ¢ — Spec Z|[b]
(E)’_)(bﬂbZT)\L ly_w2+bw

Spec Z[b, ¢] ——5————= M,

y=x“+bxr+c
The stacky pullback represents pairs of curves (y = 2% + byx,y = 2'2 + bz’ + ¢),
together with a coordinate transformation =’ = z + r that identifies them. This
works if and only if the constant coefficient of (z + )2 + b(x + 1) + ¢ = 2% + b
is zero, that is, if r is a root of 22 + bz + c¢. The pullback is therefore given by
SpecZ[b, by, c,r]/(b+ 2r — by, 7? + br + ¢) = SpecZ[b, ¢,7]/r? + br + c. It is a free
module of rank two over SpecZ[b, ¢|, and in particular, it is faithfully flat. More
generally, adjoining a root of a monic polynomial always produces a faithfully flat
extension.

This example with bo is an important toy model for understanding how tmf
works. At p = 2, there is an 8-fold cover of the moduli stack My, = ﬂ;ﬁ” which
corresponds to the existence of an 8-cell complex X such that tmf A X is complex
orientable (there is also an interesting 24-fold cover). Similarly, at p = 3, there is
a 3-fold cover of My,s, corresponding to a 3-cell complex Y such that tmf AY is
complex orientable. These covers and the associated presentations of the moduli
stack of elliptic curves are very important for carrying out computations with tmf.
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The string orientation

Lecture by Michael Hopkins,
Typed by André Henriques

Our goal is to construct an E., map
(1) MO(8) — tmf.

Here, M O(8) is a synonym of M String, and stands for the Thom spectrum of the
7-connected cover of BO. Recall that the connected covers of Z x BO fit in a tower

Z x BO < BO + BSO + BSpin < BString.

The space BO is obtained from Z x BO by killing its my. BSO is obtained from BO
by killing 71 (BO) = Z /2. BSpin is obtained from BSO by killing m5(BSO) = Z/2.
Finally, BString is obtained from BSpin by killing its first non-vanishing homotopy
group, namely
w4 (BSpin) = Z.

The first Pontryagin class of the universal vector bundle over BSpin being twice
the generator of H*(BSpin) = Z, that generator is usually called Zt. The space
BString is the fiber of the map & : BSpin — K(Z,4). It was previously called
BO(8) and its current optimistic name is due to connections with string theory.

The group 7o, (MO(8)) is the bordism group of string manifolds of dimension
2n. The group 7o, (tmf) has a natural maps to M F,,, the group of modular forms
of weight n. At the level of homotopy groups, the map (1) should then send a string
manifold M to its Witten genus ¢y (M)

Ton(MO(8)) — man(tmf) — MF,
[M] = ow (M).

The cohomology theory tmf was known to us (actually its 2-completion, and
under the name eoy) before we knew about the connection with modular forms.
We were then looking for the map (1) because of the following cohomology calcula-
tion. The cohomology of tmf at the prime 2 is the cyclic module A/(Sq*, S¢?, Sq*)
over the Steenrod algebra A. That same cyclic module occurs as a sumand in the
cohomology of MO(8), which lead us to believe that there should be such a map.
The connection with elliptic curves was made while trying to construct the map
MO(8) — tmf. Indeed, producing a map from MO(8) into a complex oriented
cohomology theory E is something that one can do easily if the formal group asso-
ciated to E comes from an elliptic curve. So the whole story of ¢tmf had to do with
that orientation. It is only in retrospect that we noted that the map (1) reproduces
the Witten genus.

1
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One interesting fact is that the map mo,(¢mf) — MF, is not quite an iso-
morphism. It is an isomorphism after tensoring with Z[%, %], but it contains some
torsion in its kernel, and its image is only a subgroup of finite index. So that way,
one learns some things about the Witten genus that one might not have known

before. For example, looking at 7o, we see a map
(2) moa(tmf) ~Z B 7L — MF13 =7 L.

The group M F}5 has two generators ¢; and A, and it is interesting to note that the
image of (2) is the subgroup generated by cj and 24A. So this gives a restriction
on the possible values of the Witten genus. Translating it back into geometry, it
says for example that on a 24 dimensional string manifold, the index of the Dirac
operator with coefficients in the complexified tangent bundle is always divisible by
24

(3) AM;Tc) =0 (mod 24).

The torsion in m,(tmf) also give interesting “mod 24 Witten genera”, which are
analogs of the mod 2 indices of the Dirac operator in K O-theory (those exist for
manifolds of dimension 1 and 2 mod 8). These are all facts for which there is no
explanation in terms of index theory, or even string theory.

In short, one reason for wanting (1) is that one gets more refined geometric
information about the Witten genus of string manifolds. According to string theory,
the Witten genus is supposed to be the index of the Dirac operator on the loop
space LM of M. There ought to be some kind of structure on LM that accounts for
the factor of 24 in (3), but up to now, there is no explanation using the geometric
approach.

We now explain why E., maps out of M O(8), have anything to do with elliptic
curves. In some sense, there is a very natural reason to expect a map like (1). To
simplify the analysis, we work with the complex analog of MO(8), namely MU (6).

Considering the various connected covers of BU, one gets a tower of spaces

7 x BU « BU « BSU « BU(6)

whose last term is the fiber of ¢; : BSU — K(Z,4). These have companion bordism
theories, and MU (6) is the one corresponding to BU(6). In other words, MU (6)
is the Thom spectrum of the universal bundle over BU(6).

We recall Quillen’s theorem in its formulation via formal groups. Roughly
speaking, it says that multiplicative maps from MU into an (even periodic) complex
orientable cohomology theory E correspond to coordinates on the formal group
G = spf(E°(CP™)) associated to E. In fact, the above statement is not quite
accurate. It is true that a coordinate gives you a map MU — E, but the latter
encode slightly more data.

To understand the subtlety, we begin with an analogy. Multiplicative maps
from the suspension spectrum of BU into E also correspond to some structures
on GG. The important thing about BU is that there is an inclusion CP* — BU
exhibiting F, (BU) as the free commutative F,-algebra on the E,-module E, (CP>).
The sloppy analysis goes as follows. A multiplicative map

(4) N*BU, —» E
2
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corresponds to an F,-algebra homomorphism
E.(BU) = E,,

and since F,(BU) is the symmetric algebra on E,(CP>), those correspond to E,-
module maps
E,(CP*) > E,.

The latter are then elements of E°(CP™), in other words functions on G. The
problem with the above reasoning is that if we want (4) to be a multiplicative map,
the base point has to go to 1. So the base point of CP* has to go to 1 € E, and
therefore we don’t get all functions f on G, but only those satisfying f(e) = 1,
where e € G is the unit. Now if we run all this through the Thom isomorphism, we
find that multiplicative maps

MU — E

are expressions of the form f(z)/dz on G, such that the residue of dz/f(z) is 1.

Let O denote the structure sheaf of G, let e : S — G be the identity section,
and let p : G — S be the projection of G onto the base scheme S := spec(moE).
Let also O(—e) be the line bundle over G, whose sections are functions vanishing
at zero. Expressions of the form f(z)/dz can then be understood as sections of the
line bundle

(5) O(—e) @ p*e*O(—e) L.

The fiber of (5) over the origin is canonically trivialized, and the condition that
res(dz/f( )) = 1 means that the value at e of our section is equal to 1 € e* (O(—€)®
p*e*O(— )

Now we would like to do something analogous for BSU instead of BU. Let L
denote the tautological line bundle over CP*°. The thing that allowed us to do the
previous computation was the map

CP*® — BU

classifying 1 — L. That map doesn’t lift to BSU because ¢;1(1 — L) # 0, but the
problem goes away as soon as one takes the product of two such bundles.

Let L1 and Lo denote the line bundles over CP*° x CP* given by L; := L x 1,
and Ly := 1 x L respectively. Since ¢1((1 — L;) ® (1 — Lz)) = 0, we get a map

CP>® x cp> LEVeU=la) pory

If E is a complex orientable cohomology theory, then we find that multiplicative
maps

¥>*BSUL — E,
equivalently ring homomorphisms

E.(BSU) — E,,

give rise to functions f(x,y) on G x G satisfying

f(eae) = 1;
(6) f(x,y) = f(y, ),
and [y, 2)f(x,y +c 2) = f(z,y) f(x +c y, 2).

In other words, they are functions on G with values in the multiplicative group, that
are rigid, and that are symmetric 2-cocycles. The last condition in (6) is obtained
3
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by expanding the virtual bundle (1 — L) ® (1 — L) ® (1 — L3) over (CP*)? in the
following two ways:

(1= L)1 = L2)(1 - L3)

(1—Ly)(1—Ls)+ (1= L1)(1 = L2) — (1 = L1)(1 — Lo L)

(1 —Ly)(1—Ls)+ (1= La)(1 — L3) — (1 — L1 L2)(1 — Ls),

from which we deduce that
(1= Lo)(1 = L)+ (1 —L1)(1 = LaLs) = (1= L1)(1 = La) + (1 — L1L2)(1 — L3).

In fact, the conditions (6) characterize homomorphisms from FE,(BSU) into any
E.-algebra.
In the case of BU(6), multiplicative maps

Y*BU(6). — E,
equivalently ring homomorphisms
E.(BU(6)) — E.,

give rise to functions of three variables f : G> — G,, that satisfy the following
conditions: they are rigid, meaning that f(e,e,e) = 1, they are symmetric, and
they are 2-cocycles in any two of the three variables.

REMARK 0.1. That kind of analysis stops at BU(6) because it is the last con-
nected cover of BU with only even dimensional cells.

REMARK 0.2. There is an interesting analogy with classical group theory. Let
I be a group, and let I C Z[I'] denote its augmentation ideal. A function I — A
is the same as a function f : I' — A satisfying f(e) = 0. A function I?> — A is the
same thing as a function on I' x I, that is rigid, and a symmetric 2-cocycle. Finally,
a function I? — A is the same thing as a function I'> — A that is rigid, symmetric,
and a 2-cocycle in any two of the three variables. So, in some sense, the connected
covers of BU correspond to taking powers of the augmentation ideal of the group
ring of a formal group.

We now proceed to MU (6). Recall from our discussion about MU that, under
the Thom isomorphism, functions get replaced by sections of a line bundle. Since
multiplicative maps BU(6) — E corresponded to functions on G, we expect mul-
tiplicative maps MU(6) — E to produce sections of some line bundle © over G*.
Letting £ := O(—e), we can describe © by writing down its fiber ©(, , .y over a
point! (z,y,2) € G3. It is given by

(7) C) — Lotytz ®La ® Ly @ Ly
(@y,2) - £:r+y ® £z+Z ® ‘CyJFZ ® Ee ,

where + denotes to the operation of G. Multiplicative maps

MU(6) — E

1G3 is a formal scheme, and so it doesn’t have many points. To make sense of (7) and (8),
one can use the formalism of “functor of points” and work with maps 7' — G3, that one views as
T-parametrized families of points.

4
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then correspond to sections s of © that are rigid, symmetric, and 2-cocycles in any
two of the three variables. These conditions make sense because the two sides of
each one of the equations

s(e,e,e) =1
(8) s(x,y,2) = s(y,x,z) = s(x,z,y)
5y, z,v)s(x,y + 2,v) = s(z,y,v)s(z + y, 2,v),

are sections of (canonically) isomorphic line bundles. For example, the first of the
above equations makes sense because the fiber O . . is canonically trivialized.

Now here’s the thing that was inspiring to us: if J is an elliptic curve, then the
line bundle © is trivial over J2. This is a special case of a general fact for abelian
varieties called the theorem of the cube.

To understand why © is a trivial line bundle, recall that given a divisor D on
J of degree zero, there is a meromorphic function f with that given divisor iff the
points of D add up to zero (taking multiplicities into account). In particular, given
two points x,y on our elliptic curve J, there exists a meromorphic function f with
simple poles at —x and —y, and a simple zeroes at —x —y and e. But that function
is only well defined up to scale, and there is no canonical choice for it. In other
words, the line bundle

) O(~ [~ =y + [~a] + 4] - []),

is trivial, but not trivialized. On the other hand, if we divide (9) by its fiber over
zero, then it acquires a canonical trivialization. Fix points z,y € J, and consider
the restriction of © to the subscheme {x} x {y} x J. We then have a canonical
isomorphism between ©|(;}x{y}xs and the quotient of (9) by its value at zero. So
we get canonical trivializations of each such restriction. These trivializations then
assemble to a trivialization of ©.

Note that © is not just trivial, it is canonically trivialized. Therefore it makes
sense to talk about the section “1” of ©. If we take that section, and pull it
back along any map J™ — J? then we’ll always get the section “1” of (another)
canonically trivial line bundle. So any conditions one might decide to impose on a
section of ©, for example the conditions (8), will be automatically satisfied by our
distinguished section “1”.

The consequence of the above discussion is that if the formal group of E comes
from an elliptic curve, then we get a canonical solution to the equations (8). In
particular, we get a canonical multiplicative map

MU(6) — E.

Now, there is an analog of that for M O(8) which involves adding one more condi-
tion to the list (8), namely, the condition s(x,y,—x —y) = 1. That condition is
automatically satisfied for the same reasons as above, and one finds that there is a
canonical multiplicative map

(10) MO(8) — E

as soon as the formal group of E comes from an elliptic curve.

If J is an elliptic curve defined over a ring R, and ¢ : R — R’ is a ring ho-
momorphism, one gets an induced elliptic curve J’ over R'. Let E, E’ be complex
orientable cohomology theories whose associated formal groups are the formal com-
pletions of J and J'. If f : E — E’ is a map of spectra with my(¢) = f, then the

5

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



maps (10) induce a homotopy commutative diagram

MO(8)
(11)
FE / f \ E.

This is what led to the idea of assembling all cohomology theories coming from
elliptic curves? into a single cohomology theory

(12) tmf = holim (cohomology theory E associated to J).

elliptic curves J

The maps (11) then assemble into a map MO(8) — tmf. That map reproduces the
Witten genus at the level of homotopy groups, and is then an explanation of why
the Witten genus of a string manifold is a modular form.

So far, we have addressed the questions of why one should be interested in
a map like (1), and why one could expect there to be one. We now describe a
homotopy theoretic way of producing that map.

To make the previous arguments actually work, one would need to do things
in a much more rigid way. Indeed, the maps (10) are only multiplicative up to
homotopy, and the triangles (11) only commute up to homotopy. To get a map of
spectra M O(8) — tmf, one would need to rigidify the triangles (11). And then, to
get it to be a map of F., ring spectra, one would need to upgrade the maps (10)
to Fo maps. That shall not be our strategy. Instead, we will produce the map
(1) directly, by using the decomposition of tmf into its various p-completions and
K (n)-localizations.

Another example of something that one can construct using the same methods,
is the map from spin bordism to KO theory

(13) M Spin — KO

that sends a spin manifold to its A\—genus, namely the index of the Dirac operator.
Equivalently, (13) is the KO-theory orientation of spin bundles. Note that before
our techniques, there was no way known of producing the map (13) using the
methods of homotopy theory: one had to use geometry. The construction of (13)
will be our warm-up, before trying to get the more interesting one

MO(8) — tmf.

Given a vector bundle ¢ over a space X, we let X¢ denote the associated Thom
space. One should think of X¢ as a twisted form of X. Actually, if we view X¢ as
a spectrum, then we should rather say that X¢ is a twisted form of the suspension
spectrum X°°X . From now on, we shall abuse notation, and write X A — instead
of XX, A —.

Similarly, given a multiplicative cohomology theory E, the spectrum X¢ A E is
a twisted form of X A E. An FE-orientation is then a trivialization of the bundle of
module spectra obtained by fiberwise smashing E with the (compactified) fibers of
¢. The Thom isomorphism is the induced equivalence between X¢ A E and X A E.

2In the statement (12), one should include the multiplicative group Gy, as well as the additive
group G, in our definition of “elliptic curves”.
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In fact, we didn’t need to start with a vector bundle: a spherical fibration is enough
to produce a Thom spectrum.

If ¢ is just a single bundle, then there are no further conditions that one could
impose. But if we're trying to compatibly orient a whole class (such as spin bundles,
or string bundles) with a notion of direct sum of bundles, and if F is an E ring
spectrum, then

(X,)—» XAE and (X,{)— XAEFE

are symmetric monoidal functors, and one can ask for the equivalence between them
to be symmetric monoidal. That’s the concept of an E., orientation. One reason
for looking for E, orientation instead of just orientations, is that it simplifies the
computations.

If R is a spectrum equipped with a homotopy associative product RA R — R,
we define GL1(R) C QR to be the subset of the zeroth space of R where we only
take the connected components corresponding to the units of mo(R). It satisfies

[X, GLi(R)] = R*(X)*

for all unbased spaces X. If X has a base point, then the above equation is not
quite correct. Since the base point of X has to go to the base point 1 € GL;(R),
the better way to write this is

(X, GLi(R)] = (1+ R°(X))".

In words, it is the group of invertible elements of R(X) that restrict to 1 at the
base point. If R is an A,-ring spectrum, then GL;(R) is an A.-space, and thus a
loop space. We let BGL(R) denote its classifying space.

EXAMPLE 0.3. BGL;(S) is the classifying space for spherical fibrations.

If we have a map
¢: X — BGL(S),

then we get a spherical fibration over X, and thus a corresponding Thom spectrum
X¢. Now, if we start instead with a map

¢: X = BGLi(R),

then we can form an analogous construction in the world of R-modules. Let P be
the GL;(R)-principal bundle associated to ¢

GL(R) ——=P

|

X —*~ BGL/(R).

We then define
X¢:=x°p, A
¥ GL1(R)
That construction can be understood as follows. Each one of the fibers of P is a
copy of GL;(R), more precisely a torsor for GL;(R). The operation —Aseqr, (r), R
then converts that torsor into a copy of R. So for each point of X, one gets a copy
of R. If ( is the trivial map, one has X¢ = X A R. So for general (, the R-
module spectrum X¢ should be thought of as a twisted form of X A R. The above
7

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



construction is functorial in the following sense. Given a map R — S of A-ring
spectra, one gets a corresponding map

If { : X - BGLy(R) is as above, then one finds that
X7°¢ = XS AR S.

Now consider the J-homomorphism O — GL;(S) that sends a linear auto-
morphism of a vector space to the corresponding self-homotopy equivalence of its
one-point compactification. Its delooping

J : BO — BGL1(S)

associates to a vector bundle V' a spherical fibration Sph(V). Let ¢ : BGLi(S) —
BGL:(R) be induced by the unit map S — R. If V is a vector bundle and
¢ = Sph(V) the corresponding spherical fibration, then nullhomotopies of ¢ o ¢
correspond to R-orientations of V:

BO —~ BGL,(S) —-> BGL,(E)

1A

X

Indeed, X¢ is the usual Thom spectrum of V, and X*°¢ = X¢ A R is the spectrum
that we want to trivialize. A homotopy ¢o( ~ % induces an isomorphism X¢ A R ~
X NAR.

Now suppose that we want to functorially R-orient every vector bundle. Then
we would need to chose a nullhomotopy for the composite

BO s BGL(S) % BGL.(R).

If we only wanted to functorially R-orient spin bundles, then we would need a
nullhomotopy of

(14) BSpin — BO 5 BGL\(S) % BGL:(R).

Similarly, if we wanted to R-orient string bundles, then we would need a nullhomo-
topy of

BO(8) — BO s BGL\(S) & BGL.(R).

At this point, finding those nullhomotopies is still a rather hard problem. For
example, if R was KO-theory, and if we were trying to construct the Atiyah-Bott-
Shapiro orientation (13), then we wouldn’t be able to handle that. The reason is
that the space

Map (BSpin, BGL,(KO))

is very big. It is hard to tell which map BSpin — BGL;(KO) one is looking at.
And in particular, it is hard to tell if a map is null.

To solve that problem, we impose more conditions: we ask that (14) be nullho-
motopic through E,, maps! Of course, that condition doesn’t make any sense yet,
because we had only assumed that R was A.,. But if R is an FE,-ring spectrum,
then GL;(R) is an Ex-space and the condition does make sense.

8
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So let’s assume that R is E, and let gl;(R) be the spectrum associated to
GL1(R). Since gl (R) is obtained by delooping an E..-space, it is necessarily (—1)-
connected (there are also ways of adding negative homotopy groups to g, (R), but
that’s not relevant for the present discussion).

Let Y be a (—1)-connected spectrum and let X := QY be its zeroth space.
We can then consider infinite loop maps

¢(: X — BGL(R),
or equivalently, maps of spectra
¢*:Y = X gli(R).

Since ( is an infinite loop map, the Thom spectrum X¢ is an E..-ring spectrum.
FE -orientations then correspond to nullhomotopies of ¢ through infinite loop maps.
Equivalently, they correspond to nullhomotopies of (°°. In our case of interest, we
see that Fo, maps M Spin — KO correspond to nullhomotopies of the composite

(15) bspin — bo L Y gli(S) = X gl (KO).
Similarly, Eo, maps M String — tmf correspond to nullhomotopies of
bo(8) — bo L L gl,(S) — ¥ g, (tmf).

A nullhomotopy of a composite f o g is the same thing as an extension of f
over the cone of g. So a nullhomotopy of (15) is equivalent to a dotted arrow

S Lbspin —L— gli(S) ——=C

(16) l
gll(KO)

making the diagram commute. Similarly, dotted arrows

S 10(8) —L— g1,(S) — D

(17) i .
gly(tmf)

correspond to E., orientations M String — tmf. The horizontal lines in (16) and
(17) are cofiber sequences, and we have desuspended all our spectra to simplify the
notation. The set of extensions (17) is either empty, or a torsor over the group
[b0(8), g1, (tmf)).

From now on, we pick a prime p, and assume implicitly that all spectra are
p-completed. Fix n > 1. Bousfield and Kuhn constructed a functor ® from spaces
to spectra, that factors K (n)-localization as

Lk
Spectra el Spectra.
Q> /
Spaces
9
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Apart from the difference of g, the zeroth space Q*°(gl;(R)) = GLi(R) of the
spectrum gl; (R) is the same as the zeroth space of R. Since L, kills Eilenberg-
McLane spectra, the difference of 7y doesn’t matter, and so we get

Lty (91 (R)) = Lic(n)(R).

More generally, if X and Y are spectra such that for some m > 0, the m-th
connected cover of 2°°X agrees with the the m-th connected cover of 2°°Y, then

Since KO is K(1)-local, the localization map gl,(KO) — Lg1)(gl(KO))
induces a map

L: gl,(KO) - KO.

The spectrum gl; (KO) being connected, there is no hope for L to be an isomor-
phism. But Bousfield proved that it is a 7,-isomorphism for * > 2. Going back to
(16), we note that the first non-zero homotopy group of X ~!bspin is in dimension 3.
That is exactly the range above which gl; (KO) looks like KO. So the obstruction
to constructing our orientation (13) may be taken to be the composite

> bspin — gl (KO) L Ko.
It lives in [~ 1bspin, KO] = KO (bspin), which is zero. The calculation
KO! (bspin) =0

is actually not too hard: it follows from the knowledge of the cohomology operations
in KO-theory, which is something that one computes using Landweber exactness.
So one gets the existence of a dotted arrow in (16).

The above discussion was done at the cost of completing at a prime. To do
things correctly, one should complete at each prime individually, do something
rationally, and then assemble the results using Sullivan’s arithmetic square. Even-
tually, one sees that the map X lbspin — g¢l;(KO) is null (no completion any
more). With a little bit more work, one can parametrize the set of nullhomotopies
of (15), which amounts to parametrizing the E-orientations (13).

We now proceed to the case of tmf. That’s a more complicated story, but it
also leads to something more interesting. First of all, one can generalize Bousfield’s
result and show that the fiber of the localization map

L: gl (tmf) — LK(l)vK(g)(gll(tmf))
has no homotopy groups in dimensions 4 and above. So, as far as mapping ¥~ !bo(8)
is concerned, we may replace gl, (tmf) by its K (1) V K(2)-localization. As a conse-
quence, if we want to produce a nullhomotopy for our map

Y bo(8) — gl (tmf),

we may as well produce one for the composite

_ L
b)) 1bo<8> — gly(tmf) = LK(l)vK@)(gll(tmf)).
10
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Since we understand better the localizations at individual Morava K-theories,
we consider the Hasse pullback square

T4 -180.
for x> 4

gl (tmf) ; LK(1)VK(2) (951(tmf)) - LK(2) (gll(tmf))

h i i

L) (gly(tmf)) —— L)L 2)(gl1(tmf)).

The spectrum X ~1bo(8) doesn’t have any K (2) cohomology, and therefore
[=7%b0(8), Ly (gl (tmf)| = 0.

So as far as mapping ¥~ 1bo(8) into it, the square (18) behaves like a fiber sequence,
and we get a long exact sequence

R [bO<8>,LK(1)LK(2)(gll(tmf))} -

- [2—1b0<8>,gzl(tmf)} - [Z_lbo<8>,LK(l)(gll(tmf))} ..

Now, we wish to apply Bousfield and Kuhn’s result to identify the above spec-
tra. At first glance, things look pretty good because both L 1)(gl;(tmf)) and
L)Lk (gli(tmf)) are K(1)-local, and hence “look a lot like K-theory”. If we
apply the argument with the Bousfield Kuhn functor to the diagram (18), we get
a square

gly (tmf) ————= L 2 (tmf)

L

LK(l)(tmf) — LK(l)LK(Q)(tmf)

that is a pullback square above dimension 4. The above long exact sequence then
becomes

[bo<8>,LK(1)LK(2)(tmf)} = {2—1bo<8>,gll(tmf)} - [Z_lbo<8>,LK(1)(tmf)

We note that, K (1)-locally, the orientation obstruction group [S~'bo(8), Lk 1)(tmf)]
vanishes, and so K (1)-local orientations exist. The question is whether there exists
one which lifts to tmf.

The diagram (19) is very similar to the Hasse square for tmf. The only differ-
ence is that it has gl; (tmf) insted of ¢mf in its upper left corner. The right vertical
map

L) (tmf) = L)L) (tmf)
is simply the localization map X — Lg(1)(X) applied to X = Lg(2y(tmf), but the
lower map

(20) Lgy(tmf) = Liq)yLi2)(tmf)
is much more subtle. In some sense, the whole game of producing the string orien-
tation, is to understand that map.
At the beginning, we had a few of ad-hoc ways of understanding that map.
Later, Charles Rezk found extremely beautiful formula for it. It says that, at the
11
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level of homotopy groups, the map (20) is given by 1 — U, where U, is the Atkin
operator. Knowing that fact, we may replace (19) by

gl (tmf ) ——————— tmf

R

Lk 1y(tmf) S Lk 1y(tmf).

The above square ends up giving us enough understanding of the homotopy type
of gly(tmf). We refer the reader to [AHR] for the actual computations.

Let me emphasize the number of really amazing things that come out of the
square (21). First of all, it gives you the string orientation. The question of orien-
tation boils down to the question of understanding the homotopy type of gl (tmf);
using the square (21) and the description of its bottom arrow, one can then make
the required calculations. Secondly, the homotopy fiber of 1 — Uy, : Ly ) (tmf) —
L 1y(tmf) is an extremely interesting spectrum. One can describe its homotopy
groups in terms of modular forms, but if one tries to compute them explicitly, one
encounters some unsolved problems in number theory. Finally, we conjecture that
there is a relationship between that homotopy fiber and smooth structures on free
loop spaces of spheres.

Let us go back to the construction of the string orientation. Recall that we
have the following diagram

¥~ thstring gl (S) -C bstring,

gly (tmf)

and that the string orientation is equivalent to having a map C' — gl (tmf). Here,
as before, ¢l,(S) is the infinite delooping of GL; of the sphere spectrum, and C is
the mapping cone of the map from ¥~ bstring. The set of such maps, if non-empty,
is a torsor over [bstring, gly (tmf)].

Because of the particular homotopy type of the spectra C' and gl (tmf), the
dotted map in the above diagram is completely determined by what it does on
rational homotopy groups, which allows us to relate a map like this to the classical
theory of characteristic series. This is quite remarkable, because such a map actually
corresponds to an Eo, map M String — tmf, wheras, to specify the charcteristic
series, you just need to write down a sequence of numbers. Roughly speaking, both
C and gl (tmf) “look like K-theory” (or can be localized to look like K-theory),
and maps from the K-theory spectrum to itself are determined by their effect on
homotopy groups, so you can identity the [bstring, gl (tmf)]-torsor of above maps
by looking at what this does on rational homotopy group.

12
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For simplicity, we treat the complex version of the above diagram. Let us also
put an arbitrary F..-spectrum R in the place of tmf:

Y lou — gl (S) -0 ——bu,

(22) l o "
A

gl (R) —= gl (R)q

Note that, since mo(gl;1(S)) = Z* and 7>1(gl1(S)) = 7>1(S), all the homotopy
groups of gl;(S) are finite, and it is thus rationally trivial. It follows that C' is
rationally homotopy equivalent to bu, which is why one gets a map bu — gl;(R)qg
from the “Thom class” $l. For n > 1, let b,, € m2,(gl1(R))g = m2nR ® Q be the
images of the Bott generators in ma, (bu). In all the cases of interest (i.e., R = KO or
tmf (in which case, one would have to replace bu by bspin or bstring, respectively)
or, more generally, any spectrum that represents a cohomology theory whose job
in life is to really be a cohomolgoy theory, i.e., anything that is build in a simple
way out of Lanweber exact theories; not something like the image of J-spectrum),
the map U is detected rationally and thus completely determined by the sequence
of b,’s.

We now relate this to the classical theory of characteristic series. As explained
earlier, the map 4 corresponds to an F.,-map U : MU — R. After rationalizing
R, we get two F-maps from MU: the first one is the rationalization of U, and
the second is the map that factors through rational homology. These two maps are
typically not equal to each other, and the following diagram

MUY - R

L

HQ—— Rg

is therefore not commutative. The ratio of these two Thom classes, i.e., the failure of
the above diagram to commute is a unit in the rational R-cohomology of (Zx BU)*.
In other words, it is a stable exponential characteristic class.

By the splitting principle, the above class is determined by its image K¢(z) €
Rp|[[#]] under the map

RY((Z x BU)*) — RY(CP™) C (R. @ Q[[z]))"

coming from the universal line bundle CP* — (Z x BU)*. Thinking of U as a
genus, the Hirzebruch characteristic series Kg¢(z) is the Chern character of that
class, i.e., its value on the universal line bundle over CP*°.

Applying the zeroth space functor to bu — gl;(R)g, we get an infinite loop
map

(23) Z x BU — GL1Rg

which we then interpret as an invariant of stable bundles that carries Whitney sums

to products, namely, a stable exponential characteristic class. Now we need to do

the following simple calculation: we have the map (23); we know the composite

CP* — Z x BU — GL;1Rg; we know that the map is multiplicative, and would
13
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like to calculate the effect of that map on mg,. The answer turns out to be

(24) Ka(2) = exp (i ),

where the constants b,, are the same as the ones coming from the rightmost dotted
arrow in (22).

If you’re trying to construct an orientation that realizes an old friend, such as
the Witten genus, or the genus coming from the theorem of the cube, the formula
(24) tells you which map you have to try to pick. In our case, the b,’s were the
coefficients in the log of the Weierstrass sigma function, which are Eisenstein series.

Let us take the example of K-theory and of the Todd genus MU — K. The
characteristic series is then given by

Ko(z) =

x
1—e
If we want to write it in the form (24), then we get

1 e 1 1 xnfl
dlog (Ke(0)) = -1 =g~ w1 =~ LD
n>0

where B,, are the Bernoulli numbers. By integrating and then exponentiating, we
finally get b, = —%. If you do all that for the g—genus (after replacing bu by bo in
(22)), and once you decide what the canonical generators of 74, (bo)g are, you get
%ﬂ". These are the famous numbers from differential topology, whose denominators
tell you the order of the image of J (at odd primes), and whose numerators® tell
you the order of group of smooth structure on S4"~! that bound parallelizable
manifolds. All this is already a hint that there is going to be some connection to
differential topology.

In geometric topology, the following groups play a central role: O — the stable
rotation group, PL — the group of piecewise linear equivalences of the sphere, and
G = GL1(S) — the self homotopy equivalences of the sphere. All of them are infinite
loop spaces, and there is a corresponding sequence of classifying spaces

BO — BPL — BG = BGL,(S).

We also have associated spectra: X ~tho — L~ tbpl — g¢l;(S). The corresponding
homogeneous spaces form a fibration sequence

(25) PL/O - G/O — G/PL,

and they all have nice interpretations: the homotopy groups of G/O are called the
structure sets of smooth structures on the sphere. The homotopy groups of G/PL
are Z in every fourth degree and zero everywhere else (at least at odd primes),
and the map G/O — G/PL sends an element of the structure set to its surgery
obstruction, which is the signature. Finally, the trivializations of those obstructions
are controlled by the space PL/O, whose homotopy groups are the Kervaire-Milnor
groups of smooth structures on the sphere.

Sullivan showed that the signature also induces a PL orientation M PL —
KO[%]. That map is F, and one of Sullivan’s results is that the corresponding

3The order of that group of exotic spheres is 227~2(22n—1 _1) times the numerator of %‘
14
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map
Y lopl —— gl (S)

C =g/l
i ._sighdiure
27
gl KO[3)

is a homotopy equivalence away from 2: g/pl ~ gl KO[1]. If we now run the same
story for oriented manifolds, we get

Y hso —— g4 (S) C’ =g/so

(26) i ‘v__sig’riva‘ture
£
911K0[%]

and the dotted map C — gllKO[%] can be identified with the map g/so — g/pl
form the sequence (25). The upshot of that discussion is that the above map has
something to do with geometric topology, and that its fiber is related to groups of
exotic spheres.

So far, this was all about K-theory. But there is a conjectural analog for tmf
that goes as follows. Let us now invert the prime 2 and consider tmf(2), which is
the value of the sheaf O%*P on the moduli space of elliptic curves with a point of
order two (which is étale over the moduli space of elliptic curves away from p = 2).
The same argument that refined the Witten genus will also refine the Ochanine
genus, and will produce a map

Y thso gl (S) - g/so

(27) i Ochaniﬁe genus
2

glltme(Q)[%]
For p > 2, there is a pullback square

F—— glytmfy(2), —— tmf(2),,

| |

F —— Lgytmfo(2) — Lxq)tmf(2)

similar to (21). Here, F' = fib(¢), and the map ¢ is called the topolgogical logarithm

as it maps the units of tmf,(2) back to tmf,(2). By construction, the Ochanine

genus g/so — glytmf,(2)[3] maps to zero in tmfy(2),, and thus lifts to a map

g/so — F. The natural map from the diagram (26) to the diagram (27) therefore
factors thought the fiber of the topological logarithm.

In the K-theory story, the map g/so — gll(KO)[%] was intimately related to
the group of exotic spheres. That story was built out of the signature. The Ochanine
genus is supposed to be the signature of the loop space, so m.(F') should have
something to do with exotic structures on the free loop space of spheres. Moreover,
given an exotic structure on S™ we clearly get one on LS™, and that’s what the
map from (26) to (27) should be. Of course, this all completely conjectural... But
this would be really neat prospect for tmf.

15
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We now switch back to tmf instead of tmf(2), and denote by F the fiber of the

topological logarithm gl (tmf), — tmf,. The homotopy groups of F' are related to
the spectrum of the Atkin operator, which has been intensely studied in number
theory.

Let us look at ma3(F'). That group is equal to Z, for p = 691, and is equal to
Zy ® Zyp/(7(p) — 1) otherwise, where 7 is the Ramanujan 7-function given by

g [Ta=a*=> " r(n)g"

In particular, we see that mo3(F') has a torsion group if and only if 7(p) is congruent
to 1 mod p. I have done a computer search up to p ~ 10°, and the only solutions
that I found are p = 11, 23, and 691. The number theorists believe that there should
be infinitely many such primes, and that they should be log(log) distributed, but
nobody really known how many solutions this equation has. Somehow, this is
probably related to smooth structure on the loop space of the 23-sphere...

There are other strange things about the homotopy type of F. Aside from a
K-theory summand that corresponds to classical geometric topology, the spectrum
F contains some p-adic suspensions of the image of J spectrum. The first place
one of them occurs (that you don’t understand) is at the prime 47. I tried to work
out what p-adic suspension that was, computed nine 47-adic digits, but I couldn’t
figure out what that number is. The number theorists to whom I showed it also
couldn’t recognize it, which is strange, as one doesn’t expect homotopy theory to
make up “random numbers”...

At present, we have to make the space F' at every prime separately. But if
it really had to do with something awesome, like smooth structures on LS™, then
it would probably come from a space that is just over Z. If that was the case,
then it would also be of finite type, and its homotopy groups would thus be finitely
generated. As a consequence this would mean that there are only finitely many
primes for which 7(p) is congruent to 1 mod p. Number theorists don’t really
believe that this is possible... but who knows? I have no real reason to think that
the spectra F' aren’t just reinvented at every prime.

Anyways, it would be really interesting to get to the bottom of that story, and
blossom the relationship between number theory and smooth structures on spheres
into new territory.
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The sheaf of F_ ring spectra

Lecture by Michael Hopkins,
Typed by André Henriques

What are we trying to do in constructing tmf? We have the following category
I:= Aff /M

which consists of certain kinds of affine open subsets over the moduli stack of elliptic
curves in the étale topology. We can think of this more colloquiually as follows.
An object of I is a pair (R,C), where R is a ring, and C' is an elliptic curve over
R. And a morphism (R,C) — (R',C’) is a ring map ¢ : R — R’ together with
an isomorphism ¢*C = C’. But we don’t want to consider all such pairs, namely,
the map Spec(R) — My induced by C should be étale. One puts the étaleness
condition because it implies that R is Landweber exact (i.e., that the corresponding
map Spec(R) — Mpg is flat).

By applying the Landweber exact functor theorem, we get a functor from I
to the category of multiplicative homology theories. That functor sends (R, C) to
the Landweber exact theory associated to the formal completion of C. The lifting
problem is expressed as

(1) E-ring spectra

— 7
—
—_
—
—
—
—
—
—

1= D—> {multiplicative homology theories}

We didn’t necessarily want to lift this to E.-ring spectra. We would have been
happy to make it to spectra. All we wanted was to rigidify this diagram so as to
be able to take its inverse limit.

You can say this in the language of stacks but you can state our task in a more
down-to-earth way and in fact we chose that language when I wrote about this in
my ICM talk in Zurich because I thought that the language of stacks was too out
there. It was even exotic in the algebraic geometry literature. At this level, stacks
are just a convenient expository device.

Lifting to E,-ring spectra might make the problem seem harder, but really it
cuts the space of lifts down to a manageable size and actually makes the problem
easier. Here, stacks first arose as a mainly expository device, but there is a real
thing that made them essential.

We want to understand if there is a lift of the diagram (1), and whether any
two of them are homotopy equivalent. In other words, the goal of our obstruction

1
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theory is to understand the realization space D of this diagram. This is the nerve
of the category of lifts, i.e., whose objects are lifts as above and whose morphisms
are natural transformations which are homotopy equivalences on objects. We want
to show that this space is nonempty and connected. It would be even better if
that space turned out to be contractible but, unfortunatly, that turns out to be not
quite right. That’s where Jacob Lurie’s point of of view improves things.

What you need is for any object ¢ € I an E,,-ring spectrum FE, and for any
morphism ¢ — j a map E — F of E.-ring spectra. Thus, you are bound to
encounter an invariant of the shape of the category I, as well as the homotopy
groups of the mapping space Mapg_(E,F). Assuming for a moment that we
already have an F.-ring spectrum associated to each object i of I, then we would
get a diagram

I°? x I — {abelian groups}
(i,9) = T Mapg_(E, F')

where F and F are the respective images of ¢ and j. At its crudest level, our
obstruction theory will use the cohomology theory of these abelian group valued
diagrams.

We've cheated a little bit by assuming that we already had lifts to Fo-ring
spectra of the multiplicative homology theories associated to objects ¢ € I, but the
obstruction theory for lifting multiplicative homology theories to E..-ring spectra
is similar to the obstruction theory we are dealing with.

There is a general pattern that any obstruction theory follows:

(1) Make an algebraic approximation to your topological setup.
(2) Build resolutions of whatever you are trying to study by pieces for which
the algebraic approximation is exactly right.

Some key words that fall into category (1) are “derivations” and “y-@-algebras”.
On the other hand, “resolution model categories” are the way of making sense of
(2). They lead to obstruction groups involving derived functors of derivations, and
Hochschild homology. The art of the game is to pose the right problem and find
the right kind of algebraic approximation so that the obstruction groups can be
handled (the best situation being of course when they all vanish).

In our case, we need an algebraic approximation to a map of F..-ring spectra

L F Smashing both sides with F gives f' : FAE — FAF — F, where

the last map is the multiplication of F. Applying 7, gives a map of F,-algebras,

F.E — F,, which could be our algebraic approximation to an element of f €

7o Mapg_ (E, F). Here is a clever trick that I learned from Bill Dwyer: to extend

this and get approximations for elements of 7; Mapp_ (F, I') based at f, note that

a pointed map St — Mapg_ (E, F) is equivalent to a E-ring map E — FS" over
2
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F, ie., a diagram

Here, F° " is the cotensor of F with the sphere, using the topological structure
on the category of E..-ring spectra. The underlying spectrum of FS* s just the
mapping spectrum from S* into F, and it is homotopy equivalent to F'V X ~tF.
As an F,-algebra, we have 7, FS" = F,[¢]/e2, where € is in degree —t. Our alge-
braic approximation to an element in 7; Mapy_ (£, F') thus becomes a commuting
diagram of F,-algebras

F.E —— F,[e]/é?

N

Fi

The ring homomorphism in the top line is something of the form f’ + D(—)e,
where D is an F-linear derivation D : F, E — F. The group of these derivations is
Derp, (FyE, F,), which is equivalent to Derg, (FoF, Fp). In general, if f': B — A is
an augmented A-algebra, there is an equivalence Der4 (B, A) ~ HomB(Q}S/A, A) ~
Hom 4 (f*Q} /4 A), where O /a is the B-module of relative Kéhler differentials
(and the last equivalence is just by adjunction). In this instance, we may set
B = FyFE and A = Fy, to obtain that this module of derivations is equivalent to
Homp, (f/*Q}«“OE‘/FO’ Fo).

This is the essential idea. If we were just working with A..-ring spectra, this
would be a sufficiently good algebraic approximation. The commutative case is a
little more involved than the associative one, so a bit more structure needs to be
added, such as Dyer-Lashof operations, but this extra stuff winds up “coming along
for free”. The real point is to come to grip with these derivations.

When I was first thinking about these groups, it was one of these experiences
where every day, I had to reinvent the wheel. I couldn’t hold the obstruction
groups in my head in an organized manner. And this is where the language of
stacks suddenly came in and clarified everything.

In our case, E and F' are Landweber exact, which means that the associated
maps from U := Spec Ey and V := Spec Fy to Mg are flat. Then we can form
the pullback V' X aq,, U which encodes the smash product of £ and F:

14 X Mg U= SPGCE)E = SpeC’IT()(F A E)

The language of stacks allows us to reorganize this picture so that U and V' even-
tually just drop out. The map E — F induces a map V — U again denoted f, and
so we get a diagram
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Spec(FoE) =V X pmpe U U
{
14 MFG )

where i is the map induced by f": mo(F A E) — 7(F). Our module of derivations
can be written more geometrically as Hom(i*Q%,XMFCU/V,OV). Since this is a
pullback square, these relative differentials are just pullea back from the differentials
on U relative Mpg. In other words, our group of derivations is equivalent to
Hom(f*Q%]/Mm, Oy).

These maps to the moduli stack of formal groups factor through the moduli
stack of elliptic curves, and we can write this picture as

V sy U U
| e
14 Cr My

Since Cg is an étale elliptic curve, the map Cg is étale. Consequently, we have
an equivalence Qf; I Mpe CEQ}\AC” / Mrc (since the relative differentials of an étale
map are trivial). The composite Cg o f is equal to Cg, the map classifying the
elliptic curve associated to our elliptic cohomology theory F'. Thus, the sequence
of pullbacks f*CEQ}]/Me” is equivalent to C}Qb/Me”. This presents our group of
derivations as Hom(Q}wﬂ”/Mm,OMcu) restricted to the subset Cp : V. — Mgy,
which is great because U and V have now really fallen out of the picture.

Thus, in the business end of the obstruction theory, the I°P x I diagram coho-
mology is just

(2) H* (Mot (Qt oy mpe)” @01,

where I've put back a power of the canonical sheaf w because the derivation we
started with actually had degree —t. Note: In the obstruction theory of Dwyer,
Kan, Smith, this is called a centric diagram, which is why the “twisted-arrow” or
Hochschild-Mitchell cohomology reduces to this.

This whole story we talked about is similar to something that you encounter
when studying basic abstract differential geometry. Namely, for M a smooth man-
ifold and U an open subset, then you can define vector fields on U as derivations
from functions on U to functions on U:

Vect(U) = Der(Oy, Op).

If now V C U is an open subset of U, it is intuitively obvious that you can restrict
a vector field. But how do you restrict a derivation? From the point of view of
4
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derivations, it is not obvious that one can restrict them:

Oy —2= 0y

L

Oy - < >0y.
They seem to rather be bivariant. The way to solve this problem is to note that
Der(Oy, Oy) = Homy (2}, Op) and that for an étale map i : V — U, we have an
equivalence Qf, = i*Q};. This allows us to define restriction as the composite

HOHIU(Q%], OU) — Homv(i*Q%], Z*OU) = HomV(Q%/, Ov)

Summarizing, if you define vector fields to be derivations, the thing that makes
them into a sheaf is a very special property: it is the isomorphism Q}, = *Q},,
which comes from the fact the the map is étale. The fact that our obstruction
groups could be rephrased as some variant of (2) is a consequence of that very
same property.

Now let us think about how to analyze the obstruction groups (2), which can
also be rewritten as

(3) RHom (v, /i @")-

Reducing mod p, we can express the relative cotangent complex Q}Vl M © F,
as the pushforward i*Q}Wrd of the cotangent space of the ordinary locus, where 4
ell

denotes the inclusion M‘e’[ld — M. Since locally, /\/lgfld is obtained from M
by inverting one element, the above group is similar to Exty,) (Z[z*'], Z[z]), which
has a somewhat big and ugly Ext'. So it is a little bit cumbersome to deal with (3).
In order to handle the structure of Q}Mc” I Mo it is cleaner to break the problem

into two calculations, one over Mgfl’i, and another one over M.

Recall that our problem is to find a lift in the following diagram:

FE—rings

oror -7 l
-~

-
-

(Aff /M ey)ét == I = {homology theories}

Here, we can break up the realization problems into pieces by functorially putting
every spectrum we encouter into a Hasse pullback square. Geometrically, this
corresponds to using the stratification of the moduli stack M . in terms of ordinary
and supersingluar loci:

Otop

L ¢ (2)O"P

|

L) 0" —— L) L(2) 0"

Note that this is still a diagram of sheaves on the whole stack M. We can fracture
the problem of understanding the space of lifts into understanding the space of three
compatible things:

a. the moduli space of possible LK(Q)O“”’,
5

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



b. the moduli space of possible L 1)O0"P, and
c. the moduli space of maps L (1)O"P — Ly (1)L (2)O"".
The moduli space of possible QP is then a pullback of the first two moduli spaces
over the third moduli space. We will use different obstruction theories to analyze
each one of the above problems. For a., we use that the appropriate Der groups are
zero, which gives us that for every supersingular elliplic curve we can realize in a
functorial way its universal deformation, along with the action of the automorphism
group of the curve. This, along with the fact that the Hasse invariant has distinct
zeros allows us to construct a sheaf of E..-spectra over My, supported on M?55,.
For b. and c., we use the K(1)-local obstruction theory. The obstruction groups
become H*(M?°¢ Dery ;) and these are zero too, at least at odd primes. At the
prime 2, the ordinary locus does have some cohomology, but we can change our
algebraic approximation by using KO instead of K, rewrite the algebra differently
and, that way, you also don’t encounter any obstruction groups. Note that we are
not changing the moduli stack: all the sheaves are on M. It turns out however,
ord

that the obstruction groups can be calculated on the stacks Mg;;* and M3J,.
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1. Introduction

In these notes I will sketch the construction of ¢mf using Goerss-Hopkins ob-
struction theory. Let M,y denote the moduli stack of generalized elliptic curves
over Spec(Z). For us, unless we specifically specify otherwise, a generalized elliptic
curve is implicitly assumed to have irreducible geometric fibers (i.e. no Néron n-
gons for n > 1). That is to say, My is the moduli stack of pointed curves whose
fibers are either elliptic curves, or possess a nodal singularity. Our aim is to prove
the following theorem.

THEOREM 1.1. There is a presheaf O'°P of E.-ring spectra on the site (M) et
which is fibrant as a presheaf of spectra in the Jardine model structure. Given an
affine étale open

Spec(R) S M
classifying a generalized elliptic curve C'/ R, the spectrum of sections E = O%P(Spec(R))
is a weakly even periodic ring spectrum satisfying:
(1) mo(E) = R,
(2) Gg=C.
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Here, C is the formal group of C.

REMARK 1.2. A ring spectrum F is weakly even periodic if w, E is concentrated
in even degrees, mo F' is an invertible mgE-module, and the natural map

Mol @ mo D = mop 0

is an isomorphism. The spectrum FE is automatically complex orientable, and we
let Gg denote the formal group over mgFE associated to E. It then follows that
there is a canonical isomorphism

7T2tE = ng};
where wg,, is the line bundle (over Spec(R)) of invariant 1-forms on Gg.

REMARK 1.3. The properties of the spectrum of sections of E = O%P(Spec(R))
enumerated in Theorem 1.1 make F an elliptic spectrum associated to the gener-
alized elliptic curve C//R in the sense of Hopkins and Miller [Hop2]. Thus Theo-
rem 1.1 gives a functorial collection of E..-elliptic spectra associated to the collec-
tion of generalized elliptic curves whose classifying maps are étale.

REMARK 1.4. This theorem practically determines O%P, at least as a diagram

in the stable homotopy category. Given an affine étale open Spec(R) <, My, the
composite

Spec(R) =N My — Mpg

is flat, since the map M. — Mpg classifying the formal group of the universal
generalized elliptic curve is flat (this can be verified using Serre-Tate theory, see
[BL, Lemma 9.1.6]). Thus the spectrum of sections £ = O'P(R) is Landweber
exact [Nau]. Fibrant presheaves of spectra satisfy homotopy descent, and so the
values of the presheaf are determined by values on the affine opens using étale
descent.

REMARK 1.5. The spectrum tmf is defined to be the connective cover of the
global sections of this sheaf:

tmf = 500" (Meyr).
We give an outline of the argument we shall give. Consider the substacks
(Mew)p =2 Meu,
(Men)g = Mo,
where:

(M), = p-completion of M.y,

(Men)g = Mey ®z Q.

REMARK 1.6. We pause to make two important comments on our use of formal
geometry in this paper.

(1) The object (My), is a formal Deligne-Mumford stack. We shall use these
throughout this paper — we refer the reader to the appendix of [Har] for
some of the basic definitions. Given a formal Deligne-Mumford stack X
and a ring R complete with respect to an ideal I, we define the R-points

of X by X(R) = %iniX(R/I ).

2
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(2) If R is complete with respect to an ideal I, a generalized elliptic curve
C/Spf(R) is a compatible ind-system C,,/Spec(R/I™). There is, how-
ever, a canonical “algebraization” C'*9/Spec(R) where C%9 is a general-
ized elliptic curve which restricts to C,,, over Spec(R/I™) [Con, Cor. 2.2.4].
With this in mind, we shall in these notes always regard C/Spf(R) as being
represented by an honest generalized elliptic curve over the ring R.

We shall construct Q%P as the homotopy pullback of an arithmetic square of
presheaves of E.-ring spectra

Otop Hp prime (L;D ) * O;op

| |

t
(LQ)*OQOP Qarith <HP prime(bp)*oit’op)(@

Here, OI°7 is a presheaf on (Mey),, and (’)(g)p is a presheaf on (Mg;)g. The
presheaf

IT .oy

rime
p P Q

is the (sectionwise) rationalization of the presheaf [, ;...(¢p)«O}7. The presheaf

(’)t‘)p will be constructed using rational homotopy theory, as will the map arith-
It remains to construct the presheaves O;Op for each prime p. Define

(Me)r, = Mey @7 F,.
Let
(MHE, C (Mea)s,
denote the locus of ordinary generalized elliptic curves in characteristic p, and let
(M), = M), — (M)E,

denote the locus of supersingular elliptic curves in characteristic p. Consider the

substacks

(1.1) MO 2228y (M),
(1.2) M =5 (Men)p,
where

MO = moduli stack of generalized elliptic curves over p-complete rings with ordinary reduction,
88

2 = completion of My at (M), -

The presheaves O;Op will be constructed as homotopy pullbacks:

o to
oker (Lss)x O

| |

top top
(Lord)*OK(l) mm(( o) OK(Q))K(l)

3
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Here,

((LSS)*O;???)) K(1)

denotes the (sectionwise) K (1)-localization of the presheaf (LSS)*O;?I()Z). (The reader
wondering at this point why these localizations are related to the ordinary and
supersingular loci is invited to glance at Lemma 8.1.)

The presheaf (9;?7(92) will be constructed using the Goerss-Hopkins-Miller The-
orem — its spectra of sections are given by homotopy fixed points of Morava E-
theories with respect to finite group actions.

The presheaf (’);?1(71) will be constructed using explicit Goerss-Hopkins obstruc-
tion theory. The map @chrom Will be be produced from an analysis of the K (1)-local
mapping spaces, and the #-algebra structure inherent in certain rings of p-adic mod-
ular forms.

Figure 1 shows a diagram which summarizes the above discussion. Many thanks
to Aaron Mazel-Gee for creating this diagram, and making it available for inclusion
here.

2. Descent lemmas for presheaves of spectra

For a small Grothendieck site C with enough points, let PreSp, denote the
category of presheaves of symmetric spectra of simplicial sets. The category PreSp,
has a Jardine model category structure [Jar], where

(1) The cofibrations are the sectionwise cofibrations of symmetric spectra,

(2) The weak equivalences are the stalkwise stable equivalences of symmetric
spectra,

(3) The fibrant objects are those objects which are fibrant in the injective
model structure of the underlying diagram model category structure, and
which satisfy descent with respect to hypercovers [DHI].

The following lemma will be useful.

LEMMA 2.1.

(1) If F € PreSp. satisfies homotopy descent with respect to hypercovers, then
the fibrant replacement in the Jardine model structure

F—=F

18 a sectionwise weak equivalence.

(2) If f : F — G is a stalkwise weak equivalence in PreSpe, and F and G sat-
isfy homotopy descent with respect to hypercovers, then f is a sectionwise
weak equivalence.

PRrROOF. (1) The Jardine model category structure is a localization of the in-
jective model category structure on PreSp,. In the injective model structure, weak
equivalences are sectionwise. Let

F—=F

be the fibrant replacement in the injective model category structure. This map

is necessarily a sectionwise weak equivalence. By the Dugger-Hollander-Isaksen

criterion, to see that F' is fibrant in the Jardine model structure, it suffices to show
4
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FIGURE 1. Summary of the construction of tmf [courtesy of Aaron
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that F’ satisfies homotopy descent with respect to hypercovers. Let U € C and let
U, be a hypercover of U. Consider the diagram

F(U) —=— holimp F(U,)

zi lz

F'(U) — holima F'(U,)

We deduce that the bottom arrow is an equivalence. Thus F’ satisfies descent with
respect to hypercovers, and is fibrant in the Jardine model category structure.
(2) Consider the diagram of Jardine fibrant replacements:

F'sg

U\L l’l}
F/ g/
f/
By (1), the maps v and v are sectionwise equivalences. The map f’ is a stalk-
wise weak equivalence between Jardine fibrant objects. Because the Jardine model
structure is a localization of the injective model structure, we deduce that f’ is a

sectionwise weak equivalence. We therefore conclude that f is a sectionwise weak
equivalence. 0

Let X be a Deligne-Mumford stack, and consider the site X.;. Being a Deligne-
Mumford stack, X possesses an affine étale cover. The full subcategory

Xet,aﬁ i> Xet

consisting of only the affine étale opens is also a Grothendieck site. The map ¢
induces an adjoint pair of functors
i* : PreSpy , < PreSpy, o

where 7* is the functor given by precomposition with ¢, and i, is the right Kan
extension.

LEMMA 2.2.
(1) The adjoint pair (i*,i.) is a Quillen equivalence.
(2) To construct a fibrant presheaf of spectra on Xet, it suffices to construct a
fibrant presheaf on Xe¢ o and apply the functor i..

ProOF. By [Hov, Cor. 1.3.16], to check (1) it suffices to check that (i*,i,) is
a Quillen pair, that ¢* reflects weak equivalences, and that the map

L X — X

is a weak equivalence. The functor i* is easily seen to preserve cofibrations, and it
preserves and reflects all weak equivalences, since the sites X,; and Xt o5 have the
same points. Since the functor i, preserves stalks, the map above is a stalkwise weak
equivalence, hence is an equivalence. Therefore (i*,i,) is a Quillen equivalence. (2)
In particular, the functor ¢, preserves fibrant objects. O

The following construction formalizes the idea that a Jardine fibrant presheaf
on X,; is determined by its sections on étale affine opens.
6

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CONSTRUCTION 2.3.
Input: A presheaf F on X, 5 that satisfies hyperdescent.

Output: A Jardine fibrant presheaf G on X, and a zig-zag of sectionwise weak
equivalences between F and i*G.

We explain this construction. Let
u: F = F

be the Jardine fibrant replacement of 7. By Lemma 2.1, u is a sectionwise weak
equivalence. Let G be the presheaf i, F'. By Lemma 2.2, G is Jardine fibrant. The
counit of the adjunction
€:i*G =%, F — F

is a stalkwise weak equivalence since, by Lemma 2.2, the adjoint pair (i*,i,) is a
Quillen equivalence. The sheaf i*G is easily seen to satisfy hyperdescent — it is
the restriction of G to a subcategory. Therefore, by Lemma 2.1, the map € is a
sectionwise weak equivalence. Thus we have a zig-zag of sectionwise equivalences

i'G— F' « F.
Construction 2.3 requires a presheaf 7 on X .5 which satisfies homotopy

descent with respect to hypercovers. The following lemma gives a useful criterion
for verifying that F has this property.

LEMMA 2.4. Suppose that F is an object of PreSpXet_aﬁ, and suppose that there

is a graded quasi-coherent sheaf A, on X and natural isomorphisms
fu: AJU) S 7. FU)

for all affine étale opens U — X. Then F satisfies homotopy descent with respect
to hypercovers.

PROOF. Suppose that U — X is an affine étale open, and that U, is a hyper-
cover of U. Consider the Bousfield-Kan spectral sequence

Ey' =% Ay(U,y) = m_s holima F(U,).
Since A, quasi-coherent, it satisfies étale hyperdescent, and we deduce that the
FEs-term computes the quasi-coherent cohomology
E;t = HS(Ua -At)

and since U is affine, there is no higher cohomology. The Es-term of this spectral

sequence is therefore concentrated in s = 0. The spectral sequence collapses to give
a diagram of isomorphisms

<
c
-
1%
1R

We deduce that the map
F(U) — holima F(Us,)

is an equivalence. ([
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REMARK 2.5. Construction 2.3 shows that to construct the presheaf O%P, it
suffices to construct O!P(U) functorially for affine étale opens U — M.y, as long
as the resulting values O%P(U) satisfy homotopy descent with respect to affine
hypercovers. This is automatic: there is an isomorphism

T O (U) = B (U)

for an invertible sheaf w on M;;. Lemma 2.4 implies that O*°P satisfies the required
hyperdescent conditions.

3. p-divisible groups of elliptic curves

Let C be an elliptic curve over R, a p-complete ring. The p-divisible group
C(p) is the ind-finite group-scheme over R given by

C(p) = lim C[p*].
k

Here, the finite group scheme C[p*]/R is the kernel of the p*-power map on C.
Let C be the formal group of C. If the height of the mod p-reduction of C is
constant, then over Spf(R) there is short exact sequence

0—>5—>C(p) = C(p)et — 0

where C(p).; is an ind-étale divisible group-scheme over R.
If R =k, a field of characteristic p, then we have

~

2 = height(C(p)) = height(C') + height(C(p)et)-

The height of C is the height of the formal group. The height of C(p)et is the
corank of the corresponding divisible group. There are two possibilities:

(1) C is ordinary: C has height 1, and the divisible group C (p)et has corank
1.

(2) C is supersingular: C has height 2, and the divisible group C(p)e: is
trivial.

THEOREM 3.1 (Serre-Tate). Suppose that R is a complete local ring with residue
field k of characteristic p. Suppose that C' is an elliptic curve over k. Then the
functor

{deformations of C to R}

1
{deformations of C'(p) to R}

is an equivalence of categories.
4. Construction of (’);?‘?2)
Lubin and Tate identified the formal neighborhood of a finite height formal
group in Mpg:

THEOREM 4.1 (Lubin-Tate). Suppose that G is a formal group of finite height
n over k, a perfect field of characteristic p. Then the formal moduli of deformations
of G is given by
Defg = Spf(B(k, G))
8
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where there is an isomorphism
B(]f7 G) = W(k)[[ul, e ,un,ﬂ].
(Here, W(k) is the Witt ring of k.)

Let G/B(k,G) denote the universal deformation of G. The following theorem
was proven by Goerss, Hopkins, and Miller [GH].

THEOREM 4.2 (Goerss-Hopkins-Miller). Let C be the category of pairs (k,G)
where k is a perfect field of characteristic p and G is a formal group of finite height
over k. There is a functor

C — E ring spectra
(k,G) = E(k,G)
where E(k,G) is Landweber exact and even periodic, and
(1) moE(k,G) = B(k,G),
(2) Geke) =G.

Theorem 3.1 and Theorem 4.1 give the following.

COROLLARY 4.3.

(1) Suppose that C' is a supersingular elliptic curve over a field k of charac-
teristic p. There is an isomorphism
Defe = Spf(B(k, C)).

(2) The substack (M33)r, C (Men)p is zero dimensional.

PrOOF. If C is a supersingular curve, then the inclusion of p-divisible groups
C = C(p) is an isomorphism. Therefore, Theorem 3.1 implies that there is an
isomorphism

Defc = Defa
and Theorem 4.1 identifies Def .

To compute the dimension of (M3]))r, it suffices to do so étale locally. Let k
be a finite field, and suppose that C' is a supersingular elliptic curve over k. The
completion of M,y along the map classifying C is the deformation space Defo =2
Spf(B(k,C)), and there is an isomorphism

B(k,C) = W(k)[[u1]].
Since we have
u; =wv; mod p,

the locus where C has height 2 is given by the ideal (p,u1). The quotient B(k, a)/(p7 up)
is k, and is therefore zero dimensional. (I

We now construct the values of the presheaf (’);?’(’2) on formal affine étale opens
f: Spf(R) — M3,
Here R is complete with respect to an ideal I. This suffices to construct the presheaf

O?fz) on M?%5, by Construction 2.3.

The induced map of special fibers

fo : Spec(R/I) — (MZ})r,
9
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is étale. Since (ME})r, is smooth and zero-dimensional, Spec(R/I) must be étale
over IF,,. We deduce that there is an isomorphism

R/T=]] ks

a finite product of finite fields of characteristic p. Let C be the elliptic curve
classified by f, and let Cy be the elliptic curve classified by fy. The decomposition
of R/I induces a decomposition

Co=]J 5.

Since f is étale, the elliptic curve C' is a universal deformation of the elliptic curve
Cy, and hence by Corollary 4.3 there is an isomorphism

R=T[ B, C§").

We define

0L, (Spf(R)) =[] Bk, .
Let G be the formal group of this even periodic ring spectrum. By Theorem 3.1,
since G is a universal deformation of Cy and C' is a universal deformation of Cy,
there is an isomorphism

G=C.

Il

We have therefore verified

PROPOSITION 4.4. The spectrum of sections O;?fz) (Spf(R)) is an elliptic spec-
trum associated to the elliptic curve C/Spf(R).

5. The Igusa tower

If C is a generalized elliptic curve over a p-complete ring R, let C),s denote the
non-singular locus of C' — Spf(R). Then C,s is a group scheme over R. Given a
closed point = € Spf(R), the fiber (Cys), is given by

(Cra)s = C, (C, nonsingular,
") Gy Oy singular.

The formal group C is the formal group éns. We still may consider the ind-quasi-
finite group-scheme

O(p) = H Chs [pk}'
k

C(p) is technically not a p-divisible group, because its height is not uniform. Rather,
we have the following table:

C$ ‘ ht(0<p)w) ht((c(p>z)et) ht(ca:)
supersingular 2 0 2
ordinary 2 1 1
singular 1 0 1
10
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If the classifying map
C: Spf(R) — (ﬂe”)p

factors through ./\/l"[l , then C has no supersingular fibers, but may have singular
fibers. We shall call such a generalized elliptic curve C ordinary.

Let M2 (p*) be the moduli stack whose R-points (for a p-complete ring R) is
the groupoid of pairs (C,n) where

C/R = ordinary generalized elliptic curve,
(1 + ppr =, C[p*]) = isomorphism of finite group schemes.

The isomorphism 7 is a p*-level structure. The stacks Mgﬁd (p*) are representable
by Deligne-Mumford stacks.
A pFtllevel structure induces a canonical p*-level structure, inducing a map

(5.1) M) = M (Y).

LEMMA 5.1. The map Md(p*+1) — MOrd(pk) is an étale Z/p-torsor (an
étale (Z/p)* -torsor if k =0).

ProOOF. (This proof is stolen from Paul Goerss.) By Lubin-Tate theory, the
p-completed moduli stack M of multiplicative formal groups admits a presen-
tation

SpE(Zy) — M
which is a pro-étale torsor for the group:
Awt(G,,/Z,) =
Associated to the closed subgroup 1+ p*Z, C Z, is the étale torsor
M) — M
for the group (Z/p*)*. The intermediate cover
MES ) — M )

is an étale Z/p-torsor (it is an étale (Z/p)*-torsor if k = 0). The R-points of
Mt (pF) is the groupoid whose objects are pairs (G,n) where G is a formal
group over Spf(R) locally isomorphic to (Gm, and 7 is a level p*-structure:

1 e — G[p¥.
The stacks M2d(p*) are therefore given by the pullbacks
M P —— MG (") —— Mg
MG (PH) ——= Mg () — MEY"

where the map M2i? — M4 classifies the formal group of the universal ordinary
generalized elliptic curve. The result follows. [
11
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Thus we have a tower of étale covers:

M (ph )

- = ...

M @")

M
This is the Igusa tower.

LEMMA 5.2. For k> 1 (k> 2 if p=2) the stack M (p*) is formally affine:
there is a p-complete ring Vi, such that

M (") = Spf (V).

PRrOOF. This is actually well known — see, for instance, Theorem 2.9.4, and
the discussion at the beginning of Section 3.2.2 of [Hid2]. However, the proof of
Theorem 2.9.4 in the above cited book only addresses the case where p > 3. The
idea there is that the ordinary locus of the moduli of elliptic curves, with sufficient
level structure, is affine. The result then follows from geometric invariant theory
provided one can show that the moduli problem MOt (p*) is rigid (i.e. it takes
values in sets, not groupoids). Since p generates the ideal of definition of the formal
stack M4 (pk), it follows from Proposition 3.5.1 of [BL] that it suffices to show
that the mod p reduction M2 (p )Fp is rigid.

Let (Mg{ld)mp denote the moduli stack (over IF,)) of ordinary elliptic curves with
the structure of an n-jet at the basepoint. (Note that jets on an elliptic curve are the
same thing as jets on the formal group of the elliptic curve.) By fixing a coordinate
To of @m, we observe that there is a closed inclusion

k_
MG D" )r, = (MgE ™!
as a level pF-structure 7 gives an elliptic curve the structure of a (p* — 1)-jet 7.7,
and this jet uniquely determines the level structure. Thus it suffices to show that
k
(M Zfld) ~!is rigid. In fact, we will establish that it is affine.
C’ase 1: p > 3. Let R be an F,-algebra. Suppose that (C,T) is an object

(./\/l‘e’[ld)p “YR) for k > 1. Zariski-locally over Spec(R), there is a Weierstrass
parameterlzation

CzCa:y2+a1xy+a3y:x3—|—agx2+a4m+a6.

The Weierstrass curve C, has a canonical coordinate at infinity given by T, = —x/y.
Suppose that T is a (p* — 1)-jet on Cy, given by

T = moTa+mi T2 + - +my TP "+ O(TE").
12
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According to [Rez, Rmk. 20.3], there are unique values
A A(mg)

s = s(mo, m1)

(
r = r(mg, my, ma)
t = t(mg, my,ma, m3)
such that under the transformation
Iasrt i Ca— Car

z Nr+r

Yy Ny + sz 4t
the induced level (pF — 1)-jet T" = (fx,s.r.t)«T is of the form

T = Ty + 4T3 + - +mly_,T0 L+ O(TE),
We have shown that the pair (C, ) is (Zariski locally) uniquely representable by a
pair (Ca,T) where
T = To+maT? + - mpe TP '+ O(T2").
The only morphism fy ¢, : Ca — Ca which satisfies
fsmiTa = Ta+ O(T3)

has A =1 and s =r =t = 0. Thus (C,T) is determined, Zariski locally, up to

unique isomorphism, by the functions
QA1,02,03,04,06, M4, ..., Mpk_2.

The uniqueness of these functions implies that they are compatible on the intersec-

tions of a Zariski open cover, and hence patch to give global invariants of (C,T).

Expressing the Eisenstein series (Hasse invariant) E,_1 of Cj, as

Ep—l = Ep—l(ala az, az, a4, aﬁ)a
it follows that we have
(Mg{ﬁ)p ! 2 Spec(Fy a1, az, as, as, ag, ma, . . - ,mpk_Q])[Epill}).

With minor modification, the method for p > 3 extends to the cases p = 2, 3.
The canonical forms for (C,T) just change slightly.

Case 2: p = 3. Suppose that (C,T) is an object of (Mgﬁd)?’ “Lfork>1.If

k> 1, then 3* —1 > 4, and thus (C, T) admits a canonical Weierstrass presentation.
If £ =1, then this no longer holds. Instead, choosing

A= A(mo)
s =s(mg, m1)
there exists (Zariski locally) a Weierstrass curve (Cy,T) 2 (C,T') such that
T =Ta+ O(T2).

Choosing ty accordingly, there is a transformation

fto . Ca — Ca/
(w,y) = (z,y +to)
13
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such that a = 0. The induced 2-jet T" = (f,)«T still satisfies 7" = T,y mod T3.
The automorphisms f s, of (Cq/,T') preserving the property that az = 0, and
the trivialization of the 2-jet, satisfy

A=1
s=0
t=—air/2.

Under such a transformation, we find that
ay — ay + 2bor + 312

where by = ay + a?/4. Because C is assumed to be ordinary, the element by is a
unit. Because R is an Fg-algebra, there is a unique r such that a4 — 0. Thus we
have shown that there is a canonical Weierstrass presentation which trivializes the
2-jet, and for which ag = a4 = 0.

Case 3: p = 2. Assume that k = 2 (for k& > 2, we have 2¥ —1 > 4, and therefore
an elliptic curve with a 2¥ — 1-jet admits a canonical Weierstrass presentation). Let
(C,T) be an object of (M21)3_ . Choose (Zariski locally) a Weierstrass presentation
(Ca, T) = (C,T). Choosing

A= )\(mo)
s = s(mog,mq)
r= T(mo,mhmz)

we may assume that T satisfies
T =Ta+ O(T1).

The automorphisms fy s of (Cy,T) preserving the trivialization of the 3-jet satisfy

A=1,
s=0,
r=0.

Under such a transformation, we find that
a4 — ag — aqt.
Because C is assumed to be ordinary, the element a; is a unit. Letting ¢ = ag/a;, we
have a4 — 0. Thus we have shown that there is a canonical Weierstrass presentation
which trivializes the 3-jet, and for which a4 = 0. O
Define
VL= @@Vk/pka.

m k

The ring V2 is the ring of generalized p-adic modular functions (of level 1).

Let M2 (p>) be the formal scheme Spf(VZ). There is an isomorphism be-
tween the R-points M°¢(p>)(R) and isomorphism classes of pairs (C,7) where

C = a generalized elliptic curve over R,
(n: @m 2 Upoo =N 6) = an isomorphism of formal groups.

(Note that the existence of n implies that C has ordinary reduction modulo p.)
14
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The ring V2 possesses a special structure: it is a 6-algebra (see [GH]). That
is, it has actions of operators

k
Vv, ke,
P, lift of the Frobenius,
0, satisfying ¢P(x) = 2P + pd(zx).

The operations 1* and P are ring homomorphisms. The operation @ is determined
from 9P, since V2 is torsion-free and we have

YP(z) =2 mod p.

We determine ¥* and 9? on the functors of points of M9/%(p>). Suppose that
R is a p-complete ring. Note that

AutZP (@m) = Z;

We may therefore regard Z) as acting on Gm /R. Let [k] be the automorphism
corresponding to k € Z,. Define

(W*)* : M (™) (R) — M (p™)(R)
(C,n) = (C,no[k]).
The map (¥*)* is represented by a map
PF VS = VL.

Suppose that (C,7n) is an R-point of M (p>). Since C has ordinary reduction
mod p, the pth power endomorphism of C,,s factors as

Chs
k 4

where ®;,,4c, is purely inseparable. The morphism ®., is not, in general, étale,
but ker @, is an étale group scheme over R. On the non-singular fibers of C, ®.,,
has degree p, whereas on the singular fibers it has degree 1.

These morphisms, and their kernels, fit into a 3 x 3 diagram of short exact
sequences of group schemes:

(5.2)

é[p] — Cys[p] —— Cplet

I

C[p] C,. - C(I?)
l [p] l l‘bsep

where C [p] is the p-torsion subgroup of the height 1 formal group C and C [Dlet is
the p-torsion of the ind-finite group scheme C(p)e:
15
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Given a uniformization

n:Gp = C
we get an induced uniformization n®):
(5.3) iy G — 2> G
:l ~in n®
\

—

Clp] ——=C . C0

REMARK 5.3. The uniformization ") admits a different characterization: it is
the unique isomorphism of formal groups making the following diagram commute:

.G’"L
OB i
n
C

ya
clp) — o
(Psep) =

(The isogeny ®,., induces an isomorphism on formal groups.) The equivalence of
this definition of n® with the previous is proved by the following diagram.

@m (p] @m @m
n ,,7(17) n
C’\ (q)msep)* C/(i;) (é»:P)* C\
[p]

We get a map on R-points
(WP M (™) (R) — M (p™)(R)
(C,n) — (C(p),n(p))
which is represented by a ring map
PP VL = VL.
It is easy to see that 1)? commutes with ¥*. To show that 1? induces a f-algebra
structure on V2, it suffices to prove the following:

LEMMA 5.4. We have ¢P(x) = 2P mod p.

PrOOF. Tt suffices to show that (¢P)* is represented by the Frobenius when
restricted to characteristic p. That is, we must show that if R is an Fj-algebra, and
(C,n) is an R point of M24(p>), then the Frobenius

gives rise to an isomorphism
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We briefly introduce some notation: if X is a scheme over R, then we have the
following diagram of morphisms.

X Fptot

F,rrcl

ox I ox

L

Spec(R) —— Spec(R)
The square is a pullback square, and Fr is the pullback of o. The map Fr°® is
the total Frobenius, and the universal property of the pullback induces the relative
Frobenius Fr™®.

Because the isogeny Frm® has degree p, we have a factorization

Chs i Chns

&4@

c*Chs

Because C has no supersingular fibers, the dual isogeny Fr7¢! has separable kernel
(see, for instance, [Sil, Thm. V.3.1]).
Therefore, we have
PaloR= C(p)’

rel
(I)insep = Fr )
—_—

D, = e

We just have to show that under these isomorphisms, we have o*n = n(®). We have
the following diagram of formal groups.

rel

=~ Fr ~ Fr ~
G G, Gm
Wi o* U\L \LU
C o*C C
Frrel Fr

On G,,, the relative Frobenius is the pth power map. Therefore, by the definition
of n®), we have o*n = n®) under the isomorphism ¢*C = C'®), (I

More generally, letting we. denote the canonical line bundle over Spf(V2), then
the graded algebra
(Vo/g)g* = ng*
inherits the structure of an even periodic graded #-algebra. The #-algebra structure
may be described by the isomorphism

(Vo/g)* = (Kp)* ®z, Vo/c\J'

Here (Kp). is the coefficients of p-adic K-theory, and the f-algebra structure is
induced from the diagonal action of the Adams operations.
17
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REMARK 5.5. By defining ¢? on V2 using its modular interpretation, I have
glossed over several technical issues related to extending the quotient by the canoni-
cal subgroup of ordinary elliptic curves to the singular fibers of a generalized elliptic
curve. The careful reader could instead choose a different path to defining the op-
eration ¢P: define it just as I have on the non-singular fibers, and then explicitly
define its effect on g-expansions to extend this definition over the cusp. (The effect
of ¢ on ¢ expansions is to raise ¢ to its pth power.)

6. K(1) local elliptic spectra

In this section we will investigate the abstract properties satisfied by a K(1)-
local elliptic spectrum. Throughout this section, suppose that (E,a,C) be an
elliptic spectrum. That is to say, E is a K(1)-local weakly even periodic ring
spectrum, C'is a generalized elliptic curve over R = mpE, and « is an isomorphism
of formal groups

oa:Gg — C.
We shall furthermore assume that R is p-complete, and that the classifying map
f : Spf(R) — (Melz)p
is flat. This implies:
(1) E is Landweber exact (Remark 1.4),
(2) C has ordinary reduction modulo p (Lemma 8.1).
There are three distinct subjects we shall address in this section.

(1) The p-adic K-theory of K (1)-local elliptic spectra.

(2) #-compatible K(1)-local elliptic E.-ring spectra.

(3) The 6-algebra structure of the p-adic K-theory of a supersingular elliptic
E-ring spectrum.

The p-adic K-theory of K(1)-local elliptic spectra.
Let

(Kﬁ)*E =m((KAE))
denote the p-adic K-homology of E. It is geometrically determined by the following
standard proposition.

PROPOSITION 6.1. Let Spf(W) be the pullback of Spf(R) over M (p>). Then
there is an isomorphism
(K))oE =W,

This isomorphism is Z,; -equivariant, where the Z,; -acts on the left hand side through
stable Adams operations, and it acts on the right hand side due to the fact that
Spf(W) is an ind-étale Z,; -torsor over Spf(R).

Proor. By Landweber exactness, choosing complex orientations for K, and
FE, we have
(K)oE = ((Kp)o @mup, MUPOLMUP @ymup, R)).
Using the fact that Spec(MUPyMUP) = Spec(MUPy) X p ., Spec(MUP,), it is

not hard to deduce from this that we have

Sp (K} )oE) 2= Spf(R) X my SPE((Kp)o)-
18
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Consider the induced diagram
SpE((Kp)oE) ——= M (p™) —— Spf((K7)o)

| l l

Spf(R) 7 M Mpc

The right-hand square is a pullback by the proof of Lemma 5.1, and we have
established that the composite is a pullback. We deduce that the left-hand side is
a pullback, which completes the proof. ([

f-compatible K(1)-local elliptic E.,-ring spectra.
If £ is an E-ring spectrum, then the completed K,-homology

(K)).E = (K AE),)

naturally carries the structure of a f-algebra: for k € Z, the operations * are the
stable Adams operations in K,-theory, and the operation 6 arises from the action
of the K(1)-local Dyer-Lashof algebra [GH].
If the classifying map
f: Spf(R) — M2

is étale, then the pullback W of Proposition 6.1 carries naturally the structure of
a f-algebra which we now explain. Since Spf(R) is étale over Mgﬁd, the pullback
Spf(W) is étale over M9 (p>°) = Spf(V2). It is in particular formally étale, and
therefore there exists a unique lift

Spec(W/p) —— Spec(W/p) ——= Spf(W)

SpI(W) > MO (™) 5 M2 ()
where
(WP)* - MZF(p™) = M (™)
is the lift of the Frobenius coming from 6-algebra structure of V2 and ¢ : W/p —
W/p is the Frobenius. Note that because Spf(R) is étale over M9, it is in partic-
ular flat, and so W must be torsion-free. Therefore, the induced homomorphism

PP W — W

determines a unique #-algebra structure on W.
If Fis E., and the classifying map f is étale, it is not necessarily the case
that the isomorphism
(K))oE =W
of Proposition 6.1 preserves the operation ¢?. This is rather a reflection of the
choice of E-structure on . We therefore make the following definition.

DEFINITION 6.2. Suppose that E is a K(1)-local Fo, elliptic spectrum associ-
ated to an elliptic curve C/R, and suppose that the classifying map

Spf(R) — (ﬂell)p
19
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is étale. If the isomorphism (K)oE = W is a map of f-algebras, then we shall say
that (E,C) is a 0-compatible.

REMARK 6.3. As a side-effect of our construction of (93?1(01) it will be the
case that the F.-structure on the spectrum of sections E = O;?f’l)(Spf(R)) is
f-compatible.

REMARK 6.4. In [AHS], the authors define the notion of an H-elliptic ring
spectrum, which is a stronger notion than that of an elliptic H,-ring spectrum
in that they require a compatibility between the H.,-structure and the elliptic
structure. It is easily seen that every K (1)-local H-elliptic spectrum whose clas-
sifying map is étale over the p-completion of the moduli stack of elliptic curves is
f-compatible.

The 6-algebra structure of the p-adic K-theory of supersingular elliptic
FE-ring spectra.

In [AHS, Sec. 3], previous work of Ando and Strickland is condensed into
an elegant perspective on Dyer-Lashof operations on an even periodic complex
orientable H..-ring spectrum 7. Namely, suppose that

(1) T is homogeneous — it is a homotopy commutative algebra spectrum over
an even periodic Es-ring spectrum (such as MU).

(2) mT is a complete local ring with residue field of characteristic p.

(3) The reduction G of Gz modulo the maximal ideal has finite height.

(4) Gr is Noetherian — it is obtained by pullback from a formal group over
Spf(S) where S is Noetherian.

Then, for every morphism
i: Spf(R) — Spf(mT)

and every finite subgroup H < i*Gr (i.e. H is an effective relative Cartier divisor
of i*Gr represented by a subgroup-scheme) there is a new morphism

Y : Spf(R) — Spf(moT')
and an isogeny of formal groups
fu "Gy = Y Gr
with kernel H. This structure is called descent data for subgroups.

REMARK 6.5. The authors of [AHS] actually describe the structure of descent
data for level structures. However, their treatment carries over to subgroups (see

[AHS, Rmk. 3.12)).

EXAMPLE 6.6. Suppose that T is a K(1)-local E-ring spectrum. Then the
formal group Gr must have height 1 (see the proof of Lemma 8.1), and it follows
that Gr has a unique subgroup of order p, given by the p-torsion subgroup Gr[p].
Taking 7 to be the identity map, we get an operation

/l/}GT[p] ol — moT.

This operation coincides with . We shall let f, denote the associated degree p
isogeny
fo = ferp) : G — (PP)*Gr.
20
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EXAMPLE 6.7. Suppose that T = E(k,G) is the Morava E-theory associated
to a height n formal group G/k, with universal deformation G/B, and the E.-
structure of Goerss and Hopkins [GH]. Then in [AHS] it is proven that the
associated descent data for subgroups is given as follows. Let

i : Spf(R) — Spf(B)
be a morphism classifying a deformation i*G/R of i*G/k" (where k' := R/mpg).

Suppose that H < i*G is a finite subgroup, and let H denote the restriction of H
to i*G. Because G is a formal group of finite height over a field of characteristic p,
the only subgroups of G are of the form

H, = ker((Fr™®Y)" : i*G — i*G)

where Fr™® is the relative Frobenius. Therefore, we have H = H,. for some r. The

quotient (i*G)/H, is the pullback of G under the composite i(P"):

i@ Spe(k') 705 SpE(k') 2> Sp(k)
where o is the Frobenius. The quotient i*G/H is then a deformation of (i*G)/H =
(i®"))*G, hence is classified by a morphism
Yy : Spf(R) — Spf(B).
This determines the operation ¢ 5. The morphism f5 is given by
fg "G = (i*G)/H = (¢5)*G.
Suppose now that k is a finite field, and that C/k is a supersingu}ar elliptic

curve. Then, by Serre-Tate theory, there is a unique elliptic curve C' over the
universal deformation ring

B := B(k,C) = W(k)[[ui]]

such that the formal group C” is the universal deformation of the formal group C.
Furthermore, we have seen that the Goerss-Hopkins-Miller theorem associates to
C/k an elliptic Eo-ring spectrum

E = E(k,C) = 03, (Spf(B))

with associated elliptic curve C.

The curve C is to be regarded as an elliptic curve over Spf(B), but by Re-
mark 1.6, there is a unique elliptic curve C% over Spec(B) which restricts to
C/Spf(B). Let B be the ring

BOTd — B[ufl]/\

p

We regard B°" as being complete with respect to the ideal (p). Let C be the
restriction of C*9 to Spf(B°"?). The following lemma follows from Lemma 8.1.

LEMMA 6.8. The spectrum E (1) is an elliptic spectrum for the elliptic curve
éord/Bord.

The Goerss-Hopkins E-structure on E induces an Eo, structure on the K (1)-
localized spectrum F (1), and there is an induced operation
wp ) Bord N Bo’rd
21
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on Bt = moFEk (1) which lifts the Frobenius in characteristic p. We have the
following proposition.

PROPOSITION 6.9. There is an tsomorphism
(wp>*c~vord ~ (éord)(p)

(where (Cor)®) s the quotient of C°™ of Diagram (5.2)) making the following
diagram of isogenies of formal groups commute.

(6.1) (éord)/\ i> (,(pp)*(éord)/\

((Cford)(p))/\

PROOF. (In some sense, this proposition is one of the most important ingredi-
ents to the construction of ¢mf, and I would have gotten it wrong except for the
help of Niko Naumann and Charles Rezk.) Let

i : Sub,(C) — Spf(B)

be the formal scheme of “subgroups of C of order p” (see, for instance, [Str]). The

formal scheme Sub,,(C) is of the form

Spf(To(p)(C)).
Observe that because the p-divisible group of C' is entirely formal, we have
To(p)(C) = To(p)(C").
Let Heq, be the universal degree p subgroup of i*C. There is a corresponding
operation
’(/JHC{M :B=mnyF — Fo(p)(C)
and an isomorphism
(6.2) Py CN = (i*C")/Hean-
This operation arises topologically from the total power operation
Ui, : B=mE 5 mEP — To(p)(C")

where the surjection is the quotient by the image of the transfer morphisms [AHS,
Rmk. 3.12]).

Forgetting the topology on the ring B, we can regard ch simply as a formal
group over the ring B, and we get an induced formal group (C°"¥)"/B°"% and
degree p subgroup

Az < (Gt
over
Lo(p)(C)"® := To(p)(C)uy T = To(p)(C™).
The last isomorphism follows from the fact that forgetting about formal schemes,
there is an isomorphism

Subp(éalg) X Spec(B) SpeC(BOTd) o~ Subp(éalg X $pec(B) SpeC(BOTd)),

Let
c: To(p)(C) = To(p)((Cm)") = B
22
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be the map classifying the subgroup HZ¢ of order p of I'g(p)((C™)"), regarded as
a subgroup of C°"¢. The isomorphism T (p)((C°"¥)") 22 B reflects the fact that
there is one and only one degree p-subgroup of a deformation of a height 1 formal

group. Thus
(63) Hord _ Z-*(Cvord)/\[p}'

can

By Example 6.6, the corresponding operation
wc*f[g;‘g . Bord N Fo(p)((éord)/\) o~ Bord

is nothing more than the operation ¢/” on the K (1)-local E ring spectrum Ej (q).
Since localization £ — F (1) is a map of E..-ring spectra, I/ and Eg ;) have
compatible descent data for subgroups, and we deduce that there is a commutative
diagram:

(6.4)

B . Bord

o ———— 1o Ek 1)

73EK(l)
D tpan PE (PE)K (1)

T EBErt —— o (BBt ) (1) —— mo(Eg (1)) PZr+

| i i

Lo(p)(C) Lo(p)(C) Lo(p)((Cor®)") == B°"

Using Serre-Tate theory, the isomorphism (6.2) lifts to an isomorphism
(i*C)/Hean = (¥g,,,)"C.

Using the isomorphism above, equality (6.3), and the commutativity of Diagram 6.4,

we deduce that there are isomorphisms

(C«ord)(p) _ C«ord/c*ﬁord

can

can

= ¢ ((*C)/ Hean)

> (g )°C

— (Qpp)*éord-
Diagram (6.1) commutes because both f, and (®;nsep)« are lifts of the relative
Frobenius with the same kernel. (]

Consider the pullback diagram
(6.5) Spf((K})oEk1)) —2 > Spf(V2)
CI\L lq'

Spf(moEK (1)) Y M
of Proposition 6.1. The following theorem will be essential in our construction of
the map achrom-
23
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THEOREM 6.10. The map
g: Vo/<\> — (K;\)OEK(l)
of Diagram (6.5) is a map of 0-algebras.

PROOF. We just need to check that g commutes with P (we already know
from Proposition 6.1 that g commutes with the action of Z,). The map g classifies
a level structure

n:Gm — ¢*(CoTHN.
We need to verify that there is an isomorphism
(") g Com, (wP) ) = (g7 Cr )P, P,
The descent data for level structures arising from E..-structures is natural with
respect to maps of E-ring spectra (see [AHS]). It follows that the maps of Foo-
ring spectra:
Kp N (Kp A EK(l))p & EK(I)-
induce a diagram

G, i r*(w”)*@m

"l l(w”)*n

(q*C‘VOTd)/\ 7 q*(wp)*(éon)/\

The E-structure on p-adic K-theory associates to the formal subgroup pu, < @m
over Zj, the pth power isogeny

fo = [pl : G — Gy
(this is a special case of Example 6.7). Combined with Diagram (6.1), we have a
diagram

@m (p] @m

| [

q* (C«ord)/\(q)msep)*q* ((éord)(p))/\

We deduce from Diagram (5.3) that with respect to the isomorphism (¢?)*C"4 =
(Cor)(P) we have (yP)*n = n(®), O

7. Construction of (’)’;‘{’1(71)
For a f-algebra A/k and a 6-A-module M, let
H g, (A/k, M)

denote the f-algebra Andre-Quillen cohomology of A with coefficients in M. In
[GH] (see also [GH]), an obstruction theory for K(1)-local E,, ring spectra is
developed. We summarize their main results:

THEOREM 7.1 (Goerss-Hopkins).
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(1) Given a graded 0-algebra A, the obstructions to the existence of a K(1)-
local Eo-ring spectrum E, for which there is an isomorphism

(Kp)E = A,
of 0-algebras, lie in
Hig, (A (Ep) s, Al=s +2]),  s>3.
The obstructions to uniqueness lie in
Hiig, (As)(Kp)ws Ad[=s +1]), s >2.

(2) Given K(1)-local Ex-ring spectra Ey, Eo such that K[ E; is p-complete,
and a map of graded 0-algebras
f* : (Kl/,\)*El — (KI/)\)*EQ’

the obstructions to the existence of a map f : E1 — FEo of Eo-ring spectra
which induces f, on p-adic K-homology lie in

Hiyg, (K Er/(Kp)e, (K)o Ba[—s +1]), s >2.
(Here, the 0-(K)).Ey1-module structure on (K').Ey arises from the map
f«-) The obstructions to uniqueness lie in
g, (B) B/ (Kp)w, (K)o Bo[—s]),  s>1
(3) Given such a map [ above, there is a spectral sequence which computes
the higher homotopy groups of the space Ex(E1, F2) of Ex maps:
g, (Kp)wEr/(Kp) e, (Kp)Ba[t]) = Tt s(Eo(Er, Ea), f).
REMARK 7.2. The notation A, [u] corresponds to the notation Q" A, in [GH],
[GH].
REMARK 7.3. To simplify notation in the remainder of this paper, we will write
Hj{lga (A*7 M*) = HZlgs (A*/(KP)*7 M*)
(That is, we will always be taking our Andre-Quillen cohomology groups in the

category of graded 6-(K,).-algebras unless we specify a different base explicitly.)

REMARK 7.4. The homotopy groups of a K(1)-local E-ring spectrum FE are
recovered from its p-adic K-homology by an Adams-Novikov spectral sequence.
Assuming that the pro-system

{K(EAM(p))}i
is Mittag-Leffler (see [Dav06, Thm. 10.2]) this spectral sequence takes the form
(71) HE(Z;, (K;\)tE) = Wt,SE.

Let A, be a graded even periodic 8-algebra, and M, be a graded 6-A,-module.
In [GH, Sec. 2.4.3], it is explained how the cohomology of the cotangent complex
L(Ay/Z,) inherits a canonical 6-Ag-module structure from that of Ay, and that
there is a spectral sequence

(7.2) Ext?wod%o (H(L(Ao/Zp)), M) = HZergtg (Ax, M,).
The following lemma simplifies the computation of these Andre-Quillen cohomology

groups.
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LEMMA 7.5. Suppose that A./(Kp)s is a torsion-free graded 6-algebra, and that
k
M, is a torsion-free graded 0-A,-module. Let A* denote the fized points AP
(AY = A%p ). Note that we have
A, = limlim AT /p™ A
m k
Let A, (respectively AY and M, ) denote A, /pA. (respectively A% /pA® and M, /pM.,.).
Assume that:
(1) 4* and M, are even periodic,
(2) AQ is formally smooth over F,
(3) Hi(Zy,Mo) =0 fors >0,
(4) Ayg is ind-étale over AY.
Then we have:
Hig, (As, Mt]) = 0
if s> 1 ort is odd.

ProoOF. By [GH, Prop. 6.8], there is a spectral sequence

igg, (A" Mo 5™ UML) = Hiyy, (Av, M.1).

Thus it suffices to prove the mod p result. Note that because M is torsion-free,
there is an isomorphism

M, = pmM*/pm'HM*.

Since _/_18 is formally smooth over F,, and since Ay is ind-étale over A9, we deduce
that Ag is formally smooth over F,. Therefore, the spectral sequence

Extsoas, (H(L(Ao/F,), LI = il (A, 3.)

collapses to give an isomorphism

Extiroas, (Qaose,, M) 2 Hyyo (A, L),

Since Ay is ind-étale over A9, there is an isomorphism
Qao/r, = Ao ®ag Lag /v,
of §-Ag-modules. Because Ay is flat over A9, this induces a change of rings isomor-
phism
EXt};MOd%O (QAO/]F;)’ M—t) = EXti\lodgg (QAg/]Fp 5 M—t)-

There is a composite functors spectral sequence

Extfgg [6] (Qa9/8, H! (z), M,)) = Extj\;}';d%o (Qag/r, M,)
0
which, by our hypotheses, collapses to an isomorphism

_ X

S Zp ~ s \ ]
(73) EXtAg[@] (ing/]Fp?Mu ) = EXtModeA,O (QAS/FP,MU).
0

Because A is formally smooth over F,, the module of Kéhler differentials (2 A9/F, 18

projective as an A}-module. The Ext groups in the left hand side of (7.3) therefore

vanish for s > 1, and, since M, is concentrated in even degrees, for u odd. (I
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There is a relative form of Theorem 7.1. Fix a K(1)-local E,-ring spectrum
E. The entire statement of Theorem 7.1 is valid if you work in the category of
K (1)-local commutative E-algebras instead of K(1)-local E-ring spectra. The
obstructions live in the Andre-Quillen cohomology groups for graded 6-W,-algebras:

j‘lg?y* (A*7M*)
where W, = (K;,\)*E

LEMMA 7.6. Suppose that W, and A, are even periodic, and that Ay is €tale
over Wy. Then for all s,
Zlg“’/v* (A*v M*) =0.
PRrOOF. Consider the spectral sequence

EXti/[odg* (Ht(L(A*/W*))a M*) = HZJ{;%V* (A*a M*)

Because A, is étale over W, the cotangent complex is contractible, and the spectral
sequence collapses to zero. O

We outline our construction of Oﬁgz(’l):

Step 1: We will construct a K (1)-local E,.-ring spectrum tmf (p)°"?. This
will be our candidate for the spectrum of sections of 0332(71) over the étale
cover

Mt (p)
Ly
M
This cover is Galois, with Galois group (Z/p)*. We will show that there is

a corresponding action of (Z/p)* on the spectrum tmf(p)°"¢ by E..-ring
maps. We will define ¢mf j (1) to be homotopy fixed points

tmf g1y = (tmf (p)°rd)P &P

Step 2: We will construct the sheaf (9;‘(”(91) in the category of commutative
tmf g (1)-algebras.

We now give the details of our constructions.
Step 1: construction of tmf k4.

Case 1: assume that p is odd.
Let X be the formal pullback

(7.4) 15 —— M (p™)
M (p) M
For a p-complete ring R, the R-points of X are given by
X ={(C.n,n")}
27
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where the data is given by:

C a generalized elliptic curve over R,

~

n: Gy, = C an isomorphism of formal groups,
n' oy =0 [p] an isomorphism of finite group schemes.

Since M7 (p) = Spf(V7) is formally affine, we deduce that X = Spf(W) for
some ring W. Since M27?(p) is étale over M2, the ring W possesses a canonical
f-algebra structure extending that of V2. For k € Zy, the operations P* are
induced by the natural transformation on R-points:

(¥*)* X(R) = X(R)
(C.n.n') = (Como[k]n)
The operation P is induced by the natural transformation
(¥")"X(R) = X(R)
(Conyn') = (CP) P () P))

Here, given 7/, the level structure (7)) is the one making the following diagram
commute (see Remark 5.3).

Hp
()@ J«
n’
- A
®p| — = O
CPM@WLCM

Taking w.o,1 to be the canonical line bundle over X, we can construct an evenly
graded f-algebra W, as
WQ* = I‘w?:l.
THEOREM 7.7. There is a (Z/p)* -equivariant, even periodic, K (1)-local Ex -
ring spectrum tmf (p)°"® such that
(1) motmf (p)°r® = V1,
(2) Letting (C1,m1) be the universal tuple over M1 (p), there is an isomor-
phism of formal groups Gp,s(pyora = Cy.
(3) There is an isomorphism of 0-algebras
(D) utmf (p) 7 2 WV,

PrOOF. Observe the following.
(1) W, is concentrated in even degrees.

(2) W is ind-etale over W% = Vi, and V; is smooth over Zy. This is because
in the following pullback

15 — Mg (™)
M (p) > M
we have M°¢(p™) ind-etale over M4, thus X = Spf(W) is ind-etale

over M2 (p) = Spf(V1), and M2 (p) is smooth over Spf(Z,).
28

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



(3) Hi(Zy,W) =0 for s > 0. This is because W is is an ind-étale Z-torsor
over Vj.

We deduce, from Lemma 7.5, that there exists a K(1)-local E-ring spectrum
tmf (p)°"¢ such that we have an isomorphism

(K )tmf () = W,

of graded 6-algebras. As a consequence of (3) above, we deduce that the spectral
sequence (7.1) collapses to give an isomorphism

motmf (p)** 2= (Vi)
where, if w; is the canonical line bundle over M (p), then
(Vl)g* = le *.

Let (C1,m1) be the universal tuple over M7 (p). The existence of the isomorphism

M : pp — Calp]
implies that w; admits a trivialization. In particular, tmf(p)°" is even periodic.
We now show that the formal group of Gy, (pyera is isomorphic to the for-

mal group (A}l. Choose complex orientations ®x, Pyyp(pyore of K and tmf (p)°re.
Consider the following diagram.

tmf (p)ord

ool
MUPO wotmf(p)ord:Vl

. .|

MUP,MUP (K )otmf (p)°rd =—=W

PRAP (pyord

The map ®x A Pypp(pyora classifies an isomorphism of formal groups

@ : N1 Gm = NRGpp (pyora.-
over W. At the same time, the universal tuple (C,n,n’) over W has as part of its
data an isomorphism of formal groups
n:G, = C.
The generalized elliptic curve C over W is a pullback of the elliptic curve Cy over
Vi — thus it is invariant under the action of Z). The same holds for the formal

group NiGypmy(pyora — it is tautologically the pullback of Gypf(pyora. Under the
action of an element k € Z;, the isomorphisms o and 5 transform as

(k"o = a0 [],
[k]'n =mno[k].

The isomorphism
noa i niGnp(pyera — C
is therefore invariant under the action of Z,’. Thus it descends to an isomorphism

~

Qaq ot Gtmf(p)ord ’z—) Cl.
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The Galois group (Z/p)* of M9(p) over M acts on Vi. The last thing
we need to show is that this action lifts to a point-set level action of (Z/p)* by
E.-ring maps. Because W, satisfies the hypotheses of Lemma 7.5, we may deduce
from Theorem 7.1 that the K,-Hurewicz map

[tmf (p)°" %, tmf (p)° g — Hom aq, (W, Ws)

is an isomorphism. The action of (Z/p)* on Vi lifts to W in an obvious way: on
the R-points of Spf(W) = X, an element [k] € (Z/p)* acts by
[k]" : X(R) —» X(R)
(C,n.n') = (C,n,n o [K])
This action is easily seen to commute with the action of 9! for [ € Zy, and PP
Thus (Z/p)* acts on W through maps of #-algebras. We deduce that there is a
map of groups
(Z/p)* — [tmf (p)°"*, tmf (p)*" "] 5.

The obstructions to lifting this homotopy action to a point-set action may be iden-
tified using the obstruction theory of Cooke [Coo] (adapted to the topological
category of E..-ring spectra). Namely, the obstructions lie in the group cohomol-
ogy

H*((Z/p)", ms—2(Eoo (tmf (p)°, tmf (p)°),1d)), s> 3.
Since the space Eoo (tmf (p)°"e, tmf (p)°"®) is p-complete, and the order of the group
(Z/p)* is prime to p, these obstructions must vanish. O

Define
tmf g1y = (tmf (p) )M &/
The following lemma is a useful corollary of a theorem of N. Kuhn.

LEMMA 7.8. Suppose that G is a finite group which acts on a K(n)-local En,-
ring spectrum E through E.-ring maps. Then the Tate spectrum E¢ is K(n)-
acyclic, and the norm map

N : Epg — EMC

is a K(n)-local equivalence.

PROOF. Kuhn proves that the localized Tate spectrum ((St(n))*®)7r(n) is acyclic
[Kuh, Thm. 1.5], where T'(n) is the telescope of a v,,-periodic map on a type n com-
plex. The Tate spectrum (E'C)(,) is an algebra spectrum over ((Sr(n)) )7 mn)-

In particular, it is a module spectrum over an acyclic ring spectrum, and hence
must be acyclic. O

LEMMA 7.9. There is an isomorphism of 0-algebras (K, ).tmf 1y = (VL)
PrOOF. By Lemma 7.8, the natural map
or % or h’ X
(B A (tmf ()Y 1P sy = (B A tnf (0)°7 Vi)

is an equivalence (the homotopy fixed points are commuted past the smash product
by changing them to homotopy orbits). The homotopy fixed point spectral sequence
computing the homotopy groups of the latter collapses to give an isomorphism:

(VL)w 22 (W) B 22 (KD tmf g ).
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(The first isomorphism above comes from the fact that X is an étale (Z/p)*-torsor
over M2 (p>).) O

Case 2: p=2.

If one were to try to duplicate the odd-primary argument, one would do the
following: the first stack in the 2-primary Igusa tower which is formally affine is

M (4) = Spf(Va).

The cover M (4) 5 M9 is Galois with Galois group (Z/4)*. One must begin
by constructing the K (1)-local E.-ring spectrum tmf(4)°"¢. One would like to use
the obstruction theory of Cooke to make this spectrum (Z/4)*-equivariant, but the
order of the group is 2, so we cannot conclude that the obstructions vanish.

We instead replace K with KO. Define a graded reduced 6-algebra to be a
graded 6-algebra over KO, where the action of ZJ is replaced with an action of
L {1},

Suppose that V is a 6-algebra, and that the subgroup {1} C ZJ acts triv-
ially on V. Then V may be regarded as a reduced #-algebra. One may form a
corresponding graded reduced 6-algebra by taking

(7.5) W, = KO, ® V.

DEFINITION 7.10. We shall say that a graded reduced #-algebra W, is Bott
periodic if it takes the form (7.5). We shall say that a K (1)-local E ring spectrum
is Bott periodic if

(1) (K%).F is torsion-free and concentrated in even degrees.
(2) The map (KO%Y)oE — (K4 )oE is an isomorphism.
The relevance of this definition is given by the following lemma.

LEMMA 7.11. Suppose that E is a Bott periodic K(1)-local E-ring spectrum.
Then we have
(KOY).E = KO, ® (Ky)oE
In particular, the graded reduced 6-algebra (K04 ). E is Bott periodic. Conversely,
if E is an FEo ring spectrum with
(KOM.E=KO,®V
as KO.-modules, then E is Bott periodic, and (K)oE = V.

PRrROOF. The first part uses the homotopy fixed point spectral sequence
H*(Z/)2,(K{ ) E) = (KO E.

The second part follows easily from the Kiinneth spectral sequence. ([

REMARK 7.12. Both KO3 and ¢mf ;(1) (once we construct it) are Bott periodic.

Unfortunately the homology theory K04 does not seem to satisfy all of the
hypotheses required for the Goerss-Hopkins obstruction theory to apply. Neverthe-
less, when restricted to Bott periodic spectra with vanishing positive cohomology
as a Zj /{£1}-module, it can be made to work. This is discussed in Appendix A.
There it is shown that given a Bott periodic graded reduced #-algebra W, satisfying

H(Z5 J{£1},Wy) =0fors > 0,
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the obstructions to the existence of a K (1)-local E-ring spectrum F with (KO%).E =

W, lie in the cohomology groups
HjllgTEd(W*7W*[_S+2D7 S Z 3.

o
Given Bott periodic K(1)-local Eo-ring spectra E; and Es, the obstructions to
realizing a map of graded reduced #-algebras
(KO3).E1 — (KO%).Es
lie in
Hi s (KOR). By, (KOR).Byl—s +1]), 22

6
We have the following analog of Lemma 7.5.

LEMMA 7.13. Suppose that A /(KOz2). is a graded 2-complete reduced 0-algebra,
and that M, is a graded 2-complete reduced 0-A,-module. Let A* denote the fized

points ALT2Z2 (A0 = Al ). Note that we have
A, = limlim A% /p™ A
i
Let A, (respectively [12 and M*) denote the mod 2 reduction. Assume that:

(1) 4* and M, are Bott periodic,
(2) AJ is formally smooth over Fy,
(3) HE(ZF {1}, Mo) = 0 for s > 0,
(4) Ag is ind-étale over AY.
Then we have:
Hillgged (A*7 M* [t]) =0

if either s > 1 or —t = 3,5,6,7 mod 8.

The following lemma is of crucial importance.

LEMMA 7.14. Let V1 be the representing ring for M%4(2*°) (a.k.a. the 0-
algebra of generalized 2-adic modular functions).

(1) The element [—1] € Z acts trivially on VL.

(2) The subring Vo C Vo is isomorphic to the fived points under the induced
action of the group Z /{£1}.

(3) We have H(Z5 /{£1},VL/2VL) =0 for s > 0.

PROOF. The stack M97#(2°°) represents pairs (1, C) where
n:Gp—C
is an isomorphism. However, we have ([—1]*n,C) = (1, C):

(—1]"n

(—1]

3
Q=D
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This proves (1). Under the isomorphism given by the composite
144Zy — 25 — Z5 /{*£1}

the action of the subgroup 1 + 4Z, agrees with the induced action of ZJ /{£1} on
V2. But V£ /2V2 is ind-Galois over Va/2V3 (the representing ring for M2/ (4)®Fs)
with Galois group 1+ 4Z,. This proves (2) and (3). O

The algebra V. /2V. is ind-etale over Va/2Va, and M2 (4) ® Fy is smooth.
Lemma 7.13 implies that the groups

H3yrea(KOL ® V2, KO, @ V)

6
vanish for s > 1 and —u = 3,5,6,7 mod 8. This is enough to deduce that there
exists a K (1)-local Ew-ring spectrum tmf (1) such that there is an isomorphism
of graded reduced 6-algebras

REMARK 7.15. There is another construction of imf ) at p = 2 which is
described in [Lau] (see also [Hopl]). The spectrum is explicitly constructed by
attaching two K (1)-local E-cells to the K (1)-local sphere. Unfortunately, it seems
that this approach does not generalize to primes p > 5, though it does work at p = 3
as well [Hopl].

Step 2: construction of the presheaf (9;?1(”1). We shall now construct the
sections of a presheaf (’);?fl) on (./\/lgfld)et. By Remark 2.5, it suffices to produce

the values of Ot}??l) on étale formal affine opens of M9/,

Let Spf(R) ER MO be an étale formal affine open. Consider the pullback:

’

f
Spf(W) —— M7 (p™)

L

SpE(R) ———> M

Since f is étale, W is an étale V2 -algebra, and W carries a canonical #-algebra
structure (Section 6). We have an associated even periodic graded 6-(V2).-algebra
W,.

The relative form of Theorem 7.1 indicates that the obstructions to the ex-
istence and uniqueness of a K (1)-local commutative tmf K (1)-algebra E such that
there is an isomorphism

(K))E =W,
of -(V2),-algebras lie in the Andre-Quillen cohomology groups

y (W, We[ul).

Alglyn),
These cohomology groups vanish by Lemma 7.6.
Given a map
g : Spf(R2) — Spf(Ry)
in (M9%),;, we get an induced map
9" (W)e — (W),
33
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of the corresponding 6-(V2).-algebras. Let E1, F3 be the corresponding K (1)-local
commutative tmf g ;)-algebras. The obstructions for existence and uniqueness of a
map of imf (;)-algebras

g* : E1 — Eg

realizing the map g* on K,-homology lie in the groups
y (W), (W2)[u]).

6
Agivpy.
Furthermore, given the existence of g*, there is a spectral sequence

it (W) (W) fu) = 7o (Al (B, B). ).

Again, these cohomology groups all vanish by Lemma 7.6. We deduce that:
(1) The K,-Hurewicz map

[E1, Ez]Algtme(l) — HomAlgfvog)* (W), (Wa)y)

is an isomorphism.
(2) The mapping spaces Algimf e o) (E1, E) have contractible components.

We have constructed a functor
@;?ﬁ) S (MO etagr )P — Ho(Commutative tmf . (1)-algebras).

Since the mapping spaces are contractible, this functor lifts to give a presheaf (see
[DKS])

Oé?fl) D (MUD)etag7)°P — Commutative tmf . (1)-algebras.
The same argument used to prove part (2) of Theorem 7.7 proves the following.

PROPOSITION 7.16. Suppose that Spf(R) — M is an étale open classifying
a generalized elliptic curve C/R. Then the associated spectrum of sections 0;?1(”1)
is an elliptic spectrum for the curve C/R.

8. Construction of Ozt,"p

To construct C’)}tfp it suffices to construct the map

. to - to
Qchrom - (Zord)*OKz(jl) — ((ZSS)*OKI()2))K(1)'
Our strategy will be to do this in two steps:
Step 1: We will construct
Qchrom * tf g1y = (tMf K (2)) (1)
where
tmf g (2) == 02)1()2)( eit)-

Step 2: We will use the K(1)-local obstruction theory in the category of
tme(l)—algebra spectra to show that this map can be extended to a map
of presheaves of spectra:

(Lord)*oég?l) — ((LSS)*O?ZEQ))K(I)'
We will need the following lemma.
LEMMA 8.1. Suppose that C is a generalized elliptic curve over a ring R, and

that E is an elliptic spectrum associated with C. Then
34
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(1) E is E(2)-local.
(2) Suppose that R is p-complete, and that the classifying map

Spf(R) — (M),
for C is flat. Then there is an equivalence
EK(I) ~ E[’Ul_l]p.

PROOF. Greenlees and May [GM] proved that there is an equivalence

Epmy ~ E[I14].
They also showed there is a spectral sequence
(8.1) H*(Spec(R) — Xy, w®") = oy E[I, 1]

where X,, = Spec(R/I,+1) is the locus of Spec(R/p) where the formal group of
E has height greater than n. (1) therefore follows from the fact that C' never has
height greater than 2. For (2), since R is assumed to be p-complete, there is an
isomorphism

mo(Elvy ') 2 Rlvy p.

Over R[v;']/pR[v; Y], the generalized elliptic curve C is ordinary, hence X is empty
and the spectral sequence (8.1) collapses to show that E[v; '], is F(1)-local. Tt is
also p-complete by construction, and since K (1)-localization is the p-completion
of E(1)-localization, we deduce that E[v; '], is K (1)-local. Tt therefore suffices to
show that the map
E = Elv; '],

is a K (1)-equivalence. It suffices to show that it yields an equivalence on p-adic K-
theory. However, by Proposition 6.1, both (K,))oE and (KQ)O(E[vl_l]p) are given
by W, where we have pullback squares:

Spf(W) Spf(R[vy ']}) — Spf(R)
M (p™>) M (Meu)yp

Step 1: construction of Qchrom : tmf (1) = (¢mf k(2)) k(1)

We shall temporarily assume that p is odd. After we complete Step 1 for odd primes,
we shall address the changes necessary for the prime 2.

Fix N to be a positive integer greater than or equal to 3 and coprime to p.
Let M ;i (N)/Z[1/N] denote the moduli stack of pairs (C, p) where C' is an elliptic
curve and p is a “full level N structure”:

p:(Z/N)*> = CIN].
Since N is greater than 3, this stack is a scheme [DR, Cor. 2.9]. The cover

M@ll(N) - M ® Z[l/N]
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given by forgetting the level structure is an étale GLo(Z/N)-torsor. Let My (N),
denote the completion of M.y (N) at p, and let M35, (N) denote the pullback

$(N) ——= M (N),

| |

! (Meu)p

Since My (IN), is a formal scheme, M?5,(N) is also a formal scheme. By Serre-Tate
theory, the formal scheme M?$5,(N) is given by

(V) = H Spf (W (k;)[[u1]])

for a finite set of finite fields {k;} (this set of finite fields depends on N). Let Ay
denote the representing ring

Ay =[] W k) fun)]
and let By be the ring

By = An[uy']p = HW(kz’)((m))Q-

(Elements in the ring W(k;)((u1));, are bi-infinite Laurent series
> ajui
JEL
where we require that a; — 0 as j — —o0.) We shall use the notation
ME(N) = Spf(;, ) (AN)

to indicate that Spf is taken with respect to the ideal of definition (p,u;). Define
M35,(N)°" to be the formal scheme given by

Z?l(N)Ord = Spf(p) (Bn).

Let (C3%F,m%)/M35,(N) be the elliptic curve with full level structure classified by
the map

au(N) = Meu(N).
We regard M35, (N )°"4 as the “ordinary locus” of C%¢. This does not actually make

sense in the context of formal schemes — M$5,(N)°"® is not a formal subscheme of
53 (N). Nevertheless, by Remark 1.6, there is a canonical elliptic curve (with level
structure) ((C58)29,n3¢) which lies over M35, (N)®9 := Spec(Ay), and restricts to

O3 /SPf (,uy) (An). The formal scheme M35 (N )" is given by the pullback

(V) Mg

L

:?Z(N)alg > mell
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We let ((C57)°", n3?) denote the restriction of the pair ((C35)%9, n53) to M5, (N)ord.
We define M35,(N,p)°" to be the pullback

M (N, p)rd ——= M (p)

| |

Mss (N) ord Mglrld

and denote the pullback of (C37)7" to M5, (N, p)°" by (C371)°"%. Since M5, (N)°re
and M4 (p) are formally affine, we deduce that 58 (N, p)"’”d is formally affine,
and is of the form Spf(,(Bn,1).

Let M4 (p)™* denote the locus of the formal affine scheme M7 (p) where the

universal curve is nonsingular; it is covered by an étale GLo(Z/N)-torsor given by
the pullback

MEEHN, p)™* —— Mey(N),

| |

M (p) (Meu)p
The action of GLy(Z/N) on the formal affine scheme M35, (N, p)°rd = Spf () (Bn,1)

ord

over MYF(N,p)™*, gives descent data which, by faithfully flat descent (see, for
instance, [H1d1 Sec. 1.11.3]), yields a new formal affine scheme

ML (P)ord = Spf(p) (B1)

over M4 (p)™* (where By = B]C\’;Lf(z/ N)) together with a pullback diagram

(N p) 7 —— M (p) "

l |

M gz"ld ( )ns - M glrld (p)ns
Define (V2)** to be the pullback
Spf(p)((vog)ss) Mgﬁd( >)

i |

M (p)r ———= M (p)
and define W5 and W** to be the pullbacks
(8.2) SDE ) (W**) ——= Spf ) (W**) ——= Spf ) (VLL)**)

Mglrld( ) s o Mgﬁd(p)ns - o (Mgﬁd)ns
By faithfully flat descent, we have
Wes = (Wss)GLz(Z/N)’
(V)™ = (Weo)@mr,
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REMARK 8.2. Both W and W** possess alternative descriptions. They are
given by pullbacks

SpE(I) = SpE(IV™) ——> M} (p™)
M (N, )™ M ()7 M
Let tmf(N)g(2) be the spectrum of sections
tmf (N)k(2) == Oﬁ?fg)( enn(NV))-

The action of GLy(Z/N) on the torsor M?$;,(N) induces an action of GL2(Z/N)
on tmf (N)g(2). Since the sheaf O;?’(’Q) satisfies homotopy decent, we have

(tmf (N) ge(2))" P2 PN~ tnf e gy
LEMMA 8.3. There is an equivalence
((tmf(N)K(z))K(l))hGLZ(Z/N) >~ (tmf k(2)) k(1)

PRrROOF. Using Lemma 7.8, and descent, we may deduce that there are equiv-

alences
((tmf<N)K(2))K(l))hGLQ(Z/N) = ((tme(z))hGLZ(Z/N)>K(1)
>~ (tmf g (2)) k(1)
[l
Consider the finite (Z/p)* Galois extension Ef(Hpr) of Sk(1) given by the

homotopy fixed points of E1-theory with respect to the open subgroup 1+pZ, C Z;
(see [DH], [Rog]). Note that we have

(8.3) (Ef'(prpzp))h(z/p)X ~ Sk(1)-
Define spectra
h ,
(tmf (N, p)k(2)) k(1) = (tmf (N) K (2)) k(1) NS E1(1+pzp)
h(1+pZ
(tmf () (2)) k(1) = (tme(Q))K(l) ASia) E1(1+p »)

These spectra inherit an action by the group (Z/p)* = Z, /1 + pZ,.
Using Lemma 7.8, Lemma 8.3 and Equation (8.3), we have the following.

LEMMA 8.4. There are equivalences of Eo-ring spectra
((tmf (N, p) ke (2)) k1)) "2 EN) = (tmf (p) ke (2)) k(1)
((tmf (D) ke (2)) e 1) " PP 2 (tmf o)) 1)

We now link up some homotopy calculations with our previous algebro-geometric
constructions.

LEMMA 8.5. There is an GLo(Z/N) x (Z/p)* -equivariant isomorphism
mo(tmf (N, p)k(2)) k(1) = Bn
making (tmf (N, p) k(2)) k(1) an elliptic spectrum with associated elliptic curve (Cf\?’l)ord,

38

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



PROOF. By construction, there is a GLy(Z/N)-equivariant isomorphism
motmf (N) g (2) = AN

making tmf(N)x(2) an elliptic spectrum with associated elliptic curve C3?. By
Lemma 8.1, this gives rise to an isomorphism

mo(tmf (N)k2)) k(1) = By

making the pair ((tmf(N)x(2)) (1), (C37)°"%) an elliptic spectrum. For any K (1)-
local even periodic Landweber exact cohomology theory E, the homotopy groups
of
h(1+pZy
E' = E Mgy, BYUTPE)

are given by the pullback
Spf(moE") —— M4 (p)

| |

Spf(mo E) ——— Mpult
(where the notation here is the same as in the proof of Lemma 5.1). This is easily
deduced from the cofiber sequence
k_
E = (Ky AE), =5 (K, AE),
where k is chosen to be a topological generator of the subgroup 1+ Z, C Z). In
particular, we have the desired isomorphism
mo(tmf (N, p)k(2)) k(1) = Bn,1-

The formal group of E’ is the pullback of the formal group of E along the map
m0E — mE’. The elliptic curve (C37,)°" is the pullback of (C3)°"¢ under the
same homomorphism. The canonical isomorphism between the formal group of F
and the formal group of (C3#)°"? thus pulls back to give the required isomorphism
between the formal group of E’ and the formal group of (Cf\ﬁl)"rd. ]

LEMMA 8.6. There are isomorphisms
(ED).(tmf (N, D)k (2)) k(1) = (Kp)s ®z, W*
(Kg/)\)*(tmf(p)l(u))Ku) = (Kp)« ®z, W™
(K)« (tmf g (2)) k(1) = (Kp)« ®z, (V)™
(We shall denote these graded objects as W2°, W25, and (VL)*, respectively.)

PrOOF. We deduce the first isomorphism by combining Proposition 6.1 with
Remark 8.2. Using Lemma 8.4, and Lemma 7.8, we have equivalences

((Kp A (tmf(N,P)K(z))K(1))p)hGL2(Z/N) =~ (Kp A (tmf (P) k(2)) k(1))p
((Kp A (tmf(p)1?((2))11((1))zp)h(z/mX =~ (Kp A (tmf (P) k(2)) K(1))p
The pullback diagram (8.2) implies that W** is an étale G Ly (Z/N )-torsor over

W5 and W** is an étale (Z/p)*-torsor over (V2)*$. The resulting homotopy fixed
point spectral sequence

H*(GLy(Z/N), (K])«(tmf (N, p)k 2)) k(1)) = (K« (tmf (p) ie(2)) k(1)
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therefore collapses to give the required isomorphism

(Kp)«(tmf (p)k(2) k(1) = (Wres)GE2EIN) — yyss,

This in turn allows us to conclude that the homotopy fixed point spectral sequence
H*((Z/p)*, (Kp)«(tmf (p) k(2)) k(1)) = (K))«(tmf g (2)) (1)
collapses to give the isomorphism
(K )« (0mf re(2y) i (1) = (W) &)™ = (V).
O
The universal property of the pullback, together with the diagram of Re-
mark 8.2, gives a (Z/p)*-equivariant map &*:

Spf (W=*)

=

RN
shp)ere Spf(W) —— M2 (p™)

Iy i

M (p) —— M

Here, Spf(W) = X is the pro-Galois cover of M?¥(p) given by Diagram (7.4).
To construct our desired map
Qchrom  tMf g1y = (tMf K (2)) k(1)

it suffices to construct a (Z/p)*-equivariant map

Yeprom = tf (D) k(1) = (tmf (D) ik (2)) K (1)

The map aeprom is then recovered by taking homotopy fixed point spectra.
The map &* induces a map
a: W, — W;:s

of graded @-algebras. The obstructions to the existence of a map of K(1)-local
FE-ring spectra

Xoprom * tMf (D) k(1) = (tmf (P) K (2)) K (1)
inducing the map & on p-adic K-theory lie in:

Hjyy (W, W[5 +1]) s> 2.

These groups are seen to vanish using Lemma 7.5. The obstructions to uniqueness
(that is, uniqueness up to homotopy) lie in

HZlgg(W*aW;?S[*SD 52 17

and these groups are also zero. Because & is (Z/p)*-equivariant, we deduce that
the map o, commutes with the action of (Z/p)* in the homotopy category of
FE-ring spectra. Because we are working in an injective diagram model category
structure, after performing a suitable fibrant replacement of (tmf (p) k(2)) k1), there

is an equivalence of (derived) mapping spaces

Eoo (tmf (p) i (1), (0mf (P) 1(2)) K (1)) (2/) % -equivariant. == Eoo (M () 1 (1), (tmf (P) re(2)) (1)
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Because the order of (Z/p)* is prime to p, the spectral sequence

H*((Z/p), meEoe(tmf (p) s 1) (tmf (p) k(2)) k(1)) = Tems Eoo (tmf (p) e 1), (¢mf (P (2)) e (1)) /7
collapses to show that the natural map
Z X
mf ey, (f Dxe)sl om0 @), (e Il
7./p)* — equivariant

is an isomorphism. In particular, we may choose o’
map of F..-ring spectra.

to be a (Z/p)*-equivariant

chrom

Modifications for the prime 2.

At the prime 2, the first stage of the Igusa tower which is a formal affine scheme
is M°4(4). All of the algebro-geometric constructions such as M33,(N,p)°re,
s¢(p)°4, etc for p an odd prime go through for the prime 2 with M4 (p) re-

placed by M°¢(4) to produce formal affine schemes M55, (N, 4)°"4 and M5, (4)°74.
One then defines (V2)** as the pullback

(8.4) SPE((VL)*) —> Mo (2°°)
M3 (4)74 = MO (4)
Define
(tmf (N) k@) k) = (Oﬁ?()g)( (V)

(tmf (N, )k (2)) k(1) = (tmf (N)k(2)) k(1) NSk, B
Eh(1+4Z2)

h(1+47Z,)

(tmf (4) k2)) k) = (EMf k2)) K1) NSk,
Just as in the odd primary case, argue (in this order) that we have
(K2)o(tmf (N, 4) k(2)) r(1) = W**
(K2)o(tmf (4)k(2)) k(1) = W
(K5)o(tmf re(oy) (1) = (VR)**

where W5 and W5* are given as the pullbacks
SpE(W**) ——— SpE(W**) —— Spf((VL)**)

| | |

MEHN, 4" —— M) —— (M)

Note that the homotopy groups of (tmf K(2)) k(1) are easily computed by inverting
¢4 in the homotopy fixed point spectral sequence for EOs:

T (tmf g2y k(1) = KOL((G71))5-
It follows that the hypotheses of Lemma 7.11 are satisfied, and we have an isomor-
phism
(KO2)«(tmf g (2)) k(1) = KOy @z, (VL)™*.
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The map o* of Equation (8.4) induces a map
a: KO, @VL — KO, ® (VL)*

of graded reduced Bott periodic #-algebras. The obstructions to the existence of a
map of K(1)-local E-ring spectra

Ochrom : tf g1y = (0mf g (2)) k(1)
inducing the map « on 2-adic K O-theory lie in:
3 yrea(KOL @ VL, KO ® (V)™ [—s + 1]) s> 2.

2

These groups are seen to vanish using Lemmas 7.11 and 7.13.

Step 2: construction of a.j., as a map of presheaves over M.
We will now construct a map of presheaves

Qchrom - (Lord)*oig;fl) — ((LSS)*O?{):E;))K(U’

By the results of Section 2, it suffices to construct this map on the sections of formal
affine étale opens of M.
Let R be a p-complete ring, and let

Spf(p) (R) — (M ell)p

be a formal affine étale open, classifying a _generalized elliptic curve C/R. Let wg
be the pullback of the line bundle w over M. The invertible sheaf corresponds
to an invertible R-module I. Let R, denote the evenly graded ring where

Ry, = I®RY,
Consider the pullbacks:
(8.5) Spf(R°"?) ——= Spf(R) Spf(R**) —— Spf(R)
M ——— (Meu)p o= M)y

REMARK 8.7. It is not immediately clear why these pullbacks are formal affine
schemes.

(1) The pullback of Spf(R) over M is a formal affine scheme because the
Hasse invariant can be regarded as a section of the restriction of the line
bundle wi? ™" to Spec(R/p). Indeed, if v; € I®RP=1) is a lift of the Hasse
invariant, then R°"? is the zeroth graded piece of the graded ring

RO = (R)[or )

p

(2) The pullback of Spf(R) over M35, is formally affine because, by Serre-Tate
theory, and the fact that the classifying map is étale, we know that

R HW(k»HmH,

where {k;} is a finite set of finite fields. In Diagram (8.5), Spf(R*®) is taken
with respect to the ideal (p,u;) C R*°, while Spf(R) is taken with respect
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to the ideal (p) C R. The ring R** has an alternative characterization: it
is the zeroth graded piece of the completion

R = (R},

Define
(R = (R log 1))
and let (R**)°"? = R**[u; ']/ be the zeroth graded piece. Define generalized elliptic
curves:
cord = € @ p RO
C% = C @p R

(Css)ord — (%8 QRss (Rss)ord

Since the image of vy is invertible in (R**)2"¢, the curve (C35)°"¢ has ordinary
reduction modulo p, and there exists a factorization

(8.6) R. R (Re)grd

ord "
R

QI

We have K (1)-local E-ring spectra:

Ed = (Lord)*oigﬁ)(Spf(R)),
B = (165)« O (SPE(R)),
(Ess)ord = E;(S(l)
Combining Propositions 4.4 and 7.16 with Lemma 8.1, we have the following.

LEMMA 8.8. The spectra E°™, E*%, and (E**)°" are elliptic with respect to the
generalized elliptic curves C°™¢/R°™, C*%/R*S, and (C**)°"¢/(R**)°™ respectively.

Consider the pullbacks

SpE((Wis)®) —— Spt(Wrd) —— M (p>)

| | |

SDE((Ras) ™) ——= SpE(R™) ———> M

We have, by Proposition 6.1, the following isomorphisms of graded 6-(V.}).-algebras:
(KZ/)\)*Eord o~ W:rd
(Kp)(Bos) 7 22 (W) 27

where W24 and (W,,)2"¢ are the even periodic graded §-algebras associated to the

f-algebras W and (W)
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We wish to construct a map:

Qchrom

tmf gy —= (tmf k2)) k(1)

| i

Eord - (Ess)ord

Cchrom
The map g induces a map of graded 6-(V2).-algebras
g W (W),
The obstructions to realizing this map to the desired map
Aetrom : BT = (Egy) "
of K(1)-local commutative tmf y(;)-algebras lie in

y (W:Td7 (Wes)ird[*S + 1]), s> 1.

Alg?vogn

Because W' is étale over V), Lemma 7.6 implies that these obstruction groups
all vanish. Thus the realization acprom €xists.
Suppose that we are given a pair of étale formal affine opens

Spf(R;) — My, i=1,2.
Associated to these are K (1)-local commutative tmf i (;)-algebras
Efrd = (Lord)*ot;()‘?l) (Spf(Rz))v
(Ei,SS)OTd = (LSS)*Oi?()Q) (Spf(Ri))K(l).
and graded 6-(V2).-algebras

*

(K;\)*(Ei,ss)ord = (Wi,ss)ord-

*

(KZ/)\)*Eiord o~ (Wi)ord

Again, Lemma 7.6 implies that
; (W), (W) 7 [u]) = 0.

Alglyp).
We deduce that
(1) the Hurewicz map

[B77, (B2,55)°"] = Homyygo (W12, (Wa50) ™)

Algtme(l)

is an isomorphism.
(2) The mapping spaces Algtme(l)(Ede, (Ea,55)°"®) have contractible com-
ponents.
We conclude that:

(1) The maps cprom assemble to give a natural transformation
Qchrom (Lord)*@;?f’l) - ((Lss)*@;?fz))mn-
of the associated homotopy functors
(Lord)*@?(”()l) t (Mew)pet,afr)?? — Ho(Comm tme(l)—algebras),
((LSS)*@%)Q))K(D S (Me)p.et,aff )" — Ho(Comm tmf g ()-algebras).
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(2) The contractibility of the mapping spaces implies that the maps acprom
may be chosen to induce a strict natural transformation of functors:

Qchrom - (Lord)*(/);??l) — ((LSS)*O;?EE))K(D'

Putting the pieces together.
Define O;,Op to be the presheaf of F, ring spectra given by the pullback

oL (1.0,
(tora)s 0?1(31) ach,mm((bss)* O;?:?g) K1)

Let R be a p-complete ring and suppose that

Spf(R) — (ﬂe”)p
is an étale open classifying a generalized elliptic curve C'/R. Using the same no-
tation as we have been using, there are associated elliptic spectra E°™? E** and

(E®s)°r?. The spectrum of sections E := OL°P(Spf(R)) is given by the homotopy
pullback

E%Ess

L

Eord (Ess)ord

Qchrom

We then have the following.
PROPOSITION 8.9. The spectrum E is elliptic for the curve C'/R.
We first need the following lemma.

LEMMA 8.10. Suppose that A is a ring and that x € A is not a zero-divisor.
Then the following square is a pullback.

PROOF. Because of our assumption, the map A — A[z~1] is an injection. The
result then follows from the fact that the induced map of the cokernels of the vertical
maps

Afz™> — A(Am)/xOo
is an isomorphism. O
REMARK 8.11. Lemma 8.10 is true in greater generality, at least provided that

A is Noetherian, but this is the only case we need.
45

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Proof of Proposition 8.9. The proposition reduces to verifying that the diagram
(8.7) R, R$®

.

Rgrd 5 (Rss)grd

is a pullback. Since Spf(R) — (M.y), is étale, and the map (M.y)p, = (Mrag)p
is flat (Remark 1.4), the composite

Spf(R) = (Meu)p = (MFa)p

is flat. In particular, by Landweber’s criterion, the sequence (p,v1) C R, is regular.
Therefore R, is p-torsion-free, and v is not a zero divisor in R./pR.. Using the
facts that R, is p-complete and p-torsion-free, it may be deduced that v, is not a
zero divisor in R,. Therefore, by Lemma 8.10, the following square is a pullback.

R, —— (R.)]

T

Rofor '] — (R, lor ']

The square (8.7) is the p-completion of the above square. Since p-completion is
exact on p-torsion-free modules, we deduce that (8.7) is a pullback diagram, as
desired. (I

9. Construction of (’)(g)p and Otep

In this section we will construct the presheaf oL , and the map

Qarith (LQ)*OSW — (H(Lp)*O;Op> .
Q

P

By the results of Section 2, it suffices to restrict our attention to affine étale opens.

The Eilenberg-MacLane functor associates to a graded Q-algebra A, a commu-
tative HQ-algebra H(A.). Suppose that

f:Spec(R) = (Meu)o
is an affine étale open. Define an evenly graded ring R, by
Ryy =T f*w®".
We define
O&Op(Spec(R)) = H(R.).
The functoriality of H(—) makes this a presheaf of commutative HQ-algebras.

PROPOSITION 9.1. Let C/R be the generalized elliptic curve classified by f.
Then the spectrum H(R.) uniquely admits the structure of an elliptic spectrum for
the curve C'.
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PROOF. We just need to show that there is a unique isomorphism of formal
groups
C = GH(R*)-
It suffices to show that there is a uniue isomorphism Zariski locally on Spec R. Thus
it suffices to consider the case where the line bundle f*w is trivial. In this case, the
formal group Gp (g, is just the additive formal group. Since we are working over
Q, there is a unique isomorphism given by the logarithm. ([l

Because its sections are rational, the presheaf (][, (¢,)«O0}")q is a presheaf of
commutative HQ-algebras.

There is an alternative perspective to the homotopy groups of an elliptic spec-
trum that we shall employ. Let (M,y)! denote the moduli stack of pairs (C,v)
where C' is a generalized elliptic curve and v is a tangent vector to the identity.
Then the forgetful map

firMea)t = My
is a Gy,-torsor. There is a canonical isomorphism
(9.1) £ O = EPw®
tez
which gives the weight decomposition of O(ﬂeu)l induced by the G,,-action. We
deduce the following lemma.

LEMMA 9.2. For any étale open

U— (Mea)o

for which the pullback o
FU = (Mg
is an affine scheme, there is a natural isomorphism
Consider the substacks:

Meyleg'] € M,

Mu[A™'] € My
A Weierstrass curve is non-singular if and only if A is invertible, whereas a singular
Weierstrass curve (A = 0) has no cuspidal singularities if and only if ¢4 is invertible.
Thus the pair Mell[czl], Mi[A7Y form an open cover of M,y. Consider the
induced cover o o

{(Men)gler s (Men)plA™]}

The following lemma is a corollary of the computation of the ring of modular forms
of level 1 over Q.

LEMMA 9.3. The stack (ﬂell)([lg_) is the open subscheme of
Spec(Qley, cg))
given by the union of the affine subschemes
(Meu)gler '] = Spec(Q[c; ™, cq)),
(me”)é[A_l] = Spec(Q[ey, cg, ATY]).

where A = (¢} — c2)/1728.
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Let Mey[c;*, A= denote the intersection (pullback)
Meyleg TN Mep[A™Y < M.

For a presheaf F on M.y, let
Fleg'l, FIATY, Flegh, AT

denote the presheaves on M, obtained by taking the pushforwards of the restric-
tions of F to the open substacks

Meuler'l, Ma[ATY, Meleg', A1,

respectively. By descent, to construct ag.ih, it suffices to construct a diagram of
presheaves of HQ-algebras:

(9.2) (1) 05" le7"] —— (T, (). 047 ) [e3"]

(10): 0§13, A7) =% (1, (1) 057) [e A7

(1) 05”187 > (T, ():0p7) A7)

Q
We accomplish this in two steps:

Step 1: Construct compatible maps on the sections over Moy [A~1], Moy[c; ],
and ./\/lell[ch, Afl].
Step 2: Construct corresponding maps of presheaves.

Step 1: Construction of the «, on certain sections.
Define commutative HQ-algebras

tmfgles '] == (10)«OgF (Meules ')
tmf@[czl,A_l] = (L@)*O(g’p(ﬂe”[cgl,A—l])
tmfo[A7"] = (10)+ O (Meu[A™])

tmf ,, [ex

tmfy [A

tmf [e;h A (H Mell[Cf:AlD>
P Q

Observe that we have
mtmf , [—] = motmfo[—] ®g Ay
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where Ay = (Hp Zp) ® Q is the ring of finite adeles. Therefore there are natural
maps of commutative Q-algebras
Qarith © Ttmfol=] = mtmfy [—].
The Goerss-Hopkins obstructions to existence and uniqueness of maps
Qarith * tmfg[—] = tmf 4[]

of commutative HQ-algebras realizing the maps ag.z, lie in the Andre-Quillen
cohomology of commutative Q-algebras:

H g (matmf [, motmf  [=][—s + 1]), s> 1.
Because
metmfol—] = Qles, co][-]
is a smooth Q-algebra, we have
H o (metmf o[, matmf [=][u]) = 0, s> 0.
We deduce that the Hurewicz map
[tmf o=, tmf o, (=] Atg g = HOM comme (metmf g[=], metmf y [=])

is an isomorphism. In particular, the maps a g €xist.
We similarly find that we have

Hgommq(ﬂ*tmf(@[czl]v Tr*tmfAf [czla A_l][u]) = Oa 5> Oa
H g (mtmfo[A™ ] mtmf ey, A7 [u]) =0, s> 0.

This implies that the diagram

Xarith

(9-3) tme[czl] tmfAf [CZI]

tmf gleyt, AT = tmf [ert, AT

tmf gAY — et (A

commutes up to homotopy in the category of commutative HQ-algebras.

Because the presheaves O;Op are fibrant in the Jardine model structure, the
maps 1 and ro in Diagram 9.3 are fibrations of commutative HQ-algebras. The
following lemma implies that we can rectify Diagram (9.3) to a point-set level
commutative diagram of commutative HQ-algebras.

LEMMA 9.4. Suppose that C is a simplicial model category, and that

AHf-X
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is a homotopy commutative diagram with A cofibrant and q a fibration. Then there
exists a map ', homotopic to f, such that the diagram

AL>X

strictly commutes.

PROOF. Let H be a homotopy that makes the diagram commute, and take a
lift

AR0 f4> X
T H
1
Take f' = H;. O
Step 2: construction of Diagram 9.2.
It suffices to construct the diagram on affine opens. Suppose that
SpeC(R) — meu
is an affine étale open. Define commutative HQ-algebras

Tle;'] = (1g). 05" (Spec(Rlc; ')
Tleg', A7 = (19). OF" (Spec(R[c; ', A7)
TIA™Y] := (1g)«Og” (Spec(R[A™)))

Q

Let 7" be any commutative tmf, [—]-algebra, and let
T tme[—] Ny

be a map of 7. tmfg[—]-algebras. We have the following pullback diagram.

Spec(m.T[-]) Spec(R ® Q)
Spec(Qles, co][~]) == (Meu)g[~] —— (M)
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In particular, we deduce that 7. T[—] is étale over
metmfo[—] = Qles, co][—].
Therefore, the spectral sequence

Excty, p (H(L(m T[] /mtmf o)), mT'[u]) = HZ, (m T[], T u])

COMMere iy ~]
collapses to give
H?omm,,*mfg[,] (mo T[], 7T [u]) = 0.
We deduce that
(1) The Hurewicz maps
-] (W*T[_L "T*T/)

[T[_]v T/}AZQLm/@[—] - Homcommmmf@

are isomorphisms.
(2) The mapping spaces Alg;,,f 1 (T'[-],T") have contractible components.

This is enough to conclude that there exist maps g, functorial in R, making
the following diagrams commute

Tley'] ——=T"[c; "]

| |

Tley', A7 =5 T AT

T |

T[A—l] %T’[A—l]

Since, by homotopy descent, there are homotopy pullbacks

(1) OF” (Spec(R)) T[cfl] (IL, (10)- 037 (Spec(R)) ) T'Tw
r(a] Tle;' A7 Ny Tl A7)

We get an induced map on pullbacks

p

Caritn + (1) O (Spec(R)) — (Hup)*o;oz’(s}»ec(m)) .
Q

which is natural in Spec(R). o
We define O%P to be the presheaf on M, whose sections over Spec(R) are
given by the pullback

0P (Spec(R)) [1,,(4)<Op7 (Spec(R))

| |

(1) 05 (Spec( ) = (IT, (1) O}7 (Spec(R)) )

The following proposition concludes our proof of Theorem 1.1.
51

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



PROPOSITION 9.5. The spectrum OP(Spec(R)) is elliptic with respect to the
elliptic curve C/R.

PROOF. The proposition follows from Propositions 8.9 and 9.1, and the pull-
back

R I, 12

| |

RoQ— (I, k) ©Q
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Appendix A. K(1)-local Goerss-Hopkins obstruction theory for the
prime 2

Theorem 7.1 provides an obstruction theory for producing K (1)-local E-ring
spectra, and maps between them, at all primes. These obstructions lie in the
Andre-Quillen cohomology groups based on p-adic K-homology. Unfortunately, as
indicated in Section 7, the K-theoretic obstruction theory is insufficient to produce
the sheaf (’)i?z(jl) at the prime 2. At the prime 2 we instead must use a variant of
the theory based on 2-adic real K-theory. The material in this Appendix is the
product of some enlightening discussions with Tyler Lawson.

For a spectrum F, the E-based obstruction theory of [GH] requires the homol-
ogy theory to be “adapted” to the F., operad. Unfortunately, KO% does not seem
to be adapted to the E.,-operad. While the K O%-homology of a free E, algebra
generated by the O-sphere is the free graded reduced #-algebra on one generator,
this fails to occur for spheres of every dimension. Nevertheless, we will show that
the obstruction theory can be manually implemented when the spaces and spectra
involved are Bott periodic (Definition 7.10).

THEOREM A.1.
(1) Given a Bott-periodic graded reduced 0-algebra A, satisfying

(A1) H:(Z3 J{£1}, A.) =0, fors >0,

the obstructions to the existence of a K(1)-local Eoo-ring spectrum E, for
which there is an isomorphism

(KOY)LE = A,
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of graded reduced 0-algebras, lie in

Hiypppea (A /(KOz)e Adl=s +2]), 5> 3.

2) Given Bott periodic K(1)-local Eo-ring spectra E1, Es, and a map o
g
graded 0-algebras

the obstructions to the existence of a map f : E1 — FEs of Eo-ring spectra
which induces fyr on 2-adic KO-homology lie in

Hjlgged((KOQA)*El/(KOg)*, (KO%).Ea[—s + 1)), 5> 2.

(Here, the 0-(KO%).FE1-module structure on (KO%).FE> arises from the
map f«.) The obstructions to uniqueness lie in

H3yorea(KO3) 1 /(K O2)s, (KO3)uEa[—s]), s> 1.

(3) Given such a map [ above, there is a spectral sequence which computes
the higher homotopy groups of the space Ex(E1, E2) of Es maps:

H3yorea (KOR)L 1 /(K O2)s, (KOY)s Eoft]) = m_i—s(Ew (B, Ea), f)-

REMARK A.2. The author believes that Condition (A.1) is unnecessary, but it
makes the proof of the theorem much easier to write down, and is satisfied by in
the cases needed in this paper.

The remainder of this section will be devoted to proving the theorem above.
Most of the work is in proving (1). As in [GH], consider the category sAlggS)
of simplicial objects in the K(1)-local category of E.-ring spectra. Endow this
category with a P-resolution model structure! with projectives given by

P ={S'T; }iez,j>1
where the spectra T} are the finite Galois extensions of Sy (1) given by
T, = KOM%
for _
G =147y C 2} /{£1} =T.
Note that T is K(1)-locally dualizible (in fact, it is self-dual), and we have

K02 ZK(U @TJ
J

The forgetful functor Algj® — Modz, ) has a left adjoint — call it Py. Let
P denote the free K(1)-local E-algebra functor. Then the natural map is an
isomorphism:

KO, @ Po(K05)o(5%) — (KO).(PSY).
In fact, the same holds when S° is replaced by the spectrum T;.

As in [GH], an object X, of sAlggS) has two kinds of homotopy groups asso-
ciated to an object P € P: the Es-homotopy groups

Ts,t(Xe; P) 1= 75 [XP, X.]SpK(l)

1To be precise, we are endowing the category of simplicial spectra with the P-resolution
model structure associated to the K(1)-local model structure on spectra, and then lifting this to

a model structure on simplicial commutative ring spectra.
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given as the homotopy groups of the simplicial abelian group, and the natural
homotopy groups

m (Xe; P) = [E'P ® A JOA®, Xo]ssp e

given as the homotopy classes of maps computed in the homotopy category h(sSp K(1))-
These homotopy groups are related by the spiral exact sequence

oy (Xe P) =l (Xe3 P) = oy (Xe; P) = 18y g (Xas P) = -+

We shall omit P from the notation when P = S°.

We will closely follow the explicit treatment of obstruction theory given by
Blanc-Johnson-Turner [BJT], adapted to our setting. Namely, we will produce a
free simplicial resolution W, of the reduced theta algebra Ag, and then analyze the

obstructions to inductively producing an explicit object X, € sAlggfol) with

(KO)), Xe 2 KO, ® W,.

The desired Eo ring spectrum will then be given by E := | X,|.
Both of the resolutions W, and X, will be CW-objects in the sense of [BJT,
Defn. 1.20] — the spaces of n-simplices take the form:
W, = W,®L,W.,

X, = (Xn AN LnXo)K(l)-

(where L, (—) denotes the nth latching object). The ‘cells’ W, (resp. X,) will
be free reduced 6-algebras (respectively free K (1)-local E., rings) and are thus
augmented.

For Y, denoting either W, or X,, we require that for ¢ > 0, the map d; is the
augmentation when restricted to Y,. The simplicial structure is then completely
determined by the ‘attaching maps’

d?)/" : Yn —Y,_1.

and the simplicial identities. Saying that an attaching map (13/”' satisfies the simpli-
cial identities is equivalent to requiring that the composites dic?é/' " factor through
the augmentation.

Given such a simplicial free #-algebra resolution W, of Ag, and a 8- Ag-module
M, the André-Quillen cohomology of Ay with coefficients in M may be computed
as follows. Let QW, denote the indecomposibles of the augmented free 6-algebra
Wy. Then QW, is a simplicial reduced Morava module, and the Moore chains
(C.QW,,dp) form a chain complex of Morava modules. The André-Quillen coho-
mology is given by the hypercohomology

HZlgged (AO, M) = H" (Hom% [ (C* C?I/I/.)7 I*)

where I* is an injective resolution of M in the category of reduced Morava modules.
However, if M satisfies

H;(T;M)=0, s>0
then one can dispense with the injective resolution I*, and we simply have

Hzlgge‘i (Ao, M) =H" (HOI’H%Q[[F” (C*QW., M)

We produce W, and X, simultaneously and inductively so that KOy X, = W,,
so that W, is a resolution of Ay. Start by taking a set of topological generators
{af} of Ay as a f-algebra. We may take these generators to have open isotropy
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subgroups in I': then there exist j; so that the isotropy of af is contained in the
image of 1+ 27Zs in I'. Note that since there are isomorphisms of Morava modules

(KO2)oTy = Zo[(2/2) J{=1}],
the generators {af} may be viewed as giving a surjection of f-algebras
{ad} : Pe(KOS)oYo — A
for Yy = \/a(iJ Tj,. Define
Wo = Po(KO%)oYo, Xy = PY,.
Then take a collection of open isotropy topological generators {a}} (as a Morava
module) of the kernel of the map
{066} : WO — Ao.
Realize these as maps _
5421 -850 — (KO2 AXO)K(1)~

Suppose that o} factors through T}, A Xo. Then, since T}, is K (1)-locally Spanier-
Whitehead self-dual, there will be resulting maps

5[21 : Tji — Xo.
Take - - - - -

Vi =\/T;,, Wi=Py(KO})Y:, Xi=PY,.

and let Jg( ! be the map induced from {&!}. Suppose inductively that we have
defined the skeleta W.[nfl] and Xi"il]. Note that since

n— Aa =0,

e (KO A XY = s
' 0, 0<s<n-—1

we can deduce from the spiral exact sequence that
7T57*(KO /\Xinil]) > A[-s] 0<s<n-3.
Consider the portion of the spiral exact sequence

7o (KOAXE ™) 5 1 o(KOAXE ) 22y mh o (KOAXE ™) = Al—n42)o.
The map of Morava modules 3,, will represent our nth obstruction. Indeed, 5,, may
be regarded as a map of graded Morava modules

Bt 1 (KON XY = A[—n+ 2.

Since A satisfies Hypothesis (A.1), there is a short exact sequence

(A.2)
Hom%z[[r‘” (Cn—lQW.[nil] , A[—n+2]0) i) H0m22[[1—‘” (ﬂ'n_l’o(KO/\X), A[—n+2]0)
> Hirea (A Al=n 4 2]) 0

[

and this gives a corresponding class [3,] € HY\rea (A4; A[-n+2]).
0 .
Suppose that 3, was zero on the nose. Take a collection {a?,} of open isotropy
topological generators of the Morava module m,_1 (KO A Xln_l]). Since g, is

zero, these lift to elements

al et (KO AXETY).
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Assume the lifts also have open isotropy. Then for j; sufficiently large, the maps
ol 1 S0 @ AP /oA T 5 KO A XD
come from maps
al s Ty, @ AP oAt s x Y,
Define
Vo =\/Tj,, Wn=Py(KO})Y,, X,=PY,.
We define a map of simplicial F,-algebras
b X @ DA™ = X[
where the restriction
Pnlag : Xn © AR — X5
is taken to be the map which is given by the augmentation on each of the faces of
Af. The map ¢, is then determined by specifying a candidate for the restriction
on the 0-face
Ay = Gulan-1: Xy @ AL X1
which restricts to the augmentation on each of the faces of 9A"~!. Thus we just
need to produce an appropriate class

[do] € mi_y o(xI 7).
We take [d "] to be the map given by {&Z}. Then we define X" to be the pushout

X, ® 0A" s xln1)

L

X, @ A" —— XU

in sAlgg:), and define W := (K0$)ox™.

However, we claim that if the cohomology class [3,] vanishes, then there exists
a different choice of ¢,,_1 one level down, which will yield a different (n—1)-skeleton
Xin—l}/7 whose associated obstruction S/, vanishes on the nose. Backing up a level,
different choices ¢,,_1, ¢!,_; correspond to different lifts of {a!_;}. By the spiral
exact sequence, any two lifts differ by an element §,,_1, as depicted in the following
diagram in the category of Morava modules:

Qanl )

y i J/ .,__”(.5'”71
ey

no20(KOA XS —— o (KOA X)) —— ) o (KO AXD)

The fact that §,_1 = 0, together with the spiral exact sequence

Tn—2,+(KO A Xlniz]) LI 7TEL—4,*+1(KO A X£n72]) - (KO A Xiniz]) —0

n—23,%
tells us that there is an isomorphism

m s (KOAXTTY Erl L (KOAXTTy 2 Aln + 3]
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and in particular that we can regard d,_; to lie in (compare [BJT, Lem. 2.11)):
Hom§, 1y (QWa -1, A[—n +2]) = Hom, 1y (Cru 1 QWS Y, A[=n + 2)o).

Let XE"_H/ denote the (n — 1)-skeleton obtained by using the attaching map ¢/, _;,
with associated obstruction f;,. The difference §,, — f,, is the image of §,,_; under
the map u of (A.2). Therefore, if the cohomology class [3,] vanishes, then there
exists d,_1 such that u(d,—1) = B, and a corresponding ¢/, whose associated
obstruction £/, = 0. This completes the inductive step.

The spectral sequence (3) is the Bousfield-Kan spectral sequence associated to

the (diagonal) cosimplicial space
Eo(B(P,P, Ey), KOS™ A Es).
The identification of the Es-term relies on the fact that since EF; is Bott-periodic,
(KO%), P E 2 PSTH(KO3). ;.

The obstruction theory (2) is just the usual Bousfield obstruction theory [Bou]
specialized to this cosimplicial space.
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The homotopy groups of tmf and of its localizations

André Henriques

In this survey, I present a compilation of the homotopy groups of ¢tmf and of its
various localizations. This work was an exercise in collecting the diffuse knowledge
from my mathematical surroundings.

1. The homotopy of tmf

The spectrum tmf is connective, which means that the ring m,(tmf) is zero
for n < 0. Vaguely speaking, its homotopy ring . (tmf) is an amalgam of MF, =
Zlca, ce, Al/(c§ — c2 — (12)3A), the ring of classical modular forms, and part of
7+(S), the ring of stable homotopy groups of spheres. More concretely, there are
two ring homomorphisms

(1) m(S) — m.(tmf) — MF,

The map from m,(S) captures information about the torsion part of . (tmf), while
the second map is almost an isomorphism between the non-torsion part of . (¢tmf)
and MF,.

The first map in (1) is the Hurewicz homomorphism. Since tmf is a ring
spectrum, it admits a unit map from the sphere spectrum S. This induces a map in
homotopy 7.(S) — . (¢mf), which is an isomorphism on g, 71, ..., 7. The only
torsion in 7, (¢mf) is 2-torsion and 3-torsion; it is at those primes that ¢mf resembles
the sphere spectrum. The 3-primary part of the Hurewicz image is 72-periodic and
is given by
(2)

im (71'*(8) = m(tmf)) = Zy@aZ/3ZedD) A*{,a8, 5%, 5%, BYa, B} Z/3L,

@) k>0

where a has degree 3, and 8 = («, a, @) has degree 10. The Hurewicz image contains
most but not all the 3-torsion of m,(tmf): the classes in dimensions 27 + 72k and
75 4+ 72k for k > 0 are not hit by elements of 7.(S). The 2-torsion of im(m.(S) —
7 (tmf)) is substantially more complicated. It exhibits very rich patterns including
two distinct periodicity phenomena. The first one is a periodicity by ¢4 € mg(tmf),
which corresponds to v}; the second one is a periodicity by A® € migo(tmf), which
corresponds to v3Z.

The second map in (1) is the boundary homomorphism of the elliptic spectral
sequence. Under that map, a class in 7, (¢tmf) maps to a modular form of weight
n/2 (and to zero if n is odd). That map is an isomorphism after inverting the
primes 2 and 3, which means that both its kernel and its cokernel are 2- and 3-
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torsion. Its cokernel can be described explicitly

Z/mz it 0= 24k

coker(n-n(tmf) = MF,) = { (z/22)1 % if n=4 (mod 8)
0 otherwise,

where the first cyclic group is generated by A* and the second group is generated
by A%Ycg for integers a and b satisfying 24a + 8b + 12 = n. Its kernel agrees with
the torsion in m,(¢mf) and is much more complicated — it resembles the stable
homotopy groups of spheres. The 3-primary component of the kernel is at most
7./37 in any given degree. The 2-primary component is a direct sum of (Z/27)* for
some ¢ (corresponding to vi-periodic elements) with a group isomorphic to Z/27Z,
ZJAZ, 7./8Z, or (Z/27)? (corresponding to ve-periodic elements).
The following picture represents the homotopy ring of ¢tmf at the prime 2:
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PEEREEE)

# '/
BB ET B

2 136 140 144 148 152

=
o
>
=
o
S
=
153
i

108 112 116 120 124 128 1

'3
5
3}
o
© NN
N
©
>
=
o
S
w

The homotopy groups of tmf at the prime 2
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The vertical direction has no meaning. Bullets represent Z/2Z’s while squares
represent Zzy’s. A chain of n bullets connected by vertical lines represent a Z/2"Z.
The bullets are named by the classes in 7, (S) of which they are the image (n, v,
g, R, K, q are standard names), while the squares are named after their images in
MF,. The slanted lines represent multiplication by 1, v, €, k, and kK.

The top part of the diagram is 192-periodic with polynomial generator A8, as
can be seen in the following zoomed-out picture:

We have colored the conjectural image of the Hurewicz homomorphism (conjectured
by Mark Mahowald) as follows: the vi-periodic classes are in green, and the wvs-
periodic classes are in pink, red, and blue, depending on their periodicity. The green
classes are v{-periodic in the sphere, and, except for v, they remain periodic in tmf
via the identification ¢4 = v{. The v§-periodic classes are pink, the vi6-periodic
red, and the v32-periodic blue. They remain periodic in tmf via the identification
AB = 32,

The tiny white numbers written in the squares indicate the size of the groups
coker (7, (tmf) — MF.)(2). The Zy)-algebra 7. (tmf) ) is finitely generated, with

generators

degree: 1 3 8 8 12 14 20 24 25 27 32 32

name: n v cs € {26} k K {8A} {nA} {2vA} q {cA}
36 48 51 56 60 72 80 84

{2e6A} {4A2} {vA?} {caA?} {2c6A%} {8A3} {caA3} {2623}
96 97 99 104 104 108 110 120

{281} (At} {vAt}  {eA'}  {aA?} {2c6A'}  {kA'} {8A7}
123 128 128 132 144 147 152 156

{vA®}  {qA*}  {caA®} {2c6A°%} {4AS8}  {vAS}  {csAS} {2¢6A6})
168 176 180 192

{8AT} {caAT} {2c6AT} {A8}

Hereafter, we list the multiplications that are neither indicated in our chart, nor
implied by the ring homomorphism , (¢tmf) — MF,. On the top are the generators,
and on the bottom the degrees of the classes that support non-trivial multiplications
by those generators (the images never involve n%c{A° with b > 1, or 2¢cgA®):

e |r» | K
1 |1, |1,2,8 14, 15, 21, 22, 26, 98, | 1, 3, 8, 14, 20, 21,
926. | 22, 32, 33, 34, 39, 46, 104, | 25, 27, 28, 34, 97, 99,
110, 111, 116, 117, 118, 128, | 104, 110, 117, 118,
129, 130, 135, 136, 142. 123, 124, 130.

{nA} | {2vA}
1,2, 3,8, 14, 15, 20, 21, 25, 26, 27, 28, 32,| 1,8, 14, 15, 25, 26, 27,
34, 35, 40, 41, 45, 50, 60, 65, 75, 80, 85, 97, | 32, 33, 39, 96, 97, 98,
98, 99, 100, 104, 105, 110, 111, 113, 117,| 104, 110, 111, 122,
122, 123, 124, 125, 128, 130, 131, 137. | 123,128, 129, 135.

3
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| {vA?) |

1,2,3,6,8,9,14,15,17,51,547,657,96,97, +.,{vA2} s 12{pA%).
98, 99, 102, 104, 105, 110, 111, 113, 116.  r{vA?} — vr{rA1l.

Acting with ¢, s, &, q, {nA}, {2vA}, {vA?} on n?chA° with b > 1, or 2cicgAb
always gives zero, except {nA}n?c§A° = naticActt,
To finish, we emphasize the two relations that cannot be deduced from the

information contained in our chart: {nA}* = &%, {2vA}? = kk2.

The homotopy groups of tmf at the prime 3 exhibit similar phenomena to those
at the prime 2. The following is an illustration of . (tmf)(s):

7
el /
| -
AS

3A2 n
3A 3] u n n n n L] n
n n n ] n L] ] L] n ] n L] ]
n n | ] n n n n | ] n n | ] n n | ] n n n
16 20 24 28 32 3 40 44 48 52 56 60 64 68 72 76 80

The homotopy groups of tmf at the prime 3

The bullets represent Z/3Z’s and are named after the corresponding elements of
7.(S). The squares represent Z)’s and are named after their image in MF,. The
slanted lines indicate multiplication by « and 8. The top part of the diagram is 72-
periodic, with polynomial generator A%. We have drawn the image of the Hurewicz
in color: in green is the unique vi-periodic class «, and in red are the vs-periodic
classes. The latter remain periodic in ¢mf through the identification v§ = A® (or
maybe vg/ 2 = A37). Once again, the white numbers in the squares indicate the
size of coker (. (tmf) — MF,)(3)y. The algebra . (tmf)s) is finitely generated, with
generators
degree: 3 8 10 12 24 27 32 36 48 56 60 72
name: o c4 B cs {3A} {aA} {caA} {csA} {3A2%} {caA?} {csAZ} {A3}
and many relations. It is also worthwhile noting that the classes in dimensions 3,
13, 20, 30 (mod 72) support non-trivial {a, o, —) Massey products.

When localized at a prime p > 5, the homotopy ring of ¢mf becomes isomorphic
to MF,. Since A € MFy is a Z)-linear combination of ¢ and ¢, this ring then
simplifies to m.(tmf) ) = Zp)lca, cs)-

2. Localizations of tmf
The periodic version of tmf goes by the name TMF'. Its homotopy groups are given
by

7. (TMF) = m,(tmf) [{A24}71].
4
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The groups ,,(TMF) are finitely generated abelian groups, except for n =0,1,2,4
(mod 8) in which case they contain summands isomorphic to Zz], (Z/2Z)[z],
(Z/2Z)|x], and Z[z], respectively.

Fix a prime p, and let K(n) denote the nth Morava K-theory at that prime (p is
omitted from the notation). We can then consider the K'(n)-localization L g, tmf
of the spectrum ¢mf. The spectrum L oytmf is simply the rationalisation of tmf
(and does not depend on p). Its homotopy ring is therefore given by

T (Li(oytmf) = mi(tmf ) @z Q.

The homotopy groups of Lk q)tmf are easiest to describe at the primes 2 and
3. In those cases, they are given by

m(Lic tmf) = (mo(KO) )

(3) ) P p=2or3.
= 7T*<K0)p <j_1>

Here, the notation R(z) refers to powers series Y o—, arz* whose coefficients ay, € R
tend to zero p-adically as k — oo. The variable is called j~! because its inverse
corresponds to the j-invariant of elliptic curves. The reason why (3) is simpler at
p = 2 and 3 is that, at those primes, there exists only one supersingular elliptic
curve and its j-invariant is equal to zero. For general prime p > 3, let aq,...,q,
denote the supersingular j-values. Each element «; is a priori only an element of
Fpn (actually in F)2), however, their union S := {ai,...,a,} is always a scheme
over IF),. Let S denote any sheme over Z whose reduction mod p is S. The homotopy
groups of Ly 1ytmf are then given by

(L ytmf) = (functions on PL\ 5’) [bil 1, p >3,
P
where b is a class in degree 4.
The homotopy ring of Lg2ytmf is the completion of m, TMF' at the ideal gen-
erated by p and by the Hasse invariant I,_;:

T (Lr@ytmf) = m(TMF), 5 ), p arbitrary,

where the Hasse invariant is a polynomial in ¢4 and cg whose zeroes correspond to
the supersingular elliptic curves. Once again, given the fact that there is a unique
supersingular elliptic curve at p = 2 and 3, the above formula simplifies to

(prca) p=23.

For n > 2, the localization L ,)tmf is trivial, and therefore satisfies

T (LK(n) tmf) =0.

3. The Adams spectral sequence
Given a fixed prime p, the Adams spectral sequence for tmf is a spectral se-
quence that converges to m, (tmf )p , see [BL]. Its E; page is given by Ext jm (Fp, Fp),
P
where A;mf is a finite dimensional [F),-algebra that is a ¢tmf-analog of the Steenrod
algebra:
Alt?mf = homtmf_modulcS(HIE"p, HIFP)
5
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At the prime 2, the natural map A;mf — A = A to the Steenrod algebra is
injective. Its image is the subalgebra A(2) C A generated by Sq', S¢? and Sq*.
That algebra is of dimension 64 over Fy, and defined by the relations

Sq'Sq' =0, S¢*Sq* = Sq'S¢*Sq",
Sq*Sq* + Sq*Sq* + S¢*Sq' S¢* = 0, and
Sq*Sq* + S¢2S¢*Sq* + Sq¢*Sq*Sq? = 0.
By the change of rings theorem, the Adams spectral sequence for ¢tmf can then be
identified with the classical Adams spectral sequence (see [Rez])

E2 = EXtA (ITI-}k (tmf)7 ]FQ)
= Exta(AJA(2),F2) = m.(tmf),.
The bigraded ring Ext 4(2)(F2,F2) is generated by the classes:

(4)
bidegree: (0,1) (1,1) (3,1) (8,4) (8,3) (12,3) (14,4) (15,3) (17,4) (20,4) (25,5) (32,7) (48,8)
name: ho h1 ho w1 co « do B € g ¥ 4 wa

subject to the following complete set of relations:

hohl = O, hlhg = 0, h%hg = h?, hoh% = 0, h% = 0, hQCO = 07 h%CO = 0, hQCO = 0,
0(2) = 0, Codo = 0, Co€p = 0, Cog = 0, Colx = h%g7 C()B = 0, h%do = h%wl, h1d0 = h%ﬁ,
haody = hoeo, d3 = wig, dog = €3, hoady = hafBwi, a?dy = B*wy, Bdy = ey,
hieo = h3a, haeg = hog, Beo = ag, h1g = h3B3, hag = 0, egg = av, g*> = By,
hloz = 07 hlﬁ = 0, tht = hoﬂ, hoﬂQ = O, h2ﬂ2 = 0, a4 = hé’wz +g2w1, ho’)/ = 0,
hiy = haa?, hyy = 0, coy = hi, doy = &?B, eoy = af8?, gy = 5,7 = hiwq+ %y,
hod = hoag, h3d = hodog, had = 0, cod = 0, dod = 0, egd = 0, g6 = 0, ad = 0,
5(5 =0 ’}/(5 = hlco’wg, 62 =0.

At the prime 3, the map from A;mf to the Steenrod algebra not injective. In-
deed, the algebra A;mf is 24 dimensional, while its image in the Steenrod algebra
is the 12 dmensional subalgebra generated by 3 and P'. Naming the generators by
their images in As, the following relations define Agmf (see [Hil]):

52 =0, (Pl)g =0,
BPUBP +PIBPS = B (P26,

Note that the relation 3(P1)2 + PSP+ (P1)28 = 0 holds in A3, but not in AL™ .

; T
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The Adams spectral sequence Ext ,uys (Fs, F3) = 7. (tmf)s.
3

At primes p > 3, the algebra A;’”f is an exterior algebra on generators in
degrees 1, 9, and 13. The ring Ext At (Fp,F,) is a polynomial algebra on classes in
10

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



bidegrees (0, 1), (8,1), and (12, 1) and the Adams spectal sequence for tmf collapses.

i
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o

'S

er—ei—ef
e
o—lo—|

[¥]
o

B

cly an

0 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
The Adams spectral sequence for tmf at a prime p > 3.

It is interesting to note that regardless of the prime, the algebra A;mf has its
top dimensional class in degree 23. Below, we picture the algebras Af]"f for the
primes 2 and 3:

—
—1iC
l | |
) P I ]
P S— -
1 T J

\\ - ™ N )= ] _ ~
‘ -l —=/=\|= -7
—
Sq
- 8QB-
q
=~ 1
SC] Sq4 P
Sq2
Sql B
1 1

4. The elliptic spectral sequence

The spectrum TMF is the global sections of a sheaf of F., ring spectra over
the moduli space of elliptic curves M. As far as we know, there is no moduli
space yielding tmf that way. To construct tmf, one first considers the sheaf QP of
E_, ring spectra over the Deligne-Mumford compactification M. The spectrum
of global sections

Tmf :=T'(M.y; O'P)
11
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is not connective, and its connective cover is tmf. One can also recover m,(Tmf)
from 7, (tmf) by the following “Serre duality” short exact sequence:

0 — Ext! (Wn,gg(tmf),Z) = T_n(Tmf) — Hom(wn,gl(tmf),Z) —0, n>0.
The “elliptic spectral sequence” is the descent spectral sequence

-— {wt/2 if ¢t is even

H* (Mey; mO*P) = H* (Me”; 0 iftisodd }> = mes(Tmf).

Its E> page at p = 2 is as follows (see [Bau, Kon)):

LAY T LA A £
Pl 7, A A A
NP2 e GV L/ NN /ey
/Af//%g/f 4 %/7 4 /’é7 7/@ 5
;%/ fﬁf@/ o & o 4/;[1 o —7 “ 7 [/ c/ M %ﬁ

The FEs page of the elliptic spectral sequence at p = 2.

In the above chart, squares indicate copies of Z(,) and bullets indicate copies of
Z/2Z. Two (three) bullets stacked vertically onto each other indicate a copy of
Z/AZ (Z/8Z). The ds differentials are drawn in gray; the remaining differentials

ds,d7,dg, . ..,dss are drawn on the charts on pages 13 — 16. The colors on those
charts indicate the periodicity by which the various sub-patterns of differentials
repeat.

At p = 3, the elliptic spectral sequence looks as follows:

‘ = i ‘ i i = ‘ = \
1 —R — — —A
f == —— 1 —
— — — — —
— — 1 —
— — — —
) = — — —
L L — s
- = = = =
179 9 9 9 9 9 9 9 ° 9 o b o b b o B owm &
—61 —53 —45 —37 —29 —21 0 8 16 24 32 40

The elliptic spectral sequence at p = 3.

The squares indicate copies of Zs), and the bullets indicate copies of Z/3Z.

At p > 5, there is no p-torsion and the elliptic spectral sequence collapses:

4 4 4 4 4 4 4
4 ‘4 4 4 7 4 7
—61 —53 —45 —37 —29 —21 0 8 16 24 32 40

The elliptic spectral sequence at p > 5.
12
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ABSTRACT. In this note a new cohomology theory will be constructed. From
the point of view of homotopy theory, it is the most natural candidate for
elliptic cohomology. The construction is via obstruction theory.
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1. Introduction

The point of this document is to make use of A, moduli spaces to rigidify the
diagram of étale elliptic spectra. The main theorem is

THEOREM 1.1. Let Mgy be the moduli stack of generalized elliptic curves,
and (Mgn),, the category of étale open subsets of Mgy. Let (MEII)/et denote the
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2 M. J. HOPKINS AND H. R. MILLER

category of affine étale open subsets of Mgy over which the sheaf of invariant
differentials is trivial. There is a presheaf

E: (Men)y, — AY

with values in the category of cofibrant-fibrant A, elliptic spectra (see below) which
has cohomological descent and, when restricted to (./\/lEu)gt comes equipped with an
isomorphism of functors

specmoE(U) ~ 1.

Any two such presheaves are naturally weakly equivalent.

DEFINITION 1.2. An elliptic spectrum is a triple (E, A,t) in which
(1) E is a multiplicative spectrum with the property that 7, F commutative, con-
centrated in even degrees, and w9 F contains a unit;
(It follows that E is complex orientable and has a formal group G canonically
defined over mE.)
(2) A is a generalized elliptic curve [DR] over mgE

3)t:G— Ais an isomorphism of the formal group G with the formal completion
of A.

The elliptic spectra form a category in which a map
fi(EAt)— (B, A T)

consists of a multiplicative map f1 : £ — E’, and a map of generalized elliptic
curves fo : A" — mof1 A such that the following diagram commutes

¢ I mohG

1

A/ —Tmof 1A
f2
Let Mgy be the moduli stack of generalized elliptic curves with integral geo-
metric fibers (§ 6). An elliptic spectrum (E, A,t) comes equipped with a map

spec o — Mg
classifying the elliptic curve A.

DEFINITION 1.3. An elliptic spectrum (F, A, t) is étale if the map specmoE —
Mgy is an open subset of Mgy is the étale topology.

For a stack M let (M), be the category of étale open subsets of M of finite
type. Attaching to each étale elliptic spectrum the map classifying its elliptic curve
thus defines a functor from the category of étale elliptic spectra to the category
(ME1).,. One goal of this paper is to “reverse” this process and construct a kind
of sheaf on (Mgy),, with values in A ring spectra.

Let AE! be the (topological) category consisting of triples (E, A,t) consisting
of an A ring spectrum F together with an étale elliptic structure on its underlying
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ELLIPTIC COHOMOLOGY 3

spectrum, and whose morphism space from (Ey, Ay, t1) to (E2, Ag, ta) is the fiber
product

AN ((By, Ar ), (Ba, Ag, ta)) —— ST ((E1, Ay t), (Ba, Az, b))

l |

A (Ev, E2) S (E1, Es).

Then the composite spec gy defines a functor
ho AEOH — (MEH)ct .

Occasionally the symbol specmy will also refer to the composite functor AE! —
(ME1) o -

Let (MEH);t be the subcategory of (Mgy),, consisting of affine U — Mgy for
which the sheaf wy admits a nowhere vanishing global section (ie the restriction of
the line bundle w to U is trivializable). Our first main result is that the functor
spec mp admits a more or less canonical section over (./\/IEH);t

(MEH)/et — ho Agl.

Next we will apply the Dwyer-Kan lifting machinery to the the problem

—
—
—
—
—
—
—
—

(Mgn),, —=ho AB! — > ho A

We will see that the space of lifts is non-empty and connected, thus giving an
essentially unique diagram. This diagram of spectra is elliptic cohomology.

2. A,-structures and maps

2.1. A, -ring spectra. We will use the theory of spectra and ring spectra as
developed by May et. al. Let Ao, denote the category of A..-ring spectra indexed
on a fixed universe /. This is a closed topological model category and is generated
by small objects. The functor

X TX =\/L(n)x X",

is a monad (or triple), and an A.-ring spectrum is an algebra over this monad.
There are adjoint functors

T:S= A, :F,

where by a mild abuse of notation, the functor T is regarded as taking its values in
Ay, and F' is simply the forgetful functor. As the diagram suggests, the functor T’
is left adjoint to F'. The morphism objects of A.,, being subsets of the morphism
objects of S are naturally topological spaces.

The following result also holds with A, replaced by M-algebras, where M is
any operad over the linear isometries operad:
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4 M. J. HOPKINS AND H. R. MILLER

THEOREM 2.1. i) The category As is canonically enriched over topological
spaces. In other words, there are bifunctors

(S, X)» S®@X:TXxAxw > A
(V,8) = V¥ : Ay x TP — A
and natural homeomorphisms
As(X, V) m A (S ® X,Y) & T(S, Ao (X, Y)).

ii) The category A is cartesian closed in the sense of enriched categories: it
contains all small indexed limits and colimits;

iii) The category Ao has a unique closed model category structure in which a map

X =Y is a weak equivalence (resp. fibration) if and only if the map FX — FY
is. This model category structure is generated by small objects and is a topological
model category in the sense that Quillen’s aziom SM7 [Qu] holds, with “simplicial
set” replaced by “toplogical space.”

iv) If Xo is a simplicial object in A, then the natural map
|FXels = F|Xe|aL,
is an isomorphism.

DEFINITION 2.2. Suppose that X is a spectrum. The space Ao, {X} is the
nerve of the category whose objects are weak equivalences F'(R) — X, and whose
morphisms are commutative squares of weak equivalences

F(R) 2L p(s)

|

X —X.

In other words, if (A )w denotes the topological category of A ring spectra
and weak equivalences, then A, {X} is the nerve of the category of (A ). oObjects
over X.

In case X comes equipped with a homotopy associative multiplication p we
will let Ao {X} ., denote the nerve of the full subcategory with objects f which
are maps of homotopy associative ring spectra. The space A {X} is the disjoint
union of the spaces A, {X} , S [ ranges over the different homotopy associative
multiplications on X (monoid structures on X in hoS), since the same is true for
the over-category. In case the multiplication p is an integral part of the ambient
structure of X (like when X is elliptic) the subscript will be dropped from the
notation.

Rezk has shown that the space A {X} is weakly equivalent to the space of
operad maps from the A,, operad to the endomorphism operad of X.

2.2. The moduli spaces in a useful case. We are interested in determining
the homotopy types of the spaces Ao {X}, and Ax(E,F). It turns out that
a lot can be said about these spaces in the presence of certain special conditions.
Suppose that F is a ring spectrum satisfying the following condition of Adams [Ad,
Condition 13.3 (page 284)]:
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ELLIPTIC COHOMOLOGY 5

CONDITION 2.3. Each map of spectra
X —=F

with X finite, factors as
X—=V=F

where V' is finite and both F.V ane F*V are projective over F.
Examples of spectra satisfying this abound. In fact
PRrROPOSITION 2.4. Condition 2.3 holds if F' is Landweber exact.

PROPOSITION 2.5. Suppose that (F,u) is a ring spectrum satisfying Condi-
tion 2.3. There is a spectral sequence

E;’t - 7Tt—s<1400 {F}M ) f)a

with
Derf:}p (F*F, FOSt) s>0, t>1
By = (5,£) = (0,0)
undefined otherwise
The group Der®(—, —) is Quillen’s sth derived functor of associative algebra

derivations, and is described in § 5.

PROPOSITION 2.6. Suppose that E and F are Ay ring spectra, F satisfies
Condition 2.3, and f : E — F is a homotopy class of maps of the underlying ring
spectra. There is a spectral sequence

Byt — 1 J(As(E, F); f)

with
Dery, (BB, FOS") t>1
Byt =y (s,t) = (0,0)
undefined t=0, s>0

3. Lifting diagrams

This section consists of a collection of material from [DK].

3.1. The realization space. Let S be a closed simplicial (or topological)
model category, and I a small category. The situation relevant to this paper is
that I is the opposite category of (./\/IEH);t7 and S is the category A,,. We suppose
given an I-diagram in hoS (ie, an object of (hoS)!, and we want to consider the
problem of lifting it to an object of ST. This problem can be attacked by studying
the realization space r(X) of X.

DEFINITION 3.1. With the above notation, the realization category of X is
category whose objects are pairs (Y, f) consisting of an object Y of S, together
with an isomorphism f : 7Y — X in (hoS)!. A morphism in r(X) from (Y1, f1) to
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6 M. J. HOPKINS AND H. R. MILLER

(Y, f2) isamap g : Y7 — Y5 (necessarily a weak equivalence) making the following
diagram commute

g
Y] —— 7Y>

s

X —X.
The realization space, is the classifying space of the realization category. Both the
category and its classifying space are denoted r(X).

There is another useful space to consider in this regard. Let lift(X) be the
nerve of the category whose objects are diagrams Y with the property that 7Y is
isomorphic to X, and whose morphism are weak equivalences. There is a fibration

r(X) — lift(X) — B Aut(X).

By making a simplicial resolution of I by free categories, the spaces r(X) and
lift(X) can be expressed as the total complexes of cosimplicial spaces which we
will call r(X), and lift(X), respectively. While the cosimplicial spaces depend
on the choice of resolution, the homotopy spectral sequence is independent of the
resolution from the Es-term on. There is a termwise fibration

r(X), — lift(X), — BAut X

where B Aut X is thought of as a constant cosimplicial space. The homotopy spec-
tral sequences for r(X), and lift(X), therefore coincide except possibly in the Eg 0.
term where the latter is the quotient of the former by the action of 7y haut(X). In
fact, the spectral sequences coincide anyway, since before the spectral sequence can
be defined, one must choose a component of the O-space which is equalized by d°
and d', and then restrict to this component.

3.2. Centric diagrams. A diagram X as above is said to be centric if for
each morphism f :d — d’' in I, the map

S(Xd', Xd'), — S(Xd, Xd')
is a weak equivalence ([DK]). In the case of a centric diagram there is a simple

description of the Fs-term of the spectral sequence.

ProprosiTION 3.2. [DK, §3] Let X : I — hoS be a centric diagram. There is

a spectral sequence
Eéj’t = m_s1(X),

with
@SﬁtBhauth(—) s>0andt>2
{1} (s,t) = (0,1)
* (s,t) =(0,0) or (1,1)
undefined otherwise.

st
By =

REMARK 3.3. It is only the identity component of haut(X) that comes in, so
that the spaces Bhautq (X) are, in fact, simply connected.

4. Quillen (co-)homology

The basic reference for this and the following section is [Qu].
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ELLIPTIC COHOMOLOGY 7

4.1. Generalities. Fix a ground ring k£ and let ¢ : A — B be a map of
commutative k-algebras. Quillen defines a homology object Lp,4 as follows. First
he shows that the category of simplicial A-algebras is a closed model category when
one defines weak equivalence to be quasi-isomorphism, and one takes all objects to
be fibrant. To define the homology object, regard B and A as constant simplicial
objects, and let A < P, = B be a factorization into a cofibration followed by a
weak equivalence. The complex Lp, 4 is then defined by

LB/A:Q}D./AI@B,

where Q! is the P,-module of relative Kahler differentials. The quasi-isomorphism
class of Lp,4 is independent of the resolution.

The association B/A — L4 is functorial: given a map of pairs
f

_—

sy

-
<.

<"

)

—_—
g

there is a natural map L;/; : 7*Lp/a — Lp,c. The map associated to a composite
of maps of pairs is chain homotopic to the composite of the maps associated to each
pair.

Actually, for fixed A, the association Lp,4 can be made into a functor with
values in the category of chain complexes of B-modules. To do this one makes use
of the fact the the category of simplicial A-modules is generated by small objects,
and so the factorization into a cofibration followed by acyclic fibration can be made
functorially. We will make use of this rigidified functoriality. One can also simply
use the standard resolution based on the triple “free A-algebra generated by the
underlying point set of B.”

We will often write the absolute homology Lp/\ as simply Lp.

Given a sequence A — B ENYG, , Quillen shows that the natural sequence
J"Lpja — Loja — Loy

is a cofibration. This cofibration is known as the transitivity sequence. It is useful
to write down this sequence in the case A = k (which is no loss of generality, since
no use has been made so far of k):

f*LB — Lo — LC/B~

It shows that the relative homology object is the cofiber of the map of absolute ho-
mology objects, and that the homology of the transitivity sequence can be thought
of as the long exact sequence of a pair.

Another important result is the following..

ProPOSITION 4.1 (Flat base change [Qu]). Suppose that

A#B
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8 M. J. HOPKINS AND H. R. MILLER

is a pushout square with the property that the groups Torf(C’, B) are 0 fort > 0.
Then the natural map g*Lp/a — Lp,c s an equivalence.

Note that the condition on Tor holds if either i or f is flat.

Proof: Factor f as A — P, — B into a cofibration followed by an acyclic
fibration. Then C — i*P, = C' ®4 P, is a cofibration, and the natural map
i* P, — D is a weak equivalence since the s'" homology group of i* P, is Torf(C’, B).
The result follows easily from this. ([

The transitivity sequence and the flat base change result combine to give a
Meyer-Vietoris sequence.

COROLLARY 4.2. Suppose given a pushout square as in Proposition 4.1. Then
the square

. s PLp
(if =gi)*La —>j*B

Q*Lii \LLj

g Le ——Lp
Ly

is a homotopy pushout. It follows that there is a cofibration

G*Ls,g*Li]T [—Lj,Ly]
Sy

La J'Lp®g'Lc ——— Lp.

Proof: The map of transitivity cofibrations for f and g can be written as

JfLa——=73"Lp —=j"Lp,a

TR

9" Lc Lp Lpjc-

Proposition 4.1 implies that the map L;; is an equivalence. The result follows. [J

5. Quillen associative algebra (co-)homology
5.1. Associative algebras. For each map of associative algebras A — B, let
Dp/a

be the complex of B bi-modules which is the Quillen homology object of B/A. In
case B is flat over A (and projective as a module), this complex is weakly equivalent

to the complex
B ® B°P 0
A
1
B —1
The object Dp,4 is functorial in B/A in the sense that a diagram

A — A

(1) | |

BT>B’
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ELLIPTIC COHOMOLOGY 9

gives rise to a map (f ® f)*Dpya — Dprjar. Given,

A-BLC
the sequence
["Dpja = Dcya = Deyp
is a cofibration. The long exact sequences derived from this cofibration are known

as transitivity sequences.
Another important tool is the following base change result.

LEMMA 5.2. Suppose that A is commutative and that B is a flat associative
A-algebra containing A in its center. For any map

A— A
write
B =B A,
A
and let j be the map
j:BeB—-B @B
A Al
b1®b2I—>b1®1®b2®1.
Then the map (5.1)

.]*DB/A — DBI/A/
is a weak equivalence.

Proof: To ease the notation, the symbol ®, unless indicated otherwise, will
refer to ® 4. Since B/A is flat, so is B//A’, and we can make use of the cofiber
sequences

Dpjy—B®B—B
DB’/A’ —>B/ ®B/ —)B/.
A/

Let P. — B be a projective resolution of B as a B ® B-module. Then

(5.3) P ® (B’@B’)%P ® (B®BRA)~PA
B®B A’ B®B

is a complex of projective B’ ® 4+ B’-modules, and its homology is
B’ if x=0
0  otherwise.

Tor’ (B, A’) = {

It follows that (5.3) is a projective resolution of B’. Lifting the map B ® B — B
to P. gives a cofibration

DB/A —-B®B — P,
and hence a map of cofibrations

j*Dpja — B'® B —— j°P

! | l

Dpjy — B ®B —— B.
A/
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10 M. J. HOPKINS AND H. R. MILLER

Since the second and third vertical maps are weak equivalences, so is the first. The
result follows. ([

5.2. Commutative rings. From now on suppose that A — B is a map of
commutative rings. In this case we define a complex of B-modules

L
AB/A = /J,*DB/A =B ® DB/A~
B®B

The L indicates that the tensor product is taken in the homotopy invariant sense, so
that, even though the homology of the complex Dp/ 4 is concentrated in dimension
zero, the homology of Ap/4 need not be. A sequence A — B — C gives rise to a
cofibration in the homotopy theory of chain complexes of B-modules.

[*A/a — Agja — Aoy

REMARK 5.4. This is a slightly misleading expression. It is important to re-
member that u is the map from C ®4 C to C (as opposed to the map from C®p C
to C.) The consequence of this is that, in the case where both maps are flat, the
homology groups of u*Ac,p are not the groups Toriq@iBC(C, (). Of course, as in
the comment below, if the complex D¢/ p is acyclic (as in the application below),
then the complex Ag,p is also acyclic.

Note that if C' = S~!'B, for some multiplicatively closed subset S C A, then
Dp/c is acyclic, and so by the above exact sequence, the maps

(5 5) (SXS)ilDB/A*)DC/A
’ S_lAB/A _>AC/A
are isomorphisms.

LEMMA 5.6. Suppose that P is a complex of R-modules and s € R an element
which is not a dwisor of zero. Let m : R — R/(s) be the quotient map. If 7*P is
contractible, then

P—slp

is a weak equivalence.

Proof: The complex s~ 1P is the colimit of
PP,

Since s is not a divisor of zero, the cofiber of P 2> P is n*P. Since 7*P is
contractible, each map in the above sequence is a weak equivalence. It follows that
the map P — s 1P is a weak equivalence since homology commutes with directed
colimits. ([l

REMARK 5.7. This can be considerably generalized, but this version is so sim-

ple, and is all that is needed in the present paper.
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ELLIPTIC COHOMOLOGY 11

5.3. Schemes. Suppose now that X/S is a flat scheme, and define complexes

DX/S = (OX (5@ OX — Ox> [—1]
S
Ax;s = RA*Dx/s.
The complex Dx/g is a complex of coherent sheaves on X x X, and Ax/g is its
(derived) pullback to the diagonal. By the isomorphism (5.5) if ¢ : U C X is the
inclusion of an open subscheme, the restriction maps
’L*Dx/s — DU/S
i*AX/S — AU/S
are weak equivalences.
In the context of schemes, the fundamental exact sequences take the following

form. Given

x Iy

l

S
there are cofibrations
(f x f)*Dy;s = Dx;s = Dx)y

5.8 "
(5:8) I"Ayss = Axys = Axyy.

As far as computation goes, we have the following result.

LEMMA 5.9. If X/S is smooth, there is an isomorphism

HiAX/S =~ Q%(%/S

Proof: The question is local on X/S (provided we make a map) and so we
reduced to the case that X = A%. In this case one can proceed by direct calculation.
O

LEMMA 5.10. Suppose that X is a scheme, j : Z C X is a closed subscheme,
and i: U C X its complement. If P is s complex of coherent Ox-modules and j*P
is acyclic, then the map

P — %P
is a weak equivalence.

LEMMA 5.11. Suppose that X is a scheme j : Z C X is a closed subscheme,
and P a complex of coherent Ox-modules. If each of the sheaves H; P is supported
on Z and j* P is contractible, then P s contractible.

5.4. Vanishing criteria.

PROPOSITION 5.12. Let A — B be a map of commutative rings. The complex
of B-modules A, is acyclic if and only if the complex Lp, is acyclic.
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12 M. J. HOPKINS AND H. R. MILLER

Now suppose that A and B are algebras over Z/p. Let ¢ be the absolute
Frobenius map

B—%.pB

| | d@=ar

A—2 A

and
éB/A : ¢*B — B

the relative Frobenius. More generally, write ¢, /A (¢™)*B — B for the iterated
relative Frobenius.

LEMMA 5.13. For each n > 0, the map

LigmyB)ja = Lp)a,

induced by the iterated relative Frobenius, is null.

Proof: The result is clear if B is a polynomial algebra over A, since DazP" = 0.
It follows that if P, is a simplicial A-algebra, which is dimension-wise a polynomial
algebra, then the map

Lyp,ya — Lp, 4,

is zero. Taking Py — B to be a resolution gives the desired result. O

COROLLARY 5.14. If for some n, the map qbg/A is an isomorphism, then Lp,a
and Dp, 4 are acyclic.

Proof: With these assumptions, the relative Frobenius map

Ly-p/a — Lpya,

is both an isomorphism and null. It follows that Lp,4 is acyclic. The fact that
Dp/a is acyclic follows from Proposition 5.12. (]

6. Stacks
Let C be a category with a Grothendieck topology.

DEFINITION 6.1. A presheaf of groupoids on C is a rule associating to each object
X of C a groupoid &x, to each map f: X — Y a functor &f = f* : &y — &x
and to each composable pair

xLyz
a natural transformation €(f,g) : f*¢* — (g o f)*, satisfying the associativity
condition
(6.2) e(e(f,9),h) =e(f,e(g, h)).
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ELLIPTIC COHOMOLOGY 13

The collection of presheafs of groupoids over C forms a 2-category.

Now suppose & is a presheaf of groupoids on C and that U — X is a covering.
The category Desc(U/X) of descent data relative to U is the category whose objects
are objects E of &(U) together with an isomorphism s : 7] F — 73 E satisfying the
cocycle condition identical to the one described below.

A presheaf of groupoids & is a sheaf if for each covering U — X of C the map

&(X) — Desc(U/X)
is an equivalence of groupoids.
DEFINITION 6.3. A stack in C is a sheaf of groupoids.

Given a stack & over C one can form a category €® in which an object consists
of a pair (F,X) with X an object of C and E an object of &(X). A map from
(E1,X1) to (E2,Xs2) consists of a map f : X; — X5 together with a morphism
g: FE1 — f*Es. It is convenient to picture this data as

E1L>E2

! l

X1 T> XQ.

The fact that €& is a category makes use of the associativity condition 6.2. The
category €® is fibered in groupoids over C.

The collection of stacks over C forms a 2-category, StC.

A l-morphism M; — My of stacks is said to be representable if for each
1-morphism X — My with X representable, the fibre product

XXM1
Mo

is representable.

If P is a property of morphisms in C which is stable under change of base,
and which is local in nature, then a l-morphism M; — My will be said to have
property P if it is representable, and if for each X — M, the map

(6.4) X x My =X
Mo

has property P. One important example is the case in which P is the property of
being a covering.

We can define a kind of Grothendieck topology on the 2-category of stacks by
letting the covers be the 1-morphisms which are coverings in the above sense.

By construction, the coverings of StC satisfy the following axioms:

1) If Ty — T3 is a representable equivalence then it is a covering;

(
(2) If Th — T> is a covering, and U — T4 is any 1-morphism, then the 1-morphism
U x Ty — U is a covering;
T
(3) The class of coverings is stable under formation of coproducts and composition.

A presheaf on StC is a contravariant functor from StC to Gets. A presheaf on a
stack M is a presheaf on the 2-categry of stacks in C over M. Here we must regard
Gets as a 2-cagegory in which the only 2-morphisms are identity maps. This has
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14 M. J. HOPKINS AND H. R. MILLER

the consequence that if P is a presheaf, and f and g are two 1-morphisms which
are related by a 2-morphism, then Pf = Pg.

A presheaf is a sheaf if it satisfies the sheaf axiom: for each covering 77 — T5,
the sequence

P(Ty) — P(TY) = (Ty X T)

is an equalizer.

6.1. Inverse limits and Cech cohomology. Again, let C be a category with
a Grothendieck topology, and F' a presheaf of abelain groups. The point of this
section is to identify the groups
8
where C’ C C is a full subcategory. We are interested in full subcategories generated
by collections U C obC which are coverings of the terminal object in the sense that
for each X € ob(C, the map

[Tvxx—x
Ueu

is a covering. The Cech complex of U is defined to be the normalized complex
associated to the cosimplicial abelian group

[[ro)y= ] FWxW)....

Ueu (Uo,Ur)eU?

The cohomology of the Cech complex is denoted H*(U; F). If U C U’, then the
natural map
H*(U) — H*(U)
is an isomorphism.
Now suppose that the full subcategory C’ generated by U happens to be stable
under formation of products. Then we can compare the Cech complex of U with
the cosimplicial replacement of the functor F', which is defined to be the complex

[[Frvo= I FUL-...
Uo

Uo(—U1

The natural map goes from the Cech complex to the cosimplicial replacement, and is
in degree n, the map whose component with index Uy < - - - < U, is the projection
mapping to the factor with index (Up,...,Uy,).

PROPOSITION 6.5. With the above assumptions, the natural map from the Cech
complex to the cosimplicial replacement is an isomorphism.

Proof: The natural map is an isomorphism of H°. Since the Cech cohomology
groups take a short exace sequence of presheaves to a long exact sequence in co-
homology, it suffices to show that the Cech cohomology groups are effaceable. For
this it is enough to show that the groups H(U; F), i > 0, are zero when F is the
right Kan extension of functor which assigns to a fixed object V' € U an abelian
group A. More explicitly, the presheaf F' is given by

FU =[] A

V—=U
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Now the let S be the set {f : V — U | U € U}. Then the Cech complex of F is
just the complex
AS = ASXS

For any set S, the simplicial set £S = S £ S X ... is contractible. It follows
that the groups H'(U; F') are the cohomology groups H'(ES; A) which are zero for
1 > 0. This completes the proof. O

6.2. The quasi-étale topology. Now let Aff be the opposite of the category
of commutative rings. There are several topologies we need to consider. A collection
{U; — U} is a covering in the flat topology if the map [[U; — U is faithfully flat.
This implies, in particular, that each U; — U is flat. The fppf topology is obtained
by requiring that the collection {U; — U} be finite, and that each U; — U be finitely
presented. The quasi-étale topology is obtained by requiring that the complexes
Ay, v be acyclic.

DEFINITION 6.6. A map R — S of rings is quasi-unramified if the complex of
S-modules Ag/p is acyclic. A map is quasi-étale if it is quasi-unramified and and
flat.

6.3. The associated stack. Now suppose that C is a Grothendieck topology
and F' is a contravariant functor from C to groupoids. The point of this section is
to associate a stack to F'.

Let J = {U; — U} be a covering in C. A descent datum for F relative to
J consists of a collection of objects x; € ob F(U;), together with isomorphisms
tij © T — 7z, satisfying the cocycle condition

* * *
™ tj,k (e} ﬂkti,j = ’/Tjti,k-

For the covering J, define

UOZHUi
ﬁl :HU7§U]

Then J = ([70, U1) is naturally a groupoid object of C, which we may regard as
a contravariant functor from C to groupoids. The category of descent data for F
relative to J is the category of morphisms of groupoids from J to F.

6.4. The cotangent complex of a stack. In this section we will consider
the cotangent complex of a morphism M — N of stacks. This object will be a
chain complex of quasicoherent O -modules, and is determined by insisting on the
transitivity and flat base change properties. Unlike in the case of rings, it will not
be the case that H;Ln = 0if i <O.

By the transitivity sequence, the complex L/ will be the cofiber of the map
Ly — Ly, and so we need only define the absolute complex. We will consider the
case of a stack of the form M(A,T).

We will need a lemma. For a Hopf-algebroid (A,T) let B(A,T')® be the cosim-
plicial object which represents the nerve of the groupoid represented by (A4,T). One
has

B(A,T)" =T%"
where ® means “tensor over A,” and I'®Y = A. Given an (A4,T') co-module M, let
B(M)* be cosimplicial module over B(A,T) with B(M)" =T®" @ M.
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16 M. J. HOPKINS AND H. R. MILLER

LEMMA 6.7. The functor B from (A,T") co-modules to cosimplicial B(A,T)*®
modules has a right adjoint Rcom.

REMARK 6.8. There is another description which is useful. Suppose we are
given a stack M whose diagonal is representable, and a cover f : spec A — M.
Write

specI' ~ spec A i(/t spec A.

Then (A,T") is a Hopf-algebroid. Set fo : spec B(A,T') — M be the augmentation.
Strictly speaking, this map does not exist, but if one first converts the map f into
a “fibration,” then one can find an equivalent simplicial stack, and a map to M.
If we identify (A,T") co-modules with quasi-coherent M-modules, then the functor
denoted B above would naturally be denoted fJ. Its right adjoint is then (fq)..

Making use of the functorial L, we define
LM(A,F) := Rcom LB(A,I") .
We have to verify some of the basic properties.

PROPOSITION 6.9. If the 1-morphism M — N is representable, then the sheaves
H;Ly/n are zero for i < 0.

Proof: Choose a faithfully flat cover f : specA — N and consider the 2-
category pullback
specB —2—+ M

l !

spec A T> N.

Then by flat base change, g* Laq/nr ~ Lp/a. Since f is faithfully flat, so is g, and

SO
HiLypyn =04 g"HiLyynv =0
& Hig"Lan =0
& HiLp/a =0.
But HiLg/a =0 for i <0. (I

7. The moduli stack of formal groups

The point of this section is to establish some basic notation, and give the
Landweber criteria for a map to be flat.

Define ML% to be the moduli stack of formal groups of height greater than or

1

equal to n. Over ML% there is a global section v, of wP"~'. The zero set of v,

is Mgg 1], and its complement is Mgg The stack /\/lgg is the moduli stack over
Z/p of formal group laws, such that locally, in a local coordinate, “multiplication
by p” is represented by a power series of the form \az?" + - --.

REMARK 7.1. The moduli stack of formal group laws, all of whose geometric
fibers have height greater than or equal to n does not come from a Hopf algebroid.
It is a colimit of ones that do, though. It is the colimit of (spec L/I¥, spec W/IF).
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ELLIPTIC COHOMOLOGY 17

7.1. The Frobenius morphism. Now let G — S be a formal group over a
scheme S, which is, itself a scheme over specZ/p. The Frobenius map ¢ gives a

commutative diagram

G .G

Lo

and hence a map fg : G — ¢*G. If z is a local coordinate on G, then fg(z) = aP.

Write w for the invariant differential on G. In a local coordinate x write “mul-
tiplication by p” as [p](x). Since p*w = pw = 0 it follows that [p]’(z) = 0, and
hence that [p](z) = g(zP) for some power series g. This means that we can write
p = vgfs for some vg : ¢*G — G. Since p is surjective, the map v is uniquely
determined by this equation.

Now suppose that the height of G is > n, with n > 1. Then, in a local
coordinate, [p](z) = cx?” + ... for some c. Tt follows that vg(z) = P
and that v;;(0) = 0. But this means that viw = 0 and hence that v (z) = 0,
and so we can write vg(x) = Vg) («P) for some h. Writing this globally we see
that there is a unique map Vg) : (¢*)*G — G with V(G2) o fg o fg. Iterating this
discussion leads to the following result.

ProrosiTION 7.2. If G has height > n then there is a unique map vg) :
(¢™)*G — G with the property that

vt =p: G > G
If the height of G is equal to n, then the map vgl) 18 a isomorphism.

ProOPOSITION 7.3. Forn > 1, the 1-morphism ./\/lgg — specZ/p is quasi-étale.

Proof: The map is flat, so it suffices to show that it is quasi-unramified. We will
use the criteria of Proposition 5.14. We need to show that ¢ : Mgg — Mgg is

an equivalence. But this is the 1-morphism sending a formal group G to the formal

group (¢")*G. The map V(Gn ) defines a natural isomorphism from this functor to

the identity functor. O

8. Elliptic curves

8.1. The moduli stack. Define a contravariant groupoid valued functor Myyeier
on Aff by taking the objects to be the set of projective plane curves given by a
Weierstrass equation

y2 +a1xy +azy = 23+ asx® 4 agx + ag,
which we will also write in the form F(x,y) = 0, where
F(Ivy) = y2 + a ry + asy — (1,3 + (121’2 —+ aqx + CLG).

A morphism from the curve defined by Fi(xz,y) = 0 to the curve defined by
Fy(x,y) =0 is a transformation

T )\2(z+r)

3 A a unit
y—= X (y+sx+1t)
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18 M. J. HOPKINS AND H. R. MILLER

sending a solution of F (z,y) = 0 to a solution to Fa(x,y) = 0. If (z,y) is a solution
of F(x,y) = 0, then the point

(N (z+7), Ny +sz+1))

is a solution to
MEA 2z —r Ay —s(A 2z —1)—1),

which can be rewritten as

y> 4+ nrlar)zy + nr(as)y = 2° + nr(az)a® + asx + nr(as),

where

(8.1) y* + May — 28)xy + X3(az — ra; — 2t — 2rs)y =
234+ 2% (ag + sa; — 5% — 3r)x? + A\ (ag + sas — 2ras + (t—2rs)ay — 25t +2rs? +3r2)z+

)\6(a6 — aqr + asr? — 2 — agrs + a1r®s — r2s® + ast — ayrt + 2rst — t2)

8.2. Height and the Frobenius isogeny. Let A be a p-divisible group over
a base S, and

f:fA/SZA—>(b*A

the relative Frobenius map. Since multiplication by p is is surjective and kills the
kernel of f, there is a unique map

V:VA/S:gﬁ*A*)A,

satisfying vf = p. Since fvf = pf = fp, and since f is surjective, it also follows that
fv =p.

Let E be a generalized elliptic curve over a base S, Ef its formal completion,
and i : Ef — E the canonical map. The map 4 gives rise to an isomorphism
ker(fgs) — ker(fg). When S is the spectrum of a field, and E is supersingular,
the map 4 restricts to an isomorphism between the kernels of multiplication by p.
This implies that the map ker(vgs) — ker(vg) induced by 4, is also an isomor-
phism. Finally, it follows for general S, that if all of the geometric fibers of F
are supersingular, then the map ker(vgs) — ker(vg) is an isomorphism. This is
proved by reducing to the case where S is Noetherian and affine (for example, the
universal case) and then using the fact that a map of finitely generated modules
over a Noetherian ring is an isomorphism if and only if it is over every geometric
fiber.

8.3. The invariant differential. Let E be the elliptic curve given by the
Weierstrass equation

(8.2) F(z,y) = y* + a1xy + asy — (2 + azx® + agx + ag) = 0.
Introduce the coordinates z = —x/y, w = —1/y. Then z is a local parameter near
the identity section (the point at infinity). The invariant differential is given by
dzx dy
W= ——=——.
F, F,

We need to expand w as a power series in z.
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In terms of w and z, the invariant differential w is
wdz
(323 — 2w) + 201wz + 2a2wz? + azw? + agw?z
dz
(323 /w — 2) 4+ 2a1 2 + 2a22% + azw + agwz’

and the equation (8.2) becomes

(8.3) w = 22 + aqwz + aswz? + azw? + agw?z + agw®.

It is also useful to rewrite this equation as

3
z
(8.4) 2o =1—a12 — as2® — azw — aqwz — agw>.
w
From these two equations one concludes
w=2*+0(z*)
53
Lo l—az—ag® —az + 0(24),
w
and finally
dz
w

1 a1z — agz® — 2a32% + O(z%)’

LEMMA 8.5. Suppose that E is an elliptic curve over a ring R with identity
section e, and
u € H°(O(—e)/O(—5¢))
is a local parameter at e modulo degree 5. There are unique sections x € H°(O(2e))
and y € H°(O(3e)) satisfying

(8.6) r=u"2 mod O(e)
(8.7) y=u"> mod O(2e)
(8.8) z/y=u mod O(be).

Proof: The question is local in R so we may suppose that F is given by a
Weierstrass equation

y2 + a1+ aszy = 23 + a2x2 + aqx + ag,

with  and y satisfying (8.6) and (8.7). For convenience write z = x/y. Then z is
a local parameter near e, and z = u modulo O(2¢). Write

z=u+cu® + O(u)?,
and consider a change of variables of the form y — y + sz. Then
2z — 822 +0(2)3,
and so there is a choice of z and y with the property that 2/y = u modulo O(3e).
This choice of z and y is unique up to a change of variables of the form
rT—=T+r
y—y-+t
Now write z = u + cu® + O(u*). Replacing by = + r replaces z with

1
z4r==z+rud+O0®u).
Y
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20 M. J. HOPKINS AND H. R. MILLER

It follows that # and y can be chosen so that x/y = u modulo O(4e), and that this
choice of x and y is unique up to a change of variables of the form

y—=y+t.
Finally, write z = u + cu* + O(u®). The transformation y — y + ¢ sends z to
r x
y+t  y(l+1)
It follows that = and y can be chosen so that z/y = v modulo O(—5e), and that
this choice is unique. (]

=z —t2* + O(z%).

COROLLARY 8.9. The ring A = Zlay, as, as, a4, ag| represents the functor “ellip-
tic curves together with a local parameter at e modulo degree 5”. The Hopf-algebroid
(A,T) can be identified with the one representing the functor “elliptic curves with
a local parameter at e modulo degree 5, and changes of local parameter.” O

8.4. Representability of Mg — Mpgg. The point of this section is to give
a proof of the following result.

PROPOSITION 8.10. The 1-morphism Mgy — Mgq is representable.
The proof makes use of an auxilliary stack.

DEFINITION 8.11. A formal group law chunk modulo degree n over a ring R is
an element

F(z,y) € Rlz,y]/(z,y)"
satisfying
F(x,y) = F(y, »)
F(z,0) = F(0,2) ==
F(F(x7y)7z) = F(.]?,F(y,l‘))

A homomorphism f : Fy — Fy of formal group law chunks is an element f €
RI[t]/(t)™ with the property that

f(Fl(xvy)) = F2(f($)7f(y))

The functor “formal group law chunks over R modulo degree n and isomor-
phisms” is represented by a Hopf-algebroid. The theory is much the same as in the
case of formal group laws. The ring representing the functor “set of formal group
law chunks modulo degree n 4+ 2” is isomorphic to

Zlxy,. .., xy),
and the universal “group chunk” is given, modulo products of the z;’s, by
Y+ Y Taca(z,y),
where ¢, (z,y) = dp((z + y)™ — 2™ — y™), and

1 — i
g, =1v 1fn—].97papr1me
1 otherwise.
The universal isomorphism between group chunks is given by the change of variables
T tox 4 -+t T+ O(2" ),

with tg a unit.
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The stack associated to the Hopf algebroid of formal group law chunks modulo
degree n will be denoted Mpg(n). A 1-morphism spec R — Mpg(,) will be called
a formal group chunk modulo degree n over R. By construction, there are 1-
morphisms

*)Mpg(n_,_l) *)MF(;(”) — .,
and the “homotopy inverse limit” of this tower is just Mpg. Since they come from
Hopf algebroids, the diagonal map of each Mpq () is representable.

We will be interested in the case n = 5. In this case the universal group law

chunk can be written as

F(z,y) = x4y + 2102 + T2cs + (v3¢4 + T22163) + O(7,9)°.

The universal invariant differential is
dr dx
Fy(2,0) 14 x12 + 2922 + 22323 + O(x)*
2

= (1 —zx+ (23 — 29)x
+ (=23 4 22120 — 223)2° + O(2)*) da.

LEMMA 8.12. The 2-category pulback of
MEgn

l

spec Z[x1, T2, 23] ——— Mpg(s)
is representable. It is represented by the elliptic curve
y2 + a2x + azy = > + a2x2 —+ a4x + ag

over the ring A with local parameter t = x/y modulo t°.

Proof: The pullback stack is the stack which associates to each ring R an
elliptic curve over R, a formal group law chunk over R modulo degree 5, together
with an isomorphism between the associated formal group chunk and the formal
completion of the elliptic curve modulo degree 5. This data is clearly equivalent
to giving an elliptic curve over R and together with a local parameter at e modulo
degree 5. The result follows from Corollary 8.9 O

REMARK 8.13. Working over A, we have explicitly allowed “additive” reduc-
tion. This fiber must be removed when we consider the homotopy theory, specifi-
cally when we verify flatness of the map to the moduli stack of formal groups.

8.5. Some vanishing results. Fix a prime p, and let M%ﬁ‘ip (respectively

p11,p) be the moduli stacks of ordinary (respectively supersingular) elliptic curves

in charasteric p. There are therefore 2-cartesian squares

MOErﬁ{p — Mg BlLp Enp — Maen
l l and l l l
M —— Mrg MG —— ML —— Mrc

PROPOSITION 8.14. The 1-morphism Mg, , — M%QC); s quasi-étale.
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22 M. J. HOPKINS AND H. R. MILLER

Proof: Being the base change of a flat map it is flat, so it suffices to show
that it quasi-unramified. Since M%QC); — specZ/p is quasi-unramified, it suffices,
by the transitivity sequence to show that M%sll,p — specZ/p is quasi-unramified.
The proof of this is similar to that of Proposition 7.3, and uses the fact that for an
supersingular elliptic curve A, the map Vf) : (¢?)*A — A is an isomorphism. [

8.6. A quasi-étale cover. The point of this section is to exhibit a quasi-étale
cover of Mgy. This is needed in order to know that the cohomology of the Cech
complexes we are computing actually give the cohomology of the whole stack. It is
also useful in identifying the cotangent complex of ¢ with w!®, since, among other
things, it shows that the cotangent complex has all of its homology in dimension 0.
The cover will be exhibited in pieces. We will consider separately the cases when
2 is inverted, and when 3 is inverted. Over each of these opens we will consider
separately the case when A is inverted, and when ¢, is inverted.

We will need a couple of algebraic lemmas.

Let R be aring. For an R-module M, let M[z] denote the R-module M ®r R[],
and write elements of M([z] as polynomials with coefficients in M.

LEMMA 8.15. Let f(z) = anaz™ + ...ao be an element of R[x]. If the ideal
generated by the a; is the unit ideal, then f does not annihilate any non-zero element
of M[x].

Proof: Suppose that the ideal (aq, ..., ay) is the unit ideal and let
g(x) = mpa® + - +my € Mlz]

be an element of minimal degree which is annihilated by f. Let j > 0 be the
smallest number with the property that the elements a,,...,a; annihilate g. If
7 > 0 then

f(@)g(z) = aj_1mpz* =" 4 lower terms.
It follows that a;_1m; = 0, and so a;_1¢(x) has lower degree than g and is annihi-
lated by f, and so must be zero. It follows that j = 0 and that g is annihilated by

all of the a;. But this implies that g = 0 since the a; generate the unit ideal. (Il

LEMMA 8.16. Suppose that R is a ring, and that
f(x) =apz" 4+ +ao € Rlx]

is a polynomial. The module R[x]/(f(x)) is flat if and only if the ideal (ag, ..., an,)
is the unit ideal.

Proof: We just do the “if” part, so suppose that the a; generate the unit ideal.
Then Lemma 8.15 with M = R shows that the sequence

f
R[z] = R[z] — R[z]/(f)
is short exact, and hence a free resolution. Tensoring with an arbitrary R-module

M and once again using Lemma 8.15 gives the result. (]

COROLLARY 8.17. Suppose that R is a ring and that f € R[x] is not a divisor
of zero. If the ideal (f, f') is the unit ideal then B = R[z]/(f) is quasi-étale over
R.
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Proof: The fact that (f, f’) is the unit ideal implies that the coefficients of f
generate the unit ideal. It follows from Lemma 8.16 that R[x]/(f) is flat over R
and from Lemma 8.15 that f is not a divisor of zero. The Meyer-Vietoris sequence
(Corollary 4.2) then shows that the complex Lp,p is quasi-isomorphic to

B, B

which is acyclic, since f’ is a unit in B. O
The following is a useful special case.

COROLLARY 8.18. Suppose R is a ring, n is an integer, and that a and n - 1
are units in R. Then the map R — R[z]/(2™ — a) is quasi-étale. O

8.6.1. When 2 and A are units. Consider the elliptic curve
y2 =3+ 122 + .

over the ring R = Z[3][r, (7> — 4)~']. With 2 inverted, the stack Mgy is presented
by the Hopf algebroid (B,I'p), with B = Z[3][bs, ba, bg], T' = B[r, A*']. The map
spec B — Mgy is the one classifying the elliptic curve

y? = a3 4 box? + by + bg = f(z),
and the universal isomorphism is given by the transformation
P B

Replacing = with x +r changes b to f(r), and by to f’(r). Replacing x with A =2z
sends by to A*bs. The 2-category fiber product of spec R and spec B over Mgy is
therefore represented by B[t,a]/(f(t),a* — f'(t)). The ring B[t]/f(t) is étale over
B because the discriminant of f is a unit. Over B[t]/f(t), the element f'(t) is a
unit, and so the addition of « defines a further quasi-étale extension.

8.6.2. When 2 and c4 are units. Consider the elliptic curve

v =2+ 2%+

over the ring R = Z[5][r, (7% — 4)7']. The value of ¢, is 16 for this curve, and
so is a unit since 2 has been inverted. The value of ¢4 for the universal curve is
16(b3 — 3by). Making the change of variables x + x + r changes by to f'(r), and
sends by to by + 3r. The 2-category fiber product is therefore represented by

Blt,a]/(f'(t),® — (ba + 3t)).

Adjoining ¢ is flat, since the coefficients of f’ generate the unit ideal in R. It is
unramified, since the discriminant of f’ is 4(b3 — 3bs) = %, which is a unit. The
element by + 3¢ is a unit since it is 3 f”(t), so adjoining « is étale.

8.6.3. When 3 and A are units. Now consider the curve

y2+7':z:y+y:x3.
The discriminant is 73 — 27, so it is non-singular over the ring

R = Z[%][T, (73 —27)71).
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8.6.4. When 3 and c4 are units. Now consider the curve
(8.19) v +ay =2 +1.
The value of ¢4 is 1 and the value of cg is 1 + 8647. It follows that the value of A
is —7(1 4 4327). We will consider this curve over the ring
R = Z[%][T]

To verify that it is quasi-étale over Mgy it suffices, since Mgy is flat over Z,
to verify that it is quasi-étale after reducing mod 2, and after inverting 2.
Modulo 2, the value of ¢; = af is a unit. There is a unique transformation

x +— x4 r (namely » = —a3/a;) which gets rid of the term agy. There is a unique

transformation y +— y + ¢ (namely ¢t = ay/a;) which gets rid of the term asz?.

Finally, there is a unique value of A which brings a; to 1. This shows that, modulo
2 and with ¢4 inverted, the stack we are interested is associated to the curve

y2 +xy = z? +a2x2 + g,

and the transformation y — y + sz. Making the substitution y — y + sz leaves agq
unchanged, and sends s to s2 4+ s + aq. It follows that the 2-category pullback

spec Z/2|az, ag)

l

specZ/2[d] —— Mgy

is spec Z/2[az, ag)[s]/(f(s)), where f(s) = s® + s+ aa. Since f’(s) = 1 the map is
quasi-étale by Corollary 8.17.
Now suppose that 2 has been inverted, so that, in fact, 6 is a unit. The map

spec Z[§][ag) — Men[§]
classifying the curve
(8.20) vP=a%+x+ap

is a faithfully flat cover of the locus where ¢4 is a unit. To compute the 2-category
pullback of
spec Z[¢][a]

!

specZ[tir] —— ¢ M}
first note that in order that a transformation

z 1723 (x4 1)

Yy 173y + sz + 1)
send an equation of the form (8.20) into one of the form (8.19) one must have
t=0 st=-3
3r=s l=1/2s.

For the record, the value of 7 is then (3sag — 2)/1728. This means that the

2-category pullback is given by specZ[¢][ag][s]/(s* + 3). This is quasi-étale over
Z[§]lag] by 8.18.
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9. Determination of certain cotangent complexes
9.1. The elliptic moduli stack. In this section let M be the stack Mgy.

PROPOSITION 9.1. The natural map Ly, — Qj/lE“ s a quasi-isomorphism.

Proof: This is immediate from the fact that the stack Mgy admits a quasi-étale
cover by smooth algebras. ([l

PROPOSITION 9.2. There is a unique 1-form v on Mgy with
1728 - v = 2¢c4 dcg — 3cg dey.

The form v gives an isomorphism

+10 . Ol
w NQME“.

Proof: Tt suffices to check this locally on the cover given in section 8.6. For the
curve
v =2'+72° + o
over Z[1][r, (r* — 4)~1], the values of ¢4 and cg are given by
ey = 167% — 48
ce = 6477 — 2887

and so v = 16dr exists, is unique, and is a nowhere vanishing section of the
cotangent bundle.
For the curve
v2 =+ a2+,
over Z[1][r], the values of ¢4 and cg are given by

Cq = 16
ceg = 32(27T +2),
and so v = 16dr exists, is unique, and is a nowhere vanishing section of the

cotangent bundle.
For the curve
v+ ey +y =2’
over Z[4][r, (r® — 27)7'], the values of ¢4 and cg are given by
Ccy = 4 — 241
ce =70 — 367° + 216
and so v = 9 dr exists, is unique, and is a nowhere vanishing section of the cotangent
bundle.
Finally, for the curve
y2 +xy = 4T
over Z[][r], the values of ¢4 and cg are given by

Cqy = 1

cg = 8641 + 1
and so v = dr exists, is unique, and is a nowhere vanishing section of the cotangent
bundle. 0
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COROLLARY 9.3. The complex LM%T is quasi-isomorphic to wt0.
iy

Proof: We know that the assertion is true of Mgy, by flat base change. It
then follows for M%ﬁfp since the inclusion M%ﬁ‘ﬁp — Mg,y is quasi-étale. O

9.2. The cotangent complex of Mg over Mpg. To make the notation
less cluttered, for this section write M = Mgy and N' = Mpg. The point of this
section is to identify Laq/n ® Z/p and L n @ Q.

PROPOSITION 9.4. For each prime p, the complex Ly ar®Z/p is quasi-isomorphic
to i,w™10 where i : M%ﬁ‘ﬁp — M is the inclusion.

Proof: 1t is useful to write M, = M ® Z/p, N, = N ® Z/p and look at the

diagrams
SS k l T
Ell,p Mp MOEl?,p
2 1
M%C)} Np M%C); )
and

M, — M

! |

N, —— N.

in which the squares are 2-cartesian, and all of the vertical maps are flat. In
this notation, the map i is the composite ji. Now, by definition, Lq/n ® Z/p ~
J«J"Lamyn- By flat base change, j*La/n ~ L, n,- Again, by flat base change,
we have a weak equivalence

k*LMp/Np — LMESll,p
But this latter complex is acyclic, by Proposition 7.3. Since k is locally defined by
the vanishing of a single function which is not a divisor of zero, the means that the
map

JME

LMP/NIJ - Z*Z*LMP/NP
is a weak equivalence. By flat base change, the map

"L — L
Mp/No 7 B /MR

is a weak eqivalence. By Proposition 7.3 the map M(Flc); — specZ/p is quasi-étale.
It follows from the transitivity sequence that

Lyjora — L N 1
MEu,p M%lip/M(Fc);

is an equivalence. But L yora is quasi-isomorphic to w'? by Corollary 9.3. Collect-
5P
ing these isomorphisms completes the proof. [l
PRrROPOSITION 9.5. There is a natural quasi-isomorphism
Lpn®Q~ (W 0u®) @ Q.
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10. Elliptic spectra
DEFINITION 10.1. An elliptic spectrum E is étale if the map
spec o — Mg
classifying the elliptic curve associated to E is étale open of finite type.
For a map U — Mgy, define a graded ring Ey, by
Eyay, = Ty (W)
Ey 2k+1 — 0

LEMMA 10.2. If U is affine, U — M is an étale open, and wy admils a
nowhere vanishing global section, then the pair (Ey,,Ay) satisfies the conditions
of the Landweber exact functor theorem. It has a unique homotopy associative
multiplication.

Proof: 1t suffices to check these after fppf base change. Do it on the standard
cover. (]

Thus the étale elliptic spectra are those of the form Fy.

11. Factoring and lifting
11.1. The section (Mgy),, — ho AZL.

PRrROPOSITION 11.1. The functor specmy : ho Ay, — (/\/IEH)'et has a unique
section up to vertical natural equivalence.

LEMMA 11.2. For an object U — Mgy of (MEH);U the space
Aoo {EU}

is non-empty and connected.

Proof: The group
Der? p. (mo(Eu A Ey), E)S*)
is zero because EYS? = 0. According to Theorem 12.12 the groups
DerfrjéU (7‘(’0 (EU AN EU)7 E[OJSt>

are zero for s > 1. The result therefore follows from the spectral sequence of
Proposition 2.5. (]

LEMMA 11.3. Suppose that E and F are cofibrant-fibrant objects of AZY with
specmoFE and specmoF corresponding to U — Mgy and V. — Mgy respectively.
Then

i) The map AENE, F) — Mgn(V,U) is surjective.
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ii) Given f € Mgn(U,V) let
AZNE, F)y = (specmo) ' {f}.
Then the set of components of AEN(E, F)s is a principal homogeneous space for

mo AR (F, F); ~ Der’ p(moF A E, F°S?)
-1
~ () @ [[Ov)/0v.
p

Proof: This all follows from the spectral sequence of Proposition 2.6 and the
computation of Theorem 12.12. Indeed for any choice of basepoint the spectral
sequence collapses at F5 and 7 is given by the principal homogeneous space above.

O

Proof of Proposition 11.1: By Proposition A.6 the obstruction to the existence
of a section lies in

H? (MEH; (Q\l/)_l ® H(Ov)p/OV> =0.

This proves the existence of a section. Given that there is a section, Proposition A.6
then asserts that the set of vertical natural equivalence classes of sections is a
principal homogeneous space for

o' (ME]I% (Q%/)_l X H(OV)p/OV> =0.

p

This completes the proof. ([
REMARK 11.4. Two objects of AE!l are isomorphic in ho A, if and only if their
images in (MEu)gt are isomorphic.

REMARK 11.5. An object or map of AE!l is of type “P,” if its image in A, has
P, where P is one of cofibrant, cofibration, fibrant, fibration, weak equivalence, etc,
and ho A, to be the category with objects the cofibrant-fibrant objects of Ao, and
with ho ABN(E| F) = g ABY(E, F).

11.2. The lift to A. Proposition 11.1 gives a unique (up to isomorphism)
functor
D: (MEII)/et — ho Aoo.

We now turn to the problem of lifting it to a functor
D: (MEH)/et — A
The functor D will automatically factor through AEl since the diagram
AE]I Aoo
ho AE' — > ho A,

is a pullback.
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ProrosITION 11.6. The diagram D is a centric diagram: for each map f :
V —=U in (MEH);t, the map

A (DV,DV)1 = Aso (DU, DV ) ¢

is a weak equivalence.

Proof: We may (and must) suppose that DU and DV are cofibrant-fibrant
obects of A,,. The homotopy groups of the two spaces in question can be calculated
with the spectral sequence of Proposition 2.6. By Corollary 12.14, the map of Fo-
terms is an isomorphism. The result follows. (I

The homotopy groups of the realization space r(D) can now be computed using
the spectral sequence of Proposition 3.2.

ProrosiTION 11.7. For each t, the functor
U — m; Bhaut; DU

is a sheaf (of abelian groups) on (MEH);t, There is, for n > 1, an isomorphism

T2n—1 ( Bhaut, D( - )) ~w'® (91)71 ® H (OMEll)p /OMEIU

p

and an exact sequence

0 = w" ® M — 7, (Bhauty D(—)) = w” ® [[ (u—lév/ov) -0,
p
p

where M lies in the (splittable) exact sequence

0— (Qb)f1 ® H(Ov)p/Ov - M — H(Ov)p/Ov - 0.

ProprosITION 11.8. For s > 0, the groups
H? (MEII; Ton—1 Bhaut1 D( — ))
are 0, and the map
ue (MEn; Ton, Bhaut; D( — )) — H* (MEn;w” ®OQH e (v_l(’jv/(’)v) ) )
P
is an isomorphism. The bigraded group H?® (MEn;m Bhauty D(— )) is therefore
isomorphic to the bigraded abelian group

ag - (ay *Zs[af][as, n, a1n)/asZalay ", as, n))
in which
la;)| = (0,2)  |n|=(1,2).

and in which, to simplify notation, the relation 2n = 0 is implied, but not mentioned.
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12. Computations of Quillen cohomology

The main purpose of this section is to calculate
Derﬂ'oF(ﬂ-OF AN E, FOSt) = RhOH’lZ(A(V x U)/V> S*Ov),
MpGL

with respect to a map f : E — F of elliptic spectra, with
(specmoE,Ag) <+ U — Mgy
(specmoF, Ap) <+ V= Mg

f o s: V=V x U%Isom(w’fA{,,W;AfU).
MrcL

The main results are Corollaries 12.7, 12.10, and Theorem 12.12 below.

12.1. Computations modulo a prime power. Fix a prime p, and let
MEgn,m and Mygr,m be the moduli stacks obtained from Mgy and Mgy, by
change of base to Z/(p™).

Suppose given objects

U — Mgim, V — Mgim € ob (Mgnm),

et’?

and a section s : V — V Mx U. Let VoY C V be the subscheme of V defined
Ell,m

by the condition that all of the geometric fibers of Ay are ordinary elliptic curves.
Thus
Vord =V % Mord
Mo ELm
The complement of V°'¥ is V5. The closed subscheme V*° is defined by the van-

m—1

ishing of a single function v € Oy . In fact we can take v = u‘p7”71(p_1)E5_1 (or
even v = ul’pEp_l), where u is a nowhere vanishing section of w, and E,_1 = v,
is the Eisenstein series. The function v is not a divisor of zero, by the assumptions
we have made.

PROPOSITION 12.1. The complex of sheaves Ay« vyv is quasi-isomorphic
MEGL,m

to the sheaf
sy = (v x 1)1,

where
iV % U=V x U and
MrGL,m MEpcL,m
T VOl U U
MFGL,m

are the inclusion and projection respectively.
The proof depends on a couple of other results.
LEMMA 12.2. i) The map
Vel ox o U= VrixU

MEraL,m

is formally étale. It factors as a formally étale surjective map

T Vord % U= Vord % Uord N Vord % Uord
MFGL,m MFGL,m

followed by a closed immersion.
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ii) The map
Ve ox U—Vs

MEcL,m

is formally étale.

proof of Proposition 12.1, given Lemma 12.2: Let
jveE o x U=V x U

MraL,m MFGL,m

be the inclusion. Since V. x U — V is flat, the map
MFGL.'m

JAv x v —=Nvs x vy
MEGL,m MprGL,m

is a quasi-isomorphism (Lemma 5.2). By part ii) and an algebraic lemma, the

complex Ay ),y is acyclic, so by Lemma 5.6 the map
MFEGL,m

A(VM X U)/ v — i*A(Vord % )V = i*A(Vord % U)/Vord

FGL,m MpGL,m MFEGL,m

is an equivalence. By the transitivity sequence, and part i) of Lemma 12.2, the map

*
™ A(VordXU)/vord — A(Vord X U)/Vord
MFGL,m

is an equivalence. Finally, since U is smooth of dimension 1, the computation of
Lemma 5.9 gives a weak equivalence

A(VordXU)/Vord ~ OVord X Q%]
The result now follows by assembling this chain of isomorphisms. (Il
LEMMA 12.3. Suppose that R is a ring, and v € R an element which is not a

divisor of zero. If P is a projective module and M is a module for whichv : M — M
is a monomorphism, then

hompg (P, v~ M /v~ M) i=1

Exth(v™IP, M) =
i ) {0 i>1,

where

Proof: The long exact sequence in Extr coming from
M— v M — v 'M/M
gives (with hom being hom of R-modules)

hompg(v™*P, M) — homp(v 'P,o™* M) —
homp(v™'Po™'M/M) — Extr(v™'P, M) — 0.
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Now there are isomorphisms

(12.4) hompp,-1 (v P, M) ~ homg(P,v"' M)
(12.5) vIM @v_lM/v"M
(12.6) hom(P, limv~" M/v" M) = hom(v™"P,v™ M/M),

and with respect to these the map
v'M — hom(v™'R, v M/M)
me fm fm(r) =rm
corresponds to the natural map v= M — v 1.
This completes the proof, save verifying the above isomorphisms. The first

and third are clear. To see that (12.5) is surjective, suppose that a = (a,) €
lim v~ M /v™M is a sequence of elements of v~ M with

Gpt1 = a, mod v"M.

Then for some N, vVag € M, so for alln > 0, vNa,, € M. It follows that vVa € M,
and so a is in the image of v"'M. To see that (12.5) is injective, note that the
kernel of

vIM = v M /0" M

is v™ M. It follows that the kernel of (12.6) is Nw™M = 0.
Finally, the Milnor sequence for the colimit describing v~!P shows that the
higher Ext groups vanish. O

COROLLARY 12.7. There is an isomorphism of quasi coherent sheaves

v 0y fo7 10y @ (QL)71 i=1

MEGL,m 0 otherwise,

Rhom'(Ay U)/V,s*(’)v)%{

where Oy = @OV/U"OV,

Proof: Write

Then
Rhom' (A, 5,0y ) ~ Ext’((v x 1)7'73Q%, 5.0v)
~ Extl, ((v) " ts*15Q8, Oy).
Since 72 o s is étale, the natural map s*73Q} — Q1 is an isomorphism. Since V
is smooth of dimension 1, this latter sheaf is locally free of rank one, and so its

module of global sections is projective. The result now follows from Lemma 12.3,
with R = Oy, v = v, P the module of global sections of Q{,, and M = Oy O
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12.2. Computations over a Q-algebra. Now let Mgy 0 and Mpgr,o be the
moduli stacks obtained from Mg and Mypgy, by change of base to Q. Fix
U— Mgy and V — Mgy € ob (MEII)/ct ’

and a section s: V —V x U as before. For ease of notation, set
MEi,0

A:AV x UJV

Mg11,0
LEMMA 12.8. The scheme V M>< U is a trivial G,,-torsor over V. x U. It is
therefore non-canonically isomorphi]éuioo
V xU x G,

and in particular is smooth over V of dimension 2.

Proof: Since we are over a Q-algebra, the formal groups Ay and Ay are iso-
morphic to the formal completions of the additive groups wy and wy respectively.
It follows that

V x U= Isom(rjwy,mwy)
Meu,o0

~ Isom(mj @y, mady ),

and so it is a G,,-torsor over V x U. Since we have assumed that the bundles w are
trivializable, the bundles 7wy and 75wy are isomorphic, and so this torsor does
admit a section. O

COROLLARY 12.9. The transitivity sequence
W*Q(l\/xU)/U — HoA — Q(lv x U)/(VxU)
MraL

is short exact and splittable. It can be identified with
0 — w308 — HoA — hom(mjwy, miwy) — 0.
There is an isomorphism
HiA = 13Q0 ® hom(jwy, mhwy).

The sheaves H;A are 0 for i > 1.

Proof: This is immediate from Lemmas 12.8 and 5.9. (]

COROLLARY 12.10. The groups
Der! = Deri/(O(V x  U),8:0v) = Ext’(A, 5,0y)

MraL,o
vanish for i > 1. There is an exact sequence
0= Op = Der’” = ()1 =0

and an isomorphism
Der! ~ Q) h
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Proof: Since the homology groups of A are locally free sheaves, there are iso-
morphism

Deri%hom(v « ) (HiA, 5,.0v)

MEGL,0

~ homy (s*H; A, Oy).
Now there are canonical isomorphism
s*mywy R wy

The result then follows from Corollary 12.9. O

12.3. Computations over Z. Now return to the situation of maps
U— MEH and V — Mg € ob (MEu)let s
and a section s : V. — V' x U. The results of the previous two sections will now
be assembled to give calcfl/llgltlions of

HiA=HANv « uyv
MrcL

and

Deri = Derz‘I/(O(V x U S*Ov)

MrpcL

= Ext’(A, 5.0v).

THEOREM 12.11. The sheaves H; A are zero for i > 2. There are exact se-
quences

0 — Q ® hom(mjwy, Thwy) — HoA — Q@ 15Q — 0

and
0-PQ/Zy @ @v 'Oy /o710y
p

— HiA — Q ® w30, @ hom(rjwy, miwy) — 0.

Proof: Consider the long exact sequence coming from the cofibration
A—>ARQ—ARQ/Z.
O

THEOREM 12.12. The groups Der’ are zero for i = 0 and i > 2. There is an
exact sequence

0 — M — Der! — H (u—lév/ov)p -0
p

where M lies in the (splittable) exact sequence

0 (@) @ [[(0v),/0v — M = [[(Ov),/0v 0.
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There is also an isomorphism

Der? ~ (Q%/)il (9 H(Ov)p/OV

REMARK 12.13. Note that Der? is a vector space over Q.
COROLLARY 12.14. For each morphism

s: V-V x U
MEn

of (Mgn).,, and each i > 0, the map

MEGL MFGL

Deri/(OV x U, S*Ov) — Derl{/ <(1 X 71'2)*0\/ X U7S*OV>

zDer%,(Ov x v, A0v)

MrGL
derived from
1
V x U225V x vV
MecL MFraL
dl Ja
V _ V
is an tsomorphism. O

13. Coherent cohomology of the stack Mgy
For the moment we consider the stack which is covered by the union of the
Hopf-algebroids
Zlay, ... a8)lcs'] = Zlay, . .., ag)[cg V[, s, t, ATV
Zlas, ..., a6][A7Y] = Zlay, ..., ag][A Y[, s, t, AT,
We take this to be the definition of the stack Mgy. This is the part of the moduli
stack on which the function j is defined. It is also the part over which an affine étale

open U over which w is trivializable gives rise to a Landweber exact cohomology.
These covers allow us to compute the coherent cohomology.

13.1. When 6 is invertible. Let M be a coherent sheaf on Mg and suppose
that 6 - 15, is an isomorphism. Let

1
A= Z[EHM,%‘]
L 3 o
— (B oea
0= 1755 (i = %) €
and write Uy = spec A[y; '], Uso = spec A[671], and Up o, = UpNUw = spec A[(746) 7).

The curve

y? =2 + 47 + 6
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becomes an elliptic curve when restricted to Up and Us, and Up  and so defines
maps
f
Uy == Mgn
Uso 2= M
fo,00
Up,oo 25 M.
It is not hard to check (details later) that
Uy x Uy =specOy, [\

MEgn
Use X Us = specOy_ M1
Men
UOMX Uso = spec A[(740) 1N,

and that in each case, the isomorphism 7{ A(_) — 73 A(_) is given by

(13.1) = Nz Y4 = Nr(V4) = )\474
' y= Ny 6 e R = A

For i =0, % =00 or ¢ = 0,00, let M; be the module of global sections of fM.
Then each M; comes equipped with an ng-linear map

Y My — M AEY.

Let N; C M; be the subset of elements m for which ¢(m) = m.

ProroSITION 13.2. If “multiplication by 6”7: M — M is an isomorphism, then

H°(Mgy; M) =0 if s > 1.
There is an exact sequence
0— H°(M) = Ny ® Noo — Nooo — H' (M) — 0.
For example, take M, to be the sheaf of graded rings
M, = @w’ﬂ
nez

graded so that w™ has degree 2n. The form dxz/y defines over each U; a nowhere
vanishing section u of w. It follows from (13.1) that nr(u) = A~ 1u. Let O, be the
graded ring

O, = Z[§][ca; co]

cy = utyy les] =8
c6 = u’6 |cs| = 12.
Then one easily calculates
No = O.ley']
Noo = O, [A7]

NO,oo = O* [(C4A)71].
It follows that H°(M) = O,, and that H' is concentrated in degrees < 14.
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REMARK 13.3. It seems that the target of
HY W)@ H' (w™ ™) — HY(w™7)

is isomorphic to Z[§] and generated by cg/(csdh).

13.2. When 3 is nilpotent, and all geometric fibers are ordinary. Now
suppose that 3 -13; = 0, and consider the elliptic curve

y? = % + bha? + b
over the ring
A = Falbh ™" bg).
Set U = spec A. Then the curve above defines a map
f U — MEH-

It is not hard to check that

U x U =spec AN,
Men

As before, if we let My be the module of global sections of f*M, then M, comes
equipped with an ng-linear map

Y Mo — Mp[AE1].
Let N C My be the subset of elements for which ¢(n) = n.
PROPOSITION 13.4. With the above notation, if 3- 1y = 0, and vy : WP™1 ®
M, — M, is an isomorphism, then
N s=0

H*(Mgn; M) = {0 e 0

Again consider the example of the sheaf of graded rings M = @ w”. One easily
calculates that H°M is the ring

F[by ", be)
where

b2 = u2b’2 b6 = uﬁbg

13.3. When 2 is nilpotent and all geometric fibers are ordinary. Sup-
pose now that 2-1,,, is nilpotent, and that c4 : w*® M, — M, is an isomorphism.
Let V = spec ZQ[aitl,aﬁ] =specA and let f : V — Mgy be the map classifying
the elliptic curve A with equation

y2 + oy = 2+ .

Define a G,,-action u: G, X V.=V by

o — )\al

Qg — )\6()(6
Over the G,,, X V, the map ¢

e(z) = Nz
(13.5) (@) 3

e(y) =Ny

sends a point on the elliptic curve 3 A defined by the equation y%+ayry = 23+ag to
a point on the elliptic curve u* A defined by the equation y%+ (Ao )zy = 23+ (A\0ag).
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This gives a 2-morphism (also denoted €) from f o7 to f o u, and therefore an
isomorphism €* : 75 f*M — p* f. M. The abelian group HC f* M therefore becomes
a co-module over Z[A*!], and hence acquires a grading. The homogeneous part
HOf*M|n] of degree n is the set of sections a of f*M satisfying u*s = \"7w5s. The
image of HO(Mgy; M) in HY(V; f*M) is contained in HY f*M[0].
The line bundle f*w has the nowhere vanishing section
dx dy

u= = .
2y + a1z 3x2 — ary

Under the map (13.5) it is sent to A~ 1u. It follows that “multiplication by u” gives
an isomorphism
(H°f*M) [n) ~ (H f*fw® M) [n— 1].
The entire graded module Hf*M can therefore be identified with the A = 1
eigenspace in @ H® f*w* @ M.
Next consider the scheme Z = spec A[s]/(s% + a1s), and define maps ng, 7y, :
Z —V by

specnr(a1) = a; 4 specnr(al) = a1 + 2s
an
specny(ag) = ag specnr(ag) = ag.
Define a map € : n; A — nj A by
T
Y=yt s
This gives a 2-morphism (also denoted €) from f on;, — f ong, and equips the
sheaf f*M with a map €* : n; f*M — nif*M.
The ring Oy is free of rank 2 as a module over Oy, with basis {1, s}. Let’s use
the map “multiplication by s” to identify the cokernel of

Wi HO(F M) — H0p M) = O @ HO(f*M)

V1L

with HO(f*M). Let d : HO(f*M) — H°(f*M) be the composite

HO(P*M) 22 HO (e f* M) 5 HO (17 f* M)
— HO(np f*M)/H°(f*M) ~ H°(f*M).
LEMMA 13.6. The map d? is 0.

Next we need to investigate the effect of the map d on the grading. Define an
action of G,, on Z by
a; — Ny
5 As.
With respect to this action, both maps n;, and ngr are equivariant.

LEMMA 13.7. The map d sends an element of H(f*M)[n] to an element of
HO(f*M)[n+1].

Proof: The map d is essentially “multiplication by s”. The result follows easily.
O
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PROPOSITION 13.8. Suppose that M is a quasi-coherent sheaf over Mgy with
2815 = 0 for some k, and with the property that ¢y : w* ® M — M is an isomor-
phism. Write

N = HO(f*M)[k] =~ HO(f*w* @ M)[0].
The cohomology group H'(M) is naturally isomorphic to the t" cohomology group
of the complex

Noi)N1—>---—>Nk,1 i>Nk—)
ExAMPLE 13.9. Consider the example of
My, = CZI @wnOME11/2k
ne”Z
In case k = 1 the differential d is zero since n, = ng mod 2. The ring H*M can be
identified as the graded ring Z/2[ai?, ag[n], with a; = u’ey, and n € H'(f*w® M).
The Bockstein operator is given by 5(a;) = 7, and one can identify

(i M)
with the subring of Zy[ai?, as,n]/(2n) generated by {a?, ag,n,a1n}. As an abstract
ring it is isomorphic to

ZQ[a’it27 a67777ﬂ]/(2777ﬂ2 - a’%n2)'

ExAMPLE 13.10. Another important example is the case in which

My, = Cll @wn(OME11/2k)
neZ
where the “hat” indicates completion along the supersingular locus. The ring of
global sections of f*M is
ay ' Z,/2" [a1] [as, w1,
where u € H°(f*w) is the invariant section mentioned above. It is not difficult to
calculate that

H(f° lim M)
k

is isomorphic to the subring of a; 'Zz[[a1][as,n]/(2n) which is topologically gener-
ated by {a?,as,n,a1n}. As an abstract ring it is

ay *Zz[ai]llas, n. 81/ (20, 2 — ain?).

Appendix A. Low dimensional cohomology of categories

Consider the following situation. Suppose that C and D are categories with
the same object set, and that F' : C — D is a functor. Given a morphism f €
D(Fdy, Fdp) let

C(dl ) do)f
be the subset of g € C(dy,dp) with Fig = f. In addition assume that the functor
F creates isomorphisms (ie. a map g is an isomorphism if and only if Fg is). Then
the set C(dp,dp)1 is a group, and it acts on the left of C(d;,dp). Suppose that for
each pair of objects dy and di, the set C(dy,dy) is a principal homogeneous space
for the group C(dp, dp)1. It will also make life easier if we assume that this group
is abelian.

We wish to investigate the obstruction to the existence of a section, the enumer-
ation of sections, and the automorphism group of a section. It is useful consider
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the case when the categories C and D have only one object, and the morphism
sets form a group. In this case the situation is that of a surjective map of groups
with abelian kernel. The obstruction to the existence of a section is H?, the set of
sections up to vertical equivalence is a principal homogeneous space for H', and
the automorphism group of any section is H°.

We thank Charles Rezk here for his help.

Let’s write A(d) for the (abelian) group C(d,d);. The first thing to notice is
that d — A(d) is a covariant functor on D in a natural way. Indeed, suppose that
f:di — do is a map in D and pick fi € C(di,do)s. Then by assumption, given
a € A(dy) there is a unique 8 € A(dy) for which the following diagram commutes:

dlL)do

o |
dy — do.
f1
Define
A(f) + A(dr) — A(do)
by A(f)(a) = B.

It is easily checked that A(f) is a homomorphism and it remains to verify its
independence of the choice of f;. For this, suppose that f> is another element
of C(dy,do)s. Then fo = «f1 for some v € A(dy). Let’s temporarily write A;,
i = 1,2 for the map based on the choice f;. Then A;(«) is the unique solution to
the equation

Ai(a) fi = fio.

Now compute

Az(a) f2 = foa
As(a)vfr =vfia

Y ' Az (a)vfi = fror
Az(a) f1 = fra,

where the last step makes use of the commutativity of the A(d). It follows that
As(«) satisfies the defining equation of A;(«) and so the two must coincide.
Suppose instead that we are given a functor A from D to the category of abelian
groups. Form the category
AxD

whose objects are the objects of D and whose morphisms from d; to dy are the set
A(dp) x D(dy,dp). The composition law is:

(B:9) o (a, f) = (8- Alg)(@), g o f).

The construction of this category does not make use of the fact that the groups
A(d) are commutative.

The category A x D is an abelian group object in the category of categories
over D with a fixed object set. The category C is a principal homogeneous space
for A x D and so it follows that the obstruction to the existence of a section is in
Quillen H' of D with values in the abelian group object A x D. If this obstruction
vanishes, then the set of sections is, by defintion, Quillen H°.
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In this situation, there is, for 7 > 0, an isomorphism of Quillen H* with lim* ™ A.
The isomorphism is easily established by imitating the discussion of Schur in the
case of groups.

Suppose then that we wish to write down a section of F'. Choose then, for each
f €D(dy,do) amap s(f) € C(di,do)s. Given a composable pair

do <2 dy L& dy,
let §(fo, f1) € A(dp) be the unique solution to the equation

s(f1)

ds dq

S(fafl)l lﬁ(fo)

do d(fo,f1) do.

d(fo, f1)s(fof1) = s(fo)s(f1)-

By considering the situation
do <% dy - dy <L ds
it is easy to check that the function J satisfies the “cocycle” condition

(A1) Afo(d(f1, f2)) +6(fo, f1f2) = 6(fo, fr) + 0(fof1, f2),

where the symbol “+” has been used to indicate composition, in order to emphasize
that the group A(dp) is abelian. Conversely, given a “cocycle” § it is easy to
construct a category C as above.

Now let’s compare two choices s; and sy of s. For each f € D(dy,dp) there is
a unique a(f) € A(dp), with s2(f) = a(f)s1(f). Let d;, i = 1,2 be the associated
cocycles. Then

2(fo, f1)s2(fof1) = s2(fo)s2(f1)
d2(fo, fr)e(fof1)s1(fof1) = a(fo)si(fo)a(fi)s1(f1)

d2(fo, fr)a(fofr)si(fof1) = a(fo)Afo(a(f1)) o s1(fo)si(f1)

and so

52(f0,f1)01(f0f1) = Ol(fo)Afo(Oé(fl)) o 51(f07f1)~

Define an equivalence relation on the set of cocycles § by declaring d; to be equiv-
alent to 0o if there is a function o with

(A.2) 62(fo, f1) + a(fofr) = a(fo) + Afo(a(f1)) + 01(fo, f1)-

Then it is not hard to check that the set of equivalence classes of “extensions” of D
by A is naturally in one to one correspondence with the set of cocycles § modulo
the equivalence relation (A.2).

Now suppose that functor C — D admits a section. Given a section s one
easily constructs an equivalence of categories

C—>AxD
by sending f € C(dy,do)¢ to (a, f), where a is the unique solution to the equation

as(f) = f.
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Suppose now that s; and so are two sections of F. Write

s1(f) = a(f)sa2(f)-

It follows from the fact that s; and s, preserve the composition law that « satisfies
the “crossed homomorphism” identity

(A.3) a(foft) = Afo(alf1)) + alfo).

The set of sections is thus a principal homogeneous space for the abelian group of
functions « satisfying the identity (A.3).

Next consider the situation where sections s; and so are related by a vertical
natural equivalence. Then there is a function d — 3(d) € A(d) representing the
natural transformation.

Given f :dy — dy, the natural transformation property

B(dy
Sl(dl) # Sg(dl)

Sl(f)l ls’z(f)

s1(dg) — sa(d,
1( 0) B(do) 2( O)

becomes the identity

B(do)s1(f) = s2(f)B(dr)

. = AT (B(d)) 52(f).
It follows that the function a(f) satisfies the equation
(A.5) Af(B(dr)) + a(f) = B(do).

The set of sections of F up to vertical natural equivalence can therefore be identified
with the quotient of the abelian group of functions « satisfying (A.3), modulo the
subgroup consisting of those satisfying the identity (A.5) for some £.

Finally, consider the above situation with s; = s = s. Then «(f) = 0, and
equation (A.5) becomes

Af(B(dy)) = B(do).
In other words ( is an element of l'glo A. Tt follows that the group of “vertical”

automorphisms of any section is naturally isomorphic to Lim® A.

The situation becomes much clearer when expressed in terms of the cosimplicial
replacement [BK, X1,85] of the functor A. The cosimplicial replacement C*(D; A)
is a cosimplical abelian group whose s** cohomology group (or, more precisely,
cohomotopy group) is the derived functor @18 A. Tt is defined by

C"=C"D;A) =[[Ad) n>0
i

where

f=do o a7,

is a sequence of composable maps. It is best to think of elements of C” as “func-
tions” « on the set of composable n-tuples of maps of D (when n = 0 this is
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interpreted as “functions” on the set of objects). The coface maps are given for
a € C™ with n > 0 by

_ Afo(al(fiy..os fn)) =0
daofo,.. ., fu)=qal....fic1fi,...) 0<i<n
a(fo,. s fae1) i=n+1,
and for a € C° by
d’a(fo) = Afo (aldr))
d'a(fo) = a(do).
The codegeneracy maps are give on o € C™*1 by

S’La(fOM . 7fn) = O[(. . ',]—dmfiw . )

Now it is easy to check that the cocycle condition (A.1) on a function ¢ is
precisely the condition that d be a 2-cocycle in NC?2. The equivalence relation (A.2)
is the condition that §; and d differ by a coboundary. Thus the set of “extensions”
of D by A can be identified with 1@2 A.

Given a section s : D — C it is not hard to check that any other section differs
by a 1-cocycle in NC'. It follows that the set of sections is precisely the set of
1-cocycles. Two sections are vertically equivalent if and only if the corresponding
1-cocycles differ by a coboundary. It follows that the set of equivalence classes of
sections can be identified with lim"' A.

This discussion is summarized in the following proposition

PRrROPOSITION A.6. With the notation of this appendiz, the functor
F:C—=D

is classified by an element of lim® A. The vanishing of this class is a necessary and
sufficient condition for the existence of a section. The set of sections is a principal
homogeneous space for the group of 1-cocycles in the cosimplicial replacement of the
functor A. The set of sections modulo (vertical) natural equivalence is a principal
homogeneous space for lim' A, and the group of vertical automorphisms of any
section is canonically isomorphic to @A. O

Appendix B. A spectral sequence for A..-maps

B.1. The spectral sequence. Let’s start with a ring spectrum F' satisfying
the following condition of Adams [Ad, Condition 13.3 (page 284)]

(1) Each map of spectra
X —=F

with X finite, factors as
XV F

where V is finite and F,DV =~ F*V is projective over F.
We are now going to describe a simplicial model category structure on the cat-
egory sAq, of simplicial A,.-rings, that will make systematic the kind of resolutions

we wish to use. This construction is somewhat ad hoc. It is chosen so that the
following result holds.

PROPOSITION B.1. The F® model category structure on sA., satisfies
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1) If Xq — Y, is a weak equivalence (resp. fibration), then for each t the maps
Fi X, — FY,
T Xe —> M Ye
are weak equivalences (resp. fibrations) of simplicial groups;

i) If W, is cofibrant, then each Wy is a free A, Ting on a spectrum Vi which has
the property that F,Vy is a projective F,-module.

REMARK B.2. It follows from the second property that F,Wj is the free asso-
ciative Fi-algebra on F,V; and that the maps

F*W, — homp, (F.Ws, Fy)
T Aso (W, F) — homp, (F,V,, F°S?)
are isomorphisms.

This result will be proved in B.4. Given this result, we are in position to
investigate the function space Ao (E,F) when the ring spectrum underlying F
satisfies the condition above. To do this, regard E and S° as constant simplicial
objects in sA,, and factor the unit map

SO W, - E

as a cofibration followed by an acyclic fibration. By the homotopy spectral sequence
(which collapses) the map
[We| = E
is a weak equivalence (of cofibrant-fibrant objects), so the map A (E,F) —
A (|W,|, F) is a weak equivalence, and we can get a spectral sequence by writing
the latter as
Tot(As (W, F)).

For simplicity of notation, let’s write M® for the cosimplicial space A (W, F).

To define the E>-term of the spectral sequence, we need to pick an element of
moM? which is equalized under the maps myd® and mod'. Now by our assumptions,
the set moMP* is naturally isomorphic to the set of F,-algebra maps from F,W}, to
F,. Tt follows that the equalizer of mod® and mod' is the set of F,-algebra maps
from the coequalizer in F, algebras of

F.do
FW, = FE.Ws.
F.ds

Since this comes from a simplicial diagram this is a reflexive coequalizer and so the
F.-module which underlies the algebra coequalizer coincides with the coequalizer of
the underlying diagram of F,-modules. By part i) of Proposition B.1 this is simply
F.FE. So in order to define the Es-term of the spectral sequence, we have to pick
an F,-algebra map from F,FE to F,.

Having done this we now have a map of simplicial F,-algebras from F,W, to
F,, and we also get a “basepoint” in each M*. With this choice of basepoint, there
is a natural identification

T M* ~ Derp_ (F, Wy, F°SY).
The E‘;’t—term of the spectral sequence is 7°m;M*®. Now, by assumption, the map
FWe — F.E
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is a weak equivalence of Fi-algebras. Furthermore, each F,Wj is a free associative
F,-algebra on a projective Fy,-module. It follows from the definition of Quillen
derived functors, that the Fs-term of the spectral sequence is

Ders, (FE FO(St)) .

B.2. The Reedy model category structure. Let A be the usual category
of finite ordered sets, and let A<,, be the full subcategory with objects

[0],[1],...,[n].
If C is a category with finite limits and colimits, then the restriction functor
res?® : CA" cA

has both a left and a right adjoint. Let’s denote the left adjoint [;P and write skel,,
for the composite [;PresfP. The functor skel,, is the n-skeleton functor.
Let sC be the category CA” of simplicial objects in C.

DEFINITION B.3. Let X, be an object of sC. The n'" latching object of X, is
the object (skel,—1 X,),,-

Now let ¢C be the category of cosimplicial objects in C. As above, the restric-
tion functor
res, : CA — CA=<n»
has both a left and a right adjoint. Let’s call the right adjoint r,,, and write coskel™
for the composite r,res,. The functor coskel” is the nt" coskeleton functor.

DEFINITION B.4. Let X* be an object of ¢C. The n'* matching object of X*®
is the object (coskel"71 X')n.

These are used to define the Reedy model category structure.

B.3. The P model category structure. This is the variation of the Ey
model category structure described in [DKS, §5.9]. Suppose that C is a closed
(pointed) model category, with arbitrary colimits in which every object is fibrant.
Suppose also that M € ob C is a cofibrant co-grouplike object of C.

DEFINITION B.5. [DKS, 5.4-5.6] A map ge : X¢ — Y, of sC is a
(1) weak M -equivalence if for each j > 0 the map
ho C(X/ M, X,) — ho C(X/ M, Y,)
is a weak equivalence of simplicial groups
(2) M-fibration if it is a Reedy fibration and if for each j > 0 the map
ho C(X'M, X,) — hoC(¥/ M, Y,)
is a fibration of simplicial groups;

(3) M-cofibration if it is a retract of an “M-free” map, where a map X, — Y,
is M-free if for each n > 0 there is a cofibrant object Z, € ob C which is weakly
equivalent to a coproduct of copies of XM (j > 0), and a map Z,, — Y,, such that
the induced map

(X, U0, x, L,Yo) I Z, > Y,

is a trivial cofibration.
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ProrosITION B.6. [DKS, 5.3] The category sC equipped with M weak equiv-
alences, M fibrations, and M cofibrations, and the natural simplicial structure, is
a closed simplicial model category. O

REMARK B.7. (1) It isn’t really necessary that C be pointed. The object M,
being co-goup like, comes equipped in ho C with a “co-basepoint” map to the initial
object, representing the identity element of the corresponding group of maps. One
needs to redefine XM as the pushout of CM <+ M — CM, where C'M is an object
obtained by factoring a representative of this “co-basepoint” into a cofibration
followed by an acyclic fibration.

(2) If one has in mind a set P of cofibrant co-grouplike objects, then one can
define a P-model category structure by requiring the condition on M to hold for
each element of P. Of course this is no gain in generality, since the P-model
category structure coincides with the M-model category structure with M taken
to be the coproduct of the objects of P.

(3) The way it will come up in the present paper, the set P will be stable under
the suspension operator. This means that the clauses “for each j > 0” reduce to
the case 7 = 0 and needn’t be considered.

(4) If M and M’ are weakly equivalent then the M and M’ model category struc-
tures coincide.

(5) It follows that the set P doesn’t quite need to be a set. It is only necessary
that the collection of weak equivalence classes of elements of P be small, since the
P model category structure can be built using one cofibrant representative from
each weak equivalence class.

B.4. The F“ model category structure. Let T be an operad over the
linear isometries operad, and T-alg the corresponding category of algebras. The
category T-alg is a closed topological model category and is generated by small
objects. It has all (small) enriched limits and colimits, and has the property that
every object is fibrant.

For a ring spectrum F', let F'“ be the collection consisting of spectra V' which
are weakly equivalent to a finite spectrum and for which F,V is a projective module
over F,.

DEFINITION B.8. The F“ model category structure on sT-alg is the P model
category structure, where
P={T(V)|V e F}.
The spectra of the form T(V) are co-grouplike since
hoT-alg(T'(V),Y) =hoS(V,Y)
is an abelian group.
If F satisfies the condition of Adams then [Ad, Lemma 13.8 (page 287)]) shows

that given any spectrum X and a homology class in x € F,X there is a map
f:U—= X,U € F*, and an element e € F,U with the property that

x = F.f(e).
More generally suppose that X : I — S is a diagram in indexed by a category I
which has only finitely many objects and morphisms. Define F, X to be the diagram
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of F,-modules
1= Fo(Xi).

Then given any diagram I-diagram V of finite sets, and a map = : V — F, X there
is an element U € F'*, an element e € F,U with the property that  factors through
the resulting map

hoS(U, X) — F. X
ho S(U, X) = i — hoS(U, Xi).

The proof follows the argument of [Ad, Lemma 13.8] and makes use of the fact that,
since I is finite and V takes its values in finite sets, the functor E — ST(V, E,X)
commutes with directed homotopy colimits.

In the situation that arises below, X is a simplicial spectrum and V is a sim-
plicial set with only finitely many non-degenerate simplices. Though in this case
the indexing category is not finite, the fact that V has only finitely many non-
degenerate simplices means that it is of the form ISPV’ for some n, and so the

diagram hom set can be calculated as a hom set in SA%,

Proof of Proposition B.1: Part ii) is easy and follows from the Kunneth spectral
sequence (which collapses, since projective modules are flat)

In part i), by factoring the map X, — Y, into an acyclic Reedy cofibration
followed by a Reedy fibration, we may in both cases assume that the map is an F'®
fibration. In both cases we need to produce a lift in a diagram of the form

V . Fth
D — FY..

In the “fibration” case, the map V' — D runs through the inclusions V[n, k] C A[n]

while in the “weak equivalence” case it runs through the inclusions A[n] C Aln].
Since V' and D have only finitely many non-degenerate simplices, thereisa U € F'¢,
and an element of F,U with the property that the diagram factors as

V —— ho Ao (TU, Xy) —— F,X,

! | !

D —— hoA(TU,Y,) —— F/Y,,
where we have made use of the isomporphism
ho Ao (TU, E) ~ ho S(U, E).

By the definition of the F'* model category structure there is a lift in the left square.
Composing this with the rightmost top arrow gives the desired lift. ([l
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Appendix C. A calculation
Notation:
f:E — F amap of elliptic spectra
specmoE = U — Mg
specmol =V — Mgy

specmof=s: V>V x U
Mrar

T Vord % Uord — Vord % Uord
MprpcL

The map s is given to us factored through V. x U.
MEn

Now we calculate, twice, in two notations, all reduced mod p™, but not indi-
cated:

Rhom, pae (Ao FrE/mo > ToF)

= Rhomﬂ—OFAE (Aﬂovfl(F/\E)/Trovle’ 7T0F)

(M =X oL ) F/F)

= RhommvleAE (Awoufl(FAE)/mu;va M)
=Rhom_ 15, (Aﬂ'ovl_l(F/\E)/ﬂ'ovl_lF’ M)

= Rhomw0vf1F®ﬂ'mjflE (Aﬁov;1F®ﬁoﬂ;1E/W0U71F7 M)
_ —1 1
= Rhom oo Femgu ' B (71'0’01 F O (7‘(0’[}1 E) M)

= Rhom oo\ E ( Tyt ) )

Q! (movy ) )

(
= Rhom-rrgv 1F( (
= (Ql)_ = (w*(cusps)) "o M
ToF
M

=w?(— cubpb) ®
Here’s another good one

LEMMA C.1. Suppose that E is the p-adic completion of an étale elliptic spec-
trum. There is, after p-adic completion, a fibration up to homotopy

[ Q55 KU - A {E} = QFS* L2 E/E
cusps

Where Q5° means the connected component. In particular, the space As {E} is
connected.

Appendix D. Calculation

The substack M), , is locally defined by the vanishing of a single function. The
associated sheaf of ideals is a line bundle over Mgy, and can naturally be identified
with w!=P. That is to say, there is, (modulo p), an exact sequence w'~? RENYoR=
@ M- Locally we can find a nowhere vanishing section s of w!~P. The element
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v1(s) is then a function defining the supersingular locus. Modulo a power of p the
above still holds, provided # 2, 3.
We are interested in computing the derived functors of the inverse limit over
(Men),, of
Tat41 Bhaut; By = home,, (Opera,w’ @ (21)71)

ot Bhaut; By = EXtF(@U)(OUord,OJt ® (QH™

Now the first of these contravariant functors is the restriction of the (/\/lEu)/Ct sheaf
1O Mezd The second is not the restriction of a sheaf, and must be approached
2P

differently.

Thus let’s restrict our attention to an open U, and let ¢ : U*® — U and j :
U°d — U be the inclusion of the supersingular and ordinary loci. Let’s write F for
the “hom” sheaf, and G for the “ext” sheaf. Let’s also choose a function s which
defines the supersingular locus. Then F' and G can be identified with the sheaves

%igls”wt ® Q)™ and
r&nlsnwt ® (Ql)—l.
There are two spectral sequences for computing the group of sheaf extensions
Ext™(Opora, w! @ (21)71). One reduces to the short exact sequence
1k n—1/, t 1\—1 n . k ng t 1\—1
hm"s® - H (W®(Q)™) = Ext — lims® - H (We Q)™
and the other reduces to the long exact sequence
n—=21;...1 n: n n—11;:...1
s H' 0 lim — H" lim — Ext™ — H" lim® — .
Since U is affine, the groups H" are zero for n > 0 and so the above data reduces
to
BExt® ~ I'&nOHO ~ H° @0
lim' H ~ Ext'
17:,,,0 1 07:.1
H 1&1 — Ext™ - H 1<£n
P .
H @1 =0 1>1
H'lim'=0  i>0.
(The last two isomorphisms follow from the Milnor sequences).
We can compute H° I'&no from the exact sequence of a “pair.” We can compute

lim' H as well, so we can get H°lim'. The inverse limit coincides with the sheaf
cohomology for the lim 1 sheaf, so we get the derived functors of inverse limit in
this case. For the lim sheaves use the spectral sequence relating sheaf to Cech
cohomology, which in this case reduces to a long exact sequence.

Appendix E. Equivalence of realization spaces

This is an exploration of the possibility of simplifying some of the homological
algebra by passing to a refined cover.

First some notation. What I have been calling (./\/IEH);t I think I will call
Et’ /Mgy, and for the purposes of this appendix I will abbreviate it with an I. We
have constructed a diagram D : I — ho A.
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LEMMA E.1. Suppose that f : J — I 1is the inclusion of a full subcategory,
with the properties that (1) each U € ob 1 is covered by an object of J, and (2) if
VeobdJ andU CV, then U € obJ. If X is a fibrant realization of D, then the
natural map

X = fuf'X

is a weak equivalence.

Proof: Let J/U be the category of J-objects over U. An object of J/U is a pair
(V1) consisting of an object V of J and a map i : fV — U. A map from (Vp, i)
to (V1,41) is a map g : Vo — Vi with the property that i o f(g) = ig. There is an
obvious functor

p: JJU—=J

given by p(V,i) = V.

For a diagram Y : J — A, the diagram f,Y is given by

Y (U) = Jim p*Y.
JJU

If the diagram Y is fibrant, so is p*Y. This means that the map ho @1 Y —
l'&l p*Y is a weak equivalence. We can therefore study f,.Y (U) using the homotopy
spectral sequence. Now this spectral sequence takes the form

T&nsmp*Y = m_sfxY (U).
JjU

Since the diagram X is a realization of D, the groups ma;+1p*Y (V') are zero, and
mo:p*Y (V) is the module of global sections of w!. Since the funcotr “pullback,”
described below, is an equivalence of categories, the inverse limit can be computed
over Et(.J)/U and so coincides with the Cech cohomology H*(ob J;w?). But since
U is affine, and w is quasicoherent, these cohomology groups are zero, unless s = 0,
in which case it is the module of global sections of w over U. The spectral sequence
therefore degenerates to its edge homomorphism. This completes the proof. O

We have used

LEMMA E.2. The forgetful functor F : J/U — Et(J)/U, and the functor “pull-
back”

P:Et/U - J/U
(1:V-oU)—i"Ay

are inverse natural equivalences.

Proof: The composite PF' is the identity. The composite PF' sends the data
itV U Ay SitAy
to the data
1:V-=U lii*AU—>i*AU.
The map t defines the natural isomorphism from PF to the identity functor. [

REMARK E.3. The hypotheses on the subcategory J are needed in order that
the Cech cohomology and the derived functors of inverse limit coincide.
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Now to compare the realization spaces. There are a few realization spaces
that need to be considered. First there is the space rD. Next there is the space
7D which can be defined either as the nerve of the full subcategory of Ao’ with
objects the diagrams which admit an isomorphism in ho A, with D, or as the
category whose objects are diagrams X together with an isomorphism in ho A
with D, and in which a morphism consists of a weak equivalence f : Xg — X7, and
an automorphism ¢ : D — D such that

hOXo % hOXO

commutes. The first description is easier to work with, while the second makes it
clear that there is a fibration
rX -7X - BAut D,
so it is only the higher homotopy groups of the two spaces that differ.
LEMMA E.4. The map
D — 7f*D

is a weak equivalence.

Proof: We are interested in comparing certain components of classifying spaces
of weak equivalences between the categories Ao’ and Ao ”. These can be calculated
as the classifying spaces of weak equivalences between cofibrant-fibrant objects in
any model category structure. The result therefore reduces to the lemma above. [

LEMMA E.5. The map Aut D — Aut f*D is an isomorphism.

Proof: The diagrams D and f*D are sections of
ho AE 5 1
and of its restriction to J. The groups Aut D and Aut f*D thus sit in exact se-
quences

Aut' D — Aut D — Aut1;
Aut’ f*D — Aut f*D — Aut 1y,

where the superscript “v” indicates “vertical.” Let A be the abelian group valued
functor (on D) with

A(U) =ho ABNE(U), E(U));.
Then by Proposition A.6, there are natural isomorphisms
Auwt' D ~ 1&1 A
Aut' fx D ~ @f*A.
But the functor A is a sheaf, and J is a cover of the terminal object. Both limits

are therefore equal to H°(A). Finally, the map
Aut 1; — Aut 1;
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is an isomorphism, since the functor “isomorphisms between elliptic curves” is a
sheaf. This completes the proof. ([

COROLLARY E.6. The map
rD —rf*D

is a weak equivalence. (I
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1. Introduction

The path which we wish to follow begins with elliptic curves over finite fields
and in particular over F4. From such a curve we get a formal group which will have
height 2. The Lubin-Tate deformation theory constructs a formal group over the
ring W, [[a]][u, u~1]. Tt can be shown that this ring is the homotopy of a spectrum,
Fs, which is MU orientable. The group of automorphisms of the formal group over
F, acts on this ring. The Hopkins-Miller theory constructs a lift of this action to
an action on the spectrum Fs. This group is a profinite group, called the Morava
stabilizer group S5. There is a finite subgroup G of Sy of order 24 which is the
automorphism group of the elliptic curve. This finite group acts on Fs and we
define EOy = E}. 1t is the torsion homotopy of this spectrum which illuminates
much of the homotopy of spheres in the known range.

Date: July 20, 1998.
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2 MIKE HOPKINS AND MARK MAHOWALD

We begin with the curve, 3 +y?+y = 0in P?(FF4). In the elliptic curve literature
this is called a supersingular curve. It is non-singular and has one point on the line
at infinity. If we represent F4 as the set {0, 1, p, p?} where 1+ p+ p? = 0, then the
solution set in the affine plane consists of eight points. If x =0 then y =0 or 1. If
x € F) then y = p’ for i = 1,2. The group of the elliptic curve is F3 & F3.

The group of affine transformations of F4? consists of matrices

a b ¢ x
d e f Y
0 0 1 1
Those which leave the equation of the curve alone satisfy
a=acF} b=0 F=f+f
d=ac? e=1

It is easy to verify that this group G has order 24 and is SL(Fs,2). If we
include the Galois action we get a Z/2 extension of this group. Let Gi6 be the 2
primary part. We have the following result, which is well known. It will illuminate
the latter calculations.

THEOREM 1.1. If we suppress the topological degree, then

We want to calculate H*(QgxZ/2). This is equivalent to calculating H*(Z/2, H*(Qs)).
Cartan and Eilenberg give an explicit resolution leading to a calculation of H*(Qs).

In order to use this we need to know the action of Z/2 on @Qs. This is given by:

i — j,k — —k. Then the action is free in dimensions 1 and 2 and trivial in
dimensions 3 and 4 modulo 4. This gives the following:

H*(Qg X Z/?) = Z/Q[al,a4]<b0,b3> D Z/2[CL4]<61,C%>

which is the conclusion of the theorem.

We should note that there is an extension of Dg which has the same mod 2
cohomology. Dave Benson has asked if there are groups whose cohomology is related
to other sub algebras of the Steenrod algebra.

Our program will be to construct a formal group from the group of this elliptic
curve. Then G will be a group of automorphisms of this formal group. We will lift
the curve to the ring W [[a]] as

y2+axy—|—y:a?3.
We can lift G as a group of automorphisms of this curve. Then the formal group
associated to this curve will be the universal formal group given by the Lubin-Tate

theory. The FEs term of the Adams-Novikov spectral sequence to calculate EQOs,
will be H*(G; W, [[a]][u, u~ 1))l

2. The formal group

The material of this section is standard. We will include it for completeness for
the homotopy theory reader who might not be familiar with the algebraic theory
of elliptic curves.

The formal group constructed from an elliptic curve is constructed by resolving
the multiplication on the curve around the point at infinity which is taken as the
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 3

unit of the group. First we construct a parametric represention in terms of an
uniformizer at infinity. Let

w:y_1

z=ux/y
Then the equation of the curve becomes w = 23 + w?
since we are working over FFy.

. We have not noted signs

PROPOSITION 2.1. (i) w(z) = Bi»0232.
(ii) z(2) = z/w(z) = 272+ 2+ 24 + 210 4 ...
(i) y(=) = Lfw(z) = = 4+ 142+ 29 4+

This is an easy calculation. At this point one can follow the discussion in
Silverman [Si] page 114. This discussion is considerably simplified by the fact that
the field has characteristic 2. This gives the following result.

PROPOSITION 2.2. The formal group constructed from the elliptic curve,z® +
y? +y =0 over Fy has as the first few terms

4,12

F(u,v) = u+ v+ u*v? + u*® + ubv? +uto!? 4 ul?e?

vt B 4

The next term has degree 22. This is a formal group of height 2 and the 2-series is
Z4(Ei>0212(21_1)).

Next we want to lift this formal group to a formal group over the ring W ([a]][u, u™1]
which gives the above curve under the quotient map to F,. We will do this by just
lifting the elliptic curve. The formal group is then constructed in the usual way as
is done in [Si]. The equation of the lifted curve is

x3:y2+auxy+u3y.

We want to lift our group as a group of affine transformations which leave the curve
alone. Thus we want to make the substitutions

T = ax+u27"

Yy = y+us:c+u3t

In order to preserve the curve we require that the coefficient of 22, z, and the
constant term all be zero. This gives

3r=5+sa
s =3r% — 2ast —a(rs + 1)

t =13 —art —¢?

The group G is generated by o € F4 T and a pair (,) which satisfies the equation
B3+ +~% = 0. We can take two generators, a = p,(83,7) = (0,0) and o =
1,(8,v) = (1, p) and lift these. The rest of group will be various products of these.
It is clear how to lift the first. We will concentrate on the second. We want to find
infinite series for 7, s and ¢ which reduce to 1,1, and p modulo the maximum ideal.
We begin with these equations and successively substitute into the above equations
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4 MIKE HOPKINS AND MARK MAHOWALD

giving

(a) =3 (1 +a)

(a) = %(1+2a+a ) —2ap — a((1/3)(1 + a) + p)

t(a) = 55 (1 +a)® = (1/3)a(l + a)s(a) — p*

(a) = 3 (s(a)® + as(a))

(a) = 3r(a)® — 2as(a)t(a) — a(r(a)s(a) + t(a))
t(a) = r(a)® — ar(a)t(a) — t(a)?

Each time we substitute the formula for the classes on the right hand side
from the formulas above. After each process we have correct liftings modulo the
maximum ideal raised to one higher power. That this works is just Hensel’s Lemma.
Compare [Si], page 112.

What we have constructed is a map G — W [[a]][u, u~1]. This is the beginning
of a co-simplical complex
W, [la]][u, u™"] = Hom(G, W, [[a]][u,u™"]) - -
The action of G on Wy [[a]][u, u~1] is the only additional part to add. That defines
a — a+2s
u? = ud ar + 2t

The homology of this co-simplical complex is the E5 term of the Adams-Novikov
spectral sequence to calculate the homotopy of the Hopkins-Miller spectrum FOs.
We will do this calculation in several ways but the key will be to show that it is
something which is already known.

3. The elliptic curve Hopf algebroid
The Weierstrass form of an elliptic curve is usually written
y2 + a1y +asy = 3 + a2x2 + asx + ag.-
A change of coordinates does not change the curve and so substituting
r=a +r
y=1vy +sz’ +1

gives us the same curve. The coefficients transfer according to the following table.
(Compare [Si].)

ay =aj + 2s

aby = as — say + 3r — s*

ay = az+raj + 2t

aly = ay — saz + 2rag — (t +rs)ay + 3r® — 2st
ag = ag +rag +r2ay +r® —taz —t* — rta;

These formulas are very suggestive of the structure formulas which result from MU,
resolutions. Indeed, we can take these formulas to be the definition of nr and get
a Hopf algebroid

(A, A) = (Z[ay, a9, a3, a4, agl, Zla1, az, as, aq, ag, s, 7, t]).
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The two maps from A — A are the inclusion and the one given by the table above.
In books such as [Si] the classes ¢4 and ¢g are usually given, and they represent
classes in the homology in dimension zero of the simplical complex constructed from
the above Hopf algebroid. The formulas for them are

cy = (a2 + 4ay)? — 24(2a4 + a1a3)
ce = —(a? + 4ay)® + 36(a? + 4az)(2a4 + aras) — 216(a3 + 4ag)
Notice that ¢ — ¢2 is divisible by 1728. Let A = (cj — ¢2)/1728. The zero dimen-
sional homology of the above chain complex is
Zlcy, ce, A]/(ch — i — 1728A).

One of our questions is the computation of the rest of this chain complex.
We will do this by getting another interpretation of the chain complex. For this
interpretation we will have a complete calculation. Before we do this we want to
connect this resolution with the Lubin-Tate theory.

In section 2 we consider the elliptic curve over Wy [[a]][u, u~1] given by the

equation ¥ 4+ a u xy + udy = 3. Thus we have a map f : Alp]/(p> +p+ 1) —
W, [[a][u, u~1] defined by
a; — au
az > u3
a; + 0, otherwise
THEOREM 3.1. After completing Alp]/(p*> + p+ 1) at the ideal (2,a1) and in-
verting A, the map f induces an isomorphism between the two chain complezes.

COROLLARY 3.2. The E5 term of the Adams-Novikov spectral sequence to com-
pute the homotopy of EOs is the homology of the Hopf algebroid (A, A) completed
at the ideal (2,a1) with A inverted.

In the next section we will show that this computation is well known.

4. Ring spectrum resolutions

Using Bott periodicity we have a map v : QSU(4) — BU. Let T be the
resulting Thom spectrum. As is the case with any ring spectrum we can construct
a resolution T

SO T I TAT 3 TATAT---.

This is acyclic from its definition. The first step in understanding such resolutions
is the following version of the Thom isomorphism theorem.

PROPOSITION 4.1. There is a homotopy equivalence TAQSU(4) =2 T AT This
homotopy equivalence is induced by a map between the base spaces
QSU(4) x QSU(4) 1N QSU(4) x QSU(4) x QSU(4) LN QSU(4) x QSU(4).
Here, A is the map which sends x — (x, —x) and p is the loop space multiplication.
The map in Thom spectra induced by this composite is
TAQSU4)+ =T AT.
Let T be the cofiber of the unit map. Then

TAT=TAQSU(4).
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6 MIKE HOPKINS AND MARK MAHOWALD

It is the T, homotopy of QSU(4) which describes the T' Hopf algebroid. One of the
main results of [Mo2] is following.

ProOPOSITION 4.2. The map d = 1, — nr can be viewed as a map T — T N
QSU(4) which is induced by the diagonal

A QSU(4) — QSU(4) x QSU(4).

Let b; € Hy;(CP) be the homology generators. We will identify these classes
with their image in H,(Q2S5U(4)). Thus

H,(QSU(4)) = Z[by, b, bs).

The homotopy classes in 7, (T) which are in the Hurewicz image are multiples of
primitive classes. On the other hand the classes b; are not primitive for ¢ > 1. We
have:

Abi =011 +1®b;
Aby =b3@1+b1 @b1 +1Rby
Abs3 =b3 @1 +by®b; +b1 @by + 1R bs

Thus we can define primitive classes as follows:

mq :bl
mo = 2b2 — b%

ms = 3(b3 — blbg) -+ b?
This allows us to define homotopy classes

[ 2m1
_ 2
as = 3mg — mj

az = 2m3
We define additional classes

ay = 3m§ —2mimg
ag = mg — m§

Then we calculate da; by the following rules:

e compute Aa;

e drop each class of the form x ® 1.

e classes of the form z ® m; are written as zs

e classes of the form x ® mo are written as zr

e classes of the form x ® ms are written as xt

e classes of the form = ® y must have x € Z[ay, az, as]. We write them as zy.

If QSU(4) stably split as a wedge of spheres, then T'A Q2SU(4) would give the free
splitting of T AT into a wedge of T’s. This is what A[s, r, t] represents. But QSU(4)
does not split in this manner. It would be enough if the pieces into which QSU(4)
does split were trivial T, modules, but that is not true either. The further splitting
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produces an extra term, a7 in the expression for nras. This gives us:

Nra1 = ai + 2s

NRaz = as + 3r — ays — s°

nras = as + 2t + ayr

Aay =3(me @1+ 1®my)?
—2ms®14+1®@ms+mi@ma)(m ®1+1®mq)

NRras = a4 + 2a9r + 3r% — azs — st — ayt — aysr

NRAG = a6 + asr + agr® +r® —agt —t* — ayrt

Thus, we have reproduced the formulas constructed in the previous section
from the change of variables formulas. We still need to get the setting where the
polynomial algebra Z[aq, as, as, as, ag] does represent the homotopy of something.

Let E be any spectrum. If we smash the resolution T with F, we still have an
acyclic complex with augmentation E. If we apply homotopy, we get a complex
whose homology is the Fs term of a spectral sequence to compute the homotopy
of E. We need a spectrum F so that m.(EAT) = Z[ay, as, a3, as, ag]. Hopkins and
Miller [HM] have constructed a spectrum which almost works. In a latter section
a connected version of the Hopkins-Miller spectrum eoq is constructed. It has the
key properties:

THEOREM 4.3. Let D(A;) be a spectrum whose cohomology, as a module over
the Steenrod algebra is free on Sq* and Sq*. Then localized at 2, eoy N D(Ay) =
BP(2). Let X be the spectrum whose cohomology, as a module over the mod 3
Steenrod algebra is free on P, the localized at 3, eog N X =2 BP(2) A (S° v S%)

COROLLARY 4.4. m.(eoy ANT) = Z[ay, as, a3, a4, ag) and
mi(eoa NT ANT) = Z]ay, az, a3, aq, ag) ® Z[s, r, t].
An easy calculation gives us the following.

THEOREM 4.5. If we apply the functor Ext a(9)(,Z/2) to the resolution T, we
get

Z/Q[UO,U17G27U37G47GG] — Z/Q[UQ,’I]17CI,27’l}37a4,a6,5,7", t] —

where a; has filtration 0. This chain complex will compute Ext z(2)(%Z/2,7Z/2). In
particular, this implies H*(eos,Z/2) ~ A ® s(2) Z/2.

5. An outline of the calculation

In the rest of this paper, we will discuss the homotopy of the spectrum con-
structed by Hopkins and Miller [HM] which they labeled FO,. We will also be
quite interested in the Hurewicz image in m, (S°).

THEOREM 5.1. The action of So on Es, lifts to an Eo ring action of So on
Es. Furthermore, Sy has a subgroup of order 24, GL(F3,2). This group can be
extended by the Galois group, Z/2. The group of order 48 acts on EOs and the
homotopy fixed point set of this action defines EOy. In addition,

E02 A D(A1> = EQ.
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8 MIKE HOPKINS AND MARK MAHOWALD

We will take this result as an axiom for the rest of this paper. We will calculate
the homotopy of EO, in two ways. First we will construct a spectral sequence
which untangles the formula FOs A D(A;) = E5. This is done in the next section.
Next we will consider the connected cover of EOs and show that it essentially
has A ®4(2) Z/2 as its cohomology. We then have an Adams spectral sequence
calculation which has been known for about twenty years. This approach allows
one to have available a rather large collection of spaces whose EOs, homology has
been computed. See for example [DM1].

These results also give a counter example to the main result of [DM2] which
asserted that A® 4(2)Z/2 could not be the cohomology of a spectrum. The error in
that paper can be traced to a homotopy calculation in [DM3] which was in error.
The correction of the appropriate homotopy calculation is done in [KM].

In the last section we discuss homotopy classes in the spheres which can be
constructed by this spectrum.

6. The homotopy of EO,
Our first calculation of EFQOs, uses the formula
EO5 A D(Al) = FEy

The CW complex D(A4;) is constructed by the following lemma where we use the
notation M, = S° U el@l+1,

LEMMA 6.1. There is a map
v XM, A M, — M, A M,
PROOF. This is a straightforward calculation in ., (S?). O

We can use the definition of D(A;) and the formula in (2.1) to construct a spec-
tral sequence. Abstractly, we think of D(A;) as constructed out of three mapping
cones, M,, M, and M, where v is defined in the Lemma. Thus we have a con-
tracting homomorphism in P(hq, ha, hao) ® H.(D(A1)) with d by =e,, d ho = ¢,
and d hao = e5. We will use the defining equation (2.1) to give us a free Fy resolu-
tion. For the moment we want to think of this as an unfiltered but graded object.
There is a total differential whose homology is EOs,. If we assign filtration 0 to
hi and v; and filtration one to each of hg, koo, v2 then the corresponding E; will
be bo.[ha, ho,o, v2]. If we recognize the bo structure of the set < ho, ha g, v2 > then
the corresponding resolution is just the Kozul resolution of [DM1], section 5 (page
319ff). Of course, vo should be inverted and 2 = vg. This gives the following result.

THEOREM 6.2. There is a spectral sequence with

s,t - st
E; = Uy TExt®

A(2) (Z/27 Z/Z)

which converges to Eg(EQOay).

We will explore this in more detail in latter sections. In particular we will want
to understand the differentials.

Using the Adams Novikov differentials from the same starting point we get
another spectral sequence. In this case we assign filtration 0 to vy and vs, filtration
1 to hq, ho and hy . We will also work over the integers.

In order to state the answer in a compact form we introduce several homotopy
patterns.
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 9

FIGURE 6.3. The following diagram defines A. The solid circles represent Z./2’s
and the open circles represent a /8 ( Z/4) in stem 0 (stem 3). In stem 3 there is
an extension to the Z/2 giving a Z/8 in this case too.

FIGURE 6.4. The following diagram defines B. The diagram starts in filtration
(0,0). The starting circle represents a Z and the circle in dimension 8 represents
a Z/4 with an extension to the Z/2 giving a Z/8.

/ . 7

THEOREM 6.5. There is a spectral sequence which converges to EQOo, and the
FEs is given by

h%,op(hg,m ’1)37 U54) ® A D (P(’U;L, v;4) ® B) D v%bo[v%, 054]
where A is the module of Figure 6.3 and B is the module of Figure 6.4.

7. The Bockstein spectral sequence

In this section we will give a proof of Theorem 6.5. We start with a resolution
Z[v1,va, hi, ha, hag]. The filtrations of the generators are given by the following
table.

v = (0,2(2° 1)
hi = (1,29
h270 —> (1, 6)

The Adams-Novikov spectral sequence or the elliptic curve Hopf Algebroid give
the following differentials.

vy +— viho + 2}1270 + U%hl
hao = hiho
h3o + h3+uvh}
First we will do the calculation modulo the ideal Iy = (2,v1). This gives
(Z/Q[hﬂ @ Z/2(ha, h%)) ® Z/Q[’Uz, hgyo]/vzhil
To see this first consider P[hy, he, hao]. The differential on ho o leaves
(Plhi, ho]/h1h2) @ Plh3 ]

If we add v9 and use the differential on h%,o we get the above result. The following
picture illustrates this.
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10 MIKE HOPKINS AND MARK MAHOWALD

The result of this calculation is the following pattern.

The next step is to do the calculation modulo I;. The calculation modulo v?
has the following differentials:

Vy ’Ulhg

Uth = U1 h?’l)z
The calculation modulo v$ has the following differentials:

v% — U%hl’Ug

2,272
a +— vivshy

The class a is hyv3.
After this step we have the following picture where the polynomial algebra in
hy starting in filtration (0,0) is really Z/2[hy,v1].

[hg,m vg]/(vghil - h%,o”%)
/’
/ %

This picture is an associated graded form. We have two extensions:

hl’l)%hg = 'Ulh%’l)g

474 474
vohy Uy hz,o

The first follows easily from the bracket (hi, ha, h1) = h3. The final step is to
determine the torsion Bocksteins.
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 11

8. The Adams-Novikov spectral sequence

In this section we will compute the Adams-Novikov differentials and thus cal-
culate the associated graded homotopy of FOs. The starting point is the following.
We will show latter that it is a d; in the usual Adams spectral sequence.

PROPOSITION 8.1. In the Adams-Novikov spectral sequence for EOy we have
d5(v3) = hahj o

Proor. We begin with a calculation in stable homotopy.

LEMMA 8.2. V%K € (n40,1,2).

We will first use this lemma to complete the proof of the proposition. We note
that h3h3 , is the Adams-Novikov name for 2. By checking the above calculation,
we see that n40 = 0 in EQOs,. Thus the bracket of the lemma must go to zero in
EO,. Hence the class of h%hgyo must be in the indeterminacy of the bracket. It is
easy to see that only zero is in the indeterminacy and so h%h%o must project to the
zero class. The only way this can happen is for

ds(v3h2) = h3hs -
dividing by hs gives the proposition. [

Now we will prove the Lemma. This is essentially an Adams dy. First recall
that n4o is represented by hihycg in the Adams Es. In order to form a bracket such
as (n40,n,2t) we need to know why h?hsco = 0. The easiest approach is to use the
lambda algebra and the calculations of [Ta]. We see that AaAsAs A7 A7 = hyihgco.
Then from [Ta} we see that )\g>\9/\3)\3)\3 hits )\1)\2)\3)\5/\7)\7. Thus )\0)\3)\9)\3)\3)\3 S
(h1hgco, hi, ho). Up to the addition of some boundaries, this is just AgAgAsA3AzAs.
This is equivalent to the leading term name of v?%. This completes the proof.

The following figure illustrates this first differential. We place the chart for vj
in filtration 3 so it is easier to see just what is happening.

FIGURE 8.3.

| (v”\/
. /M/\//\/

2
We can collect the result of this computation in the following chart. We have
listed some exotic multiplications which we will prove in the rest of this section.

17 20 23

FIGURE 8.4. The class in dimension 4 is a Z/4. Lines which connect adjacent
elements but are of length 2 represent exotic extensions. There are three such. One
is multiplication by 2 in stem 27. The other two are multiplications by n, one in
stem 27 and the other in stem 39. The complete calculation has this chart multiplied
by Z[R).
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12 MIKE HOPKINS AND MARK MAHOWALD

el

25 30 35 40 45

We need to establish some of the compositions which are non-zero in this ho-
motopy module. We introduce some notation. We let ¢,n,v, to represent the
generators of the 0, 1, and 3 stems. This is consistent with the traditional names
of these classes in the homotopy of spheres. The elements in the 8, 14 and 20 stem
we will label €, k, & respectively. For other classes, we will use the symbol «; for an
element in the ith stem. The exotic extensions referred to above then are covered
by the following proposition.

ProproOSITION 8.5. The following compositions are non-zero: nasy, 2as7, Nasg.

PROOF. First note that 2as; is just the standard extension which comes from
the 3 stem where 4v = 1. Next, the class ags = ek. This is a filtration preserving
calculation. The definition of € forces € € (v, 2v,n). When we multiply this bracket
by R we see that ek = (R, v, 2v)n. This bracket clearly represents as7. Notice that
we can not form this latter bracket in spheres but need the differential on v3 in
order to form the bracket.

In the homotopy of spheres we have the bracket relation (v, kn,n) = 2&. This
follows easily from the Adams spectral sequence where there is a dy which makes
m72 = 0. In the usual naming, we have dyeq = h%do. We also have hseg = hgg.
This establishes this relationship. Now if we multiply both sides by & we have
kv, kn,n) = 2%, But &(v, kn,n) = (K, v,nk)n. This is the relation we wanted. [0

Next we want to establish the special v multiplications.

PROPOSITION 8.6. We have the following compositions: vass = aog, Vazs =
ass, Vazg = A42.

PROOF. A bracket construction for ags is ass = (R, v,n). If we multiply this
on the right by v we have (g, v,n)v = &{v,n, V) = ke = agg. In a similar way we see
that age = (, v, €). If we multiply both sides by v we get (R, v, e)v = R(v, €, v). But
in spheres (v,e,v) = nk and this gives the relation. In the above proposition we
showed azg = (F,v,nk). Multiplying this by v we have asgv = (v, nk,v) = &*n?
and this is the relationship we wanted. ([l

In a very similar fashion we establish the following. We will skip the proof.

PRrROPOSITION 8.7. We have the following € compositions. €ass = ass,€asr =
ass, €az2 = 2040, €A34 = Q42, €439 = Q47 = Ka25, €a40 = A48.

With these extensions established, the rest of the spectral sequence is quite
easy. We have the following theorem.
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 13

THEOREM 8.8. We have the following differentials:
ds(v8) = Ragy (= 2vkvs = 2d5(v))-v3)
and
d7(03°) = nPagskvy (= 205ds(v5))

THEOREM 8.9. v3? is a permanent cycle.

9. The connected cover of EO,

In this section we will construct the connected cover of EOs and get some of
its properties. We begin with the following which is proved in [HM].

THEOREM 9.1. v] ' EOy = KO[[va/v3]][v3, v5 %]

Our strategy to construct the the connected cover of FO5 will be to construct
the following map.
f : bo[vg /vi?] = vy T EO,[0, - - -, 00].
With this map we will consider the pull back square as defining the spectrum Y
Y — bo[vs /vi?]

l !

EO5[0,- -+ ,00] —— vy 'EO5[0, -, 0]
We will show:

THEOREM 9.2. The cohomology of Y is H*(Y) = A ®4(2) Z and the Adams
spectral sequence to calculated m.(Y') is that given by Theorem 2.2.

The first step is the following Lemma.

LEMMA 9.3. There is a map g : bo — vy 'EO3[0,- -+ ,00] such that g.(i) = ¢,
the unit in vy *EO50, - -, 00].

PROOF. We begin with ¢ : S© — v; ' EO,[0, - - - ,00]. We recall that there is a

short exact sequence
Y1 B(k) — bop, — bogy1

where B(k) is the integral Brown Gitler spectrum [CDGM] and boy, is the bo Brown
Gitler spectrum. This sequence is constructed in [GJM]. The K theory of B(k)
is easily computed and it is zero in dimensions of the form 4k — 1. Thus we can
proceed by induction starting with the map ¢. This constructs one copy of bo into
vy PEO,[0, - - -, ). O

To continue with the proof of the theorem, we next construct a map

¥ (QS%) ~ \/ Sk v EO,0, - - -, 0]
k>0

which gives the polynomial algebra on v3. Using the ring structure we have the
desired map f of the diagram. This completes the construction of Y.

Next we want to compute the homotopy of Y. The F5 term of the Adams spec-
tral sequence for Y is Ext 4(2)(Z/2,7Z/2). This has been calculated by many people.
The first calculation is due to Iwai and Shimada [IS]. Extensive Ext 4oy (M,Z/2)
calculations are given in [DM1]. We refer the reader there to find the details of the
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14 MIKE HOPKINS AND MARK MAHOWALD

calculation. The answers given there are in a compact form which is quite useful.
It is based on the following definition.

DEFINITION 9.4. An indexed chart is a chart in which some elements are labeled
with integers. An unlabeled x receives the label

max{label (y): x = hiy or z = hly, some i > 1}

or 0 if this set is empty. If C is a labeled chart then (C) denotes the chart consisting
of all elements vz such that i+ label(z) > 0.

The following is an example of an indexed chart.

2

2
5=8 2 1 UET I /i/-/l
1 1 //I
-1

20 24 28
Let this chart be called Ey. Then the following is proved in [DM1]. (Actually, the
chart in [DM1] has a dot missing in dimension (30,6).)

THEOREM 9.5. Exta(0)(Z/2,7/2) is free over Z/2[v3] on
<E0> (&) Z/Z[Uh w] ©g35,7-

We have the following differentials in the chart Ey. We use the notation g;_ s
to refer to the dot in position (¢ — s, s).

PROPOSITION 9.6. d2(92077) = 019,9-

PROOF. When translated to more familiar notation this is a consequence of
the following Lemma.

LEMMA 9.7. In the Adams spectral sequence of Theorem 2.1 the first differential
occurs in dimension 12 and hits the class viha.

PROOF. First we need to construct the element. Using the above formulas
which are filtration preserving we see that

2 2 2
Uovz + U2h2 + U1h2,0

is a cycle and it generates a vy tower in the 12 stem. When we use the filtration
increasing part of the differentials we see this class is not a cycle but its boundary
is

U%’Uohﬂ)g + Ug’l)ghg’o + Uo’l)ilhg + U%hlhg
We can begin to try to complete this into a cycle. The first class we would add is
vivy. The boundary on this class is

2 4 3 5
’Ul’Uohl’l}Q + (2 h2 —+ VoUq hgyo + (% hl
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 15

There is nothing we can add to get rid of the v{hs class and this gives the differential
of the Lemma. d

O

Using hy multiplications we have the following additional differentials.

d2(923,7) = g22,9

da(g26,7) = 9259
d2(920,7) = 28,9
da(ges5) = gor,7

We have the following ds.

PROPOSITION 9.8. d3(g24,6) = go23,9-

This differential implies the following in addition.
d3(g25.8) = 924,11

d3(930,6) = 929,9
We have the following d4.

ProrosIiTION 9.9. d4(931’8> = ’1)411922’8.

We wish to collect the result of these differentials. The pattern which is left
from the upper left corner of the figure generates a copy of bo starting in dimension
(8,4). The second pair of Z towers generates a bo in dimension (32, 8). This second
bo uses v‘llgg5’5 and hy times this class and the class in dimension (32,7) which has
ho nonzero on it.

This leaveb a copy of bo, after some extensions, which starts in filtration (32, 7).
It represents vivs. There is an extra class in filtration (35,10) which we still have
to account for. The following chart lists everything which is left because the source

of a differential is not present.
[0}

y S

In addition to this part we have the polynomial algebra on the two generators and
v free on the following.

v

t—s=32 34 36

The following result gives the differentials for this part of the picture.
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16 MIKE HOPKINS AND MARK MAHOWALD

PROPOSITION 9.10. Among classes in Z/2[vi,w] - gss,7 and between this poly-
nomial algebra and classes in the above diagram we have the following differentials:

d2(935,7)
da(v1935,7)
dy(viwgss,7)
dy(viwgss,7)
d4(”%w2935,7)
da(viw?gss.7)
da(w’gss.7)
)

3 3
da(viw’gss 7

936,9
938,12
U%g35,8
1/11935,10
U§g32,7
U§934,8
Uzgssj

10
V1 935,7

If we combine the above diagram, the polynomial algebra and the differentials

above we have the following figure.

A\

\
W«(\\\ w\/ X\ |

\

This allows us to write the v; torsion part of the answer out though the 42 stem.

The following is the correct chart.

To compute the next 48 groups we need to put the earlier calculation together
with the first 42 groups above multiplied by v§. This gives the following chart.
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FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 17

T

This gives the following homotopy starting in dimension 45.

J

i iy

Beyond 95 this differential pattern leaves a class every 5 dimensions. Because the
differential on v§ is a dg, the polynomial algebra v§7Z/2[v1,w] is mapped monomor-
phically into Z/2[v1, w] leaving just w®gss 7Z/2[w]. To complete the calculation we
need to take into account v, We do this by putting our calculation so far together
with this pattern and writing in the new differentials. This gives the following
pattern. The first chart calculates the homotopy from 95 to 140.

oM
M.

Here is the picture for 141 to 180.

VAW o

We can now collect the final charts and write in one place the v; torsion homotopy.
Dots correspond to Z/2’s and circles correspond to Z’s. Vertical lines indicate
multiplication by 2 and slanting lines to the right indicate multiplication by 7.

/

L
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18 MIKE HOPKINS AND MARK MAHOWALD

There are a large number of multiplications by v but they are not indicated on
these charts.

10 20 30 40
4 / o [ ]
/o I
45 55 65 75 85

96 100 110 120 130 140

AV

o

144 150 160 170

THEOREM 9.11. The homotopy of eos is given by the following:
vibolvy] & Efv3?]

where E is the homotopy described in the above charts.

10. Some self maps

Let A; be the suspension spectrum of one of the complexes whose cohomology
is free over A(1), the sub algebra of A generated by Sq' and Sq?. Let M(ig, i)
be the mapping cone of X2t M (2%) — M (2%) which induces an isomorphism in
K-theory. In [DM3] it is claimed that 4; and M (1,4) admitted a self map raising
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dimension by 48 and inducing an isomorphism in K (2),. This result is false as
the results here have shown. The argument in [DM3] is correct in showing the
following.

THEOREM 10.1. There is a class representing v§ € ExtS°(A(1), A(1)).

Consider a resolution by Eilenberg-Mac Lane spaces constructed as follows for
any suspension spectrum X with the property that there is only one class @ € m,(X)
which is non-zero in mod 2 homology. We begin with a map fj so that the composite

fo

R . § K(Z/2)

is non-zero. Now we construct a tower inductively. Suppose we have

X Ty x, I L 0 K(7)2)

with go -+ gs—1fs = fo- Let hy : Xg — K(ker(H*(fs))) and let X441 be the fiber.
Clearly, f, lifts to give fq11.
Each such resolution defines a spectral sequence with

B} = ker(H" (£,))" "

As with the usual Adams spectral sequence we have convergence to the 2-adic
completion and we can define Fy(X, X) as equivalence classes of maps between
these resolutions.

In this language [DM3] showed the following result for M (1,4). A very similar
argument works for M(2,4).

THEOREM 10.2. For X = M(1,4) or X = M (2,4) there is a class
vs € By™(X, X)

Using an eoy resolution we see that v§ commutes with the possible targets of
the differentials on v§. Thus in each case if da(v§) # 0, which is the case, then
v3? will be a class in E, and for dimensional reasons, d4(v3?) = 0. This proves the

following theorem.
THEOREM 10.3. For X = Ay, X = M(1,4) or X = M(2,4), there is a map
vy B12X 5 X
which is detected in K(2)..

Thus the results discussed in [Rav], [Mol] and possibly other places which
used the maps of [DM3] are established in this modified form. We will discuss
some of these classes, particularly those of [Mo1] in the next section.

11. The Hurewicz image and some homotopy constructed from EQO,
Using the results of the last section we can construct many vo-families.

THEOREM 11.1. Let a € m,(S°) be such that 4o = 0 and such that vi kills an
extension M1°1T1(2) — MO°(2) of a.

Assume that « is represented by a € Exta(Z/2,7/2) and that under the map
Eata(Z/2,2/2) = Exta9)(Z/2,Z2/2), a maps to a non-zero cycle. Then vi**a #
0.
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20 MIKE HOPKINS AND MARK MAHOWALD

PRrROOF. This is the standard Greek letter proof. There is an o so that the
following composite is a.

#

glel 5 plel+10(2 4) 45 M0(2,4) — S°
Then

glal+192 — p rla]+202 v, Mlel+10

Sa# 5 SO

EO,

M2 M°
is non-zero in . EO. [l

COROLLARY 11.2. We list the classes which this is known to apply to

stem 6 8 9 14 15 17 28 32 33 34 35 39 40 41 42 45 46
name v? € mne K Nk VK €K q nq eg neg u RZ, 2K 'qfiz 7]2."€2 w nw
stem 52 53 59 60 65 66 80 85

name RKq Rng Ru Rs, 27%  Rw nrw 7Y RPw

Next consider k. The only problem is that it has order 8 and so the argument
does not quite work.

PROPOSITION 11.3. & is v32-periodic.

PRrOOF. We look at map £# which makes this diagram commute.

K

#
M?(2,4) —— M°(2,4)

]

M*(2) ——— M°(2)

RAL

We do the Greek letter construction and get
M20+192<2, 4) s M29+192 (2’ 4) M29(2, 4) M0<2)
* M2 — M°(2,4) —— M°2) A EO,

This composite is non-zero. We can break apart the calculation and get that
K as an element of order 8 is v32-periodic. Of course we get easily 45 = v2k is
v32-periodic. (]

The next problem class is Vk.

PROPOSITION 11.4. vE& is v3? periodic.
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PROOF. Suppose not, that is, suppose vi(v3?) = 0. Then we have a map f

S20+192 U624+192 ! - SO

Y Y
SQ4+ 192

in the diagram, the map g is v3°. Thus f would have oo order. This contradiction
completes the proof. O

Next we have classes in £Os which do not come from the sphere. Since there
should be nothing extra in homotopy we use these to detect something also.

PROPOSITION 11.5. The classes 04, 14, n°1a and %n2n4 are vo-periodic.
PRrOOF. It is an easy FExt calculation to show that in the following diagram
#
M?(1,4) B MO(1,4)
SO

!

525 —— M?5(1) —— EO»

the composite along the bottom row is non-zero. M (1,4) also has a v3? self map
and this gives the diagram

5208

M26+192(1’4) M26(174)

M'Y2%(1,4) - 50 » EO,

The map M?26T192 5 FQ, is essential. Suppose the composite
SL6+192 _y nr26+192 _y r26(1 4) _y GO
was zero. Then M?26+192 /G16+192 factors through S° giving
M+192 /g16+192 60, po),

This map is vi-periodic and this contradicts the v;-structure of S°. Thus v%zm is
essential. 71y works the same way and also 7?1, /2. (]

It is interesting that each extra class in FOy detected something in the sphere.
The next place to study is the 47 stem. Here the differential on v§ eliminates
homotopy classes which are in the sphere. Similar to Proposition 11.4 we have

PROPOSITION 11.6. The classes {egr} and n{eor} are va-periodic.
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PROOF. We have established that 2v32%5% = nv3?{u} by Theorem 11.1. Thus

we can form the bracket (v32&2, 2v, v). Suppose this bracket contains zero. Then

S4O+192 U e45+192 U e48+192 - > SO

|

S48+192

BP(2)

V3
is a commutative diagram. This gives a class of co-order in I, S, a contradiction.
Thus the bracket is essential and defines v32{egr}. Now n{eor} = v{w}. Suppose
v3?vw = 0. Then we could form the bracket (v3{w},v,n) € T192449(S°) and
this class maps to v3'n? in EO,, which is a v; periodic class. This contradiction

establishes the result. O
We also get some mileage out of the failure of the v§ self map.

ProPOSITION 11.7. There is a family of classes of order 4 in 38 + k192 stem
detected by vg"'?’% in BP.

PROOF. Here we use the centrality of our self map. We have established {eor}
is v32 periodic and the failure of the proof of v§ self map shows that the composite
M*7(2,4) % M*7(4) — S° is null. This gives the following diagram

M47+192(27 4) M58+192 (2, 4)

M*(2,4)

M?3(2,4)

M°(2)

Going around the top is the same, by centrality, as going around bottom. The top

represents v32g and so is null which implies that there is a class 3 such that
MATHI92(9) ”_f‘) M3H+192(9) _, g0

is v32{egr}. As before, 3 must be on the bottom class or we would get a v1-periodic
class. 0

Following closely the proof of Proposition 11.5 we get,

PROPOSITION 11.8. vins, uns, nuns/4 are v3% periodic. The class 04 is vo to
some power periodic but we don’t know the power.

PRrROOF. First we look at nspu. We have M°!(1,4) — S° extending nspu. The
map is detected in EOo by {v8h?}. Thus we have an essential composite

MOIF92(1 4) - SY — EO,

detected by v3'h3.

Suppose the composite S41+192 5 Nf51+192(1 4) — SO is zero. Then it factors
through M°1+192(1 4)/541+192 _ G0 _» FO,. This map would be v; periodic.
This completes the proof. The argument is similar for the other cases. We look at
04. We have the following

,U8
MA(1) 5 M3(1) %4 89 is essential and detected by {eor}.
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Thus we can consider the composite M47(1,8) — M?>%(1,4) — S°. This is null. We
have

M47+2i~6(1 8) . M56+2i~6(1 4)

M*7(1,8)

M55(1,4)

SO
The map from MA7+2"6(1 8) — $ is null so the map M47+2"6(1) factors through
M?31+26 - Ag before, it must be on the bottom cell or we get a v,-periodic class. [

Some of these homotopy classes were discussed in [1 ]. The proofs there are
valid for 32k replacing 8%k. In that note pyn; was also studied and shown to be
non-zero. We first discuss n40. In the sphere we are looking at the classes {hqhs},
h§7 thO, h3h160 and Vzk.

PROPOSITION 11.9. The classes {hahs}, h3, hzco,hshico and vk are v3? pe-
riodic.

PROOF. We begin with 2% The M27(1) 55 §0 — EO, is detected by
M? (1) — S*" — EO,. Thus the map of M?7(1) — S° is va-periodic. Suppose
§26+192 _y pr27+192(1) — SO is null. Then S?7+192 — EO, factors through S°.
This class has finite order and so extends to M?28+192(2%) — §0 — FQO,. The

composite is vi-periodic, a contradiction. Next note that the composite
1
M?5(1,4) — M?°(1) — 5§26 25 g0
is null since M26(1) — S factors through

M25(1) = M'(1) - §'8 12, go,
By centrality

2 'USZVQR
—_

M26+192(1,4) — M26+192(1) i> 526+19 SO

is null. This gives v32{haohs}. v o {hyho} = 0. This gives that

§26+192 7’7 M22F192(1) 5 g0
is 2kv32, and so all the classes in between are non-zero too. (]

We start with {p'hohs}. There is an extension of M*2(1) — S42 — plhihs S°
to M51(1,4) — S° and the composite is detected by v§v and so this gives a v32
family. As before, this class must live in the §*27#192 stem. Composing with v to

1
get MP5(1,4) Ahap hahed, G0 and this is detected by v2v§. This gives vy - {p'hahs},
pns, p A ns, as v32F periodic classes. The same family of arguments works for ns
and related classes. The approach in [1] is different since FOy was not available
but complimentary.

The remaining task is to show all the classes in FOy come from the sphere in
the above sense. This requires constructing new homotopy classes. These classes
are covered by the following propositions.

PROPOSITION 11.10. The class of order J represented by {hshgi} in the 54 stem
is v3% periodic and 2{hshyi} = k{e3}.
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24 MIKE HOPKINS AND MARK MAHOWALD

PROOF. We first note that 5{e2} is {e3g} and this class fits 11.1. This com-
pletes the proof since {hshpi} must map essentially to FOa,. O

PROPOSITION 11.11. The class corresponding to {Phshieg} is v3® periodic.

PROOF. In EOs, we have v{hshgi} # 0. Since hohshgi = h1hsPeg in Ext we
are done. O

ProroOSITION 11.12. The class in the 65 stem with Adams spectral sequence
name Phsj maps to a non zero class in EOs,. Thus it represents a homotopy class
which is v3% periodic.

We remark that this is the first class beyond Kochman’s calculations that was
not covered by 11.1.

PROOF. In EQ,, the Toda bracket (k3,n,v) # 0. we can form the bracket in
the sphere too and so it must be non-zero there. Since dyPG = gz and &?n = {2}
we see that (&3, 7n,v) € {ha PG} = 0. Thus it has filtration > 12. The only other
class of higher filtration not in J, is R{w} and this is also present in EOs,. This
gives the result. O

COROLLARY 11.13. The class Phshok in the 63 stem maps to a class in EOs,
and thus is v3> periodic.

PROOF. In EQ,, we have v(&3 n,v) # 0. We also have hoPhsj = Phshok in
Ext. This completes the proof. [

We remark that in the E, term of the May spectral sequence the class Phshok
is divided by only hg. Brunner’s calculation of the Ext shows that it is actually
divided by hJ. In particular, we have hjGa1 = Phshok-.

PROPOSITION 11.14. The bracket (e, i3, n) is detected in EOs,. In the Adams
spectral sequence it is in the coset {P?*GY}. In addition n on this class is divisible
by 4 which is represented by the bracket (3, v,2v,v) and is in the coset {Qs}. We
also have n?(k>,v,2v,v) # 0.

PROOF. In EQ,, it is easy to see that (e, 3, 1) # 0. It is also straightforward
to see that it is in {P2G}. In Ext we have h; P?G = h%Qs. This is verified by
Brunner’s calculations. Now Q5 is a permanent cycle because there is nothing of
higher filtration for it to hit. It has order eight for the same reason. It is in the
four fold bracket (k3,v,2v,v) by construction. The other claims follow by easy
arguments except we need to show that )5 is non-zero. To this end consider the
following diagram.

S72 ! E02
M72 (8) 9 SO
571

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 25
Since n(e, &%,n) = 4{Qs}, f«(i) = {h3vi?, the generator of Z, in the the 72 stem.
Thus @5 must be a non-zero cycle. ([

PROPOSITION 11.15. The composition v{Qs} is a class of order 4 with the gen-
erator having Adams spectral sequence name {PD’}. This class is also R{ Phsiho}.

PROOF.

575 E02

|

M75(2) g SO

571
The map f is v57?b where b is the EOa, class of order 2 in dimension 27. Thus the
map ¢ can not be null but f can not factor through S° since it would have Adams
filtration at least 16 and there is nothing there. Thus k&3 # 0 in 7.(S°) and we
have &2 {hyPhseo} = xk> by 11.11. Thus &{Phsiho} # 0 and generates a Z/4.

We need to show that it is v{Qs}. This follows from the bracket constructed for
{Qs} in 11.14. O

PRrROPOSITION 11.16. The remaining classes through the 95 stem detected by
EOq, are &*, &3{w} and (F*{w},v,n) = {v5P1dog}.

References

[CDGM] F. Cohen, D. M. Davis, P. Goerss, and M. Mahowald, Integral Brown-Gitler spectra,
Proc. AMS 103 (1988), 262-266.

[DM1] D. M. Davis and M. E. Mahowald, Ext over the subalgebra Aa of the Steenrod Algebra for
stunted projective spaces Canad. Math. Soc. Conf. Proc. Vol. 2, Part 1 (1982), 297-342.

[DM2] D. M. Davis and M. E. Mahowald, The non realizability of the quotient A//A2 of the
Steenrod algebra, Amer. J. of Math. 104 (1982) 1211-1216.

[DM3] D. M. Davis and M. E. Mahowald, v1 and v periodicity in homotopy theory, Amer. J.
of Math. 103 (1981) 615-659.

[GIM]  Paul G. Goerss, John D. S. Jones, and Mark Mahowald, Some generalized Brown-Gitler
spectra, Trans. Amer. Math. Soc. 294 (1986) 113-132.

[1S] A. Iwai and N. Shimada, On the cohomology of some Hopf algebras, Nagoya Mat. Jour.
30 (1967) 103-111.

[HM] M. J. Hopkins and H. Miller, Title to be announced.

[Ko] S. O. Kochman, Stable homotopy groups of spheres, a computer assisted approach, Lec-
ture Notes in Math. 1423, Springer Verlag, Berlin 1990.

[KM] S. O. Kochman and M. Mahowald, On the computation of the stable stems, Contempo-
rary Mathematics #181 (1993)299-316.

[LM] W. Lellmann and M. Mahowald, The bo-Adams spectral sequence, Trans. AMS 300
(1987), 593-623.

[Mo1] Mark Mahowald, The primary vs family, Math. Z. 177(1981) 881-393.

[Mo2] Mark Mahowald, Ring spectra which are Thom spectra, Duke Journal. 46 (1979) 549-559.

[Rav] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic

Press, 1986.
[Si] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag (1992).
[Ta] M. C. Tangora, Computing the homology of the lambda algebra, Memoirs of the AMS

Vol 58 Number 337 (1985).

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



K(1)-local E, ring spectra

M. J. Hopkins

CONTENTS

Certain K (1)-local spectra

Homotopy groups of K (1)-local spectra
The category of E, ring spectra

Some algebra

Continuous functions on Z,

Structure of B

K(1)-local E-elliptic spectra

. Homotopy groups of T¢

References

PN DT W
SN CO = U s W = =

—_ =

1. Certain K(1)-local spectra

Let C be the topological model category of K (1)-local spectra. Some useful
examples of objects of C are p-adic K-theory, K, the Adams “summand” B of K,
and the sphere S. At the prime 2, the spectrum B is KO, and is not a summand
of K.

The group Z, of p-adic units acts on K via the Adams operations. If A is
a p-adic unit we will denote ¢, : K — K the corresponding Adams operation.
Let u C Z, be the maximal finite subgroup. When p is odd, u is the group of
(p — 1)t roots of unity, and when p is 2 it is the group {#1}. The spectrum B
is the homotopy fixed point spectrum of the action of 1 on K. The action of the
Adams operations on K restricts to an action of Z /u ~ Z;, on B.

2. Homotopy groups of K(1)-local spectra
Let g be a topological generator of Z, /u, and
y:B— B

the corresponding map. For any object X of C, there is a fibration

X 5 BAX LoD B

Date: 1998.
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2 M. J. HOPKINS

This makes it easy to compute the homotopy groups of X in terms of the homotopy
groups of B A X. Take for example X to be the sphere spectrum. The action of v,
on mgB = Z,, is trivial. This means that the element 1 in the rightmost 7o B comes
around to give a non-trivial element

C S 7T_150.

We will see that ¢ plays an important role in things to come. Though not mentioned
in the notation, the element ¢ depends on the choice of generator g.

Given an element f € mo(K A K) and A € Z, let f(\) be the element of
moK = Z, which is the image of f under the map induced by the composite

KAK PN KAK S K.

Thinking of A\ as a variable, this defines a map
mo(K A K) — Homes(Z, , Zy).
PROPOSITION 2.1. The above map is an isomorphism. It gives rise to isomor-
phisms
(K A K) = Homys(Z,; , 7. K)
(K A B) ~ Homys(Z,) /1, 1 K)
(B A B) ~ Homys(Z,; [, m B).
O

With respect to the above isomorphism, the actions of 3 A1 and 1 A 1), are
given by

(g AN1LF)AN) = F(Ag)

(INAYg )N = Q/Jqf(gil)‘)-
Let
MC = SO L(J 60
be the mapping cone of ¢, and fix a generator g of Z) /uu. By definition, we have a
diagram
SO —— M, 0. g0
|}
AE—— > S =
"bg_l
The maps

lod,t: My = B
form a basis of hoC(M¢, B). From the above diagram it follows that
Yot =1+ 100.
This will be more useful when written in homology. Thus define
{a,b} C mo(B A M)

(t,a) =1 (1,b) =0
(lod,a) =0 (1od,b) =1.
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K(1)-LOCAL E. RING SPECTRA 3

One easily checks that

LEMMA 2.2. Under the map
mo(B A M¢) — mo(B A B) = Homys(Z)S /1, L)
the element a goes to the constant function 1, and the element b goes to the unique

homomorphism sending g to 1. (I

3. The category of F,, ring spectra

The topological model category of Eo ring spectra in C will be denoted C¥=.
The spectra K have unique FE, structures, and the Adams operations act by F
maps. This gives the spectrum B an F, structure as well.

Let BY,  be the image in C of the unreduced suspension spectrum of the
classifying space of ¥,. There are two natural maps

BY,, — 5°.

One is derived from the map ¥, — {e} and will be denoted e. The other is the

transfer map
BY,, —S°
and will be denoted Tr.

LEmMMA 3.1. The map
By, <1, 50 x 50
is a weak equivalence in C. g

Define maps in hoC
0,¢:5° = BY,,

o
v reauiring o) = (-1 To(w) =0

€(@) =0 e(y) = 1.
The map B{e} — BX, gives rise to a map
e: S~ Ble}, — BY,_.
It follows from the definition that
eoe=1,
and from the double coset formula that
Troe = pl.
It follows that
(3.2) e=1 —pb
Let E € CP>, and o € myE. The Eo structure associates to  a map
P(z): B, =X
with the property that
P(xz)oe=aP.
We define operations
0,¢:mE — FE
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4 M. J. HOPKINS

by
O(xz) = P(x)o0 P(x) = P(x) o 9.
In view of (3.2) we have
U(z) —a? = pb(z).
Thus the operation v is determined by 6. One easily checks that 1 is a ring

homomorphism, and that 6 does what it has to so that the above equation will
remain true:

p—1
LiP\ i pi
oo ) = 000) +0) = 35 (1) 'y
i=1
0(xy) = pb(x)0(y) + O(x)y” + 6(y)a”.
Since the Adams operations are E., maps, they commute with the operations
1 and € when acting on

7T'0(K A R)

4. Some algebra

We now work in the category of p-complete abelian groups, and we want to
consider comutative algebras with operations 6 and ¥ as described above. Let’s call
them Frobenius algebras (even though this collides with another use of the phrase).

There is a free Frobenius algebra on one generator. The underlying ring is

Zp[x,l‘l,l‘g, . ]

One defines 0 by setting 0(x;) = z;+1 (0(x) = z1), and extending it to the whole
ring by requiring that pf(z) + 2P be a ring homomorphism. We'll call the free
Frobenius algebra on one generator x, T{z}. Similarly, if X is a spectrum, we will
call the free K(1)-local commutative ring spectrum on X T{X}. The following
result plays an important role in everything we do.

THEOREM 4.1 (McClure). For any K(1)-local Eoo Ting spectrum E, the natural
map of Frobenius algebras

E, @ T{z} = m.(EAT{S})
is an isomorphisms.

There is another, perhaps more useful description of this free algebra. Let
W = Zplao, a1, ...] be the p-completion of the Witt Hopf algebra. The classical
result says that if one defines elements w; € W by

n n—1
wp =ay +pal 4+ plan,

then W has a unique Hopf algebra structure for which the w; are primitive. One

defines ¥ by ¥(w;) = w;11, and checks that this extends uniquely to a Frobenius

structure on W. This is the map which co-represents the classical Frobenius map.
Define a ring homomorphism

Zp[wo,wl,...] — Zp[l‘o,xo,...]

by sending wgy to x = xg, and requiring that it be compatible with the map 1.
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LEMMA 4.2. The above map extends uniquely to an isomorphism of Frobenius
algebras
W — Zp[x0,$17 .. ]

The proof of the above lemma makes use of the following result of Dwork:

LEMMA 4.3. Let A be a ring with a ring homomorphism ¢ : A — A satisfying
¢(a) =a? mod p

(thus if A is torsion free, then A is a Frobenius algebra). Let wo,w1,... be a
sequence of elements of A. In order that the system of equations

apg = Wo
ab + pa; = wy
2
ag +pal +pag = wy
ag" + e +pnan = Wn
have a solution, it is necessary and sufficient that for each n
wy, = G(w,_1) mod p.
This gives the map. The isomorphism follows easily from the fact that, modulo
decomposables,
Wp = pnan
Y =pta,.
This gives the free Frobenius algebra on one generator the structure of a Hopf
algebra. We knew it had one anyway, since it was free.

5. Continuous functions on 7Z,

Another important example of a Frobenius algebra is the ring C' of continuous
functions
Ly — L,

with ¢(f) = f. The point of this section is to describe a small projective resolution
of C.

Each p-adic number A can be written uniquely in the form
1= Yo
i>0

with each o; = a;(\) equal to 0 or a (p — 1) root of unity. The «; are continuous
functions from Z, to Z,, and satisfy

ol = a,.
For i < n, the a; can be regarded as functions from Z/p™ — Z,.
PROPOSITION 5.1. For each m,n, the map
Z/p" g, 1,y ..y am—1]/ () — ;) — Homes(Z/p™, Z/p")

is an isomorphism.
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6 M. J. HOPKINS

COROLLARY 5.2. The map
Zplaw, an, ... 1/ — a;) — Homes(Zy, Zyy)

is an isomorphism. O

Proof of Proposition 5.1: When m = 1 the injectivity follows from the linear
independence of characters (of pp—1), and surjectivity follows from the fact that
both groups are finite of the same order. For the general case, note that for finite
(discrete) sets S, and T, the natural map

Homys(S,Z/p™) @ Homes (T, Z/p") — Homes (S x T, Z/p")

is an isomorphism. Apply this to the (set-theoretic) isomorphism

2/ L2 TT {0} U ptpn) -

LEMMA 5.3. Under the map of Frobenius algebras
t: W — Homs(Zy, Z,)
sending ag to the identity map, one has

t(a;) = a; mod p.

Proof: This map sends each w; to the identity function. To work out the
values of a; mod p we work by induction on ¢. Suppose we have proved the result
for i < n. The inductive step is provided by the congruence

Wy, = agn erafn 4+ +p"a, mod p”+1.
Since for i < n, we have
a; =a; mod p
it follows that

a‘f; = afz =a; mod p'Tt,
and so ‘
p”_’afl =p"'o; mod p" Tl
Solving for a,, then gives the result. O
Map
T{z} = C

by sending x to the identity map Z,. The element ¢ (z) — « then goes to zero.

LEMMA 5.4. The commutative diagram

y—0

™yt ——17Zp
wa(r)rl i
T{z} —=C

is a pushout square in the category of Frobenius algebras. The left vertical map is
étale. 0.
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6. Structure of B

Define T¢ by the pushout (in K (1)-local E4 ring spectra)
T{S~ 1} X =350

|

SV ——= T,
By definition of ¢ and the fact that B is F, there is a canonical map
T, — B.
Since B A ( is null, we have
mo(BATe) = T{b},

where b was defined in Equation 2.1. The same thing holds with B replace by K,
only in that case, the odd homotopy groups are zero. Under the map of Frobenius
algebras

mo (K NT¢) = T{b} — mo(K A B) = Homes(Z,)} /11, Zop)

the element b goes to the unique abelian group homomorphism sending g to 1.
Let’s use this homomorphism to identify Z) /u with Z;, and hence 7o(K A B) with
Homygs(Zy, Zp) After doing this, we find that b maps to the identity map of Z,.
Now consider the element ¢ (b) — b. This is fixed under 1, since
Yg(1h(b) — b)) = thgh(b) — 1hg(b)
= ¢¢g(b) - %(b)
=¢b+1)—(b+1) =) —b.
LEMMA 6.1. The maps

(g—1)A1

F*(K/\TC) 7T*<K/\Tc)

(g—1)A1

7T*(B/\TC) 7T*(B/\Tc)

are surjective. The map
W*TC — 7T*(B A\ Tc>

is therefore a monomorphism, with image the invariants under 1.

We therefore have a unique element f in mo7, whose image in mg (B A TC) R
mo (K AT¢) is 1(b) — b. This leads to the diagram

T{S°} —— §°
|
Te — B
Our main result is

PROPOSITION 6.2. The map K., f is étale. The above diagram is a pushout in
CE=. O
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7. K(1)-local E-elliptic spectra

We first recall the geometric interpretation of the operation 1. In general,
an F., structure on a complex oriented cohomology theory E gives the following
structure. Given a map

fimFE — R
and a closed finite subgroup H C f*G, one gets a new map
’Q/JH cmoE — R

and an isogeny f*G — ¥*G with kernel H. When the formal group is isomorphic,
locally in the flat topology, to the formal multiplicative group, one can take f to
be the identity map, and H the “canonical subgroup” of order p. Since it is so
canonical, it is invariant under all automorphisms of G, and one doesn’t even need
a formal group in this case.

An elliptic spectrum is a ring spectrum E with moqqF = 0, and for which there
exists a unit in moF, (hence E is complex orientable and we get a canonical formal
group G over moE), together with an elliptic curve over moF and an isomorphism
of the formal completion of this elliptic curve with the formal group G.

An E elliptic spectrum is an E., spectrum E which is elliptic, and for which
the isogenies described above come equipped with extensions to isogenies of the
elliptic curve.

Suppose that F is a K(1)-local E, elliptic spectrum with

1 (K A E) =0
(this is automatic if moE is torsion free). Then the sequence

m0E = m(BAE) YN L BAE

is short exact. There is therefore an element b in moB A E with 940 = b+ 1. Such
a b is well-defined up to translation by an element in the image of mgFE. Here is
another description. Choose an extension of the unit to a map

L MC — F.
The map ¢ is unique up to translation by an element in mo . Now look at the image
of the element b € 7 (K A MC) in 7o (K A E). This class, which we shall also call b
is well-defined up to translation by an element in the image of myE. The fact that
it satisfies 1 4b = b + 1 follows from the commutative diagram

mo(B A M= (B A M)

i l

Suppose we have chosen such a b. Since ¢ and ¢, commute (1, is an E, map)
one easily checks that ¢ (b) is another such element. It follows that ¥(b) — b lies in

ol C 7T0(B N E)

We are interested in choosing such a b as canonically as possible, and looking
at the element ¢ (b) — b. This will be the obstruction to making an E., map from
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B to E, but it also tells us quite a bit about the E, structure of E. Since the map
7T0(B A E) — 7T0(K N E)

is an isomorphism, it suffices to make this calculation in 7o (K A E).
Let’s first do this at the prime 2. Let ¢4 € mgE be the normalized modular
form of weight 4. The g-expansion of ¢4 is given by

cg =1+240 Z o3(n)q”,

n>1

o3(n) = Z 3.
d|n

Let g € Z5 be an element which projects to a topological generator of ZJ /{£1}.
Let u € my K be the Bott class. We have

g*=1 mod 16,

where

and checking the g-expansion gives

ut*=ec¢y mod 16.

Now consider the element
log(ca /ut)

b =
log g*

)

where
l.nJr 1

log(1+x) = Z(fl)"

50 n—+1

is regarded as a 2-adic analytic function. Then, since gcs = ¢4 (it is in the image
of msE), and yut = g*u?, we have

Gh = _log(164/g:u4)
0gg
_ log(cq/u*)  logg*
T loggt log g4
—b41,

so b is an Artin-Schrier element.
Now let f = (b) —b. The element f is a a modular function (since ¥, f = f),
and so is an element of

ZQ[j_lL

3
where j = % is the modular function.

LEMMA 7.1. The map
Lolf] = Zoli Y]
is an isomorphism.

Proof: 1t clearly suffices to do this modulo 2.
Working mod 2 we have

b= Zag(n)q" mod 2
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Writing
n=2"p" . pptk
One easily checks that the number of divisors of n is
(L+mg) x -+ x (1+mg),
and that the number of odd divisors of n is
(1+mq) x -+ X (1 4+ mg).

It follows that o3(n) is even unless n is the product of a power of 2 and an odd
square. This gives

b= Z q2m(2d+1)2 mod 2,
m,d>0
and so

P(b) b= gD’

d>0
—gq Z q8(d(d+1)/2)
d>0

since the operation v is given in terms of g-expansions by

OES
As for j~! we have

1

j =A mod 2,

S| >

and
A= qH(l —q")* = qH(l —¢*)® mod 2.
The congruence
P(b) —b=3;"" mod 2

is then a consequence of the following special case of the Jacobi triple product

identity
> (=1)4@2d + 1) = T - 24)2
d>0 k>0
0

At the prime 3 we can do the analogous thing with cg (which represents v})
cg =1—504 Z o5(n)q".
n>1
The following identity holds

1
08% _ 571 mod 3.
9
Oddly, the analogous result for p > 3 seems not to hold, though it is not really
clear what “analogous” means.

REMARK 7.3. Fred Diamond and Kevin Buzzard explained that both follow from
known congruences for the Ramanujan T function as described in Serre’s course in
arithmetic.
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K(1)-LOCAL E. RING SPECTRA 11

Proof: Note that
_log(ea/ut)

T = Z o3(n)¢" mod 8,
log g o

and so
Y(b) —b= 2(03(”) —o03(n/2))¢" mod 8,
n>1
where we adopt the convention that o5(n) = 0 if n is not an integer. Now it’s easy
to check that
03(2n) = o3(n) mod 8,

so that
P(b) —b= Z (o3(n))g" mod 8.
nodd
On the other hand,
1 A
7 =3=4 H(l — ") = ZT(n)q” mod 8.
4 n>1

It follows from a congruence of Ramanujan (see [Sw, page 4]) that

0 mod8 if n is even
7(n) = o
o3(n) mod 8 if n is odd.
This means that we have the congruence
P(b)—b=3"" mod 8.
O
Returning to the prime 2 we will now build a canonical K(1)-local E4 ring
spectrum mapping to any K (1)-local elliptic spectrum. Since ¢4 and § commute,
the element
G(f) emFE
is a modular function, and hence is can be written as a 2-adically convergent power
series in j~!. By Lemma 7.1 there is a 2-adically convergent power series h with

0(f) = h(f)-
This gives a universal relation in the homotopy groups of any K(1)-local E4 ring
spectrum.
Returning to T¢, let b € mg (B A TC) once again denote the universal “b,” let
f € moT¢ be the unique element whose image in mg (B A TC) is

f=1(b) b,
and, finally, set
y=0(f) —h(f) € mTt.
This gives the vertical map in the following diagram. The requirement that it be a

pushout defines the K (1)-local E, ring spectrum M.
T{S°} - §°

|

Te— M
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12 M. J. HOPKINS

by construction it is clear that there is a canonical map from M to any K (1)-local
elliptic F,-ring spectrum.

PRrOPOSITION 7.2. The map
K.y: K.T{S"} — K.T;
is smooth of relative dimension 1. Therefore

K. M = K*Tg X Zio
K.T{S%%y

and
T M = KO*[j_l].

Proof: The map T{S°} — T comes about as the composite

7{sy LD, prgoy Iy

Since K., f is etale (Lemma 5.4), it suffices to show that the map K, (6(z) — h(x))
is smooth of relative dimension 1. If we write out the rings, we are looking at the
map of Frobenius algebras
Zalyo, Y1, - -] = La|wo, x1, .. .|
Yo — T1 — h(x())
It is easy to check that h(zo) = 22 + ..., so that our map is of the form
Yn > Tne1 mod decomposables.
This probably shows that the map
Zalyo, y1, - - - ][xo] = Za[zo, 21, .. .]
yo — x1 — h(zg) ...
o To

is an isomorphism.
Consider the increasing filtration by the x;. One easily checks that the map is
of the form

Yi > Tiy1 + t(fﬂo, . ,l’i),
which gives an easy inductive proof of surjectivity. Injectivity follows from this
being an “isomorphism mod decomposables” since the intersection of the powers of
the obvious “augmentation ideal” is zero. O

8. Homotopy groups of T¢

Recall that g € Z) is chosen so that g projects to a topological generator of
Z, [ . Define h € Z;, by

¢  p=2

Then for p odd, h =0 mod p and for p =2, h =0 mod 8. In both cases

o =3 (P

1+h:{9”_1 p>2
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K(1)-LOCAL E. RING SPECTRA 13

defines an element of Z,[b] (recall that this ring is p-complete).
Define a multiplicative map

i: By = BT, = B, ® T{b},
by
—b
i(v1) = U1g(p_1)( )= vi(1+h)Y,
for p odd, and

i(20%) = 211%92(_[)) = 201+ b)Y
. —b _
i(vf) = vig* ™" = vl (14 ),

At the prime 2, the image of the element n € 71 KO is forced, since it is in the
image of the homotopy groups of spheres. Note that in all cases, i(v) = v mod 2.
This makes it easy to check that the map at the prime 2 is multiplicative (where
one needs, perhaps, to worry about the elements in dimension 8%k + 1 and 8k + 2,
since they are in the image of the homotopy groups of spheres).

We have a surjective map

BT — B.B

of Frobenius algebras with an action of Z). We are going to define an additive
section which is compatible with the action of Z). For this we need to refer to the
“big Witt vectors.”

Consider the algebra

A:Z[al,ag,...}

B _ n/d
w, = E da,".
d|n

The algebra has a unique Hopf algebra structure for which the w? are primitive.
In fact, the group-valued functor represented by A is the functor

R (1+z R[z])*.

The universal series in A is the series

a(z) = H(l — ana™),

and define, for each n > 1

and one easily checks that

zdloga(x) = — Z wBz™,

There is the following an analogue of Dwork’s lemma for the big Witt vectors.
It is helpful to write a = (aq,...) and define

(1—-2)*=a(x).
The “group law” is then defined so that
(1—2)** =1 —2)%(1 —z).
LEMMA 8.1. Suppose that A is a ring with endomorphisms
pp: A= A p prime

satisfying
¢p(a) =a? mod p.
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14 M. J. HOPKINS

Then, given a sequence wP wh, --- € A, then the system
wh = Z dag/d
d|n

has a solution ay,az,--- € A if and only if for each prime p, each k > 1, and each
(m,p) =1, one has
B _ B k
wpk m = d)p(wm) mod D
If A is torsion free then such a solution is unique.

The proof is very similar to the p-typical one.

One application of this is that there is a unique map from the ring of big Witt
vectors to the ring of functions from Z to Z sending each w? to the identity map.
One easily checks that this maps sends the series (1 — z)® to the map

n— (1—x)"
One useful consequence of this is that if we define elements ¢ € A
cp = (—1)kak + monomials in a;, 1 < k

by writing
(1—a)* = en(-a),

then under the map described above, ¢ is sent to the binomial function

- (i)

In fact, the image of A in the ring of functions on Z is the ring of “numerical
polynomials,” and has basis these binomial functions.
The section we are describing results from lifting the “Pascal’s triangle” identity

-+ (")

LEMMA 8.2. There is a unique map of Hopf algebras
T:-A— A

to A.

with the property that for all n,
TwB =wB +1.
With respect to the map to the ring of functions on Z, we have
Tf(n) = f(n+1).
Finally, the following “Pascal’s triangle” identity holds:

Tep =ck +cp—1-

Proof: Let’s define the elements T'a,, by writing

(1-2)(1—2)"= H(l —Ta,a").

The effect of T on the w; is easily checked by taking the log of both sides. The rest
of the lemma also follows easily. ]

We now map the ring A to the ring W.
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LEMMA 8.3. There is a unique map of Hopf algebras
f: A=W
with
f(wﬁm) = wg (m,p) =1.
This map is compatible with the action of T on W and on A.

Proof: We define ring homomorphisms
¢ W —>W [ prime,
by setting ¢; = 0 if [ # p, and by setting

dpan = ab.
The result then follows easily from Dwork’s lemma. The compatibility with T
follows easily from the effect on primitives. O

The entire point of all of this was to define the binomial classes in the Witt
world. We abuse the heck out of the notation to do this.

DEFINITION 8.4. Let ¢,, € W be the image of the classes ¢, € A under the map
from Lemma 8.5.

We can finally define our v4-equivariant section.
LEMMA 8.5. The map
s+ Homegs(Z)) /1, Zp) — o (BAT)
defined by
Homeu(Z; /11, Zy) — mo(B A T,)

gi (1) e J/z

Hom 4s(Zy, Zp) = W

is a 1 g-equivariant map of co-algebras, where the binomial functions have the “Car-
tan” coproduct.

Proof: This follows from the above when one notes that under the vertical
isomorphisms in the diagram, the map 1), is sent to 7. ([l

Finally, we can return to our computation of the homotopy groups of T,. We
have defined a ring homomorphism

i:mB@T{f} = m(BAT)

which is compatible with the action of v, and whose image is fixed under the action
of 1.

LEMMA 8.6. The sequence

0> mBaT{f} »m(BAT) 25 r (BAT) =0

s exact.
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16 M. J. HOPKINS

Proof: Consider the additive map

(8.4) Homes(Z) /1 Zp) © 1 B @ T{f} X225 n (BAT).
We will see below that it is an isomorphism. Granting this, the lemma then reduces
to showing that the sequence

constants

0- 7, Homeis (2 /11, Zp) 2 Homegs (25 /11, Zy) — 0

is exact. But this is easy to check: just use the basis of binomial functions, and
write down the map. ([

‘We have used

LEMMA 8.7. The map (8.4) is an isomorphism.

Proof: This is the standard Milnor-Moore argument. We have an exact se-
quence of (p-complete) Hopf-algebras

T{y} 2= T{b} © Homes(Zy, Z,)
and a section
s : Homes(Zy, Z,) — T4{b},
which is a map of co-algebras. It is formal to check that the maps
pos®t:Homes(Zy, Zp) @ T{y} — T{b}

and

coproduct TR (1—som)
E— _—

T{v} T{b} © T{b} Homeis (Zp, Zp) @ T{y}

are inverses. O
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GLOSSARY

1. Spectra, ring spectra

A-ring spectrum: An A,,-ring spectrum is a ring spectrum E whose
multiplication is associative up to all higher homotopies. Classically this
has been described as an action of an A.-operad on E; in more modern
terms, an A..-ring spectrum can be realized by an associative S-algebra,
symmetric, or orthogonal ring spectrum.

FE-ring spectrum: An FE.-ring spectrum is a ring spectrum FE whose
multiplication is associative and commutative up to all higher homotopies.
Classically this has been described as an action of an E.-operad on E;
in more modern terms, an F..-ring spectrum can be realized by an asso-
ciative, commutative S-algebra, symmetric, or orthogonal ring spectrum.

Even periodic cohomology theory; weakly even periodic theory: A
multiplicative cohomology E theory is even periodic if 7, (F) is concen-
trated in even degrees and mo(F) contains a unit. It is weakly periodic if
m2(E) is an invertible 7o (E) module, and oy (E) = 7o (E)®F for all k € Z.

S-module; (commutative) S-algebra: The category of S-modules is one
of various point-set models of spectra with a strictly symmetric monoidal
smash product, and historically the first. An S-module is indexed not
by the natural numbers, but by the finite-dimensional sub-vector spaces
of a universe, i.e. an infinite-dimensional real inner product space. It
has more structure, though: it is also a module over the sphere spectrum
S with respect to a smash product of so-called L-spectra, which in turn
are algebras for a monad derived from the linear isometries operad. The
category of S-modules very easily generalizes to equivariant spectra, but
its definition is arguably more complicated than symmetric or orthogonal
spectra.

Symmetric ((commutative) ring) spectrum: Symmetric spectra are one
of various point-set models of spectra with a strictly symmetric monoidal
smash product. A symmetric spectrum consists of a sequence of spaces X,
with operations of the symmetric group %,, and maps o: X, AS' — X, 1

m
o

such that the composite X, A S™ — X, 1., is ¥, X ¥,-equivariant. An
advantage of the symmetric spectrum model of homotopy theory is its
simplicity, however they are difficult to use in an equivariant context. A
symmetric ring spectrum is a monoid with respect to the smash product;

a symmetric commutative ring spectrum a commutative monoid.
Orthogonal ((commutative) ring) spectrum: Orthogonal spectra are one
of various point-set models of spectra with a strictly symmetric monoidal

1
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smash product. It is a middle ground between S-modules and symmet-
ric spectra. Their definition is identical to symmetric spectra, but the
symmetric groups ¥, are replaced by the orthogonal groups O(n). An
advantage over symmetric spectra is the possibility to use this setup in an
equivariant context. Orthogonal (commutative) ring spectra are definied
in an analogous way to symmetric (commutative) ring spectra.

Units, space of, GL;(R): If R is an A, -ring spectrum, the space of units
of R is defined to be the subspace GL;(R) C 2°*°R which is the union of
those components that represent an invertible element in the ring 7 R.

Units, spectrum of, gl;(R): If Ris an F-ring spectrum, the space GL;(R)
of units of R is naturally the zeroth space of a connective spectrum gl (R),
the spectrum of units of R.

2. Localization

Arithmetic square: Sullivan’s arithmetic square is a way to recover a spec-
trum X from its p-completions and its Q-localization. That is, X is equiv-
alent to the homotopy limit of the diagram [[, L, X — Lo([], LpX) +
LgX. There is a similar arithmetic square when X is a space, in which
X can be recovered as the homotopy limit of this diagram given the addi-
tional condition that X be nilpotent. More generally, the pullback of the
arithmetic square is the HZ-localization of a space.

Bousfield localization; E-localization: Bousfield localization of model cat-
egories is a homotopy-theoretic analogue of the usual localization of a
category C, with respect to a collection of morphisms I. The localiza-
tion C[I~1] is the universal category receiving a functor from C and such
that the image of the morphisms in I are all isomorphisms. Similarly,
the Bousfield localization of a model category C, with respect to a col-
lection of morphisms I, is the universal model category receiving a left
Quillen functor from C, and such that image of the morphisms in I are all
weak equivalences. For a given spectrum E, the Bousfield localization of
spectra or spaces with respect to the collection of E-equivalences (that is,
morphisms f such E,(f) is an isomorphism), is referred to as Bousfield
localization with respect to E. The fibrant replacement in the resulting
model category X — LgX is then called the Bousfield localization of X
with respect to F.

Bousfield-Kuhn functor: A functor ®,, from spaces to spectra that fac-
tors K (n)-localization as Ly () = ®, 0 2. The existence of ®,, implies
that if two spectra have equivalent k-connected covers for some k € N,
then their K (n) localizations agree.

E-acyclic: A spectrum (or space) X is E-acyclic if the E-homology of X
is zero. By definition, the Bousfield localization Ly X of an F-acyclic
spectrum X is contractible.

E-equivalence: A map of spectra (of spaces) f: X — Y is an E-equivalence
if it induces an isomorphism in F-homology.

E-local: An E-local spectrum (or space) is a fibrant object of the Bousfield
localized model category. A fibrant spectrum F' is FE-local iff for any
FE-acyclic spectrum X, the F-cohomology of X is zero. The Bousfield
localization LgX of a spectrum X is initial (up to homotopy) amongst

2
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all E-local spectra receiving a map from X. Is is also terminal (up to
homotopy) amongst all spectra Y equipped with an F-equivalence X —
Y.

FE-nilpotent completion: For a ring spectrum F, the E-nilpotent com-
pletion of a spectrum X is the totalization of the cosimplicial spectrum
E*X. In general, the E-based Adams spectral sequence for X converges
to the homotopy of the E-nilpotent completion of X. If X is connec-
tive and £ = HIF,, then the E-nilpotent completion is the same as the
p-completion.

Hasse square: Similar to the arithmetic square. It recovers the p-completion
of an E(2)-local spectrum (e.g. and elliptic spectrum) from its K (1)-
and K (2)-localizations, as the homotopy limit of the diagram Ly o) FE —
LK(l)LK(g)E < LK(l)E.

p-localization: The localization of spectra (or spaces) at a prime p is a
particular case of Bousfield localization (in this case, with respect to the
Eilenberg-MacLane spectrum HZ,)). If X is a spectrum (or a simply
connected space), then 7. (X)) is isomorphic to m, X ® Z).

p-completion: The p-completion — also called Z/p-localization — of spectra
(or spaces) at a prime p is a particular case of Bousfield localization (in
this case, with respect to the mod p Moore spectrum M(p)). If X is a
spectrum (or a simply connected space) with finitely presented homotopy
groups, then 7, (X,) is isomorphic to m.X ® Z,,.

3. Orienations

E—genus: The A genus is a Q-valued genus of oriented manifolds given
by [y A(M), where A(M) = ] z2{Am € H*(M,Q) and the total
Pontryagin class of M is factored as > p;(M) = [](1 + ;) in some al-
gebraic extension of H*(M,Q). If M is a spin manifold, then the A
is an integer. The A\—genus of a spin manifold M is the image (mod
torsoin) of [M] € m, M Spin under the Atiyah-Bott-Shapiro orientation
M Spin — ko.

Complex oriented cohomology theory: Informally, a multiplicative co-
homology theory E* is called complex oriented if it admits a theory of
Chern classes. More precisely, a complex orientation of E* is a class
z € E?(CP®) whose restriction to E%(S?) = E°(S?) along the standard
inclusion S? 2 CP! — CP*> maps to the unit element. If E is 2-periodic,
the orientation is often taken in degree 0 instead of degree 2. The multi-
plication on the topological group CP* gives rise to a map

E*[[]] = E7(CP%) — E*(CP*)®p, E*(CP>) = E*([z,y]],

and the image of z under this map becomes a formal group law. Exam-
ples of complex oriented cohomology theories include singular cohomol-
ogy, complex K-theory, MU, BP, E(n), Morava K-theory, and several
versions of elliptic cohomology.

Elliptic genus: Historically, the elliptic genus was introduced by Ochanine
as a genus for oriented manifolds, taking values in the ring Z[1/2, J, €] (the
ring of modular forms for I'y(2)), whose associated complex genus has
logarithm f ﬁ. Landweber, Ravenel, and Stong subsequently
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showed that, after inverting A, the associated complex genus satisfies the
criteria of the Landweber exact functor theorem, yielding a cohomology
theory which they denoted Ell, and named “Elliptic Cohomology’ (also
known as TMF(2), topological modular forms for T'g(2)). Today, a vari-
ety of genera associated with elliptic curves are called elliptic genera, and
a variety of cohomology theories similarly associated to elliptic curves are
referred to as elliptic (c.f. “Elliptic spectra”).

Genus: A genus ¢ with values in a graded ring R, is a map of graded rings
p: MG, — R, where MG, denotes the bordism ring of manifolds with
a G-structure on their stable normal bundle. In the case of G = U, the
genus is called a complex genus.

Landweber exact; Landweber exact functor theorem: A p-typical for-
mal group law over a ring R is classified by a map BP, — R. The formal
group law is called Landweber exact if X — BP,(X) ®pp, R is a homol-
ogy theory (the long exact sequence being the crucial point). Landweber’s
exact functor theorem characterizes Landweber exact formal group laws
as those for which the images (p,v1,vs,...,v,) form a regular sequence
for all n € Ng.

Orientation of a cohomology theory: A G-orientation of a multiplica-
tive cohomology theory E with respect to a given a topological structure
group G over the infinite-dimensional orthogonal group O is a compat-
ible orientation of all G-vector bundles on any space with respect to
E. This gives rise to a theory of characteristic classes for G-bundles
in F-cohomology. Such an orientation can be described as a map of
ring spectra MG — E, where MG denotes the Thom spectrum asso-
ciated to BG — BO. Important examples of orientations include the
SO-orientation and U-orientations of singular cohomology giving rise to
Pontryagin resp. Chern classes, the Spin-orientation of real K-theory, and
the String-orientation of TMF'. Note that a complex oriented cohomology
theory is the same thing as a cohomology theory with a U-orientation.

Orientation of a vector bundle for a group G: Given a topological
group G with a morphism G — O(n), a G-orientation on an n-dimensional
vector bundle V on a space X is a homotopy lift of the map X — BO(n)
classifying the bundle V' to X — BG. Of particular importance are the
groups U(n), SU(n), SU(6)(n), SO(n), Spin(n), String(n). Similarly,
a stable G-orientation (where G — O is a group homomorphism to the
infinite orthogonal group) is a lift of the map X — BO classifying the
stabilization of V to X — BG.

Orientation of a vector bundle with respect to a cohomology theory:
An orientation of a vector bundle V' on a space X with respect to a mul-
tiplicative cohomology theory E is a class u € E™(X"), the Thom class,
whose restriction to any fiber is a unit in E™(R"™) = moE. Multiplication
by u yields the Thom isomorphism E, ., (X") = E.(X). The latter can
be described as a homotopy equivalence EA XY — X" E A X between the
E-homology of the Thom space XV and the shifted E-homology of X, at
the spectrum level.
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String group: The string group String(n) is a group model of the 6-connected
cover of the orthogonal group O(n). Uunlike Spin(n), it is necessarily
infinite-dimensional.

o-orientation: The o-orientation is the String-orientation of tmf. It is a
map of F, ring spectra M String — tmf that realizes the Witten genus
at the level of homotopy groups.

Witten genus: The Witten genus of a string manifold M is the image of
[M] € m,MString under the o-orientation M String — tmf. The ¢-
expansion of the corresponding modular form can be computed as [ [,~,(1—

)" [y E(M)ch(@bl SymgiTc), where ch is the Chern character, Tt
is the complexified tangent bundle of M, and, given a vector bundle F,
the expression Sym,E stands for )., t'Sym'E, a vector bundle valued
formal power series. At a physical level of rigor, the Witten genus can be
described as the S'-equivariant index of the Dirac operator on the free
loop space of M.

4. Misc. tools in stable homotopy

Adams condition: A technical hypothesis on a homotopy associative ring
spectrum F which guarantees the existence of a universal coefficient spec-
tral sequence. The condition is that E is a filtered colimit of finite spectra
E,, such that the E-cohomology of the Spanier-Whitehead dual E*DE,,
is projective over F,, and for every E-module M, the map

M*DE, — Homp,_(E,DE,, M,)

is an isomorphism.

Adams spectral sequence: The Adams spectral sequence is a spectral se-
quence which computes the homotopy groups of the p-nilpotent comple-
tion of a spectrum X from its cohomology:

By’ = Exty! (H*(X;F,),Fp) = ms(Xnr,),

where A, denotes the mod-p Steenrod algebra. The Adams spectral se-
quences converges conditionally in the sense of Boardman, implying that

it converges strongly whenever the derived F..-term vanishes.

Adams-Novikov spectral sequence (generalized): A (generalized) Adams-

Novikov spectral sequence is a variation of the classical Adams spectral
sequence where mod-p cohomology is replaced by another (co-)homology
theory. If E is a flat homotopy commutative ring spectrum which is either
Ao, or satisfies the Adams condition, then (E,, E,FE) is a Hopf algebroid,
and the E-based ANSS takes the form

E?, = Ext}’ p(Ey, E(X)) = m—s(XE),

S

where X denotes the E-completion of X and Ext is the derived functor
of homomorphisms of F,E-comodules. The Adams-Novikov spectral se-
quence can be seen as a Bousfield-Kan spectral sequence of the tower of
spectra Tot[E® X| whose totalization is the E-completion.

Descent spectral sequence: The descent spectral sequence associated to
a sheaf of spectra F over some space (or Grothendieck site) X computes
the homotopy groups of F(X). Its Fy page is the sheaf cohomology of X
with coefficient in the homotopy sheaves of F. In the case X = My or

5

Author's final version made available with permission of the publisher, American Mathematical Society.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



My and F = 0P, the structure sheaf for TMF, this spectral sequence
is also called the elliptic spectral sequence.

Dyer-Lashof algebra: (a.k.a. the big Steenrod algebra). At a prime p, the
algebra of Dyer-Lashof algebra is the algebra that acts on the homotopy
groups of any E..-HIF,-ring spectrum.

Flat ring spectrum: A homotopy commutative ring spectrum E is said to
be flat if . F is flat over E,.

Goerss-Hopkins obstruction theory: Given a flat homotopy commuta-
tive ring spectrum E which satisfies the Adams condition, a homotopy
commutative E-complete ring spectrum A, and a simplicial resolution
O, of the commutative operad, the Goerss-Hopkins obstruction defines a
sequence of obstructions in the Quillen cohomology of simplicial E,QO,-
algebras in F, F-comodules to refining the homotopy commutative ring
structure on E to an E..-structure. More generally, it gives a framework
to compute the homotopy groups of the moduli space of E.-structures in
terms of the aforementioned Quillen cohomology.

Homotopy limit, homotopy colimit: The right (resp. left) derived func-
tors of limit (resp. colimit) on the category of diagrams in a model cate-
gory, with respect to objectwise weak equivalence.

Hopkins-Miller theorem, Goerss-Hopkins-Miller theorem: The orig-
inal Hopkins-Miller theorem states that Morava E-theory FE, admits an
A structure, and a point-set level action by the Morava stabilizer group.
Subsequently the A, obstruction theory utilized by Hopkins and Miller
was refined by Goerss and Hopkins to an F, obstruction theory, resulting
in an E, version of the Hopkins-Miller theorem commonly referred to as
the Goess-Hopkins-Miller theorem.

Hypercover: A hypercover is a generalization of the Cech nerve

HUat HUO‘ XXUBE HUO‘ Xx Ug xx Uy--

of a covering family {U, — X}. It can be defined as a simpicial sheaf all
of whose stalks are contractible Kan complexes.

Hyperdescent: A presheaf F satisfies hyperdescent if for any hypercover
U, of X, the value of F on X can be recovered as the homotopy limit of
the cosimplicial object F(U,).

Injective model structure: For a model category C and a small category
I, a model structure of the diagram category C! can often (e.g. for combi-
natorial model categories C) be defined by defining weak equivalences and
cofibrations levelwise. This model structure is referred to as the injective
model structure.

Jardine model structure: For a model category C and a Grothendiek site
S, the Jardine model structure is a model structure on the category of C-
valued presheaves on S. It is the Bousfield localization of the injective
model structure, where the weak equivalences are those morphisms that
induce isomorphisms on homotopy sheaves. In this model structure, the
fibrant objects satisfy hyperdescent.

Morava stabilizer group: The Morava stabilizer group G,, is the auto-
morphism group of the unique formal group law of height n over E,. It is
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a pro-finite group, and it is isomorphic to the maximal order in the central
division algebra over Q, with Hasse-invariant 1/n.

Projective model structure: For a model category C and a small cate-
gory I, a model structure of the diagram category C! can often (e.g. for
cofibrantly generated C) be defined by defining weak equivalences and fi-
brations levelwise. This model structure is referred to as the projective
model structure.

Quillen cohomology: Quillen cohomology is a generalization André-Quillen
cohomology to model categories. If R is an object of a model category
C, and M is an abelian group in the overcategory C,g, then the Quillen
cohomology of R with coefficients in M is given by the derived maps
RHome, (R, M). If C is the category of simplicial commutative rings,
Quillen cohomology reduces to André-Quillen cohomology. If C is the
category of spaces, Quillen cohomology is equivalent to usual singular
cohomology (potentially with twisted coefficients).

¢-algebra: A f-algebra is a Z,-algebra equipped with operators ¥ for all
k € Z;, ¢P, and 6. The operators * and P are ring homomorphisms,
and the operations ¢"* give a continuous action of the profinite group
Z, . The operator ¢? is a lift of Frobenius, and the operator 6 satisfies
YP(x) = aP + ph(x). The p-adic K-theory of an E., algebra has the
structure of a f-algebra.

Type-n spectrum: A (usually finite) spectrum X is said to be of type n
(at some given prime p) if its nth Morava K-theory, K(n).(X), is nonzero
while all smaller Morava K-theories are trivial. Every finite spectrum is
of type n for some 0 < n < co.

5. Important examples of spectra

bo, bso, bspin, bstring — connective covers of real K-theory: The spec-
trum bo (also written ko) denotes connective real K-theory, i.e. the (—1)-
connected cover of BO. The spectra bso, bspin, and bstring denote the
covers of bo that are obtained by consecutively killing the next non-zero
homotopy groups: 7y, 73, and my.

BP — Brown—Peterson spectrum: When localized at a prime p, the
complex cobordism spectrum MU splits as a wedge of spectra by the so-
called Quillen idempotents. The summand containing the unit is called
BP. Tt is a commutative ring spectrum itself (up to homotopy). The co-
efficient ring of BP is BP, = Z)[v1, va, . . .] with |v;| = 2p’ — 2. The ring
BP, classifies p-typical formal group laws; over a torsion-free ring, a formal
group law is p-typical if its logarithm series is of the form z+Y .2, mixP .
By a theorem of Cartier, any formal group law over a p-local ring is iso-
morphic to a p-typical one.

BP(n) — n-truncated Brown-Peterson spectrum: The notation BP(n)
stands for any B P-module spectrum with 7, BP(n) & BP./(Vn41,Vn+2,---)-
They are complex oriented and classify p-typical formal group laws of
height bounded by n or infinity. The spectrum BP(1) is the Adams sum-
mand of connective K-theory.

E(n) — Johnson-Wilson spectrum: For a (fixed, not notated) prime p,
the ring spectrum E(n) is a Landweber exact spectrum with coefficients
7
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E(n)s = Zp)[v1, -, n—1,vn, v, '] with |v;] = 2p" — 2. Explicitly, E(n)-
homology can be defined by E(n).(X) = BP,(X)®pp, E(n). for the map
BP, — E(n). that sends v; to the class of the same name for i < n and
to 0 for ¢ > n. The Lubin-Tate spectrum E,, can be obtained from E(n)
by completing and performing a ring extension; those two spectra belong
to the same Bousfield class.

E, or E(k,T) — Morava E-theory, aka Lubin-Tate spectrum: For k
a field of characteristic p and I' a 1-dimensional formal group of height
n over k, the Morava E-theory spectrum E(k,T') is an FE-ring spec-
trum such that moFE(k,I") is isomorphic to the universal deformation ring
A(k,T) = W(K)[[u1,-..,un—1]] constructed by Lubin-Tate. Morava E-
theory is complex-orientable, even-periodic, and Landweber exact; its as-
sociated formal group is the universal deformation of I'. In the case where
k is the algebraic closure of the field with p elements, the Morava FE-
theory spectrum E(F,,I") is often abbreviated E,,. (cf entry on Universal
deformation, and on Witt vectors.) Morava E-theory is closely related to
L2y TMF, and to the restriction of the sheaf O™ to the locus M2;; of
supersingular elliptic curves.

EO,, — higher real K-theory: The higher real K-theory spectra are the
homotopy fixed points of the action on the nth Morava E-theory E,, of a
maximal finite subgroup of the Morava stabilizer group. This construction
is a consequence of the Hopkins-Miller theorem. At the primes 2 and 3,
there is an equivalence Ly o) TMF ~ EQO,.

eos — p-local topological modular forms: This is an older name for the
p-localization of connective topological modular forms, tmf (p = 2,3). Its
notation is in analogy with BO and bo (BO being the periodization of the
connective real K-theory spectrum bo).

ko, ku, KO, KU, K — K-theory spectra: The spectra ko and ku are
the connective (i.e. (—1)-connected) covers of KO and KU = K. The
spectrum KU of complex K-theory is 2-periodic with (KU)s, = Z x BU
and (KU)ap+1 = U, with one structure map U — Q(Z x BU) being
the standard equivalence and the other Z x BU — QU given by the
Bott periodicity theorem. If X is compact, the group KUY(X) can be
geometrically interpreted as the Grothendieck group of complex vector
bundles on X. The spectrum KO is the real equivalent of KU. It is
8-periodic with coefficients KO, = Z[n, u,o,0~ 1] with |n| = 1, |u| = 4,
lo| =8, and 2n = n® = un = 0 and p? = 4o.

K(n) — Morava K-theory: The nth Morava K-theory at a prime p (p is
not included in the notation). K(n) is a complex orientable cohomology
theory whose associated formal group is the height n Honda formal group.
The coefficient ring K (n), = F,[vif!] is a Laurent polynomial algebra on
a single invertible generator in degree 2(p™ — 1). The generator v, €
To(pr—1)K (n) is the image of an element with same name in mo(n 1) MU.

MU — complex bordism: MU is the spectrum representing complex cobor-
dism, the cobordism theory defined by manifolds with almost complex
structures and bordisms between them, with compatible almost complex
structures. MU is a Thom spectrum. MU, is the Lazard ring, which
carries the universal formal group law.
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MP — periodic complex bordism: MP =/, , Y2 MU is the periodic
version of MU, in which we add an invertible element of degree 2. This
represents periodic complex cobordism.

MU (6): The ring spectrum MU (6) represent cobordism of manifolds with
trivializations of the first and second Chern classes. As a spectrum, it
can be constructed as the Thom spectrum over BU(6), the 6-connected
cover of BU. The spectrum tmf of topological modular forms is oriented
with respect to MU (6); this orientation corresponds to the unique cubical
structure on every elliptic curve.

MO(8) — string cobordism: The ring spectrum MO(8) represents cobor-
dism of string manifolds, which are spin manifolds equipped with a trivial-
ization of %pl € H*(M,Z), the latter being the pullback of the generator
%pl € H*(BSpin) = Z. As a spectrum, it can be constructed as the Thom
spectrum over BO(8), the 8-connected cover of BO. The spectrum tmf
of topological modular forms is oriented with respect to MO(8) (this re-
fines the MU (6)-orientation of ¢mf), and that orientation is a topological
incarnation of the Witten genus.

X (n) — Ravenel spectrum: The spectra X (n) are defined as Thom spec-
tra of QSU(n) — QSU — BU, where the second map is the Bott isomor-
phism. They play a role in the proof of the nilpotence theorem and in
constructing a complex oriented theory A = TM F A X (4) classifying ellip-
tic curves with a parameter modulo degree 5, or equivalently, Weierstrass
parameterized elliptic curves.

6. Commutative algebra

Adic rings: An adic Noetherian ring A is a topological Noetherian ring
with a given ideal I C A, the ideal of definition, such that the map A —
@A /I™ is an isomorphism, and the topology on A is the I-adic topology.
Adic rings are the local buildings blocks for formal schemes just as rings
are the local buildings blocks for schemes. The functor that assings to an
adic ring A, with ideal of definition I, the pro-ring {A/I™} embeds the cat-
egory of adic rings, with continuous rings maps as morphisms, as a full sub-
category of pro-rings: Homagic(A, B) & gn h_I)n Hom(A/I™, B/J™).

André-Quillen cohomology: The André-Quillen cohomology of a com-
mutative ring R with coefficients in an R-module M, is defined as a de-
rived functor of derivations of R into M, RDer(R, M). This can also be
expressed in terms of the cotangent complex of R, Lg, in that there is a
natural equivalence R Hompg(Lg, M) ~ RDer(R, M).

Cotangent complex: (Also called André-Quillen homology.) The cotan-
gent complex Li of a commutative ring R is the left derived functor of
Kahler differentials, Q'. If the ring R is smooth, then there is an equiva-
lence L ~ Q1.

Etale morphism: A map of commutative rings S — R is étale if it is flat
and unramified. Equivalently, the map is étale if and only if the relative
cotangent complex Lp|g is trivial and R is a finitely presented S-algebra.
The conditions “flat and unramified” essentially mean that the map is a
local isomorphism (perhaps after base-change), and we should think of
étale maps as finite covering maps.
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Flat morphism; faithfully flat morphism: A map of commutative rings
S — R is flat if R is a flat S-module, i.e., the functor R ®g (—) is exact.
Localizations at ideals are flat. The map is faithfully flat if, additionally,
the functor is conservative, meaning that R ®g M is zero if and only if M
is zero. Adjoining roots of monic polynomials is a faithfully flat operation.

Kahler differentials: For R a commutative k-algebra, the R-module Q}?I &
of Kéhler differentials (a.k.a. 1-forms) can be presented as the free R-
module on symbols da, a € R, subject to the relations that d(ab) = adb+
bda and da = 0 for a € k. There is a natural isomorphism Q}%‘k ~I/I?,
where I is the kernel of the multiplication map R ®; R — R. Q}%Ik has
the important property that it corepresents the functor of derivations;
there is a universal derivation R — Q}ﬂk that induces an isomorphism
Derg(R, M) = HomR(Q}%‘k, M) for any R-module M.

Witt vectors: The Witt vector functor associates to a ring R a new ring
W (R) which has R as a quotient and acts as a universal deformation in
many cases. In particular, the Witt vectors of a finite field k& of char-

acteristic p are a complete local ring with residue field k; for instance,
W (F,) = Zy.

7. Algebraic geometry, sheaves and stacks

Additive formal group G,: The additive formal group is the affine 1-
dimensional formal group scheme G, = Spf(Z[[t]]) with comultiplication
given by t — t® 1+ 1®¢. It is the completion at 0 of the additive group
scheme denoted by the same symbol. Topologically, the additive formal
group (over a field) arises as the formal group associated with singular
cohomology with coefficients in that field.

Deligne-Mumford compactification: The Deligne-Mumford compactifi-
cation of the stack M, of smooth curves of genus g is the stack M,
obtained by allowing certain singularities in those curves: those with at
most nodal singularities, and finite automorphism group. The latter are
known as stable curves.

Etale topology: This is the Grothendieck topology on the category of schemes
in which a family {f, : X, — X} is covering if the maps f, are étale and
if [[,, Xa(k) — X (k) is surjective for every algebraically closed field .

étale site (small): Given a scheme (or stack) X, the small étale site of X
is the full subcategory of schemes (or stacks) over X whose reference map
to X is étale, equipped with the étale Grothendieck topology.

Finite morphism: A morphism of stacks (or schemes) X — Y is finite if
there is a étale cover Spec S — Y such that Spec S xy X = Spec R is an
affine scheme with R finitely generated as an S-module. A morphism is
finite iff it is representable, affine, and proper.

Finite type: A morphism of stacks (or schemes) X — Y is of finite type
if there is a cover Spec S — Y and a cover Spec R — SpecS Xy X such
that R is finitely generated as an S-algebra.

Formal spectrum Spf: The formal spectrum Spf A of an I-adic Noether-
ian ring A consists of a topological space with a sheaf of topological rings
(Spf A, ©). The topological space has points given by prime ideals that
contain I, with generating opens U, C Spf A the set of prime ideals not
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containing an element x of A. The value of the sheaf O on these opens
is O(U,) = A[z~]}, the completion of the ring of fractions A[z~1] at the
ideal I[z~1].

Formal scheme: A formal scheme is topological space with a sheaf of topo-
logical rings, that is locally equivalent to Spf A for some adic Noetherian
ring A. The category of affine formal schemes is equivalent to the oppo-
site category of adic Noetherian rings. Formal schemes often arise as the
completions, or formal neighborhoods, of a subscheme Y C X inside an
ambient scheme, just as the completion of a Noetherian ring with respect
to an ideal has the structure of an adic ring. Formal schemes embed as a
full subcategory of ind-schemes by globalizing the functor that assigns to
an adic ring the associated pro-ring.

Formal group: A formal group is a group object in the category of formal
schemes. An affine formal group being the same as a cogroup in the cat-
egory of adic rings, it is thus a certain type of topological Hopf algebra.
A 1-dimensional (commutative) formal group over a ring R is a (com-
mutative) formal group whose underlying formal schemes is equivalent to
Spf R[[t]] — sometimes this last condition only étale locally in R.

Formal group law: A 1-dimensional formal group law over a commutative
ring R is a cocommutative cogroup structure on R[[t]] in the category
of adic R-algebras. ILe., it has a commutative comultiplication R[[t]] —
R[[t]|®rR[[t] = R[x,y]]. This comultiplication is determined by the
formal power series that is the image of the element ¢, so formal group
laws are often specified by this single formal power series. A 1-dimensional
formal group law is equivalent to the data of a formal group G together
with a specified isomorphism G 2 Spf R[[t]], i.e., a choice of coordinate ¢
on G.

Grothendieck site: A category with a Grothendieck topology.

Grothendieck topology: A Grothendieck topology on a category C — some-
times also called a Grothendieck pretopology — consists of a distinguished
class of families of morphisms {X, — X}, called a covering families, sub-
ject to the following conditions: 1. base changing a covering family along
any map Y — X should remain a covering family, 2. if {X, - X} is a
covering family and for every «, {Xgo — X} is a covering family, then
the family of composites {X g, — X} should also be a covering family. A
primary example is the étale topology on the category of schemes.

Group scheme: A group scheme is group object in the category of schemes.
Algebraic groups, such as GL,, or SL,, form a particular class of group
schemes. Elliptic curves and, more generally, abelian varieties are also
group schemes.

Height: For a homomorphism of formal groups defined over a field of char-

acteristic p > 0, say f : G — G’, f may be factorized G i G— G

through a p™ power map, i.e. the n-fold iteration of the Frobenius endo-
morphism of G. The height of the map f is the maximum n for which
such a factorization exists, and is oo exactly when f = 0. The height of
a formal group G is defined as the height of the multiplication by p-map
[p]: G — G.
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Hopf algebroid: A (commutative) Hopf algebroid A is a cogroupoid object
in the category of commutative rings, just as a commutative Hopf algebra
is a cogroup object in the category of commutative rings. In other words,
if Ay is a commutative ring, the additional structure of a Hopf algebroid
on Ay is a choice of lift of the functor Hom (A, —) : Rings — Sets to the
category of groupoids: Ag corepresents the objects of the groupoid, and
the extra structure provided by the lift amounts to having another ring A;
that corepresents the morphisms, together with the data of various maps
between Ay and A;. For a ring spectrum F, the pair (F,, E.E) frequently
defines a Hopf algebroid. Every Hopf algebroid A = (A, A1) has an
associated stack, M 4, defined by forcing the groupoid-valued functor to
satisfy descent. In the example of A = (M Py, MPyMP), where M P is
periodic complex bordism, the associated stack M 4 is the moduli stack
of formal groups, M pg.

Hopf algebroid comodule: For a Hopf algebroid A, there is a notion of
an A-comodule M, which is roughly a left A;-comodule in the category of
Ag-modules. The category of A-comodules is equivalent to the category
of quasicoherent sheaves on the associated stack M 4.

Hopf algebroid cohomology: The nth cohomology of a Hopf algebroid
A = (Ap, A1) with coefficients in an A-comodule M is the nth derived
functor of the functor that sends M to Hom(a, a,)(Ao, M).

Moduli stack of formal groups, Mpg: The R-valued points of the stack
Mg are the groupoid of formal groups over R and their isomorphisms.
The stack Mpg is the stack associated to the Lazard Hopf algebroid
(L,T) = (MPy, MPyMP). The invariant differential on a formal group
defines a line bundle w on Mg, and the Eo-term of the Adams-Novikov
spectral sequence can be understood as the stack cohomology group E; 2t
H*(Mpg,w).

Moduli space of formal group laws, Mpgr: A formal group law is a
formal group along with a choice of coordinate. The moduli space of
formal group laws is the scheme Spec(L), where L = MP is the Lazard
ring.

Multiplicative formal group G,,: The multiplicative formal group is the
affine 1-dimensional formal group scheme G,, = Spf(Z[[¢]]) with comulti-
plication given by t —» t ® 1 + 1 ® t + t ® t. It is the completion at 1 of
the multiplicative group scheme Spec(Z[u,u~"]). Topologically, the multi-
plicative formal group arises as the formal group associated with complex
K-theory.

p-divisible group: (Also called Barsotti-Tate groups.) An algebraic group
G is a p-divisible group of height n if: the multiplication map p* : G — G
is surjective; the group G[p'] : Ker(G £+ G) is commutative, finite, and
flat of rank p™; the natural map lim G [p'] — G is an isomorphism. Every
elliptic curve C defines an associated p-divisible group C[p™] := hﬂ Clp'l,
where C[p] is the kernel of p' : C — C. The Serre-Tate theorem relates
the deformation theory of the elliptic curve to that of its p-divisible group.

Proper morphism: A morphism of stacks X — Y is proper if the following
two conditions hold. 1. (separated): For any complete discrete valuation
ring V and fraction field K and any morphism f : SpecV — Y with lifts
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91,92 : Spec V — X which are isomorphic when restricted to Spec K, then
the isomorphism can be extended to an isomorphism between g; and go.
2. (proper): for any map SpecV — Y which lifts over Spec K to a map to
X, there is a finite separable extension K’ of K such that the lift extends
to all of Spec V’ where V' is the integral closure of V in K'.

Relative-dimension-zero morphism: A representable morphism X — Y
of stacks (or schemes) has relative dimension zero if all of its fibers have
Krull dimension 0.

Relative Frobenius: If S is a scheme over F, and X — S a map of
schemes, there are compatible absolute Frobenius maps F': S — S and
F: X — X obtained locally by the pth power map. The relative Frobe-
nius Fg/x: X — X(1) = X x5 S is the corresponding map into the fiber
product, which is taken using the projection X — S and the absolute
Frobenius S — S.

Representable morphism: A morphism of stacks f : X — Y is repre-
sentable if for any map Spec R — Y, the fiber product Spec R xy X is
representable, i.e., it is equivalent to a scheme. It is called representable
and affine, if in addition all the schemes Spec R xy X are affine.

Stack: A stack is a groupoid-valued functor F on the category of commuta-
tive rings that satisfies descent. The descent property is a generalization
of the sheaf property. It says that whenever Spec(R) — Spec(S) is an
étale cover, the diagram

F(R®s R®s R) £ F(R®s R) & F(R) « F(S)

exhibits F(S) as a 2-categorical limit. A standard example is the stack
BG, that assigns R the groupoid of principal G-bundles over Spec(R).
Another standard example is the stack M, than assigns R the groupoid
of elliptic curves over R.

Stack, Deligne-Mumford: A Deligne-Mumford stack is a stack that is
locally affine in the étale topology. That is, it is a stack X for which there
exists an étale cover Spec R — X by an affine scheme. One often also
imposes a quasicompactness condition. Deligne-Mumford stacks are the
most gentle kinds of stacks and almost all notions that make sense for
schemes also make sense for Deligne-Mumford stacks.

Universal deformation (of a formal group): Fix a perfect field & of pos-
itive characteristic p, e.g. k could be any finite or algebraically closed field,
and a formal group I' over k of finite height 1 < n < co. For every Artin
local Ring R with residue field k, a deformation of I' to R is a formal group
I over R together with an isomorphism (I') ® k ~ I'. Lubin and Tate
determine the deformation theory of I by showing that there is a complete
local ring R*™ such that for every R as above, the set of isomorphism
calsses of defomations of I to R naturally biject with continous ring ho-
momorphisms from R*"" to R. Even more, they prove that R%"*" is non-
canonically isomorphis to a power series ring R“"* ~ W (k)[[u1, . . ., Upn—1]]
over the ring of Witt vectors of k.
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8. Elliptic curves and their moduli

Discriminant: The discriminant of the elliptic curve y? + a1zy + azy =
23 + agx? + agx + ag is given by A = —b3bg — 8b3 — 2763 + 9bybsbg, where
by = a?+4a2, by = 2a4+aras, bg = a§+4a6, bg = a%aﬁ +4asag —aiazas+
aza3 —a%. Over a field, the discriminant vanishes if and only if the elliptic
curve is singular.

Elliptic curve: An elliptic curve C' over a ring R is a smooth, projective
curve of genus one together with a marked point, i.e., a map Spec R — C.
An elliptic curve has a natural group structure, which can be completed
to give a formal group over R.

Elliptic curve, generalized: An algebraic geometer would mean a curve
locally given by a Weierstrass equation with one of A and ¢4 not van-
ishing at any given point of the base; this is the notion origianlly coined
by Deligne and Rapoport and these curves assemble into a proper and
smooth Deligne-Mumford stack M,y of relative dimension one over Z.
In topology, we consider even more generalized curves: all those given lo-
cally by Weierstrass-equation. The resulting stack over Z is not a Deligne-
Mumford stack anymore but an Artin-stack, because the additional curve
y? = 23 admits non-trivial infinitesimal automorphisms. This point is
the only one carrying an additive formal group law which makes it of
outstanding topological interest since it is the only point which “knows”
about singular (mod p) cohomology.

Elliptic curve, ordinary: An ordinary curve is an elliptic curve over a field
of characteristic p > 0 whose associated formal group law has height 1.
Elliptic curve, supersingular: A supersingular curve is an elliptic curve
over a field of characteristic p > 0 whose associated formal group law has

height 2.

Hasse invariant: For a fixed prime p, the Hasse invariant is a global section
H € H°(M.y @z Fp,wP™1), i.e. a mod p modular form of weight p — 1.
It admits a lift to characteristic 0 (as an Eisenstein series) exactly if p #
2,3. The vanishing locus of H are the super-singular points (all with
multiplicity 1).

Invariant differentials/canonical bundle: The canonical bundle w over

My (or Mgy, or ﬂj”) is the sheaf of (translation invariant) relative
differentials for the universal elliptic curve over M. The stalk of w at
an elliptic curve C' € Mg is the 1-dimensional vector space of Kéhler
differentials on C. The sections of w®?* over M, are modular forms of
weight & (for odd n, the line bundle w®™ has no sections).

j-invariant: The j-invariant of the elliptic curve y? + ajzy + asy = 2> +
asx? + ayr + ag is given by (b3 — 24b,)2/A, where by, by, and A are as
above. Over an algebraically closed field, the j-invariant is a complete
isomorphism invariant of the elliptic curve. More geometrically, the j-
invariant is a map M, — P} which exhibits the projective line as the
coarse moduli space of the Deligne-Mumford compactification of M.y;.

Level structure: A level structure on an elliptic curve C can refer to ei-
ther: 1. (a ['(IV)-structure) an isomorphism between (Z/N)? and the
group C[N] of N-torsion points of C. 2. (a I'y (IV)-structure) an injective
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homomorphism Z/N — C[N]. 3. (a I'o(NN)-structure) a choice of sub-
group of C[N] that is isomoprhic to Z/N. Moduli spaces of elliptic curves
with level structures provide examples of stacks over My (or M) on
which one can evaluate OP, the structure sheaf for TMF.

Modular form; weight: A modular form of weight & is a section of w®2¥
over M ;. When restricted to a formal neighborhood of the multiplicative
curve G,, € M.y, the canonical bundle w trivializes, and one can identify
a modular form with an element of Z[¢]].

Moduli stacks of elliptic curves:

Mgy Also denoted M; ; in the algebraic geometry literature. The
moduli stack of smooth elliptic curves.

Mgﬁd: The substack of the moduli stack of elliptic curves M over F,
consisting of ordinary elliptic curves, whose associated formal group
has height one. The coarse moduli space M % at a prime p is a disk
with punctures corresponding to the number of supersingular elliptic
curves at p.
5+ The substack of the moduli stack M,y over F,, consisting of su-
persingular elliptic curves, whose associated formal group has height

two. At a prime p, M2}, is a disjoint union of stacks of the form

BG = /G, where G is the group of automorphisms of a supersin-
gular elliptic curve. Thus, the associated coarse moduli space is a
disjoint union of points.

Myi: The moduli stack of elliptic curves, possibly with nodal singu-
larities. This is the Deligne-Mumford compactification of the moduli
stack of smooth elliptic curves M.y;.

M peier: (also denoted M:”) The moduli stack of Weierstrass elliptic
curves, associated to the Weierstrass Hopf algebroid. Includes curves
with both nodal and cuspidal singularities.

Serre-Tate theorem: The Serre-Tate theorem relates the deformation the-
ory of an elliptic curve to that of its associated p-divisible group. As a con-
sequence, if C' is a supersingular elliptic curve, then the map M — Mpg
induces an isomorphism of the formal neighborhood of C' in M,;; with the
formal neighborhood of the associated formal group Cin M rqG- More gen-
erally, there is a map from M.y to the moduli stack of p-divisible groups,
and this induces an isomorphism of a formal neighborhood of any elliptic
curve C with the formal neighborhood of the point given by the associ-
ated p-divisible group C[p*°]. Remark that the p-divisible group C[p]
(which governs the deformation theory of C) is formal if and only if C' is
supersingular.

Weierstrass curve, Weierstrass form: A Weierstrass curve (or a curve
in Weierstrass form) is an affine curve with a parametrization of the form

y2 +ai1xy + a3y = 393 + a2:172 + a4 + ag,

or its projective equivalent. A Weierstrass curve defines an elliptic curve

if and only if its discriminant, a polynomial of the a;, is invertible. Over

a field, any elliptic curve can be expressed in Weierstrass form by the

Riemann-Roch theorem. More generally, this is true Zariski-locally over

any ring, i.e. if R is a ring and C'/R is an elliptic curve, there exist
15
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elements ry,...,r, € R such that ry + ...+ r, = 1 and for every i, the
elliptic curve C ®p R[X] admits a Weiserstrass equation.
9. Spectra of topological modular forms

Elliptic spectrum: A triple (F,C,«) where E is a weakly even periodic

ring spectrum, C' is an elliptic curve over moFE, and « : Gg = Cis an
isomorphism between the formal group of F and the formal group of C.
Elliptic spectral sequence: This can refer to any one of the following

spectral sequences: HY(M gy, wP) = mop_q(TMF), H{ (M ey, w?) = mop—_q( Tmf),
and H? (ﬂ:”,wp) = Top_q(tmf). The first two are examples of descent
spectral sequences. The last one is the Adams-Novikov spectral sequence
for tmf, and it is not a descent spectral sequence.

0P  the structure sheaf for TMF: is a sheaf of E,.-ring spectra on the
small étale site of Mgy, i.e., the site whose objects are stacks equipped
with an étale map M.y, and whose covering families are étale covers
(strictly speaking, this is a 2-category, by it is actually equivalent to a
1-category). The corresponding sheaf over the stack ﬂ:” does not seem

to exist, but if it existed its value on ﬂ:” would be tmf.

TMF', periodic topological modular forms: The spectrum TMF is the
global sections of the sheaf Q%P of E.-ring spectra over M. In other
words, it is the value of O%P on M,y;. Since M,y is the open substack of
M.y where the discriminant is invertible, there is a natural equivalence
TMF ~ Tmf[A™1] (TMF is also equivalent to tmf[A~!]). Note that
this is a slight abuse of notation: it is better to write Tmf[(A%*)~!] (and
tmf[(A%*)71Y]), as only A%* € 7576(Tmf) survives the descent spectral
sequence.

Tmf: This is the global section spectrum of the sheaf O*P on M. In
positive degrees, its homotopy groups are rationally equivalent to the
ring Zlca, cg, A]/(c3 — c2 — 1728A) of classical modular forms. The neg-
ative homotopy groups of Tmf are related to those in positive degree by
m_n Tmf = Free(mp—_o1 Tmf) @ Tors(my,—o2 Tmf).

tmf, connective topological modular forms: This is the connective cover
of the spectrum Tmf of global sections of O*P on M. Its homotopy
groups are rationally equivalent to the ring Z[cy, cg, A]/(ci — c2 — 1728A)
of classical modular forms. Apart from its Z-free part, 7. (¢tmf) also con-
tains intricate patters of 2- and 3-torsion, that approximate rather well
the K (2)-localizations of the sphere spectrum at those primes.

TMF, localizations of: The K (1)-localization L1y TMF is the spectrum
of sections of O'P over the ordinary locus M2, while the K (2)-localization
Lk 2) TMF is the spectrum of sections of 0P over the supersingular lo-
cus M2j;. The latter is a product of various quotients of the Lubin-Tate
spectra Fso, indexed by the finite set of isomorphism classes of supersingu-
lar elliptic curves. At the primes 2 and 3, there is only one supersingular
elliptic curve, and L (o) TMF ~ EOs,.
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