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Abstract

We consider initial-boundary value problems for weakly coupled systems of parabolic
equations under coupled nonlinear flux boundary condition. Both coupling vector
fields f : Q×R

2 → R
2 and g : Γ×R

2 → R
2 are assumed to be either of competitive

or cooperative type, but may otherwise be discontinuous with respect to all their
arguments. The main goal is to provide conditions for the vector fields f and g

that allow the identification of regions of existence of solutions (so called trapping
regions). To this end the problem is transformed to a discontinuously coupled sys-
tem of evolution variational inequalities. Assuming a generalized outward pointing
vector field on the boundary of a rectangle of the dependent variable space, the
system of evolution variational inequalities is solved via a fixed point problem for
some increasing operator in an appropriate ordered Banach space. The main tools
used in the proof are evolution variational inequalities, comparison techniques, and
fixed point results in ordered Banach spaces.
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1 Introduction

Let Ω ⊂ R
N , N ≥ 1 be a bounded domain with C1−boundary ∂Ω, Q = Ω × (0, T ) and

Γ = ∂Ω × (0, T ), with T > 0. We consider the following initial-boundary value problem
(IBVP for short): k = 1, 2.

∂uk

∂t
−∇ · [ak∇uk] + fk(u1, u2) = 0 in Q (1.1)

uk = 0 on Ω × {0},
∂uk

∂νk
+ gk(u1, u2) = 0 on Γ, (1.2)

where ak ∈ L∞(Q) with ak(x, t) ≥ µk > 0 in Q, and ∂/∂νk denotes the outward conormal
derivative at Γ related to the corresponding elliptic operator. It should be noted that the
theory we are going to develop in this paper is applicable to more complicated systems,
in which the elliptic operators may be the sum of a monotone divergence type operator
and lower order convection terms, the vector fields f , and g may depend, in addition, on
the space-time variables (x, t) and the initial condition may be nonhomogeneous, i.e., of
the form uk(x, 0) = ψk(x) with ψk ∈ L2(Ω). Even mixed Dirichlet-Robin type boundary
conditions can be treated. Only for the sake of simplifying our presentation and in order
to emphasize the main idea we consider here problem (1.1), (1.2) as a model problem.
Existence results for discontinuously coupled elliptic systems have been obtained by the
authors in [4, 6].

The novelty of the IBVP (1.1), (1.2) is that the vector fields f and g may be dis-
continuous in all their arguments. The minimum regularity requirement for these vec-
tor fields is their superpositional measurability, i.e., whenever u, v : Q → R (resp.
u, v : Γ → R) are measurable, then also the superposition (x, t) 7→ fk(u(x, t), v(x, t))
(resp. (x, t) 7→ gk(u(x, t), v(x, t))) is measurable in Q (resp. Γ). In order to formulate the
conditions imposed on the vector fields let us introduce the following notion.

Definition 1.1. A vector field h = (h1, h2) : R
2 → R

2 is said to be of competitive
type if the component functions h1(s1, s2) and h2(s1, s2) are both separately increasing
in s1, s2. The argument sk of hk(s1, s2) is called the principal argument. A vector field
h = (h1, h2) : R

2 → R
2 is said to be of cooperative type if hk(s1, s2) is increasing in its

principal argument and decreasing in its nonprincipal argument.

From Definition 1.1 it follows that IBVP (1.1), (1.2) with f and g of cooperative type
can be transformed into a system of competitive type, and vice versa. To this end one
only needs to perform the transformation (w1, w2) := (u1,−u2), and define f̂1(w1, w2) =
f1(w1,−w2), f̂2(w1, w2) = −f2(w1,−w2), as well as ĝ1(w1, w2) = g1(w1,−w2), ĝ2(w1, w2) =
−g2(w1,−w2) to get a IBVP in (w1, w2) of competitive type. Thus cooperative and com-
petitive systems are qualitatively equivalent.
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Throughout the rest of this paper we assume the following hypotheses on the vector
fields f and g:

(H1) The component functions fk : R
2 → R and gk : R

2 → R are Baire-measurable and
satisfy a growth condition of the form

|fk(s1, s2)| ≤ c (1 + |s1| + |s2|), ∀ (s1, s2) ∈ R
2,

|gk(s1, s2)| ≤ c (1 + |s1| + |s2|), ∀ (s1, s2) ∈ R
2,

where c is some positive generic constant.

(H2) The vector fields f and g are assumed to be of competitive type.

2 Notations and Preliminaries

LetW 1,2(Ω) denote the usual Sobolev space of square integrable functions and let (W 1,2(Ω))∗

denote its dual space. Then by identifying L2(Ω) with its dual space, W 1,2(Ω) ⊂ L2(Ω) ⊂
(W 1,2(Ω))∗ forms an evolution triple with all the embeddings being continuous, dense
and compact, cf. [8]. We let V = L2(0, T ;W 1,2(Ω)) , denote its dual space by V ∗ =
L2(0, T ; (W 1,2(Ω))∗) , and define a function space W by

W = {w ∈ V |
∂w

∂t
∈ V ∗} ,

where the derivative ∂/∂t is understood in the sense of vector-valued distributions and
characterized by (cf. [8])

∫ T

0

u′(t)φ(t) dt = −

∫ T

0

u(t)φ′(t) dt, for all φ ∈ C∞
0 (0, T ) .

The space W endowed with the norm

‖w‖W = ‖w‖V + ‖∂w/∂t‖V ∗

is a Banach space which is separable and reflexive due to the separability and reflexivity
of V and V ∗, respectively. (Note that for any Banach space B the space L2(0, T ;B)
of vector-valued functions consists of all measurable functions u : (0, T ) → B for which

‖u‖ = (
∫ T

0
‖u(t)‖2

B dt)
1/2 is finite.) Furthermore it is well known that the embedding W ⊂

C([0, T ]; L2(Ω)) is continuous, cf. [8]. Finally, because W 1,2(Ω) ⊂ L2(Ω) is compactly
embedded, we have a compact embedding ofW ⊂ L2(Q) ≡ L2(0, T ;L2(Ω)) due to Aubin’s
lemma, cf. e.g. [7]. We introduce the natural partial ordering in L2(Q) by u ≤ w if and
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only if w − u belongs to the cone L2
+(Q) of all nonnegative elements of L2(Q). This

induces a corresponding partial ordering also in the subspaces V and W of L2(Q), and
if u ≤ w then [u, w] := {v | u ≤ v ≤ w} denotes the order interval formed by u and w.
Further, if (B,≤) is any ordered Banach space, then we furnish the Cartesian product
B × B with the componentwise partial ordering, i.e., x = (x1, x2) ≤ (y1, y2) = y iff
xk ≤ yk, k = 1, 2. Thus the order interval [x, y] ⊂ B × B corresponds to the rectangle
R = [x1, y1]× [x2, y2] ⊂ B×B. In what follows we will make use of the following Cartesian
products: X := V × V, Y := L2(Q)×L2(Q), and Z := L2(Γ)×L2(Γ). We denote by 〈·, ·〉
the duality pairing between V ∗ and V , and by γ : V → L2(Γ) the trace operator which is
linear and continuous, and if considered as a mapping γ : W → L2(Γ) it is even compact,
see, e.g., [2, Lemma 3.1]. In order to apply functional analytic methods to the IBVP
(1.1), (1.2) we introduce operators Ak generated by the elliptic operators −∇ · [ak∇w],
and Fk and Gk related to the vector fields f and g, respectively, as follows: Let k = 1, 2,
and ϕ ∈ V

Ak : V → V ∗; 〈Akw, ϕ〉 :=

∫

Q

ak∇w∇ϕdxdt

Fk : Y → V ∗; 〈Fk(u1, u2), ϕ〉 :=

∫

Q

fk(u1, u2)ϕdxdt

Gk : Z → V ∗; 〈Gk(z1, z2), ϕ〉 :=

∫

Γ

gk(z1, z2)γϕ dxdt.

One easily verifies that Ak : V → V ∗ is linear and monotone. By (H1) the operators
Fk : X → V ∗ and Gk ◦ γ : X → V ∗ are well defined and bounded, but not necessarily
continuous. The time derivative ∂/∂t : V → V ∗ is given by

〈∂u/∂t, ϕ〉 =

∫ T

0

<
∂u(·, t)

∂t
, ϕ(·, t) > dt, ∀ ϕ ∈ V,

with < ·, · > denoting the duality pairing between (W 1,2(Ω))∗ and W 1,2(Ω), and we denote
its restriction to the subspace of functions having homogeneous initial data by L, i.e., let
L := ∂/∂t and its domain D(L) of definition is given by

D(L) = {u ∈ W | u(x, 0) = 0 in Ω}.

The linear operator L : D(L) ⊂ V → V ∗ can be shown to be closed, densely defined and
maximal monotone, e.g., cf. [8, Chapter 32]. With u = (u1, u2), Au = (A1u1, A2u2), γu =
(γu1, γu2), F (u) = (F1(u), F2(u)), G(u) = (G1(u), G2(u)), and Lu = (Lu1, Lu2) the weak
formulation of a solution of system (1.1), (1.2) reads as follows: Find u ∈ [D(L)]2 ⊂ X
such that the following vector equation holds:

Lu+ Au+ F (u) +G ◦ γ(u) = 0 in X∗. (2.1)
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In view of the discontinuous behaviour of the operators F and G this notion is too re-
strictive for establishing a solution theory as can be seen by the following simple example:

Example 2.1. Consider the system

∂u1

∂t
− ∆u1 = 0, u1(x, 0) = 0 in Ω,

∂u1

∂ν
+ g1(u1, u2) = 0 on Γ, (2.2)

∂u2

∂t
− ∆u2 = 0, u2(x, 0) = 0 in Ω,

∂u2

∂ν
= 0 on Γ, (2.3)

where

g1(s1, s2) =

{

−1, s1 ≤ 0,
0, s1 > 0.

Obviously the system (2.2), (2.3) is of competitive type, however, it has no solution in the
sense of equation (2.1) as will be shown by contradiction as follows. Assume u = (u1, u2)
is a solution. From (2.3) it readily follows that u2 = 0. Thus the component u1 must
satisfy the IBVP (2.2) with g1(u1, 0), whose weak formulation is

〈
∂u1

∂t
, ϕ〉 +

∫

Q

∇u1∇ϕdxdt+

∫

Γ

g1(γu1, 0)γϕ dΓ = 0, ∀ ϕ ∈ V. (2.4)

Taking in (2.4) the special test function ϕ = u1 we get in view of

∫

Γ

g1(γu1, 0) γu1 dΓ ≥ 0,

the following inequality

1

2
‖u1(·, T )‖2

L2(Ω) + ‖∇u‖2
L2(Q) ≤ 0, (2.5)

which implies u1 = 0. Therefore, if (u1, u2) is a solution it must be the trivial one. This,
however, is a contradiction to the boundary condition in (2.2), since ∂u1

∂ν
+g1(u1, u2)|(0,0) =

−1 6= 0.

To establish a consistent solution theory for the discontinuous system (1.1), (1.2) we
extend the notion of its solution by introducing multivalued vector fields α = (α1, α2) and
β = (β1, β2) associated with f and g, respectively, as follows:

α1(s1, s2) = [f1(s1−, s2), f1(s1+, s2)], α2(s1, s2) = [f2(s1, s2−), f2(s1, s2+)],
β1(s1, s2) = [g1(s1−, s2), g1(s1+, s2)], β2(s1, s2) = [g2(s1, s2−), g2(s1, s2+)],

(2.6)
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where f1(s1±, s2), f2(s1, s2±) and g1(s1±, s2), g2(s1, s2±) denote the one-sided limits.
Thus αk : R

2 → 2
�

\ ∅ and βk : R
2 → 2

�

\ ∅ are the maximal monotone graphs of fk and
gk with respect to their principal arguments sk. In what follows we consider instead of
the IBVP (1.1), (1.2) the following multivalued version of it:

∂uk

∂t
+ Akuk + αk(u1, u2) 3 0 in Q, (2.7)

uk = 0 on Ω × {0},
∂uk

∂νk
+ βk(u1, u2) 3 0 on Γ. (2.8)

Next we develop the concept of a trapping region for systems which is an appropriate
extension of the notion of super- and subsolutions in the scalar case. To this end let
R = [u, ū] be the rectangle formed by the ordered pair u = (u1, u2) and ū = (ū1, ū2),
where u, ū ∈ W ×W.

Definition 2.1. The vector field ∂u/∂t + Au + F (u) + G ◦ γ(u) is called a generalized
outward pointing vector on the boundary ∂R of the rectangle R if the following inequalities
hold for all ϕ ∈ V ∩ L2

+(Q):

〈∂u1/∂t + A1u1 + F1(u1, v) +G1 ◦ γ(u1, v), ϕ〉 ≤ 0, ∀ v ∈ [u2, ū2];

〈∂u2/∂t + A2u2 + F2(v, u2) +G2 ◦ γ(v, u2), ϕ〉 ≤ 0, ∀ v ∈ [u1, ū1];

〈∂ū1/∂t + A1ū1 + F1(ū1, v) +G1 ◦ γ(ū1, v), ϕ〉 ≥ 0, ∀ v ∈ [u2, ū2];

〈∂ū2/∂t + A2ū2 + F2(v, ū2) +G2 ◦ γ(v, ū2), ϕ〉 ≥ 0, ∀ v ∈ [u1, ū1].

Using the notion of the generalized outward pointing vector we define the trapping
region.

Definition 2.2. Let u, ū ∈ W ×W satisfy u ≤ ū, and u(x, 0) ≤ 0 ≤ ū(x, 0). Then R =
[u, ū] is called a trapping region for the system (1.1), (1.2) if ∂u/∂t+Au+F (u)+G◦γ(u)
is a generalized outward pointing vector on ∂R.

Our main goal is to show that each trapping region for the system (1.1), (1.2) contains
a solution of its multivalued version (2.7), (2.8) in the following sense.

Definition 2.3. The vector u ∈ D(L)×D(L) ⊂ X is a solution of the IBVP (2.7), (2.8)
if there is an ξ ∈ Y and an η ∈ Z such that for k = 1, 2 the following holds:

(i) ξk(x, t) ∈ αk(u1(x, t), u2(x, t)), for a.e. (x, t) ∈ Q,

(ii) ηk(x, t) ∈ βk(γu1(x, t), γu2(x, t)), for a.e. (x, t) ∈ Γ,

(iii) 〈Luk + Akuk + ξk + γ∗ηk, ϕ〉 = 0, ∀ ϕ ∈ V ,
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where γ∗ : L2(Γ) → V ∗ denotes the adjoint operator to the trace operator γ with

〈ξk, ϕ〉 =

∫

Q

ξk(x, t)ϕ(x, t) dxdt, 〈γ∗ηk, ϕ〉 =

∫

Γ

ηk(x, t) γϕ(x, t) dΓ.

For the analysis of the multivalued system (2.7), (2.8) it will be convenient to use its
equivalent formulation in terms of a discontinuously coupled system of evolution varia-
tional inequalities of the form: Find uk ∈ D(L) such that for all ϕ ∈ V we have

〈Lu1 + A1u1, ϕ− u1〉 + J1(ϕ, u2) − J1(u1, u2)

+Φ1 ◦ γ(ϕ, u2) − Φ1 ◦ γ(u1, u2) ≥ 0, (2.9)

〈Lu2 + A2u2, ϕ− u2〉 + J2(u1, ϕ) − J2(u1, u2)

+Φ2 ◦ γ(u1, ϕ) − Φ2 ◦ γ(u1, u2) ≥ 0, (2.10)

where the functionals Jk and Φk are defined by

J1(u1, u2) :=

∫

Q

(

∫ u1(x,t)

0

f1(s, u2(x, t)) ds
)

dxdt, u ∈ Y ;

J2(u1, u2) :=

∫

Q

(

∫ u2(x,t)

0

f2(u1(x, t), s) ds
)

dxdt, u ∈ Y ;

Φ1(v1, v2) :=

∫

Γ

(

∫ v1(x,t)

0

g1(s, v2(x, t)) ds
)

dΓ, v ∈ Z;

Φ2(v1, v2) :=

∫

Γ

(

∫ v2(x,t)

0

g2(v1(x, t), s) ds
)

dΓ, v ∈ Z.

By hypotheses (H1) and (H2) the functionals Jk : Y → R and Φk : Z → R are well
defined, convex and locally Lipschitz continuous with respect to their principal argument.
Moreover, since X is dense in Y and γ(X) is dense in Z we obtain by applying [5, Theorem
2.2, Theorem 2.3] along with the chain rule for subdifferentials (see, e.g., [9, p.403]) the
following formula for the subdifferentials ∂kJk and ∂k(Φk ◦ γ) of the functionals Jk and
Φk ◦ γ with respect to their principal argument: If u ∈ X, then

∂kJk(u1, u2) = αk(u1, u2),

∂k(Φk ◦ γ)(u1, u2) = γ∗ ◦ ∂kΦk(γu1, γu2) = βk(γu1, γu2).

Using the sum rule for subgradients (see, e.g., [9, Theorem 47.B]) we finally get

∂k

(

Jk(u1, u2) + Φk ◦ γ(u1, u2)
)

= ∂kJk(u1, u2) + ∂k(Φk ◦ γ)(u1, u2)

= αk(u1, u2) + βk(γu1, γu2). (2.11)

By definition of the subgradient and using (2.11) one easily verifies the equivalence of
(2.7), (2.8) and (2.9), (2.10).
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3 Scalar Equation

This section examines the individual equations of our system (2.7), (2.8) and its associated
equivalent evolution variational inequality. Let us consider the scalar IBVP

∂u

∂t
−∇ · [a∇u] + f(x, t, u) = 0 in Q, (3.1)

u = 0 on Ω × {0},
∂u

∂ν
+ g(x, t, u) = 0 on Γ, (3.2)

with a ∈ L∞(Q) and a(x, t) ≥ µ > 0, and where the nonlinearities f : Q × R → R

and g : Γ × R → R are assumed to be Baire-measurable in their respective domains
of definitions, and satisfy the following growth and monotonicity conditions: For some
p ∈ L2

+(Q) and q ∈ L2
+(Γ) we suppose

(S1) |f(x, t, s)| ≤ p(x, t) + c |s|, ∀(x, t, s) ∈ Q× R,

(S2) |g(x, t, s)| ≤ q(x, t) + c |s|, ∀(x, t, s) ∈ Γ × R, and

(S3) s 7→ f(x, t, s) and s 7→ g(x, t, s) are increasing.

The weak formulation of (3.1), (3.2) reads as follows: Find u ∈ D(L) such that

〈Lu+ Au+ F (u) +G ◦ γ(u), ϕ = 0, ∀ ϕ ∈ V, (3.3)

where the operators in (3.3) are defined similarly as in section 2, i.e.,

〈Au, ϕ〉 =

∫

Q

a∇u∇ϕdxdt, 〈F (u), ϕ〉 =

∫

Q

f(x, t, u)ϕdxdt,

〈G ◦ γ(u), ϕ〉 =

∫

Γ

g(x, t, γu)γϕ dΓ.

Let us recall for convenience the notion of (weak) super- and subsolution for the IBVP
(3.1), (3.2).

Definition 3.1. The function w ∈ W is called a supersolution (subsolution) of (3.1), (3.2)
if w(x, 0) ≥ 0 (w(x, 0) ≤ 0), and for all ϕ ∈ V ∩ L2

+(Q) the following inequality holds:

〈∂w/∂t + Aw + F (w) +G ◦ γ(w), ϕ〉 ≥ 0 (≤ 0). (3.4)

Let α : Q × R → 2
�

\ ∅ and β : Γ × R → 2
�

\ ∅ be the maximal monotone graphs
associated with f and g, respectively, then the multivalued version of the IBVP (3.1),
(3.2) reads as

∂u

∂t
+ Au+ α(x, t, u) 3 0 in Q, (3.5)

u = 0 on Ω × {0},
∂u

∂ν
+ β(x, t, u) 3 0 on Γ, (3.6)
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which is equivalent to the evolution variational inequality: Find u ∈ D(L) such that for
all ϕ ∈ V

〈Lu+ Au, ϕ− u〉 + J(ϕ) − J(u) + Φ ◦ γ(ϕ) − Φ ◦ γ(u) ≥ 0. (3.7)

The functionals that appear in (3.7) are given by

J(u) :=

∫

Q

(

∫ u(x,t)

0

f(x, t, s)) ds
)

dxdt,

Φ(v) :=

∫

Γ

(

∫ v(x,t)

0

g(x, t, s) ds
)

dΓ,

and by similar arguments from convex analysis as in section 2 we have that J : V → R

and Φ ◦ γ : V → R are convex and continuous, and satisfy

∂(J(u) + Φ ◦ γ(u)) = α(·, ·, u) + β(·, ·, γu)). (3.8)

The following uniqueness and enclosure result will be used in the analysis of the multi-
valued system or its equivalent system of evolution variational inequalities, respectively.

Lemma 3.1. Assume hypotheses (S1)–(S3) and let ū, u ∈ W be super- and subsolution
of (3.1), (3.2). Then u ≤ ū, and there exists a unique solution u of the multivalued IBVP
(3.5), (3.6) (resp. of (3.7)) which is contained in the order interval [u, ū].

Proof. The proof of the lemma will be done in steps (a), (b), and (c).

(a) u ≤ ū
Subtracting the corresponding inequalities for super- and subsolution (3.4) and taking the
special nonnegative test function ϕ = (u− ū)+ := max(u− ū, 0) ∈ V ∩ L2

+(Q) we obtain

〈
∂(u− ū)

∂t
, (u− ū)+〉 +

∫

Q

a∇(u− ū)∇(u− ū)+ dxdt

+

∫

Q

(f(x, t, u) − f(x, t, ū)(u− ū)+ dxdt

+

∫

Γ

(g(x, t, γu) − g(x, t, γū)γ(u− ū)+ dΓ ≤ 0. (3.9)

By the monotonicity assumptions on f and g the integral terms in (3.9) related to them
are nonnegative. Since u(x, 0) ≤ 0 ≤ ū(x, t), it follows (u− ū)+(x, 0) = 0 which implies
for the first term of (3.9)

〈
∂(u− ū)

∂t
, (u− ū)+〉 =

1

2

∫

Ω

(

(u− ū)+(x, T )
)2

dx,
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and therefore from (3.9) we obtain the estimate

1

2
‖(u− ū)+(·, T )‖2

L2(Ω) + µ‖∇(u− ū)+‖2
L2(Q) ≤ 0, (3.10)

which implies (u− ū)+ = 0, and thus u ≤ ū.

(b) Existence and Uniqueness
For the existence proof we first transform the IBVP (3.5), (3.6) by the exponential shift

u(x, t) = eλtw(x, t), λ > 0, (3.11)

with λ to be specified later, into an equivalent IBVP in w of the form

∂w

∂t
+ Aw + λw + α̃(x, t, w) 3 0 in Q, (3.12)

w = 0 on Ω × {0},
∂w

∂ν
+ β̃(x, t, w) 3 0 on Γ, (3.13)

where the transformed maximal monotone graphs α̃ and β̃ preserve the structure of the
original α and β, respectively. The associated equivalent evolution variational inequality
reads then: Find w ∈ D(L) such that for all ϕ ∈ V

〈Lw + Aw + λw, ϕ− w〉 + J̃(ϕ) − J̃(w) + Φ̃ ◦ γ(ϕ) − Φ̃ ◦ γ(w) ≥ 0. (3.14)

The maximal monotonicity of L : D(L) ⊂ V → V ∗, the monotonicity (even strong
monotonicity) of A+ λI : V → V ∗ and the continuity of the convex functional

Ψ := J̃ + Φ̃ ◦ γ : V → R,

permit the application of [8, Theorem 32.J], which ensures the existence of a solution of
the evolution variational inequality (3.14) provided that the multivalued operator

L+ A+ λI + ∂Ψ : V → 2V ∗

is coercive with respect to 0. The latter means that we need to show the existence of an
r > 0 and a w0 ∈ D(L) ∩D(A) ∩D(Ψ) such that

〈w∗, w − w0〉 > 0, ∀ (w,w∗) ∈ L + A+ λI + ∂Ψ, with ‖w‖ > r. (3.15)

To verify (3.15) we set w0 = 0 and show that for r > 0 sufficiently large the following
inequality holds:

〈Lw + Aw + λw + ξ + η, w〉 > 0, ∀w : ‖w‖ > r, (3.16)
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where ξ ∈ ∂J̃(w) and η ∈ ∂(Φ̃ ◦ γ)(w). Let ξ0 ∈ ∂J̃(0), and η0 ∈ ∂(Φ̃ ◦ γ)(0). Then
by the maximal monotonicity of the subgradients we get for any ξ ∈ ∂J̃(w) and any
η ∈ ∂(Φ̃ ◦ γ)(w) the following inequality

〈ξ + η, w〉 ≥ 〈ξ0 + η0, w〉 ≥ −‖ξ0‖V ∗‖w‖V − ‖η0‖V ∗‖w‖V . (3.17)

Selecting λ > µ we obtain for any w ∈ D(L) the estimate

〈Lw + Aw + λw,w〉 ≥
1

2
‖w(·, T )‖2

L2(Ω) + µ‖w‖2
V . (3.18)

Applying Young’s inequality to the right-hand side of (3.17) we get from (3.17) and (3.18)
for any ε > 0 the estimate

〈Lw + Aw + λw + ξ + η, w〉 ≥ (µ− ε)‖w‖2
V − C(ε)(‖ξ0‖

2
V ∗ + ‖η0‖

2
V ∗), (3.19)

where C(ε) denotes some constant only depending on ε. Finally, by selecting ε < µ the
right-hand side of (3.19) becomes positive for all w with ‖w‖V > r if r is large enough,
and hence the coercivity follows which completes the existence proof. The uniqueness
of the solution is an immediate consequence of the the strong monotonicity of A + λI
along with the maximal monotonicity of L and ∂Ψ. Let u be the corresponding unique
solution of the original IBVP (3.5), (3.6) (resp. of 3.7) given via the exponential shift
(3.11). To complete the proof of the lemma we show that u is enclosed by the super- and
subsolutions ū and u, respectively.

(c) u ≤ u ≤ ū
We only show that u ≤ ū, since the proof of u ≤ u follows by similar arguments. By
definition we have ū(x, 0) ≥ 0 and

〈∂ū/∂t + Aū+ F (ū) +G ◦ γ(ū), ϕ〉 ≥ 0, ∀ ϕ ∈ V ∩ L2
+(Q), (3.20)

and the unique solution u satisfies u ∈ D(L) and

〈∂u/∂t + Au+ ξ + η, ϕ〉 = 0, ∀ ϕ ∈ V, (3.21)

where ξ(x, t) ∈ α(x, t, u(x, t)) a.e. in Q and η(x, t) ∈ β(x, t, γu(x, t)) a.e. in Γ. Using
the special test function ϕ = (u − ū)+ we obtain by subtracting (3.20) from (3.21) the
inequality

〈∂(u− ū)/∂t + A(u− ū) + ξ − F (ū) + η −G ◦ γ(ū), (u− ū)+〉 ≤ 0. (3.22)

If ξ̄(x, t) = f(x, t, ū(x, t)) then ξ̄(x, t) ∈ α(x, t, ū(x, t)), and thus we have

〈ξ − F (ū), (u− ū)+〉 =

∫

Q

(ξ − ξ̄)(u− ū)+ dxdt

=

∫

{u>ū}

(ξ − ξ̄)(u− ū) dxdt ≥ 0, (3.23)
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and similarly we get

〈η −G ◦ γ(ū), (u− ū)+〉 ≥ 0. (3.24)

Thus from (3.22), (3.23) and (3.24) we obtain the estimate

1

2
‖(u− ū)+(·, T )‖2

L2(Ω) + µ ‖∇(u− ū)+‖2
L2(Q) ≤ 0,

which implies (u− ū)+ = 0, i.e., u ≤ ū. This completes the proof of the lemma.

4 Main Result

The proof of our main result is based on Lemma 3.1 and the following fixed point theorem
in ordered normed spaces, see [3, Proposition 1.1.1].

Lemma 4.1. Let [u, ū] be a nonempty order interval in an ordered normed space (N,≤),
and let P : [u, ū] → [u, ū] be an increasing mapping, i.e., v ≤ w implies Pv ≤ Pw. If
monotone sequences of P([u, ū]) converge weakly or strongly in N , then P has the least
fixed point u∗ and the greatest fixed point u∗ in [u, ū].

Our main result is given by the next theorem.

Theorem 4.1. Let R = [u, ū] be a trapping region in the sense of Definition 2.2. Then
the multivalued system (2.7), (2.8) and its equivalent system of evolution variational in-
equalities (2.9), (2.10) possesses solutions within R.

Proof. For convenience we recall the system (2.9), (2.10) of evolution variational inequal-
ities: Find uk ∈ D(L) such that for all ϕ ∈ V we have

〈Lu1 + A1u1, ϕ− u1〉 + J1(ϕ, u2) − J1(u1, u2)

+Φ1 ◦ γ(ϕ, u2) − Φ1 ◦ γ(u1, u2) ≥ 0, (4.1)

〈Lu2 + A2u2, ϕ− u2〉 + J2(u1, ϕ) − J2(u1, u2)

+Φ2 ◦ γ(u1, ϕ) − Φ2 ◦ γ(u1, u2) ≥ 0, (4.2)

Let u = [u1, u2] and ū = [ū1, ū2]. Then we define first a mapping T as follows: [u1, ū1] 3
v1 7→ T v1 = z, where z is a solution of the evolution variational inequality (4.2) with
u1 := v1 fixed. Applying the property of the trapping region one readily observes that for
any v1 ∈ [u1, ū1] the functions ū2 and u2 are super- and subsolutions for the corresponding
equation related to (4.2), und thus we can apply Lemma 3.1 to ensure the existence of
a unique solution z = T v1 of (4.2) satisfying z ∈ [u2, ū2]. Moreover, by means of the
monotonicity assumptions on f and g we will show that T : [u1, ū1] ⊂ V → [u2, ū2] is
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decreasing. To this end let v1, v̂1 ∈ [u1, ū1] with v1 ≤ v̂1 be given, and denote T v1 = z
and T v̂1 = ẑ. Since z and ẑ are the unique solutions of 4.2 with u1 = v1 and u1 = v̂1,
respectively, we get by adding the corresponding inequalities and using the test function
ϕ = z + (ẑ − z)+ for the inequality in z and ϕ = ẑ − (ẑ − z)+ for the inequality in ẑ the
following:

[

J2(v1, z + (ẑ − z)+) − J2(v1, z) + J2(v̂1, ẑ − (ẑ − z)+) − J2(v̂1, ẑ)
]

+
[

Φ2 ◦ γ(v1, z + (ẑ − z)+) − Φ2 ◦ γ(v1, z)

+Φ2 ◦ γ(v̂1, ẑ − (ẑ − z)+) − Φ2 ◦ γ(v̂1, ẑ)
]

≥ 〈L(ẑ − z) + A2(ẑ − z), (ẑ − z)+〉. (4.3)

Using the definition of the functionals and applying the monotonicity of the vector fields f
and g we are going to show that the brackets on the left-hand side of (4.3) are nonpositive.
Let us consider the first bracket on the left-hand side of (4.3), and discuss its value in the
subsets of Ω according to the partition Ω = {ẑ < z} ∪ {ẑ ≥ z}. For the set {ẑ < z} we
have (ẑ − z)+ = 0 and thus the bracket is zero. For {ẑ ≥ z} we get (ẑ − z)+ = ẑ − z and
thus this bracket becomes

J2(v1, ẑ) − J2(v1, z) + J2(v̂1, z) − J2(v̂1, ẑ)

=

∫

{ẑ≥z}

(

∫ ẑ

z

f2(v1, s) ds
)

dxdt+

∫

{ẑ≥z}

(

∫ z

ẑ

f2(v̂1, s) ds
)

dxdt

=

∫

{ẑ≥z}

(

∫ ẑ

z

(f2(v1, s) − f2(v̂1, s)) ds
)

dxdt ≤ 0,

because v1 ≤ v̂1 and f2 is increasing in its first argument. In a similar way one shows
that the second bracket on the left-hand side of (4.3) is nonpositive. Thus from (4.3) we
obtain

〈L(ẑ − z) + A2(ẑ − z), (ẑ − z)+〉 ≤ 0,

which yields
‖(ẑ − z)+(·, T )‖2

L2(Ω) + µ2‖∇(ẑ − z)+‖2
L2(Q) ≤ 0,

and thus (ẑ − z)+ = 0, i.e., ẑ ≤ z, which shows that T : [u1, ū1] → [u2, ū2] is decreasing.
By means of the evolution variational inequality (4.1) we define a mapping S on the
range of T in the following way: Let z = T v1, then z 7→ Sz := u1, where due to Lemma
3.1 u1 is the uniquely defined solution of the evolution variational inequality (4.1) with
u2 = z fixed, which in view of the property of the trapping region satisfies u1 ∈ [u1, ū1].
Moreover, in an analogous way as for T one can show that S : T ([u1, ū1]) → [u1, ū1] is also
decreasing. Hence, it follows that the composed operator P = S ◦ T : [u1, ū1] → [u1, ū1]
is an increasing operator from the interval [u1, ū1] ⊂ V to itself. To apply the abstract
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fixed point result given in Lemma 4.1 we need to show that any monotone sequence of
the image P([u1, ū1]) converges weakly or strongly in V . So let (u1,n) ⊂ P([u1, ū1]) be
a monotone sequence. Because u1,n ∈ [u1, ū1], the (u1,n) and the sequence (γu1,n) are
bounded in L2(Q) and L2(Γ), respectively, and satisfy the evolution variational inequality

〈Lu1,n + A1u1,n, ϕ− u1,n〉 + J1(ϕ, zn) − J1(u1,n, zn)

+Φ1 ◦ γ(ϕ, zn) − Φ1 ◦ γ(u1,n, zn) ≥ 0, (4.4)

for some zn ∈ [u2, ū2]. Since (zn) and (γzn) are also bounded in L2(Q) and L2(Γ),
respectively, we obtain from (4.4) with ϕ = 0 and by applying the growth condition (H1)
the following estimate

‖u1,n(·, T )‖2
L2(Ω) + µ1 ‖∇u1,n‖

2
L2(Q) ≤ 〈Lu1,n + A1u1,n, u1,n〉 ≤ C, (4.5)

which due to the boundedness of (u1,n) in L2(Q) yields

‖u1,n‖V ≤ C. (4.6)

Since (u1,n) ⊂ [u1, ū1] is monotone, it must be convergent in L2(Q) by Lebesgue’s domi-
nated convergence theorem. In view of (4.6) there exists a subsequence of (u1,n) which is
weakly convergent in V , and because all weakly convergent subsequences have the same
limit, the entire sequence must be weakly convergent. Thus Lemma 4.1 can be applied
which ensures the existence of extremal fixed points of P in [u1, ū1]. Finally, let u1 be any
fixed point of P, i.e., u1 = Pu1 = S(T u1). Then if u2 := T u1, it follows that u = (u1, u2)
is a solution of the system (4.1), (4.2), which completes the proof.

Corollary 4.1. Let u∗1 and u1,∗ be the greatest and least fixed point of P, respectively, and
let u∗2 = T u∗1 and u2,∗ = T u1,∗. Then any solution (u1, u2) of (2.7), (2.8) (resp. (2.9),
(2.10)) within the trapping region R satisfies: u1,∗ ≤ u1 ≤ u∗1, u

∗
2 ≤ u2 ≤ u2,∗.

Proof. Obviously any solution (u1, u2) of the system of evolution variational inequality
(2.9), (2.10) within R satisfies u1 = Pu1 = S(T u1) = Su2, where u2 = T u1. Since u∗1
and u1,∗ are the extremal fixed points of P, we have u1,∗ ≤ u1 ≤ u∗1, and because T is
decreasing it follows T u1,∗ ≥ T u1 ≥ T u∗1, i.e., u2,∗ ≥ u2 ≥ u∗2.

5 Application

In this application, we illustrate the extension of the preceding theory to the case where
first order convection terms are present in the system and where inhomogeneous initial
conditions are selected. Thus, we consider a non-isothermal model of fluid contaminant
transfer, with passive advection induced by a divergence free velocity field, associated
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with an incompressible fluid. The template is a river, flowing with velocity ~v, into which
a heated contaminant is released by one or more service facilities, situated along the river
embankments. The facilities must discharge material when temperature and concentration
exceed threshold values. This constitutes a set of discontinuous flux boundary conditions.
Environmental probes are positioned in such a way that control sinks can be activated for
certain temperature and concentration ranges, so as to reduce both the fluid temperature
Θ and the contaminant concentration ρ. These control activations depend discontinuously
upon Θ and ρ, and act as competitive species vector fields. Since ~v is divergence free, we
have the equations (see [1, Sections 1.4–1.5]):

∂Θ

∂t
−∇· [κ∇Θ] + ~v· ∇Θ + f(Θ, ρ) = 0,

∂ρ

∂t
−∇· [K∇ρ] + ~v· ∇ρ+ g(Θ, ρ) = 0.

(5.1)

These equations arise from conservation principles. The second equation is an expression
of conservation of mass, with the use of Fick’s law for the concentration flux. The first
equation is derived from a conservation of energy principle with certain simplifying as-
sumptions, including constant values for the heat capacity and density of the fluid. In
particular, we are assuming that variations in ρ do not essentially affect the fluid density.
Fourier’s law for the heat flux is also employed. In these equations, κ and K are the cor-
responding thermal and contaminant species diffusivities, assumed constant. The control
source terms are designated by f, g. The boundary conditions are specified as follows.

−
∂Θ

∂νΘ
= a χ[Θ0,∞) ρΘ, −

∂ρ

∂νρ
= b χ[ρ0,∞) ρ. (5.2)

Since the inward heat flux beyond the threshold Θ0 varies according to the product of
concentration and temperature, and the concentration flux beyond the threshold ρ0 varies
according to the concentration, these boundary conditions are monotone in both argu-
ments. Here, a and b are smooth nonnegative functions of position on the boundary, are
nonzero at the locations of the facilities, and smoothly decrease to zero away from facility
locations. Note that the boundary condition for the heat flux is simply the statement that
the flux is proportional to the internal energy of the contaminant. The control mechanism
is not activated until Θ, ρ reach threshold values, Θ1, ρ1, resp., and are defined by

f(Θ, ρ) = d χ[Θ1,∞) ρΘ, g(Θ, ρ) = mχ[ρ1,∞) ρ.

Here, d and m are smooth nonnegative functions of position in Ω, which are nonzero at the
probe locations, and smoothly decrease to zero away from these locations. With the initial
conditions for Θ and ρ arbitrary nonnegative functions Θ̂ and ρ̂ which are mathematically
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and physically consistent, we see that this example fits within an extension of the theory
which allows for the inclusion of convective terms and inhomogeneous initial conditions.
Assuming that Θ̂, ρ̂ ∈ L∞(Ω), one easily verifies that the constant vectors u = (0, 0) and
ū = (sup Θ̂, sup ρ̂) form a trapping region of the IBVP for the coupled system (5.1) with
the boundary condition (5.2).
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