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Abstract

We consider an extension of the classical drift-diffusion model,

which incorporates thermodynamic switching rules for generation and

boundary flux. The motivation is the important case of the split-

ting of water molecules upon photonic irradiation of a semiconductor

electrode located in an electrochemical cell. The solid state electrode

forms the spatial domain of the model. The rules are motivated by

the fact that the valence band of the semiconductor, which supplies

positive charge to solution, has to be located at a lower energy level

than the electrochemical potential of O2 evolution in solution, and

the conduction band, which supplies electrons to solution, has to be

positioned at a higher energy level than the electrochemical potential

of H2 evolution. This defines thresholds in terms of electrochemical

potentials before boundary flux is activated. The optical generation

rate is affected, due to increased carrier relaxation time, when these

thresholds are crossed, and may be discontinuous. We thus consider

a self-consistent model, in which ‘switching’ occurs only in principal

variables. The steady-state model is considered, and trapping regions

are derived for the solutions.
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1 Introduction

Electrochemical cells provide examples of electrodiffusion with convection
and generation. Recent advanced models at small scale have attempted to
model solar ‘water splitting’ in these cells as sources of energy through cre-
ation of hydrogen and oxygen [5, 6, 9]. The cells possess one or more elec-
trodes of porous semiconductor material, which surrender electrons and holes
to aqueous solution when light stimulates the electrodes on their contact
portions, inducing potential biases and generation of electron/hole pairs. At
a semiconductor electrode which functions as an anode (anodic oxidation),
oxygen and intermediate hydrogen ions are generated. These recombine in
solution (cathodic reduction) with electrons to form hydrogen products. A
significant factor in the process [6, p. 35] is that the valence band of the semi-
conductor has to be located at a lower energy level than the electrochemical
potential of O2 evolution, and the conduction band has to be positioned at a
higher energy level than the electrochemical potential of H2 evolution. One
can characterize the electrode interface with solution as inert unless these
thermodynamic conditions are satisfied.

We consider a model of drift-diffusion for a semiconductor electrode with
anode and cathode interfaces with solution (see [5] for an illustration of such
a device) in which ‘thermodynamic rules’ may be used to establish thresh-
olds or switching for carrier boundary flux and for carrier generation in the
conservation subsystem. This is coupled self-consistently to the electrostatic
equation. The discontinuous switching requires mathematical tools of anal-
ysis, not previously applied to drift-diffusion systems. These include multi-
valued subdifferential mappings in convex analysis, previously studied for
equations. We obtain the system solutions in trapping regions, which con-
stitute generalized maximum principles. Our results are restricted to math-
ematical well-posedness, and we shall employ the Slotboom variables in the
analysis. If the electrode is active as both anode and cathode, then the model
reduces to one of standard type.

1.1 The Standard Model

For background, we present the standard isothermal drift-diffusion model
employed in solid state physics, the well-known Van Roosbroeck model, in-
troduced in 1950 [8]. However, we describe it in the setting of the electro-
chemical cell. The pertinent modifications will be presented in the following
sections. We denote the region occupied by the electrode as Ω̄, with the
boundary partitioned into a section Γ, bounding the aqueous solution, and
the section ∂Ω \ Γ which forms an electrical contact region for illumination
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and grounding. In terms of the conduction electron density n, the hole den-
sity p, and the electrostatic potential u, the system is given by:

−∇· [ε∇u] + n − p − k1 = 0, (1)

−∇· [µnn∇u − Dn∇n] = R − G, (2)

−∇· [µpp∇u + Dp∇p] = G − R. (3)

The function k1 = k1(x) denotes the semiconductor doping, and the dielectric
satisfies ε(x) ≥ ε0 > 0, and is a function of the material and therefore of the
position x only. Similar considerations apply to the mobility and diffusion
coefficients, and we employ the Einstein relations and units in which the
thermal voltage satisfies kT/e = 1. Accordingly, the expressions

Jn = −µn[n∇u −∇n], Jp = −µp[p∇u + ∇p],

denote the normalized electron and hole current densities, respectively, ob-
tained by division by the charge modulus e, where µn, µp are mobility coeffi-
cients. We have also employed a generation/recombination term, G−R, de-
fined below, suited to optical generation. For the model considered here, net
recombination is negligible: R ≡ 0. The system is augmented by boundary
conditions of mixed type, including Robin boundary conditions on Γ ⊂ ∂Ω
and Dirichlet boundary conditions on the contact portions ∂Ω \ Γ.

The statistical properties of the electron and hole distributions [2] allow
exponential representations when Fermi-Dirac statistics are approximated by
classical Boltzmann statistics. Typically, when all that is desired is simple
mathematical existence for the Van Roosbroeck model, the physical signif-
icance of the statistical approximation is unimportant: it defines a change
of dependent variable. This was observed in [3], which provides several ref-
erences for the physical background of the standard model. However, when
thermodynamical issues are relevant, the new variables v and w must be in-
terpreted in terms of the conduction and valence band potentials of the semi-
conductor. We may then express n and p via density of state units, assumed
the same here for electrons and holes, as n = exp(u−v) and p = exp(w−u).
The system (1), (2), and (3) is rewritten:

−∇· [ε∇u] + eu−v − ew−u − k1 = 0, (4)

−∇· [µne
u−v∇v] = −G (5)

−∇· [µpe
w−u∇w] = G. (6)

G is an appropriate positive function, defined by the generation process.
Finally, we introduce the new variables, V = e−v, W = ew, known in the

3



literature as Slotboom variables. Since the mobility functions play no real
role in the analysis, we shall assume them to be constant and normalized to
one. The system assumes the form,

−∇· [ε∇u] + V eu − We−u − k1 = 0, (7)

−∇· [eu∇V ] − G(x, u, V, W ) = 0, (8)

−∇· [e−u∇W ] − G(x, u, V, W ) = 0. (9)

We will discuss the form of G in the next section. For simplicity, we take k1

and ε to be bounded measurable functions. Note that

Jn = eu∇V, Jp = −e−u∇W, (10)

in these variables.

2 Formulation of the Electrode Switching Model

In this model, we incorporate the thermodynamic rules, which impose thresh-
olds on the flux boundary conditions for V and W . We also impose switching
regions for generation in the principal variables, i. e. , V in (8) and W in (9).
We begin with the boundary conditions.

2.1 Boundary Conditions

We consider the Dirichlet boundary conditions for the model. We shall ini-
tially express these in terms of u, v, w, as is traditional. Let ΣD = ∂Ω \ Γ.
On this set, the potential bias uD is a state variable, whose value causes
the device to assume different possible state configurations. It includes in-
trinsic contributions which vary according to certain defining properties of
the contact. The principal contribution is photonic, i. e. , light induced. The
variables vD and wD have typically been selected to achieve thermal equilib-
rium and charge neutrality on ohmic contacts in solid state modeling. Here,
however, the constraints required for anodic and cathodic reactions require
compatible selection of these values as determined by the trapping region.

On Γ, which includes both the anodic and cathodic interfaces of the elec-
trode, we shall specify a zero electric flux, but we must allow nonzero electron
and hole current fluxes Jn, Jp, respectively, expressed in terms of threshold
switching values. We assume that the outward normal current densities are
proportional to the net charge present, i. e. , proportional to −(n − n0) and
p−p0, respectively, where n0, p0 represent stable charge populations, possibly
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spatially dependent. By (10), we have for the boundary flux expressions:

−
∂V

∂ν
= cV (V − e−un0)(1 − χEV

), −
∂W

∂ν
= cW (W − eup0)(1 − χEW

). (11)

Here, cV , cW are positive constants, EV = [V0,∞) and EW = [W0,∞) are
closed interval ranges for V and W , respectively, and χ : R → R denotes
the characteristic function. Since we require the right hand side of both
expressions to be monotone in their principal variables, we impose the flux
hypotheses:

V − e−un0 ≤ 0, V ∈ [0, V0], W − eup0 ≤ 0, W ∈ [0, W0]. (12)

Here, V0 = exp(−v0), W0 = exp(w0), for the hydrogen/oxygen evolution
potentials v0, w0. We assume that v0, w0 are given real constants. The in-
equalities (12) are satisfied if

V0 − e−umaxn0 ≤ 0, W0 − euminp0 ≤ 0. (13)

Physically, the larger that n0, p0 are (relative to unity), the easier it is for the
electric potential to be captured in the allowable anodic/cathodic window.

2.2 The System

Prior to displaying the system, we briefly discuss the (optical) generation
hypothesis for the rate. The steady state hypothesis [7, pp. 106–109] char-
acterizes the excess electron density δn and excess hole density δp via the
simple relations δn = gopτn, δp = gopτp, where gop is the steady-state op-
tical generation rate and τn, τp are carrier relaxation times associated with
recombination, and are extended when intermediate carrier trapping occurs.
For electrons and holes, we shall permit two different generation rates for the
term gop, depending on the relation of V, W to the thermodynamic switching
levels V0, W0. If V ≤ V0, electron boundary flux is activated, and we expect
reduced trapping of electrons. Similarly for holes if W ≤ W0. One expects
the relaxation times to be considerably shorter (smaller) than when V > V0

or W > W0. If the respective products representing δn, δp are to remain
invariant as a steady-state hypothesis, the rates must accommodate accord-
ingly. We therefore assume that the optical rate, given by gop = G > 0 in
the thermodynamic ranges, may discontinuously decrease outside the ther-
modynamic ranges. For mathematical simplicity, we assume that gop discon-
tinuously decreases to zero. The new system becomes

−∇· [ε∇u] + V eu − We−u − k1 = 0, (14)

−∇· [eu∇V ] + f1(u, V, W ) = 0, (15)

−∇· [e−u∇W ] + f2(u, V, W ) = 0, (16)
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where the generation rates are expressed via

f1(u, V, W ) = (χEV
− 1)G(u), (17)

f2(u, V, W ) = (χEW
− 1)G(u). (18)

As expected from physical considerations, G depends on u and is positive;
we assume a locally Lipschitz continuous dependence. The discontinuity is
expressed by the first factors.

3 Gradient Equations with Nonlinear Flux

Most devices have piecewise C1 boundaries. For simplicity, however, we treat
the global C1 case. This section examines the individual equations of our
systems. Thus, let Ω ⊂ R

N be a bounded domain with C1-boundary ∂Ω,
and Γ ⊂ ∂Ω be such that ΣD = ∂Ω \ Γ is a relatively open C1-portion of ∂Ω
with positive surface measure. Consider the boundary value problem (BVP)

−∇ · [a(x)∇u] + f(x, u) = 0 in Ω, (19)

u = uD on ΣD,
∂u

∂ν
+ g(x, u) = 0 on Γ, (20)

where a ∈ L∞(Ω) with a(x) ≥ µ > 0, and ∂/∂ν denotes the outward conor-
mal derivative at Γ. Let H := W 1,2(Ω) denote the usual (real) Sobolev space,
and let H0 ⊂ H be the subspace of H defined by

H0 = {u ∈ H | γu = 0 on ΣD},

where γ : H → L2(∂Ω) is the trace operator which is linear and compact.
The corresponding dual spaces are denoted by H∗ and H∗

0 . It is known that
‖u‖2

H0
=
∫

Ω
|∇u|2 dx defines an equivalent norm on the subspace H0. We

introduce the natural partial ordering in L2(Ω), that is u ≤ w if and only if
w−u belongs to the positive cone L2

+(Ω) of all nonnegative elements of L2(Ω),
which also induces a partial ordering in the Sobolev space H. If u, w ∈ H
and u ≤ w, then [u, w] = {v ∈ H | u ≤ v ≤ w} denotes the order interval
formed by u and w. We assume the boundary values uD to be the restriction
of a function ũD ∈ H, i.e., ũD|ΣD

= uD. Depending on the regularity of the
nonlinearities f and g in (19) and (20), respectively, we treat in the following
subsections two cases: Carathéodory type and discontinuous nonlinearities.

3.1 Carathéodory Type Nonlinearities

In this subsection we impose the following regularity and structure conditions
on f and g. By a Carathéodory function, we mean measurability in the
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first argument for each value of the second, and continuity in the second
argument for almost all values of the first. This guarantees measurability of
superposition with so-called Baire functions.

(C1) f : Ω× R → R and g : Γ× R → R are Carathéodory functions in their
respective domains of definitions, and the functions s 7→ f(x, s) and
s 7→ g(x, s) are increasing.

The weak formulation of the BVP (19), (20) reads as follows.

Definition 3.1. u ∈ H is called a solution of the BVP (19), (20) if

(i) u = uD on ΣD, and

(ii)
∫

Ω
a∇u∇ϕ dx +

∫

Γ
g(x, γu)γϕ dΓ +

∫

Ω
f(x, u)ϕ dx = 0, ∀ ϕ ∈ H0.

Let us recall for convenience the notion of (weak) super- and subsolutions.

Definition 3.2. ū ∈ H is called a supersolution of the BVP (19), (20) if

(i) ū ≥ uD on ΣD, and

(ii)
∫

Ω
a∇ū∇ϕ dx +

∫

Γ
g(x, γū)γϕ dΓ +

∫

Ω
f(x, ū)ϕ dx ≥ 0,

∀ ϕ ∈ H0 ∩ L2
+(Ω),

Similarly, u ∈ H is a subsolution if the reversed inequalities in Definition 3.2
hold with ū replaced by u. We make the following additional hypotheses.

(C2) There exist a supersolution ū and a subsolution u of the BVP (19),
(20) such that u ≤ ū.

(C3) There is a p ∈ L2
+(Ω) such that |f(x, s)| ≤ p(x) for a.e. x ∈ Ω and

s ∈ [u(x), ū(x)].

(C4) There is a q ∈ L2
+(Γ) such that |g(x, s)| ≤ q(x) for a.e. x ∈ Γ and

s ∈ [γu(x), γū(x)].

Remark 3.1. A linear growth of f and g in the form |f(x, s)| ≤ p(x) + c|s|,
and |g(x, s)| ≤ q(x) + c|s| implies (C3) and (C4), respectively.

The following lemma will later have application to the Poisson equation.

Lemma 3.1. Under the hypotheses (C1)–(C4), the BVP (19), (20) has a
uniquely defined solution u within the order interval [u, ū].
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Proof. To apply functional analytical methods we first transform the BVP
(19), (20) to one with homogeneous Dirichlet data on ΣD by the translation
u = w + ũD. Thus u is a solution of (19), (20) if and only if w ∈ H0 satisfies
the following relation:

∫

Ω

a∇w∇ϕ dx +

∫

Γ

g̃(x, γw)γϕ dΓ +

∫

Ω

f̃(x, w)ϕ dx = 〈h, ϕ〉, (21)

for all ϕ ∈ H0, where

g̃(x, s) = g(x, γũD(x) + s), f̃(x, s) = f(x, ũD(x) + s), and

〈h, ϕ〉 = −

∫

Ω

a∇ũD∇ϕ dx. (22)

Obviously, (22) defines a functional on H0, i.e., h ∈ H∗

0 . The transformed
nonlinearities f̃ and g̃ preserve the structure and growth conditions of (C3)
and (C4) with respect to the shifted order interval [w, w̄], where w = u− ũD

and w̄ = ū − ũD, and w̄ and w are super- and subsolutions for the BVP in
the variable w. Thus the existence of a solution u ∈ H within [u, ū] of the
BVP (19), (20) is equivalent to the existence of a solution w ∈ H0 within
[w, w̄] of the transformed BVP given in its weak formulation by (21). To this
end we associate with (21) the following auxiliary truncated problem:

∫

Ω

a∇w∇ϕ dx +

∫

Γ

g̃(x, Tγw)γϕ dΓ +

∫

Ω

f̃(x, Tw)ϕ dx = 〈h, ϕ〉, (23)

for all ϕ ∈ H0, where T denotes the truncation operator defined by

Tw(x) =







w̄(x), w(x) > w̄(x),
w(x), w(x) ≤ w(x) ≤ w̄(x),
w(x), w(x) < w(x).

(24)

Defining operators A, G̃, and F̃ as follows:

〈Aw, ϕ〉 =

∫

Ω

a∇w∇ϕ dx, 〈G̃w, ϕ〉 =

∫

Γ

g̃(x, Tγw)γϕ dΓ, and

〈F̃w, ϕ〉 =

∫

Ω

f̃(x, Tw)ϕ dx, ϕ ∈ H0,

we can rewrite the truncated problem (23) in the operator format,

Find w ∈ H0 : 〈(A + G̃ + F̃ )w, ϕ〉 = 〈h, ϕ〉, ∀ ϕ ∈ H0. (25)

One readily verifies that A : H0 → H∗
0 is continuous, bounded and strongly

monotone. The continuity of the truncation operator T : L2(Ω) → [w, w̄]
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and the compact embedding H0 ⊂ L2(Ω) imply that the superposition oper-
ator w 7→ f̃(·, Tw) is a uniformly bounded and compact mapping from H0

into L2(Ω), and hence by the monotonicity of s 7→ f̃(x, s), it follows that
F̃ : H0 → H∗

0 is monotone, compact and uniformly bounded. The compact-
ness of the trace operator γ together with continuity and boundedness of
the truncation T considered as a mapping T : L2(Γ) → [γw, γw̄], and the
monotonicity of s 7→ g̃(x, s) imply that G̃ : H0 → H∗

0 is monotone, compact
and uniformly bounded. Thus A + G̃ + F̃ : H0 → H∗

0 is strongly monotone,
continuous and bounded, which, by applying the main theorem on monotone
operators (see, e.g., [11, Theorem 26.A]), yields the existence of a uniquely
defined solution u of (25), and thus of the auxiliary problem (23). To com-
plete the proof of the lemma, we need only show that the solution w of (23)
lies within the order interval [w, w̄], because then we have Tw = w, and thus
f̃(·, Tw) = f(·, w), and g̃(·, T γw) = g(·, γw), which shows that w is in fact a
solution of the transformed problem (21) within [w, w̄]. We shall show that
w ≤ w̄ only, since the proof of w ≤ w is similar. By assumption, w̄ is a
supersolution for (21), that is, w̄ ≥ 0 on ΣD, and the following inequality is
satisfied:

∫

Ω

a∇w̄∇ϕ dx +

∫

Γ

g̃(x, γw̄)γϕ dΓ +

∫

Ω

f̃(x, w̄)ϕ dx ≥ 〈h, ϕ〉, (26)

for all ϕ ∈ H0 ∩ L2
+(Ω). Subtracting (26) from (23), and taking as special

nonnegative testfunction ϕ = (w − w̄)+ := max{(w − w̄)+, 0}, we obtain

∫

Ω
a∇(w − w̄)∇(w − w̄)+ dx

+
∫

Γ
(g̃(x, Tγw) − g̃(x, γw̄)) γ(w − w̄)+ dΓ

+
∫

Ω

(

f̃(x, Tw) − f̃(x, w̄)
)

(w − w̄)+ dx ≤ 0.
(27)

By using the truncation property of T , we see that the second and third
integrals on the left-hand side of (27) are zero, so that we obtain

µ

∫

Ω

|∇(w − w̄)+|2 dx ≤

∫

Ω

a∇(w − w̄)∇(w − w̄)+ dx ≤ 0, (28)

which yields (w − w̄)+ = 0, and thus w ≤ w̄.

3.2 Discontinuous Nonlinearities

Motivated by the discontinuous BVP for V and W , we consider in this subsec-
tion the BVP (19), (20) under the following regularity, structure and growth
conditions on f and g.
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(D1) There exist super - and subsolutions ū and u in the sense of Definition
3.2 such that u ≤ ū.

(D2) f : Ω × R → R and g : Γ × R → R are Baire measurable in their
respective domains of definitions, and the functions s 7→ f(x, s) and
s 7→ g(x, s) are increasing.

(D3) There there exist functions p ∈ L2
+(Ω) and q ∈ L2

+(Γ) such that
|f(x, s)| ≤ p(x) + cf |s|, for all (x, s) ∈ Ω × R,

|g(x, s)| ≤ q(x) + cg|s|, for all (x, s) ∈ Γ × R,

where cf and cg are some nonnegative constants.

Our goal is to prove a similar enclosure result as in the Carathéodory case.
However, simple examples show that even monotonicity as assumed in (D2)
does not ensure existence of solutions in the sense of Definition 3.1 within the
order interval [u, ū]. Therefore, we extend the notion of solution and instead
of the BVP (19), (20) we consider its multivalued version in the form

−∇ · [a(x)∇u] + α(x, u) 3 0 in Ω, (29)

u = uD on ΣD,
∂u

∂ν
+ β(x, u) 3 0 on Γ, (30)

where α : Ω × R → 2
�

\ ∅ and β : Γ × R → 2
�

\ ∅ denote the maximal
monotone graphs generated by f and g, respectively, given by

α(x, s) = [f(x, s−), f(x, s+)], β(x, s) = [g(x, s−), g(x, s+)],

with f(x, s±) and g(x, s±) denoting the one-sided limits at s.

Definition 3.3. The function u ∈ H is a solution of the BVP (29), (30) if
there is an ξ ∈ L2(Ω) and an η ∈ L2(Γ) such that u = uD on ΣD and

(i) ξ(x) ∈ α(x, u(x)) for a.e. x ∈ Ω, η(x) ∈ β(x, γu(x)) for a.e. x ∈ Γ,

(ii) 〈Au + ξ + γ∗η, ϕ〉 = 0, ∀ ϕ ∈ H0,

where γ∗ : L2(Γ) → H∗

0 denotes the adjoint operator to γ, and

〈ξ, ϕ〉 =

∫

Ω

ξ(x) ϕ(x) dx, 〈γ∗η, ϕ〉 =

∫

Γ

η(x) γϕ(x) dΓ, ϕ ∈ H0.
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To solve the BVP (29), (30) we again perform the translation u = w + ũD to
get homogeneous boundary values on ΣD, which yields

−∇ · [a(x)∇w] + α̃(x, w) 3 h in Ω, (31)

w = 0 on ΣD,
∂(w + ũD)

∂ν
+ β̃(x, w) 3 0 on Γ, (32)

where h ∈ H∗

0 is given by 〈h, ϕ〉 = −〈AũD, ϕ〉, and α̃, β̃ are the shifted
maximal monotone graphs. By using convex analysis calculus, one can show
that the BVP (31), (32) is equivalent to the following variational inequality:
Find w ∈ H0 such that for all ϕ ∈ H0 the following holds

〈Aw, ϕ − w〉 + J(ϕ) − J(w) + (Φ ◦ γ)(ϕ) − (Φ ◦ γ)(w) ≥ 〈h, ϕ − w〉, (33)

where the functionals J : L2(Ω) → R and Φ : L2(Γ) → R given by,

J(w) =

∫

Ω

(

∫ w(x)

0

f̃(x, s) ds
)

dx, Φ(w) =

∫

Γ

(

∫ w(x)

0

g̃(x, s) ds
)

dΓ,

are convex and locally Lipschitz continuous. The existence of a unique so-
lution of the variational inequality (33), and thus of the BVP (29), (30),
is an immediate consequence of the strong monotonicity of the operator
A : H0 → H∗

0 in the sense of Browder and the fact that w 7→ J(w)+(Φ◦γ)(w)
is convex and continuous. Hypothesis (D1) permits the following comparison
result.

Lemma 3.2. Let hypotheses (D1)–(D3) be satisfied. Then the uniquely de-
fined solution u of the multivalued BVP (29), (30) satisfies u ≤ u ≤ ū.

Proof. We shall show u ≤ ū only, since the inequality u ≤ u can be proved
similarly. Denote ξ̄ = f(·, ū) and η̄ = g(·, γū). Then by Definition 3.2 the
supersolution ū satisfies ū ≥ uD on ΣD and

〈Aū + ξ̄ + γ∗η̄, ϕ〉 ≥ 0, ∀ ϕ ∈ H0 ∩ L2
+(Ω). (34)

In particular, we have ξ̄(x) ∈ α(x, ū(x)) and η̄(x) ∈ β(x, γū(x)) so that by
subtracting (34) from relation (ii) of Definition 3.3 we get

〈A(u − ū) + (ξ − ξ̄) + (γ∗η − γ∗η̄, ϕ〉 ≤ 0, ∀ ϕ ∈ H0 ∩ L2
+(Ω). (35)

With the nonnegative testfunction ϕ = (u − ū)+ in (35), we obtain via the
maximal monotonicity of α and β,

0 ≤ µ‖(u − ū)+‖H0
≤ 〈A(u − ū), (u − ū)+〉 ≤ 0,

which implies (u − ū)+ = 0, and thus u ≤ ū.
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4 System Analysis for the Model

If U = (u0, u1, u2) := (u, V, W ), and UD = (u0,D, u1,D, u2,D := (uD, e−vD , ewD),
then the BVP for the model can be written in a unified way as (k = 0, 1, 2):

−∇ · [ak(x, u0)∇uk] + fk(x, U) = 0, in Ω, (36)

uk = uk,D on ΣD,
∂uk

∂ν
+ gk(x, U) = 0, on Γ, (37)

where f0(x, U) = u1e
u0 − u2e

−u0 − k1(x) is a Carathéodory function and
increasing in u0 for nonnegative u1, and u2. Because G(u) > 0 the functions
f1 and f2 given by (17) and (18) are discontinuous and increasing with respect
to their principal argument. We further have g0 = 0, and g1, g2 as given
by (11) are discontinuous with respect to their principal argument and are
monotone provided the following flux hypothesis holds.

Flux hypothesis

u1 − e−u0n0 ≤ 0, if u1 ≤ V0; u2 − eu0p0 ≤ 0, if u2 ≤ W0.

Later, we will give conditions, which very naturally imply this hypothesis,
in terms of the trapping region. The coefficients of the elliptic operators are
given by a0(x, u0) = ε(x), a1(x, u0) = eu0 , and a2(x, u0) = e−u0 . We note
that the coefficient a0 does not depend on the unknown u0 which stands for
the potential u. Let X = [H]3, X0 = [H0]

3, and Y = (L2(Ω))3 be equipped
with componentwise partial ordering. Define the following operators for k =
0, 1, 2:

Ak(u0) : H → H∗

0 , 〈Ak(u0)uk, ϕ〉 =

∫

Ω

ak(x, u0)∇uk ∇ϕ dx,

Fk(U) : Y → H∗

0 , 〈Fk(U), ϕ〉 =

∫

Ω

fk(x, U) ϕ dx,

(Gk ◦ γ)(U) : X → H∗

0 , 〈(Gk ◦ γ)(U), ϕ〉 =

∫

Γ

gk(x, γu0, γuk)γϕ dΓ,

for ϕ ∈ H0. We denote A(U) = (A0(u0)u0, A1(u0)u1, A2(u0)u2) and accord-
ingly the vector operators F (U) and (G◦γ)(U), where γU = (γu0, γu1, γu2).
The weak formulation of the system (36), (37), describing our model, then
reads as follows.

Definition 4.1. U ∈ X is a weak solution of (36), (37) if it satisfies

U = UD on ΣD, and A(U) + (G ◦ γ)(U) + F (U) = 0 in X∗

0 .
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Let R = [U, U ] ⊂ X be the rectangle formed by the ordered pair U =
(u0, u1, u2) and U = (ū0, ū1, ū2). In the following two definitions we extend in
an appropriate way the notion of super- and subsolutions known for scalar
equations to systems.

Definition 4.2. The vector A(U) + (G ◦ γ)(U) + F (U) is called a general-
ized outward pointing vector on the boundary ∂R of the rectangle R if the
following inequalities hold for all ϕ ∈ H0 ∩ L2

+(Ω):

〈Ak(u0)uk + Fk(Uk) + (Gk ◦ γ)(U k), ϕ〉 ≤ 0, ∀ Uk ∈ [U, Ū ],

〈Ak(u0)ūk) + Fk(Uk) + (Gk ◦ γ)(U k), ϕ〉 ≥ 0, ∀ Uk ∈ [U, Ū ],

where Uk = (u0, u1, u2)|uk=u
k
, Uk = (u0, u1, u2)|uk=ūk

and k = 0, 1, 2.

Definition 4.3. Let U, U ∈ X be an ordered pair satisfying U ≤ UD ≤ U
on ΣD, where UD is the vector of the boundary values. Then R = [U, U ] is
called a trapping region of the system (36), (37) if A(U)+(G◦γ)(U)+F (U)
is a generalized outward pointing vector on ∂R.

Due to the discontinuous nonlinearities f1, f2 and g1, g2, we consider the
following multivalued version of system (36), (37):

A0(u0)u0 + f0(·, U) = 0, (38)

Aj(u0)uj + αj(·, U) 3 0, (39)

U = UD on ΣD,
∂u0

∂ν
= 0,

∂uj

∂ν
+ βj(·, U) 3 0, on Γ, (40)

where αj and βj are the maximal monotone graphs of fj and gj, respectively,
with respect to their principal argument, for j = 1, 2.

Theorem 4.1. Let [U, U ] be a trapping region in the sense of Definition 4.3,
such that the flux hypothesis is satisfied in the trapping region, and assume
u0, ū0 ∈ L∞(Ω), and U ≥ 0. Then system (38), (39), (40), which is the
multi-valued formulation of system (36), (37), has a solution within [U, U ].

Proof. Our approach will be an extension of the approach introduced in [3]
and discussed extensively in [4]. To this end let us first consider the following
auxiliary, truncated system:

A0(u0)u0 + f0(·, T0u0, T1u1, T2u2) = 0, (41)

A1(T0u0)u1 + α1(·, T0u0, u1) 3 0, (42)

A2(T0u0)u2 + α2(·, T0u0, u2) 3 0, (43)

13



under the following boundary conditions

U = UD on ΣD,
∂u0

∂ν
= 0 on Γ, (44)

∂u1

∂ν
+ β1(·, T0u0, u1) 3 0,

∂u2

∂ν
+ β2(·, T0u0, u2) 3 0 on Γ, (45)

where Tk is the truncation between uk and ūk, which is defined analogously
to (24). The existence of solutions for the auxiliary system (41), (42), (43)
is based on Schauder’s fixed point theorem. To this end for fixed (u1, u2) ∈
[L2(Ω)]2 we first solve equation (41) under the given boundary condition for
u0. From the trapping region we infer that u0 and ū0 are sub-supersolutions,
respectively, for (41), which by Lemma 3.1 implies the existence of a uniquely
defined solution z0 within the interval [u0, ū0]. Thus the following mapping
is well defined:

[L2(Ω)]2 3 (u1, u2) 7→ z0 := P (u1, u2) ∈ H. (46)

Next we decouple 42), (43) by the substitution z0 = P (u1, u2) in each equa-
tion which results in the decoupled system:

A1(z0)u1 + α1(·, z0, u1) 3 0, (47)

A2(z0)u2 + α2(·, z0, u2) 3 0, (48)

under the boundary conditions

u1 = u1,D on ΣD,
∂u1

∂ν
+ β1(·, z0, u1) 3 0 on Γ, (49)

u2 = u2,D on ΣD,
∂u2

∂ν
+ β2(·, z0, u2) 3 0 on Γ. (50)

By Lemma 3.2 the above uncoupled gradient equations (47),(49) and (48),(50)
are uniquely solvable, and in view of the assumption on the trappping re-
gion we have, in addition, for the unique solutions zj, j = 1, 2, the following
comparison:

uj ≤ zj ≤ ūj, for j = 1, 2. (51)

Define a mapping S : H → [H]2 by

H 3 z0 7→ (z1, z2) =: Sz0 ∈ [H]2. (52)

Set Z = S ◦ P : [L2(Ω)]2 → [H]2 ⊂ [L2(Ω)]2. Then a fixed point (u∗

1, u
∗

2)
of Z defines a solution of the original coupled system (38), (39), (40) via
(u∗

0, u
∗

1, u
∗

2), where u∗

0 = P (u∗

1, u
∗

2). To prove the existence of a fixed point of
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Z we study next the mappings P and S. By inspection of the nonlinearity f0

and taking the uniform boundedness of the truncations Tk : L2(Ω) → L2(Ω)
into account, one can see that (u1, u2) 7→ f0(·, T0u0, T1u1, T2u2) is uniformly
bounded for any u0 ∈ L2(Ω) from [L2(Ω)]2 to L2(Ω). Thus by definition of
the operator P from (41) we obtain by standard estimate

‖P (u1, u2)‖H ≤ C, for all (u1, u2) ∈ [L2(Ω)]2. (53)

Moreover, the mapping P : [L2(Ω)]2 → H is continuous, which can be seen
as follows. Let z0 = P (u1, u2) and ẑ0 = P (û1, û2); then due to P (u1, u2) ∈
[u0, ū0] for any (u1, u2) ∈ [L2(Ω)]2, from the weak formulation of (41), with
ϕ = z0 − ẑ0 ∈ H0 as special testfunction, we obtain (ε(x) ≥ ε0 > 0):

ε0‖z0 − ẑ0‖
2
H0

+
∫

Ω
(f0(·, z0, T1u1, T2u2) − f0(·, ẑ0, T1u1, T2u2)) (z0 − ẑ0)dx

≤
∫

Ω
(f0(·, ẑ0, T1û1, T2û2) − f0(·, ẑ0, T1u1, T2û2)) (z0 − ẑ0)dx

+
∫

Ω
(f0(·, ẑ0, T1u1, T2û2) − f0(·, ẑ0, T1u1, T2u2)) (z0 − ẑ0)dx.

(54)

The integral on the left-hand side of (54) is nonnegative due to the mono-
tonicity of f0 in u0. Applying the Lipschitz continuity of f0(·, s0, s1, s2) in
s1 and s2, we get from (54) the continuity of (u1, u2) 7→ P (u1, u2). Next,
we show that S : [H] → [H]2 is continuous and bounded. To this end let
Sz0 = (z1, z2) and and Sẑ0 = (ẑ1, ẑ2), where Sz0 and Sẑ0 are given by the
unique solution of the uncoupled system (47)–(50) for fixed z0 and ẑ0, re-
spectively. Consider the inclusion (47) under the boundary condition (49)
for given z0 and ẑ0, whose unique solution is denoted by z1 and ẑ1, respec-
tively, which, e.g., for z1 is equivalent to the following variational inequality:
Find z1 ∈ ũ1,D + H0 such that for all ϕ ∈ ũ1,D + H0:

∫

Ω

a1(z0)∇z1∇(ϕ − z1) dx + J1(z0, ϕ) − J1(z0, z1)

+(Φ1 ◦ γ)(z0, ϕ) − (Φ1 ◦ γ)(z0, z1) ≥ 0, (55)

where the functionals are given by

J1(z0, ϕ) =
∫

Ω

(

∫ ϕ(x)

0
f1(x, z0(x), s)) ds

)

dx,

(Φ1 ◦ γ)(z0, ϕ) =
∫

Γ

(

∫ γϕ(x)

0
g1(x, γz0(x), s) ds

)

dΓ.
(56)

A corresponding variational inequality holds for ẑ1. Specializing ϕ = ẑ1 in
(55) and using ϕ = z1 in the variational inequality for ẑ1, we obtain by adding
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the resulting inequalities the following one:

∫

Ω

a1(ẑ0)|∇(ẑ1 − z1)|
2 dx ≤

∫

Ω

(a1(z0) − a1(ẑ0))∇z1∇(ẑ1 − z1) dx

+

∫

Ω

(

∫ ẑ1(x)

z1(x)

(f1(x, z0(x), s) − f1(x, ẑ0(x), s))ds

)

dx

+

∫

Γ

(

∫ γẑ1(x)

γz1(x)

(g1(x, γz0(x), s) − g1(x, γẑ0(x), s))ds

)

dΓ (57)

By using the formulas for f1 and g1 given by (17) and (11), respectively, we
get the following estimate:

|f1(x, z0(x), s) − f1(x, ẑ0(x), s)| = |(χEs
− 1)(G(z0(x) − G(ẑ0(x))|

≤ C |z0(x) − ẑ0(x)|, (58)

|g1(x, γz0(x), s) − g1(x, γẑ0(x), s)| ≤ |c1(1 − χEs
)n0||e

−γẑ0(x) − e−γz0(x)|

≤ C |γz0(x) − γẑ0(x)|, (59)

where C > 0 is some generic constant. For the estimate (58), (59) we have
used that the function t 7→ G(t) is locally Lipschitz, and the image of the
operator P is contained in the interval [u0, ū0] ⊂ L∞(Ω). Denoting the three
integral terms on the right-hand side of inequality (57) by I1, I2, I3 and
applying estimates (58), (59) one gets the following:

|I1| ≤ C ‖(a1(z0) − a1(ẑ0))∇z1‖L2(Ω)‖∇(z1 − ẑ1)‖L2(Ω),

|I2| ≤ C ‖z0 − ẑ0‖L2(Ω)‖z1 − ẑ1‖L2(Ω),

|I3| ≤ C ‖γz0 − γẑ0‖L2(Γ)‖γz1 − γẑ1‖L2(Γ). (60)

Since a1(t) = et ≥ eu
0 > 0 for all t ∈ [u0, ū0], and u 7→ (

∫

Ω
|∇u|2 dx)1/2

defines an equivalent norm in H0, we obtain from (57) and (60)

‖ẑ1 − z1‖H ≤ C
(

‖(a1(z0) − a1(ẑ0))∇z1‖L2(Ω)

+‖z0 − ẑ0‖L2(Ω) + ‖γz0 − γẑ0‖L2(Γ)

)

. (61)

In just the same way one obtains the following estimate

‖ẑ2 − z2‖H ≤ C
(

‖(a2(z0) − a2(ẑ0))∇z2‖L2(Ω)

+‖z0 − ẑ0‖L2(Ω) + ‖γz0 − γẑ0‖L2(Γ)

)

. (62)
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Taking into account that the trace operator γ : H → L2(∂Ω) is linear and
continuous (even compact) from (61) and (62) we readily see that the opera-
tor S : H → [H2] is continuous. To prove the boundedness of z0 7→ S(z0) =
(z1, z2) we use the variational inequality (55) with the special test function
ϕ = ũ1,D which yields the estimate

∫

Ω

a1(z0)|∇z1|
2 dx ≤

∫

Ω

a1(z0)∇z1∇ũ1,D dx + J1(z0, ũ1,D) − J1(z0, z1)

+(Φ1 ◦ γ)(z0, ũ1,D) − (Φ1 ◦ γ)(z0, z1). (63)

By means of the trapping region we already know that z0 ∈ [u0, ū0] for any
image z0 of P , and that the following enclosure for S(z0) = (z1, z2) holds:

(u1, u2) ≤ (z1, z2) ≤ (ū1, ū2). (64)

Due to z0 ∈ [u0, ū0] there exist positive constants a1, ā1 such that

0 < a1 ≤ a1(z0) ≤ ā1 for all z0 ∈ [u0, ū0]. (65)

By using (64), (65) from (63) we obtain an estimate in the form

a1

∫

Ω

|∇z1|
2 dx ≤ C(ũ1,D, u1, ū1) + C(ā1, ε) + ε ‖∇z1‖

2
L2(Ω), (66)

for any ε > 0. Selecting ε < a1 there exists a constant R1 > 0 depending
only on the data of the original problem and the trapping region such that
‖z1‖H ≤ R1. In a similar way one shows the existence of a constant R2 such
that ‖z2‖H ≤ R2. Thus with R = max{R1, R2} we have proved:

‖S(z0)‖[H]2 = ‖(z1, z2)‖[H]2 ≤ R for all z0 = P (u1, u2). (67)

Due to the compact embedding [H]2 ⊂ [L2(Ω)]2 the operator

Z = S ◦ P : B(0, R) → B(0, R)

provides a continuous and compact mapping of the closed ball B(0, R) ⊂
[L2(Ω)]2 into itself. Schauder’s fixed point theorem then completes the proof.

Construction of a trapping region

It remains to construct a trapping region R = [U, U ] for the model. We
do this in terms of constant vectors U = (ū0, ū1, ū2) := (ū, V , W ), U =
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(u0, u1, u2) := (u, V , W ). We begin with the boundary values for the variables
v, w. Set

%v = inf
ΣD

vD, %w = inf
ΣD

wD, κv = sup
ΣD

vD, κw = sup
ΣD

wD, (68)

Then we require

0 < V < min(V0, exp(−κv)), V > max(V0, exp(−%v)), (69)

0 < W < min(W0, exp(%w)), W > max(W0, exp(κw)), (70)

and
u = min(inf

ΣD

uD, δ), ū = max(sup
ΣD

uD, δ̄), (71)

where δ and δ̄ are any solutions of the inequalities:

δ̄ : V exp(δ̄) − W exp(−δ̄) ≥ supΩ k1,
δ : V exp(δ) − W exp(−δ) ≤ infΩ k1.

(72)

One easily verifies that the so obtained constant vectors U and U form a
trapping region in the sense of Definition 4.3 if the boundary flux hypothesis
holds. This is implied by the inequalities,

V0 − exp(−u) inf
Ω

n0 ≤ 0, W0 − exp(u) inf
Ω

p0 ≤ 0. (73)
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