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Abstract

We consider discontinuous quasilinear elliptic systems with nonlinear boundary con-
ditions of mixed Dirichlet-Robin type on the individual components. The system
considered is of the general form Au + f(·, u) = h, where A is a quasilinear ellip-
tic operator of Leray-Lions type, u = (u1, u2), and the vector field f = (f1, f2) is
assumed to be of mixed monotone type associated with competitive or cooperative
species. The vector field f may be discontinuous with respect to all its arguments.
The main goal is to prove the existence of solutions within the so-called trapping
region. Furthermore, if, in addition, the components fk are continuous in their off-
diagonal (nonprincipal) arguments, one can show the compactness of the solution
set within the trapping region. The main tools used in the proof of our main re-
sult are variational inequalities, truncation and comparison techniques employing
special test functions, and Tarski’s fixed point theorem on complete lattices. Two
applications of the theory developed in this paper are provided. The first applica-
tion deals with the steady-state transport of two species of opposite charge within a
physical channel, and in the second application a fluid medium is considered which
may undergo a change of phase, and which acts as a carrier for certain solute species.
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1 Introduction

Let Ω ⊂ RN be a bounded domain with C1-boundary ∂Ω, and Γ ⊂ ∂Ω be
such that ∂Ω \ Γ is a nonempty relatively open C1-portion of ∂Ω (having
positive surface measure). We consider the following elliptic system under
mixed boundary conditions:

Akuk + fk(·, u1, u2) = hk, in Ω,

uk = 0 on ∂Ω \ Γ,
∂uk

∂νk

+ gk(·, uk) = 0 on Γ,
(1.1)

where k = 1, 2, and Ak is a quasilinear elliptic operator of Leray-Lions type
in the form

Akw(x) = −
N∑

i=1

∂

∂xi

a
(k)
i (x,∇w(x)),

∂/∂νk denotes the outer conormal derivative on Γ related to Ak. Since we
allow each component fk : Ω × R × R → R of the vector field f = (f1, f2)
to be discontinuous in all its arguments, the structure of the vector field f is
significant. We shall impose mixed monotonicity properties on f that include
models of cooperative and competing species.

In this paper we extend the results obtained by the second author in [8] and
provide an alternative approach to deal with discontinuous systems. One of
the goals of this paper is to provide a natural category of discontinuous sys-
tems of mixed monotone type for which solutions do occur in the so called
trapping region formed by appropriately defined upper and lower solutions of
(1.1). Moreover, we prove the compactness of the solution set enclosed by the
trapping region when the components fk are, in addition, continuous in their
nonprincipal arguments. By a principal argument we mean the argument uk

of fk. Applications of the theory developed here will be given.

While for continuous vector fields of Carathéodory type, even without any
monotonicity conditions, this kind of trapping principle is well known (see,
e.g., [2,10]), things become much more involved in case of discontinuous vector
fields. Semilinear discontinuous systems in the form Au = f(·, u) with Au =
(A1u1, ..., ANuN), f = (f1, ..., fN ) and u = (u1, ..., uN ) have been treated in
[4,11], and the existence of solutions within the trapping region of upper and
lower solutions has been proved provided that there is a vector field M(u) =
(M1(u1), ...,MN (uN)) of increasing and continuous functions Mk(uk) such that
the modified vector field f(u) + M(u) is monotone increasing. The mixed
monotonicity assumed in the present paper differs from that in the above
cited papers [4,11] and requires different tools. As will be seen later there are
simple examples of discontinuous cooperative systems showing that there are
no solutions at all in the conventional sense within the trapping region. Thus,
it will be necessary for us to interpret ’solution’ of (1.1) as solution of an
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associated multivalued system, whose precise definition will be given in the
next section.

The primary tools used in the proof of our main result are variational inequal-
ities, truncation and comparison techniques employing special test functions,
and Tarski’s fixed point theorem on complete lattices. The paper is organized
as follows: In section 2 we define the trapping region and introduce an appro-
priate notion of solution of the problem under consideration motivated by a
simple example. In section 3 we provide some tools, which will be used to prove
our main result in section 4. Relevant applications will be given in section 5
to demonstrate the applicability of the obtained results.

2 Notations and Hypotheses

Let V := W 1,p(Ω) denote the usual (real) Sobolev space with 1 < p < ∞, and
let V0 ⊂ V be the subspace of V defined by

V0 = {u ∈ V | γu = 0 on ∂Ω \ Γ},

where γ : V → Lp(∂Ω) is the trace operator which is linear and compact, cf.,
e.g., [9]. (In what follows we keep the notation γ also for its restriction to Γ.)

We introduce the natural partial ordering in Lp(Ω), that is u ≤ w if and only if
w−u belongs to the positive cone Lp

+(Ω) of all nonnegative elements of Lp(Ω),
which induces also a partial ordering in the Sobolev space V . If u,w ∈ V and
u ≤ w then

[u,w] = {v ∈ V | u ≤ v ≤ w}
denotes the order interval formed by u and w.

We assume hk ∈ V ∗, where V ∗ is the dual space of V , and suppose for the
data of the boundary value problem (1.1) the following regularity and growth
conditions:

(A1) The coefficients a
(k)
i : Ω × RN → R, i = 1, . . . , N are Carathéodory

functions, i.e. each a
(k)
i (x, ξ) is measurable in x ∈ Ω for all ξ ∈ RN and

continuous in ξ ∈ RN for a.e. x ∈ Ω. There is a constant c1 > 0 and a
function k1 ∈ Lq

+(Ω) with q being the conjugate real, i.e., 1/p + 1/q = 1,
such that for k = 1, 2,

|a(k)
i (x, ξ)| ≤ k1(x) + c1 |ξ|p−1,

for a.e. x ∈ Ω and for all ξ ∈ RN .
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(A2)
N∑

i=1

(a
(k)
i (x, ξ)− a

(k)
i (x, ξ′))(ξi − ξ′i) ≥ µ |ξ − ξ′|p, k = 1, 2,

for a.e. x ∈ Ω and for all ξ, ξ′ ∈ RN with µ being some positive constant.
(H1) The components fk : Ω× R× R → R of the vector field f = (f1, f2) are

required to be Baire-measurable, and there is a function k2 ∈ Lq
+(Ω) such

that

|fk(x, r, s)| ≤ k2(x), k = 1, 2, (2.1)

for a.e. x ∈ Ω and (r, s) ∈ [(w1(x), w2(x)), (v1(x), v2(x))], where
[(w1, w2), (v1, v2)] denotes some order interval in Lp(Ω) × Lp(Ω) with

componentwise ordering, i.e., (w1, w2) ≤ (v1, v2) iff w1 ≤ v1 and w2 ≤ v2.
(H2) The nonlinearities of the boundary conditions gk : Γ × R → R are

Carathéodory functions, and there is some k3 ∈ Lq
+(Γ) such that

|gk(x, s)| ≤ k3(x), k = 1, 2, (2.2)

for a.e. x ∈ Γ and for all s ∈ [γwk(x), γvk(x)] with [wk, vk] ∈ V being
some order interval. Moreover, s 7→ gk(x, s) is increasing for a.e. x ∈ Γ.

Remark 2.1. According to hypothesis (H1) the components fk of the vec-
tor field f may be discontinuous in all their arguments, and are required
to satisfy only a local Lq(Ω)-boundedness condition within some interval,
which is weaker than the usual growth condition in the form |fk(x, r, s)| ≤
k2(x) + c (|r|p−1 + |s|p−1). The summation exponent of the bound k2 can be
improved by means of the Sobolev embedding theorem, which, however, has
been omitted. The Baire-measurability of the components fk, in particular, im-
plies that the fk are superpositionally measurable, i.e., whenever u, v : Ω → R
are measurable then also the superposition x 7→ fk(x, u(x), v(x)) is a measur-
able function in Ω. By hypothesis (H2) we impose a boundedness only within
some interval. The intervals for both (H1) and (H2) will be specified later. Ho-
mogeneous Dirichlet conditions have been assumed without loss of generality,
since nonhomogeneous Dirichlet data can be reduced to homogeneous ones by
simple translation without changing the structure of the BVP (1.1).

Let a(k) denote the semilinear form associated with the differential operator
Ak by

〈Aku, ϕ〉 := a(k)(u, ϕ) =
∫
Ω

N∑
i=1

a
(k)
i (x,∇u)

∂ϕ

∂xi

dx , ∀ϕ ∈ V0.

Then by hypotheses (A1) the operator Ak : V → V ∗
0 is continuous and

bounded, and by (A2) the operator Ak : V0 → V ∗
0 is uniformly monotone,
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since in V0 an equivalent norm is given by

‖u‖p
V0

=
∫
Ω
|∇u|p dx.

Mixed monotone structure of the vector field. We distinguish two
classes of vector fields corresponding to models of competing and cooperating
species.

Competing Species: f1(·, u1, u2) and f2(·, u1, u2) are both separately increas-
ing in u1, u2.

Cooperating Species: f1(·, u1, u2) is increasing in u1, and decreasing in u2;
f2(·, u1, u2) is decreasing in u1, and increasing in u2.

Definition 2.1 Let ū = (ū1, ū2) and u = (u1, u2) be from V × V such that
u ≤ ū. The interval [u, ū] ⊂ V × V is called a trapping region for the BVP
(1.1) if (2.1) and (2.2) are satisfied with respect to [u, ū] and [uk, ūk] k = 1, 2,
respectively, and if the following inequalities hold:

A1ū1 + f1(·, ū1, v) ≥ h1, ∀ v ∈ [u2, ū2],

A2ū2 + f2(·, v, ū2) ≥ h2, ∀ v ∈ [u1, ū1],

ūk ≥ 0 on ∂Ω \ Γ,
∂ūk

∂νk

+ g(·, ūk) ≥ 0 on Γ,

(2.3)

A1u1 + f1(·, u1, v) ≤ h1, ∀ v ∈ [u2, ū2],

A2u2 + f2(·, v, u2) ≤ h2, ∀ v ∈ [u1, ū1],

uk ≤ 0 on ∂Ω \ Γ,
∂uk

∂νk

+ g(·, uk) ≤ 0 on Γ.

(2.4)

Remark 2.2. The inequalities (2.3) and (2.4) have to be understood in a weak
sense, i.e., as inequalities with respect to the dual order cone in V ∗

0 , which for
example for the component ū1 of (2.3) reads as follows: γū1 ≥ 0 on ∂Ω\Γ and

a(1)(ū1, ϕ)+
∫
Γ
g1(·, γū1) γϕ dΓ +

∫
Ω

f1(·, ū1, v) ϕdx ≥ 〈h1, ϕ〉,
∀ v ∈ [u2, ū2], ∀ ϕ ∈ V0 ∩ Lp

+(Ω).

In the case that hk = 0, gk(·, s) = 0 and Ak are second order linear elliptic
operators in divergence form, inequalities (2.3) and (2.4) correspond with the
property of an outward pointing vector field on the boundary of a rectangle
Q formed by constant vectors u, ū ∈ R2, cf. [8].

Our main goal is to show that under hypotheses (A1), (A2), (H1) and (H2)
each trapping region for (1.1) contains al least one solution of the BVP (1.1).
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The following example provides some motivation for what is meant by a solu-
tion of the BVP (1.1).

Example. Let p = 2, Ak = −∆, hk = 0, and gk(·, s) = 0, and consider the
simple system (k = 1, 2)

∆uk = fi(u1, u2), in Ω (2.5)

uk = 0 on ∂Ω \ Γ,
∂uk

∂n
= 0 on Γ, (2.6)

where the vector field f = (f1, f2) is given by

f1(u1, u2) =



−1 if u1 ≤ 0

0 if u1 > 0 ,

f2(u1, u2) = 0.

One readily verifies that the given vector field is a model of cooperative species,
and that [u, ū] with u = (0, 0) and ū = (b, b) for any fixed b > 0 forms a
trapping region according to Definition 2.1; or, in other words, the property
of an outward pointing vector field on the boundary of the rectangle Q =
[0, b] × [0, b] is satisfied. However, there are no solutions in the conventional
sense within the trapping region, and, moreover, there are no solutions at
all. This can be seen as follows. Our proof is by contradiction. Assume there
would be a solution; then from the second equation together with the boundary
conditions we infer that u2 = 0 is the uniquely defined solution component.
When this is substituted into the first equation, we see that u1 has to satisfy
the following boundary value problem:

∆u1 = f1(u1, 0) in Ω, u1 = 0 on ∂Ω \ Γ,
∂u1

∂n
= 0 on Γ, (2.7)

whose weak formulation reads as∫
Ω
(∇u1∇ϕ + f1(u1, 0) ϕ) dx = 0, ∀ϕ ∈ V0. (2.8)

Taking in (2.8) the special test function ϕ = u1, we obtain
∫
Ω
(∇u1)

2 dx +
∫
Ω

f1(u1, 0) u1 dx = 0. (2.9)

Since the second integral in (2.9) is nonnegative we obtain
∫
Ω
(∇u1)

2 dx ≤ 0,

which implies u1 = 0. However (u1, u2) = (0, 0) is not a solution of (2.5), (2.6);
thus we arrive at a contradiction.
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This shows that the notion of solution must be extended. For this purpose
we introduce the following multivalued vector field β = (β1, β2), which is
associated with the given vector field f = (f1, f2) by:

β1(·, u1, u2) = [f1(·, u1 − 0, u2), f1(·, u1 + 0, u2)],

β2(·, u1, u2) = [f2(·, u1, u2 − 0), f2(·, u1, u2 + 0)],
(2.10)

where f1(·, u1 ± 0, u2) and f2(·, u1, u2 ± 0) denote the one-sided limits of f1

and f2 with respect to the principal argument. Thus for both models βk :
Ω×R×R → 2R \∅ is a maximal monotone graph with respect to its principal
argument. Now by a solution of the BVP (1.1) we mean a solution of the
following associated system of elliptic inclusions: (k = 1, 2)

Akuk + βk(·, u1, u2) 3 hk, in Ω,

uk = 0 on ∂Ω \ Γ,
∂uk

∂νk

+ gk(·, uk) = 0 on Γ.
(2.11)

The weak formulation of the multivalued system (2.11) is given by the next
definition.

Definition 2.2. The couple of pairs {(u1, w1), (u2, w2)} ∈ (V0×Lq(Ω))×(V0×
Lq(Ω)) is called a solution of the system (2.11) if for k = 1, 2, the following is
fulfilled:

(i) wk(x) ∈ βk(x, u1(x), u2(x)) for a.e. x ∈ Ω;
(ii) a(k)(uk, ϕ) +

∫
Γ gk(·, γuk) γϕ dΓ +

∫
Ω wk ϕdx = 〈hk, ϕ〉, ∀ϕ ∈ V0.

Remark 2.3. In the sense of Definition 2.2 the above example possesses the
unique solution {(u1, w1), (u2, w2)} = {(0, 0), (0, 0)}.

Our main goal is to provide existence and compactness results within the
trapping region for the multivalued version (2.11) of the BVP (1.1). Before
proving our main result we provide in the next section some preliminaries.

3 Preliminaries

Let [u, ū] ⊂ V × V be a trapping region for the BVP (1.1) according to Defi-
nition 2.1, and let α > 0 be any given constant. Assume that (2.1) of (H1) is
satisfied with respect to the order interval [u−(α, α), ū+(α, α)], and (H2) with
respect to [uk, ūk], k = 1, 2, where uk and ūk are the components of u and ū of
the trapping interval. Also hypotheses (A1) and (A2) are assumed throughout
this section. For η = 0, η = α, and k = 1, 2, we introduce truncation operators
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T η
k by

T η
k u(x) =




ūk(x) + η if u(x) > ūk(x) + η ,

u(x) if uk(x)− η ≤ u(x) ≤ ūk(x) + η ,

uk(x)− η if u(x) < uk(x)− η .

It is well known that T η
k : V → V are continuous and bounded, cf., e.g., [3,6].

By means of T η
k we define a new vector field which is related to f = (f1, f2)

by

fα
1 (x, u1(x), u2(x)) := f1(x, Tα

1 u1(x), u2(x)),

fα
2 (x, u1(x), u2(x)) := f2(x, u1(x), Tα

2 u2(x)),
(3.1)

and consider the following functionals

J1(u1, u2) :=
∫
Ω

(∫ u1(x)

0
fα

1 (x, s, u2(x)) ds
)

dx,

J2(u1, u2) :=
∫
Ω

(∫ u2(x)

0
fα

2 (x, u1(x), s) ds
)

dx.

(3.2)

Lemma 3.1. In either case of the two classes of vector fields f we have that
for any v2 ∈ [u2, ū2] the functional J1(·, v2) : Lp(Ω) → R is Lipschitz continu-
ous, convex, and the subdifferential of J1 with respect to its principal argument
is given by

∂1J1(u1, v2)(x) = [fα
1 (x, u1(x)− 0, v2(x)), fα

1 (x, u1(x) + 0, v2(x))] ⊂ Lq(Ω),
(3.3)

which holds in Lp(Ω) and in V as well. Analogously, for any v1 ∈ [u1, ū1],
the functional J2(v1, ·) : Lp(Ω) → R is Lipschitz continuous, convex, and the
subdifferential with respect to its principal argument is given by

∂2J2(v1, u2)(x) = [fα
2 (x, v1(x), u2(x)− 0), fα

2 (x, v1(x), u2(x) + 0)] ⊂ Lq(Ω).
(3.4)

Proof. By hypothesis (H1) and the definition of the truncations the function
(x, s) 7→ fα

1 (x, s, v2(x)) is Baire-measurable and dominated by k2 ∈ Lq
+(Ω),

which yields

|J1(u1, v2)−J1(û1, v2)| ≤
∫
Ω

k2(x)|u1(x)− û1(x)| dx ≤ ‖k2‖Lq(Ω)‖u1− û1‖Lp(Ω),

i.e., Lipschitz continuity. Furthermore, since s 7→ fα
1 (x, s, v2(x)) is increasing

for both classes of vector fields, the functional J1(·, v2) : Lp(Ω) → R is convex.
Thus, due to Chang [5, Theorem 2.3] the subdifferential ∂1J1(u1, v2) is given
by (3.3). ¤
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We associate with the system (2.11) of inclusions the following ‘truncated’
system of variational inequalities: Find u = (u1, u2) ∈ V0 × V0 such that for
all ϕ ∈ V0

a(1)(u1, ϕ− u1) +
∫
Γ
g1(·, T 0

1 γu1) (γϕ− γu1) dΓ

+ J1(ϕ, u2)− J1(u1, u2) ≥ 〈h1, ϕ− u1〉,
a(2)(u2, ϕ− u2) +

∫
Γ
g2(·, T 0

2 γu2) (γϕ− γu2) dΓ

+ J2(u1, ϕ)− J2(u1, u2) ≥ 〈h2, ϕ− u2〉,

(3.5)

where the truncations T 0
k acting on the traces are defined in a similar way as

for functions on Ω. System (3.5) will play a crucial role in the proof of our
main result.

Lemma 3.2. Let [u, ū] ⊂ V × V be the given trapping region. Under the
hypotheses of this section u ∈ [u, ū] is a solution of the system (2.11) if and
only if u is a solution of the system of variational inequalities (3.5).

Proof. Let u ∈ [u, ū] be a solution of (3.5). Then T 0
k uk = uk for k = 1, 2. By

hypothesis (H2) the operator Gk : V0 → V ∗
0 given by

〈Gkuk, ϕ〉 =
∫
Γ
gk(·, T 0

k γuk) γϕ dΓ, ∀ ϕ ∈ V0

is well-defined (even continuous and bounded), and yields for u ∈ [u, ū]

〈Gkuk, ϕ〉 =
∫
Γ
gk(·, γuk) γϕ dΓ.

From (3.5) we obtain

−Akuk −Gkuk + hk ∈ ∂kJk(u1, u2), in V ∗
0 . (3.6)

In view of Lemma 3.1 we have ∂kJk(u1, u2) ⊂ Lq(Ω) ⊂ V ∗
0 , and thus by (3.6)

there is a function wk ∈ Lq(Ω) satisfying

−Akuk −Gkuk + hk = wk in V ∗
0 . (3.7)

Furthermore, by (3.3) and (3.4) we have

w1(x) ∈[fα
1 (x, u1(x)− 0, u2(x)), fα

1 (x, u1(x) + 0, u2(x))]

= β1(x, u1(x), u2(x)),

w2(x) ∈[fα
2 (x, u1(x), u2(x)− 0), fα

2 (x, u1(x), u2(x) + 0)]

= β2(x, u1(x), u2(x)),

(3.8)

where the equalities on the right-hand side of (3.8) are a consequence of
Tα

k (uk ± ε) = uk ± ε for any ε ∈ (0, α). But (3.7) and (3.8) are nothing
else than the weak formulation of (2.11) according to Definition 2.2.
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Conversely, let u ∈ [u, ū] be a solution of (2.11), which, according to Defi-
nition 2.2, means that there are wk ∈ Lq(Ω), k = 1, 2, such that wk(x) ∈
βk(x, u1(x), u2(x)) for a.e. x ∈ Ω and

a(k)(uk, ϕ) +
∫
Γ
gk(·, γuk) γϕ dΓ +

∫
Ω

wk ϕdx = 〈hk, ϕ〉, ∀ ϕ ∈ V0. (3.9)

Since u ∈ [u, ū], it follows that its components u1 and u2 satisfy the identity

β1(x, u1(x), u2(x)) = [fα
1 (x, u1(x)− 0, u2(x)), fα

1 (x, u1(x) + 0, u2(x))],

β2(x, u1(x), u2(x)) = [fα
2 (x, u1(x), u2(x)− 0), fα

2 (x, u1(x), u2(x) + 0)].

(3.10)

The function (x, s) 7→ fα
1 (x, s, u2(x)) is superpositionally measurable, increas-

ing in s and dominated by k2 ∈ Lq(Ω), which implies for a.e. x ∈ Ω the
inequality

w1(x)(ϕ(x)− u1(x)) ≤
∫ ϕ(x)

u1(x)
fα

1 (x, s, u2(x)) ds, ∀ ϕ ∈ Lp(Ω),

and thus integration over Ω yields

∫
Ω

w1(ϕ− u1) dx ≤ J1(ϕ, u2)− J1(u1, u2). (3.11)

The last inequality, in particular, holds for all ϕ ∈ V0. Replacing ϕ in (3.9)
for k = 1 by ϕ− u1 and using (3.11) we obtain the first variational inequality
of (3.5). Here we have used also the fact that T 0

1 u1 = u1 within the trapping
region. The second variational inequality of (3.5) can be deduced in just the
same way, which completes the proof. ¤

The next lemma provides an existence and uniqueness result for the individual
variational inequalities of (3.5) with respect to their principal argument while
the other is fixed. More precisely we have the following result.

Lemma 3.3. Let v2 ∈ [u2, ū2] be fixed. Then the following variational inequal-
ity has a uniquely defined solution: Find u1 ∈ V0 such that for all ϕ ∈ V0

a(1)(u1, ϕ− u1) +
∫
Γ
g1(·, T 0

1 γu1) (γϕ− γu1) dΓ

+ J1(ϕ, v2)− J1(u1, v2) ≥ 〈h1, ϕ− u1〉.
(3.12)

Replace u1 in the second variational inequality of (3.5) by any fixed v1 ∈
[u1, ū1]; then analogously there exists a unique solution u2 ∈ V0 of

a(2)(u2, ϕ− u2) +
∫
Γ
g2(·, T 0

2 γu2) (γϕ− γu2) dΓ

+ J2(v1, ϕ)− J2(v1, u2) ≥ 〈h2, ϕ− u2〉.
(3.13)
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Proof. The proof will be given only for the variational inequality (3.12), since
the proof for (3.13) follows in just the same way. By (A1) and (A2) the operator
A1 : V0 → V ∗

0 that is associated with the semilinear form a(1) is continuous,
bounded and uniformly monotone. By (H2) the operator G1 : V0 → V ∗

0 given
by

〈G1u1, ϕ〉 =
∫
Γ
g1(·, T 0

1 γu1) γϕ dΓ, ∀ ϕ ∈ V0,

is continuous, bounded, and, in view of the monotonicity of g1(x, s) in s,
also monotone. Thus the sum A1 + G1 : V0 → V ∗

0 is continuous, bounded,
and uniformly monotone, which, in particular, implies the coercivity of A1 +
G1. Since the functional J1(·, v2) : V0 → R is convex and continuous (even
Lipschitz continuous), the existence of a uniquely defined solution of (3.12)
follows from [13, Theorem 54.A]. ¤

4 Main results

In this section we prove the existence of solutions within the trapping region of
the system of elliptic inclusions (2.11) which is the multivalued version of the
BVP (1.1). The two classes of models, the competing species and cooperating
species, will be treated separately. One of the main tools in the proofs is
Tarski’s fixed point theorem, which we recall in Lemma 4.1, cf., e.g., [12,
Theorem 11.E.].

Lemma 4.1. Every monotone increasing mapping P : X → X on a complete
lattice X has a smallest and a greatest fixed point.

Theorem 4.1. Let f = (f1, f2) be the vector field corresponding to the com-
peting species model. Assume (A1) and (A2), and let [u, ū] ⊂ V × V be
a trapping region for the BVP (1.1) according to Definition 2.1. Let α >
0 be any given constant so that (2.1) of (H1) is satisfied with respect to
[u−(α, α), ū+(α, α)], and (H2) with respect to [uk, ūk], k = 1, 2, where uk and
ūk are the components of u and ū of the trapping interval. Then there exist
solutions of the system (2.11) within [u, ū].

Proof. By means of Lemma 3.2 the existence of solutions for (2.11) is equiva-
lent to the existence of solutions for the system of variational inequalities (3.5)
within [u, ū]. Its proof is mainly based on Tarski’s fixed point theorem. To this
end the system (3.5), which is given by the following two coupled variational
inequalities for (u1, u2) ∈ V0 × V0,

a(1)(u1, ϕ− u1) +
∫
Γ
g1(·, T 0

1 γu1) (γϕ− γu1) dΓ

+ J1(ϕ, u2)− J1(u1, u2) ≥ 〈h1, ϕ− u1〉, ∀ ϕ ∈ V0,
(4.1)
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a(2)(u2, ϕ− u2) +
∫
Γ
g2(·, T 0

2 γu2) (γϕ− γu2) dΓ

+ J2(u1, ϕ)− J2(u1, u2) ≥ 〈h2, ϕ− u2〉, ∀ ϕ ∈ V0,
(4.2)

is turned into a fixed point problem for an operator P := S◦R on the complete
lattice [u1, ū1] ⊂ Lp(Ω) which will be shown to be increasing. The operator R
of the composition is defined on [u1, ū1] by means of the variational inequality
(4.2) as follows: v1 ∈ [u1, ū1], v1 7→ Rv1 := z, where z is the uniquely defined
solution of

a(2)(z, ϕ− z) +
∫
Γ
g2(·, T 0

2 γz) (γϕ− γz) dΓ

+ J2(v1, ϕ)− J2(v1, z) ≥ 〈h2, ϕ− z〉, ∀ ϕ ∈ V0.
(4.3)

The existence of a unique solution of (4.3) is ensured by Lemma 3.3. Next we
show that the range of R is in [u2, ū2] and that R has the following mono-
tonicity property.

Lemma 4.2. R : [u1, ū1] → [u2, ū2] is decreasing (antitone), i.e., v1 ≤ v̂1 =⇒
z ≥ ẑ, where z = Rv1 and ẑ = Rv̂1.

Proof. To show R : [u1, ū1] → [u2, ū2], we recall the definition of ū2 in its
weak formulation (see Definition 2.1): ū2 ∈ V and γū2 ≥ 0 on ∂Ω \ Γ and

a(2)(ū2, ϕ)+
∫
Γ
g2(·, γū2) γϕ dΓ +

∫
Ω

f2(·, v1, ū2) ϕdx ≥ 〈h2, ϕ〉,
∀ v1 ∈ [u1, ū1], ∀ ϕ ∈ V0 ∩ Lp

+(Ω).
(4.4)

Since f2(·, v1, ū2) ∈ β2(·, v1, ū2) we obtain
∫
Ω

f2(·, v1, ū2)(ϕ− ū2) dx ≤ J2(v1, ϕ)− J2(v1, ū2), ∀ ϕ ∈ Lp(Ω),

which, in particular, yields with ϕ = ū2 + (z − ū2)
+

∫
Ω

f2(·, v1, ū2)(z − ū2)
+ dx ≤ J2(v1, (z − ū2)

+ + ū2)− J2(v1, ū2), (4.5)

where w+ := max(w, 0). Since (z− ū2)
+ ∈ V0∩Lp

+(Ω), we may take it as a spe-
cial test function in (4.4), and obtain in view of (4.5) the following inequality
for ū2:

a(2)(ū2, (z − ū2)
+) +

∫
Γ
g2(·, γū2) γ(z − ū2)

+ dΓ

+ J2(v1, ū2 + (z − ū2)
+)− J2(v1, ū2) ≥ 〈h2, (z − ū2)

+〉.
(4.6)

Taking in (4.3) the special test function ϕ = z − (z − ū2)
+ we obtain

a(2)(z,−(z − ū2)
+)−

∫
Γ
g2(·, T 0

2 γz) γ(z − ū2)
+) dΓ

+ J2(v1, z − (z − ū2)
+)− J2(v1, z) ≥ 〈h2,−(z − ū2)

+〉.
(4.7)
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Summing up (4.6) and (4.7) gives

a(2)(z, (z − ū2)
+)− a(2)(ū2, (z − ū2)

+)

+
∫
Γ
(g2(·, T 0

2 γz)− g2(·, γū2)) γ(z − ū2)
+ dΓ

≤ J2(v1, ū2 + (z − ū2)
+)− J2(v1, ū2) + J2(v1, z − (z − ū2)

+)− J2(v1, z).

(4.8)

By (A2) we have an estimate in the form

µ ‖∇(z − ū2)
+‖p

Lp(Ω) ≤ a(2)(z, (z − ū2)
+)− a(2)(ū2, (z − ū2)

+). (4.9)

The boundary integral turns out to be zero. This can easily be seen by de-
composing Γ into the two disjoint parts Γ = {γz ≥ γū2} ∪ {γz < γū2}, and
discussing the two resulting boundary integrals separately by using T 0

2 γz =
γū2 on {γz ≥ γū2}, and γ(z − ū2)

+ = 0 on {γz < γū2}. The right-hand
side of (4.8) is zero, which follows in a similar way by decomposing Ω into
Ω = {z ≥ ū2} ∪ {z < ū2}, and discussing the individual integrals. Thus from
(4.9) it follows

‖∇(z − ū2)
+‖p

Lp(Ω) = 0,

which implies in view of (z − ū2)
+ ∈ V0 that (z − ū2)

+ = 0, i.e., z ≤ ū2.
Analogously one can prove u2 ≤ z, which shows R : [u1, ū1] → [u2, ū2].

To show that R is antitone, let z = Rv1 and ẑ = Rv̂1 with v1 ≤ v̂1. From the
defining variational inequality (4.3) of R, we obtain by choosing the special
test functions ϕ = z + (ẑ − z)+ and ϕ = ẑ − (ẑ − z)+ in case of the solutions
z and ẑ, respectively, the following inequalities:

a(2)(z, (ẑ − z)+) +
∫
Γ
g2(·, T 0

2 γz) γ(ẑ − z)+ dΓ

+ J2(v1, z + (ẑ − z)+)− J2(v1, z) ≥ 〈h2, (ẑ − z)+〉.
(4.10)

a(2)(ẑ,−(ẑ − z)+)−
∫
Γ
g2(·, T 0

2 γẑ) γ(ẑ − z)+ dΓ

+ J2(v̂1, ẑ − (ẑ − z)+)− J2(v̂1, ẑ) ≥ 〈h2,−(ẑ − z)+〉.
(4.11)

Summing up (4.10) and (4.11) and taking into account that s 7→ g2(·, s) is
increasing, we obtain

a(2)(ẑ, (ẑ − z)+)− a(2)(z, (ẑ − z)+)

≤ J2(v1, z + (ẑ − z)+)− J2(v1, z) + J2(v̂1, ẑ − (ẑ − z)+)− J2(v̂1, ẑ).
(4.12)

We discuss the right-hand side of (4.12) by using the definition of the functional
J2 given in (3.2) and by employing the monotonicity property of f2 in the
competing species case, as well as the decomposition of Ω = {ẑ ≥ z}∪{ẑ < z}.
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Let us denote the right-hand side of (4.12) by J . Then it can easily be seen
that the integral contribution is zero for x ∈ {ẑ < z}, and thus

J =
∫
{ẑ≥z}

(∫ ẑ(x)

0
fα

2 (x, v1(x), s)−
∫ z(x)

0
fα

2 (x, v1(x), s) ds
)

dx

+
∫
{ẑ≥z}

(∫ z(x)

0
fα

2 (x, v̂1(x), s)−
∫ ẑ(x)

0
fα

2 (x, v̂1(x), s) ds
)

dx

=
∫
{ẑ≥z}

(∫ ẑ(x)

z(x)

(
fα

2 (x, v1(x), s)− fα
2 (x, v̂1(x), s)

)
ds

)
dx

≤ 0.

(4.13)

By (A2) we obtain in view of (4.12), (4.13)

µ ‖∇(ẑ − z)+‖p
Lp(Ω) ≤ a(2)(ẑ, (ẑ − z)+)− a(2)(z, (ẑ − z)+) ≤ 0,

which implies (ẑ − z)+ = 0, and thus ẑ ≤ z, i.e., R is antitone or decreasing.
¤

By means of (4.1) we define the operator S in the composition P = S ◦ R on
the range of R as follows: z = Rv1 ∈ [u2, ū2], z 7→ Sz = u1, where u1 is the
uniquely defined solution of the variational inequality:

a(1)(u1, ϕ− u1) +
∫
Γ
g1(·, T 0

1 γu1) (γϕ− γu1) dΓ

+ J1(ϕ, z)− J1(u1, z) ≥ 〈h1, ϕ− u1〉, ∀ ϕ ∈ V0.
(4.14)

The following result for the operator S can be proved in just the same way as
Lemma 4.2.

Lemma 4.3. S : R([u1, ū1]) ⊂ [u2, ū2] → [u1, ū1] is decreasing (antitone),
i.e., z ≤ ẑ =⇒ u1 ≥ û1, where u1 = Sz and û1 = Sẑ.

To complete the existence proof of Theorem 4.1 we note that by Lemma 4.2
and Lemma 4.3 the operator P = S ◦ R : [u1, ū1] → [u1, ū1] is well-defined
and, as the composition of two decreasing operators, P is increasing. Since
[u1, ū1] ⊂ Lp(Ω) is a complete lattice, we may apply Lemma 4.1 (Tarski’s
fixed point theorem), which asserts the existence of greatest and smallest fixed
points of P . Let u1 be any fixed point of P , i.e., u1 = Pu1 = S(Ru1), and
denote u2 = Ru1, then one readily verifies that the pair (u1, u2) ∈ [u, ū] is a
solution of the coupled system (3.5) of variational inequalities, and thus of the
system (2.11), which completes the proof of Theorem 4.1. ¤

Corollary 4.1. Let the cartesian product Lp(Ω)×Lp(Ω) be equipped with the
partial ordering ¹, defined by

(u1, u2) ¹ (w1, w2) ⇐⇒ u1 ≤ w1 ∧ u2 ≥ w2,
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where the order for the components is the usual natural partial ordering in
Lp(Ω) introduced in section 2. Then under the hypotheses of Theorem 4.1
there exist a greatest and a smallest solution of the multivalued system (2.11)
within the trapping region [u, ū] with respect to the ordering ¹.

Proof. First one readily observes that u = (u1, u2) is a solution of (2.11) if and
only if it defines a fixed point of the operator P = S◦R. Let u∗1 and u1,∗ denote
the greatest and smallest fixed point of P in [u1, ū1], respectively, obtained by
Tarski’s fixed point theorem. Define u∗2 := Ru∗1 and u2,∗ := Ru1,∗. Then for
any solution u = (u1, u2) one easily gets u∗ ¹ u ¹ u∗ with u∗ = (u1,∗, u2,∗)
and u∗ = (u∗1, u

∗
2). ¤

Denote by S the set of all solutions of (2.11) within the trapping region.
Then under additional continuity assumptions of the components fk in their
nonprincipal arguments we show the following compactness result.

Corollary 4.2. Let the hypotheses of Theorem 4.1 be satisfied, and assume,
in addition, to hypothesis (H2) that each fk, k = 1, 2, is continuous in its
nonprincipal argument uniformly with respect to its principal argument, i.e.,
sj 7→ fk(·, s1, s2) is continuous for j = 1, 2, with j 6= k uniformly in sk. Then
S is compact in V0 × V0.

Proof. Any element u ∈ S satisfies the system (3.5) of variational inequalities
written in the form

〈A1u1, ϕ− u1〉+ 〈G1u1, ϕ− u1〉
+ J1(ϕ, u2)− J1(u1, u2) ≥ 〈h1, ϕ− u1〉, ∀ ϕ ∈ V0,

(4.15)

〈A2u2, ϕ− u2〉+ 〈G2u2, ϕ− u2〉
+ J2(u1, ϕ)− J2(u1, u2) ≥ 〈h2, ϕ− u2〉, ∀ ϕ ∈ V0,

(4.16)

where for k = 1, 2,

〈Gkuk, ϕ〉 =
∫
Γ
gk(·, T 0

k γuk) γϕ dΓ, ∀ ϕ ∈ V0.

We show first that the functionals Jk : [u, ū] ⊂ Lp(Ω)× Lp(Ω) → R, k = 1, 2,
are continuous, i.e., Jk(u1,n, u2,n) → Jk(u1, u2) whenever (u1,n, u2,n) → (u1, u2)
in Lp(Ω)× Lp(Ω). Let k = 1. By Lemma 3.1 we already know that J1(·, u2) :
[u1, ū1] → R is uniformly Lipschitz continuous in its principal argument. Thus
we only need to show that J1(u1, ·) : [u2, ū2] → R is continuous for fixed princi-
pal argument u1. This latter, however, follows from the continuity assumption
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of f1(·, s1, s2) in its nonprincipal argument s2 as follows.

|J1(u1, u2,n)− J1(u1, u2)|
=

∣∣∣∣
∫
Ω

(∫ u1(x)

0

(
fα

1 (x, s, u2,n(x))− fα
1 (x, s, u2(x))

)
ds

)
dx,

≤
(∫ 1

0
‖Fα

1 (s(t), u2,n)− Fα
1 (s(t), u2)‖Lq(Ω) dt

)
‖u1‖Lp(Ω),

(4.17)

where Fα
1 denotes the Nemytskij operator associated with fα

1 , and where we
have used the substitution s(t)(x) := tu1(x), t ∈ [0, 1]. Since the Nemytskij
operator F α

1 (s(t), ·) : Lp(Ω) → Lq(Ω) is continuous uniformly in its principal
argument, the right-hand side of (4.17) tends to zero as n → ∞, and thus
the continuity of J1 : [u, ū] ⊂ Lp(Ω) × Lp(Ω) → R. Similarly, one proves the
continuity of J2. Let (u1,n, u2,n) ∈ S be any sequence. Then this sequence is
bounded in Lp(Ω) × Lp(Ω), which implies that |Jk(u1,n, u2,n)| ≤ c for all n.
Since (u1,n, u2,n) satisfy (4.15) and (4.16), we obtain from (4.15) with ϕ = 0:

〈A1u1,n,−u1,n〉+ 〈G1u1,n,−u1,n〉
+ J1(0, u2,n)− J1(u1,n, u2,n) ≥ 〈h1,−u1,n〉, ∀ n,

(4.18)

which yields

〈A1u1,n, u1,n〉+ 〈G1u1,n, u1,n〉
≤ |J1(0, u2,n)|+ |J1(u1,n, u2,n)|+ ‖h1‖V ∗

0
‖u1,n‖V0 .

(4.19)

By the coercivity of the operator A1 + G1 : V0 → V ∗
0 and the uniform bound-

edness of the functional J1 we obtain from (4.19) that ‖u1,n‖V0 ≤ c, ∀ n.
Analogously, one shows ‖u2,n‖V0 ≤ c, ∀ n. Thus there is a subsequence, again
denoted by (u1,n, u2,n), which is weakly convergent in V0 × V0 to (u1, u2). We
shall show that this subsequence is strongly convergent in V0 × V0 to (u1, u2),
and that the limit (u1, u2) ∈ S. Consider (4.15) satisfied by u1,n and u2,n, and
use the special test function ϕ = u1 to obtain

µ ‖∇(u1 − u1,n‖p
Lp(Ω) ≤ 〈A1u1 − A1u1,n, u1 − u1,n〉

≤ 〈A1u1, u1 − u1,n〉+ 〈G1u1,n, u1 − u1,n〉
+ J1(u1, u2,n)− J1(u1,n, u2,n) + 〈h1, u1,n − u1〉.

(4.20)

Using the weak convergence of u1,n ⇀ u1 in V0, the compact embedding
V0 ⊂ Lp(Ω), the compactness of the trace operator γ : V → Lp(∂Ω), and
the continuity of the functional J1, the right-hand side of (4.20) tends to zero
as n → ∞. Thus, from (4.20) it follows that (u1,n) is strongly convergent
in V0 to u1. Analogously also (u2,n) is strongly convergent in V0 to u2. The
strong convergence of the solutions (u1,n, u2,n) ∈ V0 × V0 satisfying the sys-
tem (4.15) and (4.16) of variational inequalities, the continuity of the operator
Ak + Gk : V0 → V ∗

0 , and the continuity of the functionals Jk allow passage to
the limit as n →∞, which also shows that the limit (u1, u2) belongs to S and
thus the assertion is proved. ¤
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Following the ideas developed so far, we can also prove a result analogous to
Theorem 4.1 for the model of cooperating species.

Theorem 4.2. Let f = (f1, f2) be the vector field corresponding to the co-
operating species model. Assume (A1) and (A2), and let [u, ū] ⊂ V × V be
a trapping region for the BVP (1.1) according to Definition 2.1. Let α >
0 be any given constant so that (2.1) of (H1) is satisfied with respect to
[u−(α, α), ū+(α, α)], and (H2) with respect to [uk, ūk], k = 1, 2, where uk and
ūk are the components of u and ū of the trapping interval. Then there exist
solutions of the system (2.11) within [u, ū].

Proof. The proof can be carried out similarly to that of Theorem 4.1, and
is again based on the system of variational inequalities (3.5) and on Tarski’s
fixed point theorem. The only difference in the proof comes from the opposite
monotone behavior of the operators R and S of the fixed point operator P =
S◦R. Define R and S in just the same way as in the proof of Theorem 4.1. Then
R : [u1, ū1] → [u2, ū2] is increasing, and S : R([u1, ū1]) ⊂ [u2, ū2] → [u1, ū1]
is increasing as well, such that P : [u1, ū1] → [u1, ū1] is again an increasing
operator, which yields the assertion of the Theorem. So let us only demonstrate
that R : [u1, ū1] → [u2, ū2] is increasing. To this end, let z = Rv1 and ẑ = Rv̂1

with v1 ≤ v̂1. From the defining variational inequality (4.3) of R we obtain by
choosing the special test functions ϕ = z − (z − ẑ)+ and ϕ = ẑ + (z − ẑ)+ in
case of the solution z and ẑ, respectively, the following inequalities:

a(2)(z,−(z − ẑ)+)−
∫
Γ
g2(·, T 0

2 γz) γ(z − ẑ)+ dΓ

+ J2(v1, z − (z − ẑ)+)− J2(v1, z) ≥ 〈h2,−(z − ẑ)+〉.
(4.21)

a(2)(ẑ, (z − ẑ)+) +
∫
Γ
g2(·, T 0

2 γẑ) γ(z − ẑ)+ dΓ

+ J2(v̂1, ẑ + (z − ẑ)+)− J2(v̂1, ẑ) ≥ 〈h2, (z − ẑ)+〉.
(4.22)

Summing (4.21) and (4.22) and taking into account that s 7→ g2(·, s) is in-
creasing we obtain

a(2)(z, (z − ẑ)+)− a(2)(ẑ, (z − ẑ)+)

≤ J2(v1, z − (z − ẑ)+)− J2(v1, z) + J2(v̂1, ẑ + (z − ẑ)+)− J2(v̂1, ẑ).
(4.23)

We discuss the right-hand side of (4.23) by using the definition of the functional
J2 given in (3.2) and by employing the monotonicity property of f2 in the
cooperating species case, as well as the decomposition: Ω = {z ≥ ẑ}∪{z < ẑ}.
Let us denote the right-hand side of (4.23) by J . Then it can easily be seen
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that the integral contribution is zero in {z < ẑ}, and thus

J =
∫
{z≥ẑ}

(∫ ẑ(x)

0
fα

2 (x, v1(x), s)−
∫ z(x)

0
fα

2 (x, v1(x), s) ds
)

dx

+
∫
{z≥ẑ}

(∫ z(x)

0
fα

2 (x, v̂1(x), s)−
∫ ẑ(x)

0
fα

2 (x, v̂1(x), s) ds
)

dx

=
∫
{z≥ẑ}

(∫ ẑ(x)

z(x)

(
fα

2 (x, v1(x), s)− fα
2 (x, v̂1(x), s)

)
ds

)
dx

=
∫
{z≥ẑ}

(∫ z(x)

ẑ(x)

(
fα

2 (x, v̂1(x), s)− fα
2 (x, v1(x), s)

)
ds

)
dx

≤ 0.

(4.24)

By (A2),(4.23) and (4.24) we get

µ ‖∇(z − ẑ)+‖p
Lp(Ω) ≤ a(2)(z, (z − ẑ)+)− a(2)(ẑ, (z − ẑ)+) ≤ 0,

which implies (z − ẑ)+ = 0, and thus z ≤ ẑ, i.e., R is increasing. ¤

For completeness we formulate the extremality and compactness result that
hold for cooperating species.

Corollary 4.3. Let the cartesian product Lp(Ω)×Lp(Ω) be equipped with the
natural partial ordering ≤, i.e.,

(u1, u2) ≤ (w1, w2) ⇐⇒ u1 ≤ w1 ∧ u2 ≤ w2.

Then under the hypotheses of Theorem 4.2 there exist a greatest and a smallest
solution of the multivalued system (2.11) within the trapping region [u, ū].
Moreover, under the additional continuity assumption of Corollary 4.2, the
solution set S is compact in V0 × V0.

The proof of Corollary 4.3 follows immediately from that of Corollary 4.1 and
Corollary 4.2.

5 Applications

In this section, we shall provide two applications of the theory developed in
the paper. We begin with a mixed monotone system of cooperative species.

5.1 Cooperative Species

We consider the steady-state transport of two species of opposite charge within
a physical channel, such as occurs in chemistry or biology. We assume that a
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specified potential u(x) is maintained within the channel. This is equivalent to
the statement that the permanent charge of the channel is much larger than
the net mobile charge. We are interested in the case of ‘partial equilibration’
(pumping), in which a virtual source switches on when the concentration of
one species becomes too large in relation to the other. The model thus merges
the source-free transport of ions with the episodic action of ion pumps, which
restore the levels of ion species in the baths adjoining the channels, so as to
obtain a steady qualitative model.

If the concentrations of the anion and cation species are denoted by n and p,
we have the equations:

∇· [Dn∇n− µnn∇u] + Sn = 0, (5.1)

−∇· [Dp∇p + µpp∇u]− Sp = 0. (5.2)

Here, −∇u is the electric (force) field. Each equation describes the divergence
of the respective charge density in a conservation statement. Also, µn, µp de-
note mobility coefficients, Dn, Dp denote diffusion coefficients, and Sn, Sp de-
note virtual source terms, which we elaborate below. If new variables, v, w
(so-called quasi-Fermi levels), are introduced so that n = exp(u − v) and
p = exp(w− u), then, under the assumption of Einstein’s relations, as well as
the choice of units in which the thermal voltage is unity, the system (5.1) and
(5.2) is rewritten as

−∇· [µneu−v∇v] + Sn = 0, (5.3)

−∇· [µpe
w−u∇w]− Sp = 0. (5.4)

The boundary conditions for the problem are Dirichlet boundary conditions
of so-called charge neutral type, for which v = u,w = u.

If a third set of variables is introduced, the Slotboom variables, V = exp(−v),
W = exp(w), and the mobility coefficients are assumed constant, then the
system reduces to the linear format in the variables V,W ,

−∇· [eu∇V ]− Sn = 0, (5.5)

−∇· [e−u∇W ]− Sp = 0, (5.6)

where we have absorbed the mobility coefficients in the source terms.

We propose virtual sources of the following form. First, we give a verbal de-
scription of Sn. If n is less than p by more than a given function of x, say
δ1(x), then the source Sn is ‘switched on’, with a position dependent strength,
allowing for geometric effects; the sign is, of course, positive. The interpreta-
tion is that the transport of n is equilibrated. Otherwise, the virtual source is
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zero. The situation for Sp is ‘mirror reversed’. In equation form, we write:

Sn(x, V,W ) =




c1(x), if δ1(x) < W exp(−u(x))− V exp(u(x)),

0, otherwise.
(5.7)

Sp(x, V,W ) =




c2(x), if δ2(x) < V exp(u(x))−W exp(−u(x)),

0, otherwise.
(5.8)

One sees that −Sn is increasing in V for each fixed x,W ; and decreasing in W
for each fixed x, V . Similarly, −Sp is increasing in W for each fixed x, V ; and
decreasing in V for each fixed x,W . The system is thus an example of coop-
erative species, and is of mixed monotonicity. The least regularity assumption
for the potential u is u ∈ W 2,2(Ω); this implies, by the Sobolev Embedding
Theorem, u ∈ C(Ω) provided that 2 > N/2. The measurability assumption of
hypothesis (H1) on the nonlinearities Sn and Sp which have jump discontinu-
ities in the variables V and W are satisfied if the functions ck, δk : Ω → R,
k = 1, 2, are not ‘too bad’, e.g., Borel measurable, cf. [1].

The system is not quite in the form of the theory of (1.1). In terms of the Slot-
boom variables, we have the boundary conditions: Γ = ∅, V = exp(−u),W =
exp(u), on ∂Ω. Thus, we make the final change of variable,

Y = V − exp(−u), Z = W − exp(u).

The system is transformed in the typical way to:

−∇· [eu∇Y ]− S̃n =−∆u, (5.9)

−∇· [e−u∇Z]− S̃p = ∆u. (5.10)

Here, S̃n, S̃p act on Y, Z via the action of Sn, Sp on the corresponding V,W .
Note that Y, Z are required to have zero boundary trace. In order to determine
the interval which defines a trapping region in Y × Z space, we begin by
introducing the auxiliary functions V and V̄ via the solutions of the Poisson
equations:

−∇(exp(u)∇V) = 0, V = exp(−u) on ∂Ω,

−∇(exp(u)∇V̄ ) = c1(x), V̄ = exp(−u) on ∂Ω.

We then define: Y = V − exp(−u) and Ȳ = V̄ − exp(−u). Similarly, we
introduce the auxiliary functions W and W̄ :

−∇(exp(−u)∇W) = 0, W = exp(u) on ∂Ω,

−∇(exp(−u)∇W̄ ) = c2(x), V̄ = exp(−u) on ∂Ω.
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We then define: Z = W− exp(u) and Z̄ = W̄ − exp(u). The interval,

[Y, Ȳ ]× [Z, Z̄],

is now seen to be a trapping region. One deduces obvious bounds for n, p.

5.2 Competitive Species

We consider a fluid medium which may undergo a change of phase, and which
acts as a carrier for a certain solute species. Included would be the case of a
solute dissolved in water, such that the resulting solvent may undergo freez-
ing. It is known that such impurities can affect thermal properties, such as
the temperature at which freezing occurs. The example we study is a typical
semidiscrete elliptic system, obtained by applying the method of horizontal
lines to the parabolic system. We will use the enthalpy transformation, and,
with our theory, introduce an enthalpy which depends both upon temperature
and the concentration of the solute. This appears to be the first time such a
general two-phase Stefan problem has been considered.

If k0 is the thermal conductivity, depending upon temperature θ and solute
concentration v, and the Kirchhoff transformation,

u = K ◦ θ =
∫ θ

0
k0(ξ, v) dξ,

is employed, one obtains a generalized temperature u (see [7, Section 1.1]).
In our case, we think of the transformation employed for each fixed solute
distribution v. We designate by Q the standard enthalpy, typically consisting
of the sum of a regular term, obtained by an integration of the volumetric
heat capacity, and a discontinuous term, the so-called latent energy content.
The latter term is discontinuous at the nominal change of phase temperature.
We thus have the following parabolic distribution system, where we write
H = Q ◦K−1.

∂H(u, v)

∂t
−∆u = 0,

∂v

∂t
−∆v + G(u) = 0. (5.11)

The two dependent variables are the generalized temperature u and the solute
concentration v, where standard diffusion is assumed. If we think of −G as a
(positive) control source function for the solute, with less solute required at
higher temperatures, then G is increasing with u, and may be discontinuous.
We do assume, however, that G is bounded, and set C = sups |G(s)|. H is
assumed increasing in u, v, and is expected to be discontinuous in u for each
fixed v. If a fully implicit semidiscretization is employed, we have, formally,

H(uk, vk)/∆t−∆uk = H(uk−1, vk−1)/∆t. (5.12)
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vk/∆t−∆vk + G(uk) = vk−1/∆t. (5.13)

Here, tk = k∆t within a uniform grid spacing, and uk, vk may be viewed as
approximations at time tk. We shall select arbitrary linear Robin boundary
conditions on Γ, i.e., we assume ∂u/∂ν + bu u = 0 and ∂v/∂ν + bv v = 0,
where bu, bv are positive constants. We choose a nonegative temperature scale
(say, Kelvin), and a small grounded region ∂Ω \ Γ on the boundary. Thus the
semidiscrete system (5.12) and (5.13) is an example of a competitive species
system.

In order to obtain a trapping region for the latter let us assume that the initial
values for u and v, i.e., u(x, 0) = u0(x) and v(x, 0) = v0(x) are nonnegative,
measurable, and bounded functions. Since −G is positive and G is assumed to
be bounded with C = sups |G(s)|, one gets uniform bounds for v from (5.11)
by means of the maximum principle in the form

0 ≤ v(x, t) ≤ ‖v0‖∞ + C t. (5.14)

Let [0, t0] be the given time interval. In order to get the interval for the variable
v of the semidiscrete system (5.12) and (5.13), it is enough to find v and v̄,
which are lower and upper solutions, respectively, of

v/∆t−∆v = vk−1/∆t,
∂v

∂ν
+ bv v = 0 on Γ, v = 0 on ∂Ω \ Γ,

v̄/∆t−∆v̄ = C + vk−1/∆t,
∂v̄

∂ν
+ bv v̄ = 0 on Γ, v̄ = 0 on ∂Ω \ Γ.

This can be obtained independently of k by using (5.14), and one verifies that
v = 0 and v̄ = ‖v0‖∞ + t0 C are such uniform lower and upper solutions.
By using these uniform bounds for v we may now define the interval in the
variable u for the semidiscrete system. On the horizontal line t = tk lower and
upper bounds for u are given by the unique solutions u and ū, respectively, to
the Robin-Dirichlet boundary value problems,

H(u, v̄)

∆t
−∆u =

H(uk−1, v)

∆t
,

∂u

∂ν
+ bu u = 0 on Γ, u = 0 on ∂Ω \ Γ,

(5.15)

H(ū, v)

∆t
−∆ū =

H(uk−1, v̄)

∆t
,

∂ū

∂ν
+ bu ū = 0 on Γ, ū = 0 on ∂Ω \ Γ,

(5.16)

where v = 0 and v̄ = ‖v0‖∞ + t0 C. One also readily verifies that any lower
solution of (5.15) and any upper solution of (5.16) are lower and upper bounds
for u. If we make use of the assumed monotonicity properties of H, we see
that [u, ū]× [v, v̄] forms a trapping region for the semidiscrete problem (5.12),
(5.13).
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