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Abstract

A general outer iteration, based upon linearization, is introduced at dis-
crete time steps for the one-dimensional semiconductor device model. The it-
eration depends upon solving the semidiscrete device equations approximately,
specifically, in such a way that the residual is of order ∆t in an appropriate
norm. It is shown that this maintains the order of the backward Euler method.
A monitoring of the constants, including time-step requirements for solvability
of the semidiscrete systems, as well as boundedness, smoothness and invert-
ibility for the maps defining the Newton approximations, is carried out. An
invariant-region principle provides an important theoretical basis, and a novel
proof is provided. An essential component of the theory, providing the inter-
face with the sequel to this paper, is that the Newton iterations are small in
number, typically one or two, and may be realized as approximate Newton
iterations. Continuation is employed as the time-stepping bridge.

1 Introduction

In Part I of this two part series we describe a modular development for a time-
stepping algorithm, based upon the backward Euler method and associated lin-
earization, as applied to the one-dimensional semiconductor device model. We
provide a detailed mathematical analysis of the solvability of the semidiscrete equa-
tions and the associated invariant region; of the residual error tolerance in solving
the semidiscrete systems approximately so as to maintain first order convergence; of
an approximate Newton method, typically involving one or two iterations, serving
as the outer iteration which defines the approximation strategy; and of the continu-
ation procedure, linking the output of the previous time step to the starting iterate
of the current time step. Part II of the series is concerned with a specific inner
iteration, i.e., the fully discrete algorithm. In decoupling the outer and inner itera-
tions in this way, we have established a framework in Part I for any Newton-based
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algorithm, and have demonstrated how the ‘a priori’ estimates lead to the control
and estimation of fundamental constants required for a convergence analysis.

The devices studied here are one-dimensional, and the dependent variables se-
lected are the electrostatic potential and the carrier concentrations. The model is
described more fully in § 2. The mobility coefficients are selected to have a form
similar to that used in computations for silicon devices so as to ensure the phys-
ically essential property of saturation; the Einstein relations are assumed only so
that physically realistic representation of diffusion is possible. For the dependent
variables selected here, the Einstein relations provide no equation simplification.
The model assumes Shockley-Read-Hall recombination. As described here, the
model is a special case of the spatially multidimensional model considered in [14] by
Jerome, in particular, we deduce that the initial/boundary-value problem possesses
a unique solution, globally in time. Uniqueness need not persist for the semidiscrete
solutions without additional time-step restrictions, however, so that the linearized
time-stepping must have an inherent tracking mechanism; this is provided by the
continuation.

In this paper, we do not analyze second order time-stepping methods. We
note, however, that one such method, possessing the property of L-stability, has
been introduced in [1] by Bank et al. Issues of simulation and implementation are
discussed at length in Part II. The ideas of Part I are developed fully in § 3 and
§ 4. In § 5 we provide a postscript, in which the paper is coalesced and a linkage to
Part II is established.

2 The Transient Semiconductor Equations

Our interest here is in a transient initial/boundary-value problem, in one spatial
dimension, that models the behavior of a simple semiconductor device; hence, the
appropriate space-time domain is Ω̄ × [0, T0] where Ω = (a, b) ⊂ IR and T0 is
the final time of interest. The transient semiconductor equations, which hold for
(x, t) ∈ Ω× (0, T0], are given by

−∇ · (ε∇u) + q(n− p−N) = 0, (1)

q
∂n

∂t
−∇ · Jn = −qRn, (2)

q
∂p

∂t
+∇ · Jp = −qRp, (3)

where

ε is the dielectric constant;

q is the electronic charge;

u(x, t) is the electrostatic potential so that the electric field E = −∇u;

n(x, t) and p(x, t) are the electron and hole carrier concentrations, respectively;
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N(x) is the net impurity (doping) concentration;

Jn(u, n) and Jp(u, p) are the electron and hole current densities, respectively;

Rn(n, p) and Rp(n, p) are the carrier recombination-generation rates, respectively.

Note that (1) is the stationary Maxwell equation governing the electrostatic po-
tential u while (2) and (3) are typical continuity equations governing n and p,
respectively. In addition, we assume that appropriate initial data n0(x), p0(x) and
boundary data ū(x, t), n̄(x), p̄(x) are given.

We write the current densities in the traditional drift-diffusion form (cf. Sze [19,
p. 50])

Jn = −qµnn∇u+ qDn∇n, (4)
Jp = −qµpp∇u− qDp∇p, (5)

where µn and µp are the field-dependent mobilities and Dn and Dp are the electron
and hole diffusion coefficients, respectively.

One simple mobility model that includes velocity saturation has the form

µ(∇u) = µ0

[
1 +

(
µ0|∇u|
vsat

)γ]−1/γ

,

where µ0 and vsat are the low-field mobility value and temperature-dependent sat-
uration velocity, respectively (cf. Caughey and Thomas [6] and Thornber [20]);
usually, γ is taken to be 2 for electrons and 1 for holes. To avoid problems with
smoothness, we will assume γ ≡ 2 for both carriers and write the mobility functions
as

µn = µ0n

[
1 +

(
µ0n|∇u|
vsn

)2
]−1/2

, (6)

µp = µ0p

[
1 +

(
µ0p|∇u|
vsp

)2
]−1/2

. (7)

Of course, there are other possibilities for the mobilities, which are less smooth or
are more complicated functions of the dependent variables. It is important to note,
however, that the mobility models are largely phenomenological expressions, which
attempt to incorporate a number of experimentally observed phenomena.

We supplement (4) and (5) by the Einstein relations

Dn =
kT

q
µn, Dp =

kT

q
µp, (8)

as in the Van Roosbroeck model [21]. Here, k and T are Boltzmann’s constant and
the temperature, respectively. To simplify matters, we select the natural units so
that

kT

q
≡ 1; (9)
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in fact, we scale all of the equations in a fashion similar to that of DeMari [8, 7],
except in our treatment of ε (see also the book by Markowich [16]).

Finally, we make use of the Shockley-Read-Hall recombination term [18, 10, 17]

Rn = Rp =
np− 1

τp(n+ 1) + τn(p+ 1)
=
np− 1
d

= R, (10)

where τn and τp are electron and hole lifetimes, respectively. Equation (10) has
this simple form because the carrier concentrations n and p are measured (scaled to
be) in so-called effective intrinsic carrier concentration units. Our framework can
be extended to include three-particle interactions, such as Auger recombination-
generation, but we will not discuss these issues here.

3 Solvability and Approximate Solution of the
Semidiscrete System

We begin by deriving a solvability result for the problem (1)–(10), which is based
upon an invariant-region principle; since the complete verification of the solvability
is quite detailed, we have presented the structure of the proof in § 3.1 and the details
of the proof in § 3.2. The discussion here is related to earlier work described by Bank
et al. [2] and Jerome [13]. A convergence result, where the residual is controlled in
L2, is presented in § 3.3, while the corresponding H−1 result is presented in § 3.4.

3.1 The Solvability Result

We shall find it convenient to expand the mobility terms in (2) and (3) by the
product rule, substitute the second derivative terms via the potential equation (1),
and make use of the Einstein relations (8) and the scaling (9). Thus, throughout
much of § 3.1, we shall write the semidiscrete system via a fully implicit time
discretization as

−ε∇2uk + nk − pk = N, (11)
nk − nk−1

∆tk
−∇ · (µn∇nk) + µn∇uk∇nk + Un,k = 0, (12)

pk − pk−1

∆tk
−∇ · (µp∇pk)− µp∇uk∇pk + Up,k = 0, (13)

where

Un,k = Rk + ε−1(µ′n∇uk + µn)nk(nk − pk −N), (14)
Up,k = Rk − ε−1(µ′p∇uk + µp)pk(nk − pk −N), (15)

and µ? and µ′? are evaluated at ∇uk.
The invariant-region principle referred to above represents a slight weakening

of the usual such principle, since the region is permitted to increase linearly (not



Modular Algorithms for Transient Device Simulation I 5

exponentially) with time and includes the spatially dependent doping. Specifically,
we define a number

λ0 = max(‖n̄‖L∞, ‖p̄‖L∞ , ‖n0‖L∞ , ‖p0‖L∞), (16)

and functions nmaxk and pmaxk , via the relations,

nmax0 = λ0 + Step(N+), (17)
pmax0 = λ0 + Step(N−), (18)
nmaxk − nmaxk−1 = pmaxk − pmaxk−1 = 4ρ∆tk, for 1 ≤ k ≤ L, (19)

where

ρ = (τp + τn)−1, (20)

Step(N+) =
{

supN if N > 0,
0 otherwise. (21)

It follows that, if

nmax = λ0 + supN+ + 4ρT0, p
max = λ0 + supN− + 4ρT0, (22)

then nmax ≥ nmaxk and pmax ≥ pmaxk . As before, n̄ and p̄ are linear extensions of
the boundary data, N = N+ −N−, and T0 is the maximum time.

We are now prepared for the first result.

Theorem 1 Under hypotheses on the time step (cf. (37), (62), and (69) below),
there is a solution of the Dirichlet boundary-value problem (11)–(13) with boundary
values

uk(xe) = ū(xe, tk), nk(xe) = n̄(xe), pk(xe) = p̄(xe) for xe = a, b. (23)

The solution triple satisfies an invariant-region principle for the carrier concentra-
tions and a generalized maximum principle for the potential:

0 ≤ nk ≤ nmaxk ≤ nmax, (24)
0 ≤ pk ≤ pmaxk ≤ pmax, (25)

|uk| ≤ ‖ū(·, tk)‖L∞ + ε−1(eb−a − 1)(nmax + pmax) def= umaxk . (26)

The solution is unique under additional conditions on the time step, described in
§ 3.2, and the smoothness is determined by the doping function N ; the components
are minimally in W 2,∞, however. Finally, if the recombination term, Rk, is not
included in the model, then ρ = 0 may be selected in the definition of nmax and
pmax, and the invariant region is independent of T0, so long as ū is bounded.

Proof Outline: For maximum clarity, we shall outline the steps of the proof here
prior to amplification in § 3.2. The approach is inductive, and assumes the systems
are well-defined for j < k, and satisfy (24), (25), and (26).
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(I) Define a map T from a closed bounded convex subset K of L2(Ω)×L2(Ω) into
K as follows. For

K
def= {[ñ, p̃] : 0 ≤ ñ ≤ nmaxk , 0 ≤ p̃ ≤ pmaxk } , (27)

where the inequalities are understood pointwise almost everywhere, define
u[ñ, p̃], with [ñ, p̃] ∈ K, as the unique solution of

−ε∇2u+ ñ− p̃ = N, u(a) = ū(a, tk), u(b) = ū(b, tk). (28)

With u specified by (28), set T [ñ, p̃] = [n, p], where n and p are specified by
the uncoupled equations

F (n) =
n− nk−1

∆tk
−∇ · (µn∇n) + µn∇u∇n+ Ũn(·, n, p̃) = 0, (29)

n(a) = n̄(a), n(b) = n̄(b),

G(p) =
p− pk−1

∆tk
−∇ · (µp∇p)− µp∇u∇p+ Ũp(·, ñ, p) = 0, (30)

p(a) = p̄(a), p(b) = p̄(b).

Here Ũn and Ũp are represented by

Ũn(·, n, p̃) = R̃(·, n, p̃) + ε−1 [f(·, n)− n(p̃+N)] (µ′n∇u+ µn), (31)
Ũp(·, ñ, p) = R̃(·, ñ, p) + ε−1 [p(N − ñ) + g(·, p)] (µ′p∇u+ µp). (32)

We shall define the functions R̃, f , and g and the motivation for altering Un,k
and Up,k. Note that there is no ‘a priori’ reason why n and p must have
restricted range prior to the derivation of the invariant region principle. In
order to facilitate the derivation, we introduce the function R̃(·, n, p), which,
for each fixed x ∈ [a, b], agrees with R(n, p) for 0 ≤ n ≤ nmaxk (x), 0 ≤ p ≤
pmaxk (x), but is extended outside this rectangle, to the horizontal and vertical
strips uniquely intersecting in the rectangle, in such a way that the partial
derivatives with respect to n and p are constant. The functions f and g have
the property that, for each fixed x ∈ [a, b], (∂f/∂n)(x, n) and (∂g/∂p)(x, p)
agree with 2n and 2p on [0, nmaxk (x)] and [0, pmaxk (x)], respectively, and are
continuously extended to have constant values outside this range.

(II) Show that T is well-defined. This process involves the following.

(1) The derivation of ‘a priori’ estimates for u and ∇u.
(2) The existence of solutions for (29) and (30) and derivation of correspond-

ing ‘a priori’ estimates.

(3) The verification that [n, p] ∈ K.

(III) Show that T has a fixed point, [n, p] = [nk, pk], which coincides with the
solution of (11)–(13) and (23).
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3.2 Verification of Solvability

We provide the details of (II 1, 2, 3) and (III) in the proof of Theorem 1.
(II 1) A weak H2(Ω) solution of (28), which is the “maximal” regularity (in fact,

W 2,∞ holds), given ñ and p̃, satisfies the usual maximum principle

‖u‖L∞ ≤ ‖ū(·, tk)‖L∞ + ε−1(eb−a − 1)‖ñ− p̃−N‖L∞, (33)

as can be seen by using the proof of Theorem 3.7 of Gilbarg and Trudinger [9],
and an argument by contradiction replacing the local second derivative behavior
at an extreme point with the weak formulation and corresponding first derivative
behavior. Alternatively, one could employ a smoothing argument, and take limits of
the classical result. Inequality (26) follows immediately from (33). The estimates,

‖∇u‖L∞ ≤ C‖u‖H2 ≤ C′umaxk , (34)

follow from a one-dimensional Sobolev embedding, and from a standard isomor-
phism, respectively (cf. [9, Theorem 8.12] for the latter), as well as from the repre-
sentation of umaxk , given by the right-hand side of (26).

(II 2) The existence of a solution of (29) can be shown by Newton’s method, as
we now show. The linearized equation about fixed n ∈ H2(Ω) becomes, for image
element −F (n),

−F (n) =
δn

∆tk
−∇ · (µn∇δn) + µn∇u∇δn+

∂R̃

∂n
(·, n, p̃)δn (35)

+
1
ε

(
∂f

∂n
− p̃−N

)
(µ′n∇u+ µn)δn,

δn(a) = δn(b) = 0. (36)

By direct calculation, (∂R̃/∂n)(·, n, p̃) ≥ 0 and ε−1(∂f/∂n)(µ′n∇u+µn) ≥ 0. Thus,
for

∆tk ≤ ε/{2 max(µ0n, µ0p) [max(pmax, nmax) + ‖N‖L∞]} , (37)

the coefficient of δn is nonnegative; the same condition guarantees the analogous
statement for δp in the linearized hole equation. Under this format, the structural
hypotheses (8.5), (8.6), and (8.8) of [9] are satisfied, so that the boundary-value
problem (35) and (36) possesses a solution (cf. [9, Theorem 8.3]). An estimate for
the inversion operator associated with (35) and (36) of the form,

‖δn‖H2 ≤ C‖F (n)‖L2 , (38)

holds, with C independent of n. This follows from [9, Theorem 8.12] after a straight-
forward preliminary estimate of ‖δn‖L2 in terms of ‖F (n)‖L2 .

In addition to the uniform inversion property, (38), the map F , defining (29),
has a Lipschitz continuous derivative:

‖F ′(n1)− F ′(n2)‖H2,L2 ≤M‖n1 − n2‖H2 , (39)
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where the constant M does not depend on n1 or n2. Indeed, a much stronger result
holds as we shall now show. We have, for φ ∈ H2,

‖[F ′(n1)− F ′(n2)]φ‖L2

≤
∥∥∥∥∥∂R̃∂n (·, n1, p̃)−

∂R̃

∂n
(·, n2, p̃)

∥∥∥∥∥
L2

‖φ‖H1 (40)

+
1
ε

∥∥∥∥(∂f∂n(·, n1)− ∂f

∂n
(·, n2)

)
(µ′n∇u+ µn)

∥∥∥∥
L2

‖φ‖H1

where we have used a standard ring property (cf. Kato [15]). By direct computation
we have ∥∥∥∥(∂f∂n (·, n1)− ∂f

∂n
(·, n2)

)
(µ′n∇u+ µn)

∥∥∥∥
L2

≤ 4µ0n‖n1 − n2‖L2, (41)

while, if n1 ≥ 0, n2 ≥ 0, we have,∣∣∣∣∣∂R̃∂n (·, n1, p̃)−
∂R̃

∂n
(·, n2, p̃)

∣∣∣∣∣
=
∣∣∣∣ (p̃+ 1)(p̃τn + τp)
[τp(n1 + 1) + τn(p̃+ 1)]2

− (p̃+ 1)(p̃τn + τp)
[τp(n2 + 1) + τn(p̃+ 1)]2

∣∣∣∣
≤ 2(p̃+ 1)

∣∣∣∣ τp(n2 − n1)
[τp(n1 + 1) + τn(p̃+ 1)][τp(n2 + 1) + τn(p̃+ 1)]

∣∣∣∣
≤
(

2(p̃+ 1)τp
(τp + τn)2

)
|n2 − n1|,

which makes use of the elementary identity,

1
a2 −

1
b2

=
(

1
a
− 1
b

)(
1
a

+
1
b

)
.

This final inequality also holds on the set where n1 < 0 or n2 < 0, by the way R
was redefined in this region. It follows that∥∥∥∥∥∂R̃∂n (·, n1, p̃)−

∂R̃

∂n
(·, n2, p̃)

∥∥∥∥∥
L2

≤
(

2(pmax + 1)τp
(τp + τn)2

)
‖n1 − n2‖L2 (42)

so that (39) follows ‘a fortiori’ from (40), (41), and (42).
Now the existence result for (29) can be deduced from the existence of a homo-

topy solution set, as developed by the second author in [12], applied to the map
F (λ, n), which folds F by multiplying the term Ũn in (29) by λ, where λ is a ho-
motopy parameter, 0 ≤ λ ≤ 1. The existence result for λ = 0 follows from [9,
Theorem 8.3], and we accordingly begin the homotopy solution set at the solution
of the linear equation, F (0, n) = 0. Although the result of [12, Theorem 4.1] appears
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to be local, in relation to the radius r of the H2 ball Br, on which F is defined, as
compared to the length of the homotopy interval, in fact, we may select r as large
as required. This is permissible since the estimates (38) and (39) readily transfer to
the homotopy map, in a manner independent of r. This completes (II 2), since the
boundary-value problem (30) is handled analogously, with no additional restriction
on the time step.

(II 3) The choice of the functions pmaxk and nmaxk ensures the validity of the
lower bounds in the inequalities

Ũn(·, n, p̃) ≤ |n|
(
σ + 2ε−1µ0np

max
)
, n ≤ 0, (43)

Ũn(x, n, p̃) ≥ −ρ− µ0nε
−1n‖N‖L∞, n ≥ nmaxk (x), (44)

Ũp(·, ñ, p) ≤ |p|
(
σ + 2ε−1µ0pn

max
)
, p ≤ 0, (45)

Ũp(x, ñ, p) ≥ −ρ− µ0pε
−1p‖N‖L∞, p ≥ pmaxk (x), (46)

where
σ = 2ε−1 max(µ0n, µ0p)‖N‖L∞ . (47)

We proceed now to verify the inequalities,

0 ≤ n ≤ nmaxk , 0 ≤ p ≤ pmaxk . (48)

Our verification of (48) will be based upon a fully discrete approximation, satisfying
inequality (48), except possibly on an asymptotically thin set. Passage to the limit
will yield the result. Initially, we assume that p̃ and ñ are continuous. The equally
spaced mesh points are denoted xj and xj+1/2

def= (xj +xj+1)/2. Now we apply the
box method to that part of the differential equation (29), exclusive of the convective
term, i.e., we integrate terms in (29) over fixed subintervals (xj−1/2, xj+1/2), 1 ≤
j ≤M , with the following identifications:∫ xj+1/2

xj−1/2

−∇ · (µn∇n) dx ≈ µn|xj−1/2

nhj − nhj−1

h
− µn|xj+1/2

nhj+1 − nhj
h

, (49)∫ xj+1/2

xj−1/2

n− nk−1

∆tk
dx ≈ h

∆tk
[nhj − nk−1(xj)], (50)∫ xj+1/2

xj−1/2

Ũn(·, n, p̃) dx ≈ hŨn
(
xj , n

h
j , p̃(xj)

)
. (51)

Here, h denotes the uniform grid spacing and nhj the “unknowns”. The convective
term, however, prior to “integration,” is discretized by the following upwinding
scheme:

µn∇u∇n(xj) ↪→ (µn∇u)(xj)(nhj − nhj−1)/h, (52)

if (µn∇u)(xj) ≥ 0, while

µn∇u∇n(xj) ↪→ (µn∇u)(xj)(nhj+1 − nhj )/h, (53)
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if (µn∇u)(xj) < 0. The important properties of this discretization are now summa-
rized:

(i) Let the discrete system be written

(I + Lh)nh = nk−1 +B −∆tkŨn, (54)

where nk−1 and Ũn are column vectors, with components determined from (49),
(50), and (51), and where B involves the boundary terms. Thus, if ∇u(x1) > 0,

0 ≤ b1 = αµn
(
∇u(x1/2)

)
n̄(a) + β(µn∇u)(x1)n̄(a)

is the first component of B, and subsequent components bj satisfy bj = 0, 2 ≤ j ≤
M − 1, until

bM = αµn
(
∇u(xM+1/2)

)
n̄(b) + β(µn∇u)(xM )n̄(b) ≥ 0,

if∇u(xM ) ≤ 0. The second terms in b1 and bM are zero if∇u(x1) ≤ 0, or∇u(xM ) ≥
0, respectively. Here we have used the notation α = ∆tk/h2 and β = ∆tk/h.

(ii) Lh has the property that its diagonal components are positive, and its off
diagonal nonpositive. By the choice of discretization (cf. (49)–(53)), it follows that
Lh is weakly diagonally dominant; in fact, the upwinding has been selected to
preserve the weak diagonal dominance of the box method applied to −∇(µn∇n).
It follows (cf. [22]) that θI+Lh is a diagonally dominant M -matrix for every θ > 0,
and, in particular, that θI + Lh is invertible, with (θI + Lh)−1 ≥ 0. It is also true
that ‖(I + Lh)−1‖`∞,`∞ ≤ 1, a fact which is less familiar, and therefore proved in
Lemma 2, at the conclusion of (II 3). In fact, a more general result is proved.

In the light of properties (i) and (ii), we establish the inequality nh ≥ 0 and,
up to a set Ωh, |Ωh| → 0 as h → 0, nh ≤ nmaxk . The desired inequality of (48) is
achieved in the limit, as h → 0, as we later indicate. The set Ωh is concentrated
about the finite number of points where N changes sign. A remark is in order,
which will be used in both cases, i.e., if D is a nonnegative diagonal matrix, and

(θI +D + Lh)y = w, (55)
(θI + Lh)z = w, (56)

where w ≥ 0 is assumed, as well as the property that θI + Lh is a diagonally
dominant M -matrix, then

0 ≤ y ≤ z. (57)

If D is simply diagonal, then the lower bound holds when θI+D+Lh is a diagonally
dominant M-matrix. The lower bound is well known (see Berman and Plemmons
[5]). One verifies the upper bound in (57) by simple subtraction and inversion of
(55) and (56). We now proceed to verify nh ≥ 0. We distinguish two cases. For j,
such that nhj > 0, we have

−[Ũn(·, nh, p̃)]j ≥ −
(

2µ0n

ε

)(
f(xj , nhj )

nhj
+ ‖N‖L∞

)
nhj ,
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while for nhj ≤ 0, (43)–(46) hold. If

D
def= diag[δj ],

where

δj
def=
{

0, nhj ≤ 0,
∆tk

[
2(εnhj )−1µ0nf(xj , nhj ) + σ

]
, nhj > 0,

then (54) and the above yield

(θI +D + Lh)nh ≥ nk−1 +B ≥ 0,

for
θ

def= 1− (2ε−1µ0np
max + σ)∆tk.

Implicit in this display is that θ > 0; however, if ∆tk satisfies (62) to follow, then
θ > 0 does hold. Upon use of (55) and (57), and the M -matrix property of θI+Lh,
we deduce that nh ≥ 0. In a similar way, ph ≥ 0 and the time-step restriction is
also implied by (62).

The proof that the jth component of nh does not exceed nmaxk (xj), except in a
thin set Ωh, begins with the vector equation

(I + Lh)[nh − nmaxk−1 + Step(N+)]

=
(
nk−1 − nmaxk−1

)
+
(
B − Lh[nmaxk−1 − Step(N+)]

)
(58)

+ Step(N+)−∆tkŨn(·, nh, p̃).

For j, such that nhj < nmaxk (xj), we have, upon omission of p̃(xj) and N+(xj), for
some 0 < c < 1,

−[Ũn(·, nh, p̃)]j ≤ −cε−1µ0n
{[(

nhj − nmaxk−1 (xj)
)

+
(
nmaxk−1 (xj)− nmaxk (xj)

)]
·
(
nhj + nmaxk (xj) +N−(xj)

)
+
(
f(·, nmaxk )− nmaxk N+) (xj)

−
(
nmaxk p̃− nmaxk N−

)
(xj)

}
,

while for j, such that nhj ≥ nmaxk (xj), we have (43)–(46). If

D
def= diag[δj ],

where

δj
def=
{
−∆tkε−1µ0n‖N‖L∞ , nhj ≥ nmaxk (xj),
∆tkε−1µ0n

[
c
(
nhj + nmaxk (xj) +N−(xj)

)
− ‖N‖L∞

]
, nhj < nmaxk (xj),

then we obtain from (58), and the above, the estimate, where, by (62), δj ≥ −1/2,

(I +D + Lh)[nh − nmaxk−1 + Step(N+)]

≤ B − Lh[nmaxk−1 − Step(N+)] + (I +D) Step(N+) + col(ρ)∆tk (59)
+2ε−1µ0n(nmaxk − nmaxk−1 )(nmax + supN−)∆tk.
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The final two terms in (59) result from distinguishing the cases nhj ≥ nmaxk (xj)
and nhj < nmaxk (xj), respectively. Note that we have also been able to employ the
induction hypothesis and the inequality,(

f(·, nmaxk )− nmaxk Step(N+)
)

(xj) ≥
(
nmaxk p̃− nmaxk Step(N−)

)
(xj),

in deriving (59) from (58). In order to treat the term involving B, we note that, by
design,

nmaxk−1 − Step(N+) = col(c), c = c(k), (60)

for a constant c ≥ λ0, where λ0 is defined in (16). Now the composite difference
scheme annihilates constants, in the sense that

Lh col(c) = B̃,

where B̃ is formed from B by replacing the boundary values by c. It follows from
(19) and (60), since B̃ ≥ B, that

nh − nmaxk−1 + Step(N+) ≤ Qh∆tk[I + 8ε−1µ0n∆tk(nmax + supN−)] col(ρ)

+Qh(I +D) Step(N+),

where we used (16)–(21), and where Qh def= (I + D + Lh)−1 ≥ 0. This expression
can be simplified by use of Lemma 2. Indeed, we obtain

nh − nmaxk−1 + Step(N+) ≤ 2∆tk[I + 8ε−1µ0n∆tk(nmax + supN−)] col(ρ)

+Qh(I +D) Step(N+).

After same simplification, we obtain

nh ≤ nmaxk−1 − Step(N+) +Qh(I +D) Step(N+) + 4∆tk col(ρ), (61)

provided
8ε−1∆tk max(µ0n, µ0p)[max(nmax, pmax) + ‖N‖L∞] ≤ 1. (62)

Note that (62) also accommodates the hole equation analysis. Now, Lemma 2
implies that

‖Qh(I +D) Step(N+)‖`∞ ≤ supN+,

and a direct analysis shows that, for a string of zeros in Step(N+), the corresponding
positions in Qh(I +D) Step(N+) are zero, except possibly for the positions of the
first and last zeros. Thus, Ωh is defined as the union of intervals, specified by the
partition points on either side of the (finitely many) points where N changes sign.
This analysis shows that, for xj 6∈ Ωh,

nh(xj) ≤ nmaxk−1 (xj) + 4ρ∆tk = nmaxk (xj).

In particular, the upper bound has been demonstrated for the discrete solutions,
except on Ωh, since a similar argument, and result, hold for ph, with a possible
enlargement of Ωh.
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If we knew that solutions of (29) and (30) were smooth, then well-known argu-
ments associated with the convergence of the box method, augmented by a straight-
forward analysis of the upwinding approximation, would give the required bounds
(48), and would permit Ũn and Ũp to be replaced by Un and Up in (29) and (30).
Since C3 solution regularity is sufficient for O(h) convergence, we may assume that
the result holds for this class. To achieve this, we could mollify the nonnegative
L2 functions ñ and p̃ to obtain smooth nonnegative functions for which the corre-
sponding C3 solutions of (29) and (30) are nonnegative. However, these functions
need not satisfy the upper bounds. Instead, we define, for δ > 0,

nδ(x) =
{
ñ(x), x 6∈ Ωδ,
0, x ∈ Ωδ,

where Ωδ is a set of measure proportional to δ and centered about the points where
N changes sign. On each of the complementary subintervals, nmaxk reduces to a
constant upper bound, though the constant itself changes from interval to interval.
The individual function components of nδ can be mollified, with the support of
the mollified components contained within the subinterval, in such a way that the
bounds are satisfied, i.e., the mollified pair is in K. In this way, one obtains an L2

convergent sequence of approximations to ñ (and p̃). It is a standard result, and,
in fact, follows from a slight generalization of the analysis of (III) to follow, that
this yields L2 convergence of the solutions of the mollified problems to the fixed
solutions of (29) and (30). This completes the verification of parts (1), (2), and (3)
of (II), except for Lemma 2, which we present now.

Lemma 2 Let Lh be the weakly diagonally dominant matrix of (54), with posi-
tive diagonal entries, and nonpositive off-diagonal entries. Let D be any diagonal
matrix, D = diag[δj ], with δj > −1. Then

‖(I +D + Lh)−1(I +D)‖`∞,`∞ ≤ 1. (63)

If δj ≥ −1/2, then
‖(I +D + Lh)−1‖`∞,`∞ ≤ 2. (64)

Proof: Let y and z satisfy

(I +D + Lh)y = (I +D)z,

and let j denote an index for which |yj | = ‖y‖`∞. Without loss of generality we
assume yj ≥ 0. Then,

(1 + δj)yj ≤ (1 + δj)zj + yj

−ljj +
∑
m6=j

ljm

 ,

where we have denoted the diagonal elements of Lh by ljj and the off-diagonal
elements by −ljm. Since weak diagonal dominance assures that

−ljj +
∑
m6=j

ljm ≤ 0,
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we conclude that
0 ≤ yj ≤ zj ≤ ‖z‖`∞.

This establishes the first statement of the lemma, since ‘a priori’ considerations
assure that (I +D+Lh)−1 exists. The proof of the second statement is similar.

(III) We shall directly estimate the Lipschitz constant of T : K → K. Thus, let

u1 = u1[ñ1, p̃1], u2 = u2[ñ2, p̃2]. (65)

The first step consists of the estimate,

‖u1 − u2‖2L2 ≤
(
b− a
π

)2

‖u1 − u2‖2H1 (66)

≤
(

2(b− a)4

π4ε

)
‖[ñ1 − ñ2, p̃1 − p̃2]‖2L2×L2 ,

which follows upon subtracting the respective formulations of (28) for [ñ1, p̃1] and
[ñ2, p̃2], using u1 − u2 as a test function in the weak version, estimating inner
products in terms of sums of squares, and, finally, estimating the L2 norm in terms
of the H1 norm. The next step uses a variant in which (29) and (30) are collapsed
back so that ∇ · (µn∇un) and −∇ · (µp∇u p) are the relevant drift terms. In this
format, we subtract the relevant equations involving n1 and n2 as well as p1 and p2
if

[n1, p1] = T [ñ1, p̃1], [n2, p2] = T [ñ2, p̃2]. (67)

Using the monotonicity of the recombination terms, in each variable separately, and
using n1 − n2, p1 − p2 as test functions, respectively, we obtain, for λ > 0,

‖n1 − n2‖2L2 + ∆tk
∥∥∥√µn(∇u1)∇(n1 − n2)

∥∥∥2

L2

≤ ∆tk

{
λ

2
‖∇n2‖2L∞‖µn(∇u1)− µn(∇u2)‖2L2 +

1
2λ
‖∇(n1 − n2)‖2L2 (68)

+
λ

2
‖n2‖2L∞‖µn(∇u1)∇u1 − µn(∇u2)∇u2‖2L2 +

1
2λ
‖∇(n1 − n2)‖2L2

+
λ

2
‖µn(∇u1)∇u1‖2L∞‖n1 − n2‖2L2 +

1
2λ
‖∇(n1 − n2)‖2L2

}
.

A similar inequality holds for the p equation. The functions ξ 7→ µn(ξ) and ξ 7→
ξµn(ξ) are Lipschitz continuous, with constants µ2

0n/vsn and 2µ0n so that, combined
with the ‘a priori’ estimates for∇u1, n2, and∇n2 this yields, for λ = 2/ inf µn(∇u1),

‖n1 − n2‖2L2 ≤ ∆tk

[(
v2
sn

inf µn

)
‖n1 − n2‖2L2 + C‖u1 − u2‖2H1

]
,

where C does not depend on ñ1, p̃1, ñ2, p̃2. A similar inequality holds for ‖p1−p2‖L2 .
These computations show that T is Lipschitz continuous if

∆tk <
min(inf µn, inf µp)

max(v2
sn, v

2
sp)

. (69)
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Rather than make an unreasonable further restriction to guarantee that T is a strict
contraction, we may apply the Schauder fixed-point theorem to T to conclude the
argument. The necessary H1 bounds are obtained from the second term on the
left-hand side of (68). Uniqueness, however, is not obvious without the further
restriction that T be a strict contraction.

3.3 Approximate Solvability and L2 Residual Control

A typical computing procedure involves solving the system (11)–(13) only approxi-
mately. In the next major result, we present and analyze a criterion for approximate
solvability in terms of the residuals of the individual systems at successive time steps.
The computed triple, [uk, nk, pk], need not satisfy the invariant-region property as
presented in Theorem 1. Since pointwise bounds are essential to the theory, they
are built into the hypothesis structure directly at the outset.

Theorem 3 Suppose that the triple [uk, nk, pk] approximately solves (11)–(13), i.e.,
the boundary conditions (23) are satisfied exactly and

−ε∇2uk + nk − pk −N = r1, (70)
nk − nk−1

∆tk
−∇ · (µn∇nk) + µn∇uk∇nk + Un,k = r2, (71)

pk − pk−1

∆tk
−∇ · (µp∇pk)− µp∇uk∇pk + Up,k = r3, (72)

where the residuals r1, r2, and r3 satisfy

‖r1‖2L2 ≤ Cu(∆tk)2, ‖r2‖L2 ≤ Cn∆tk, ‖r3‖L2 ≤ Cp∆tk, (73)

for k = 1, . . . , L. Define the errors,

vk
def= u(·, tk)− uk, (74)

ek
def= n(·, tk)− nk, (75)

qk
def= p(·, tk)− pk. (76)

Suppose that pointwise bounds,

‖uk‖L∞ ≤ cu, ‖nk‖L∞ ≤ cn, ‖pk‖L∞ ≤ cp, (77)

exist for the computed semidiscrete approximations, together with the lower bounds,

1 + nk ≥ 0, 1 + pk ≥ 0. (78)

Define

∆t def= max
k

∆tk. (79)
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If 1 − c1∆t > 0 with c1 specified in (96) below, then these errors converge with
optimal order in L2:

sup
1≤M≤L

(‖eM‖2L2 + ‖qM‖2L2) (80)

+ min(inf µn, inf µp)
L∑
k=1

(‖∇ek‖2L2 + ‖∇qk‖2L2)∆tk ≤ C1(∆t)2,

sup
1≤M≤L

‖∇vM‖2L2 ≤ C2(∆t)2, (81)

where C1 and C2 are certain positive constants, given explicitly in (98) and (99)
below. The lower bounds, (78), are unnecessary if R ≡ 0 is selected. The result
remains valid if n2 is replaced by (n+)2 and p2 by (p+)2 in Un,k and Up,k, respec-
tively.

Proof: Subtract (71) from the second equation, (2), of the device system to
obtain

(∆tk)−1(ek − ek−1)−∇ (µn(∇uk)∇ek)
+∇ ([µn(∇uk)− µn (∇u(·, tk))]∇n(·, tk)) + µn(∇uk)∇uk∇ek (82)
− [µn(∇uk)∇uk − µn (∇u(·, tk)∇u(·, tk))]∇n(·, tk)

= −r2 + Vn,k + (∆tk)−1
∫ tk

tk−1

(tk−1 − s)
∂2n

∂t2
(s) ds,

where
Vn,k = −[Un (u(·, tk), n(·, tk), p(·, tk))− Un,k(uk, nk, pk)]. (83)

In the estimation to follow, we shall write

Vn,k = [Un(u, n, pk)− Un(u, n, p)]− [R(n, pk)−R(nk, pk)]
−ε−1 [(µ′n(∇u)∇u+ µn(∇u))− (µ′n(∇uk)∇uk + µn(∇uk))] (84)
·[n2 − pkn−Nn].

−ε−1[µ′n(∇uk)∇uk + µn(∇uk)][(n2 − n2
k)− pk(n− nk)−N(n− nk)]

Multiplication of (82) by ek∆tk, integration over Ω, and summation on k = 1, . . . ,M
for 1 ≤M ≤ L yield, after some simplification,

1
2
‖eM‖2L2 + inf µn

M∑
k=1

‖∇ek‖2L2∆tk

≤
{(

µ2
0n

vsn

)
‖∇n‖L∞

M∑
k=1

‖∇vk‖L2‖∇ek‖L2 + vsn

M∑
k=1

‖∇ek‖L2‖ek‖L2

+2µ0n‖∇n‖L∞
M∑
k=1

‖∇vk‖L2‖ek‖L2 + Cn

M∑
k=1

‖ek‖L2∆tk (85)
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+
M∑
k=1

‖ek‖L2‖fk‖L2 + C1n

M∑
k=1

‖ek‖2L2

+C2n

M∑
k=1

‖qk‖L2‖ek‖L2 + C3n

M∑
k=1

‖∇vk‖L2‖ek‖L2

}
∆tk.

Here,

fk = (∆tk)−1
∫ tk

tk−1
(tk−1 − s)

∂2n

∂t2
(s) ds, (86)

and we have noticed that ξ 7→ µn(ξ), ξ 7→ ξµn(ξ), and ξ 7→ ξµ′n(ξ) have respective
Lipschitz constants of µ2

0n/vsn, 2µ0n, and 3µ2
0n/vsn. Also we have used the mono-

tonicity, in (84), of R(·, pk) and of the quadratic in n. Finally, C1n, C2n, and C3n
are given here by

C1n = ε−1µ0n(cp + ‖N‖L∞), (87)

C2n =
τp + τn
τ2
p

+ ε−1µ0n‖n‖L∞, (88)

C3n =
(

4µ2
0n

vsnε

)[
‖n‖2L∞ + ‖n‖L∞(cp + ‖N‖L∞)

]
. (89)

The first term defining C2n embodies an upper bound for ∂R/∂p, via the mean
value theorem, and this was obtained by use of (78).

A similar inequality utilizing (72) and (3) holds for qk. By use of (70) and (1)
we deduce the important relation,

‖∇vk‖2L2 ≤
(

4(b− a)2

π2ε

)(
‖ek‖2L2 + ‖qk‖2L2 + ‖r1‖2L2

)
. (90)

Note that we have employed here an elementary version of Rayleigh’s inequality,
and made judicious use of the inequality,

αβ ≤ 1
2

(λα2 + λ−1β2), (91)

as applied to the estimated weak version of the subtracted equations. The term,
Cn‖ek‖L2(∆tk)2, is expanded as

Cn‖ek‖L2(∆tk)2 ≤ 1
2
Cn‖ek‖2L2∆tk +

1
2
Cn(∆tk)3, (92)

with a similar inequality for the Cp term. The estimate,

‖fk‖2L2 ≤ ∆tk

∥∥∥∥∂2n

∂t2

∥∥∥∥2

L2(Ω×(tk−1,tk))
, (93)

is also used, with its counterpart involving p. The inequality (91) is employed to
estimate the remaining terms. With proper choice of α and β, the choice, λ = 1, is
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made, except for those terms involving ‖∇ek‖, where β = ‖∇ek‖L2, λ = 2/ inf µn
are appropriate choices as applied to the inequality (91). Similar choices hold for
the companion inequality. The Gronwall inequality requires the absorption of the
terms, ‖eM‖2L2 and ‖qM‖2L2 , when arising on the right-hand side of the summed
inequalities, to be transferred to the left-hand side. This imposes a restriction on
∆tk. Altogether, we have, upon adding the inequalities for ek and qk,

‖eM‖2L2 + ‖qM‖2L2 + min(inf µn, inf µp)
M∑
k=1

(‖∇ek‖2L2 + ‖∇qk‖2L2)∆tk (94)

≤ (1− c1 sup ∆tk)−1

[
c0(∆t)2 + c1

M−1∑
k=1

(‖ek‖2L2 + ‖qk‖2L2)∆tk

]
,

where

c0 = κCu + (Cn + Cp)T0 + ‖ntt‖2L2(Ω×(0,T0)) + ‖ptt‖2L2(Ω×(0,T0)), (95)
c1 = κ+ 2 + 2 max(C1n, C1p) + max(Cn, Cp) + 2 max(C2n, C2p) (96)

+ max(C3n, C3p) +
2 max(v2

sn, v
2
sp)

min(inf µn, inf µp)
,

κ =
(

4(b− a)2

π2ε

){
C3n + C3p + 2(‖∇n‖2L∞ + ‖∇p‖2L∞) (97)

·
[

max(µ4
0n/v

2
sn, µ

4
0p/v

2
sp)

min(inf µn, inf µp)
+ 2 max(µ2

0n, µ
2
0p)

]}
.

Since the inequality (94) holds for each M = 1, . . . , L, it is a consequence of the
Gronwall inequality (cf. Jerome [11, pp. 52–54]) that (80) and (81) hold with

C1 =
c0 exp[c1T0/(1− c1∆t)]

1− c1∆t
, (98)

C2 =
(

4(b− a)2

π2ε

)
(Cu + C1) . (99)

Remark 1 The advantage of the replacement of n2 and p2 by (n+)2 and (p+)2 is
that it leads to uniform boundedness of approximate solutions (cf. Lemma 7).

3.4 H−1 Residual Control

We shall develop a necessary parallel result for the case where the residual is esti-
mated in H−1. This has important implications for classes of algorithms, such as
the transport diffusion algorithm, or those using second order numerical methods,
which lead naturally to H−1 residual estimation. In order to provide as efficient
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an estimation procedure as possible, we introduce the family of Riesz maps Ta,
associated with the linear differential operators,

−∇a∇ : H1
0 (Ω)→ H−1(Ω). (100)

Ta satisfies the relation, for ` ∈ H−1(Ω),

〈`, v〉 = (a∇Ta`,∇v)L2 , v ∈ H1
0 (Ω). (101)

Here, a ≥ a0 > 0 is an essentially bounded function and will be identified with µn
or µp. We note the fundamental relation,

(f, Taf)L2 ≥ inf a(f, Tef)L2 ≥ (inf a/ supa)(f, Taf)L2 , (102)

where e(x) ≡ 1, which follows from (101). Here, we have interpreted the duality
pairing 〈·, ·〉 as the L2 pivot space inner product for f ∈ L2(Ω). We choose, for the
(equivalent) H−1 norm,

‖`‖H−1 = 〈`, Te`〉1/2. (103)

The maps Ta, when restricted to L2(Ω), are positive definite, self-adjoint, com-
pact operators; they are also (pointwise) nonnegative operators. Moreover, if g is
Lipschitz continuous,

‖g(v)− g(w)‖H−1 ≤ ‖g‖Lip‖ |v − w| ‖H−1 , v, w ∈ L2(Ω). (104)

In the extension of Theorem 3 to the H−1 case, one is compelled to make sys-
tematic use of (101)-(104) and the properties just mentioned, together with their
implications, as well as one additional result, contained in (106). To describe this,
let

ca ≥ sup a. (105)

Now we have, for f ∈ H1(Ω) and g ∈W 1,∞(Ω) with ‖g‖2L∞ + ‖∇g‖2L∞ ≤ γ
2,

‖T 1/2
a (g∇f)‖L2 ≤ ca‖T 1/2

e (g∇f)‖L2 ≤ Ca‖f‖L2, (106)

as can be seen from the following computations. Since Te is the Dirichlet solution
operator for −∇2,

T 1/2
e [g∇f(x)] =

∞∑
m=1

am√
λm

sin
(
mπ(x− a)
b− a

)
,

where

am =
2

b− a

∫ b

a

f ′(s)g(s) sin
(
mπ(s− a)
b− a

)
ds

and λm = [mπ/(b− a)]2 denotes the mth eigenvalue of −∇2. We have,(
b− a

2

)
am = −

√
λm

∫ b

a

f(s)g(s) cos
(
mπ(s− a)
b− a

)
ds

−
∫ b

a

f(s)g′(s) sin
(
mπ(s− a)
b− a

)
ds

def=
(
b− a

2

)(
−
√
λmbm − cm

)
.
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Now, if N0 denotes the Neumann operator for −∇2, i.e.,

−∇2N0f = f − 1
b− a

∫
Ω
f, ∇N0f(a) = ∇N0f(b) = 0,

∫
Ω
N0f =

∫
Ω
f,

it follows from the above that

N0

(
fg − 1

b− a

∫
Ω
fg

)
=
∞∑
m=1

bm
λm

cos
(
mπ(x− a)
b− a

)
,

hence that (cf. [11, pp. 17,18])

‖T 1/2
e (g∇f)‖2L2 =

b− a
2

∞∑
m=1

a2
m

λm

≤ (b− a)

( ∞∑
m=1

b2m +
∞∑
m=1

c2m
λm

)
(107)

= 2
∥∥∥∥fg − 1

b− a

∫
Ω
fg

∥∥∥∥2

L2

+ 2‖fg′‖2H−1

≤ 2
(

1 +
(b− a)2

π2

)
γ2‖f‖2L2.

Inequality (107) immediately yields (106) with Ca = ca
√

2[1 + (b− a)2/π2]1/2γ.

Theorem 4 Suppose the hypothesis, (73), is restated in terms of H−1 norms of
the individual residuals:

‖r1‖2H−1 ≤ Cu(∆tk)2, ‖r2‖H−1 ≤ Cn∆tk, ‖r3‖H−1 ≤ Cp∆tk. (108)

Suppose that the pointwise bounds (77) and (78) hold and that r1 is uniformly
pointwise bounded. Then

sup
1≤M≤L

(‖eM‖2H−1 + ‖qM‖2H−1) +
L∑
k=1

(‖∇ek‖2L2 + ‖∇qk‖2L2)∆tk ≤ C1(∆t)2, (109)

sup
1≤M≤L

‖vM‖2L2 ≤ C2(∆t)2, (110)

where C1 and C2 are given explicitly below in (116) and (117).

Proof: Apply Tµn to (82) and compute the L2 inner product with ek∆tk. We
shall make use of the properties of Ta described earlier in order to estimate the
resultant. The corresponding replacement for (85) is given by

1
2

(inf µn)‖eM‖2H−1 +
M∑
k=1

‖ek‖2L2∆tk
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≤
[
Cµn

(
µ

5/2
0n

vsn

)
‖∇n‖L∞

M∑
k=1

‖∇vk‖L2‖ek‖H−1 + Cµn
√
µ0n

M∑
k=1

‖ek‖L2‖ek‖H−1

+2µ2
0n

(
b− a
π

)
‖∇n‖L∞

M∑
k=1

‖∇vk‖L2‖ek‖H−1 (111)

+Cnµ0n

M∑
k=1

‖ek‖H−1∆tk + µ0n

M∑
k=1

‖ek‖H−1‖fk‖H−1

+C′1nµ0n

(
b− a
π

) M∑
k=1

‖ek‖L2‖ek‖H−1 + C2nµ0n

(
b− a
π

) M∑
k=1

‖qk‖L2‖ek‖H−1

+C3nµ0n

(
b− a
π

) M∑
k=1

‖∇vk‖L2‖ek‖H−1

]
∆tk

with C′1n = C1n+‖n‖L∞+cn. The reader will note that γ = 1 in the first appearance
of Cµn above, whereas γ = (v2

sn + 4µ2
0nω

2)1/2 in the second appearance; here, ω is
an upper bound for ‖∆uk‖L∞ . The replacement for (90) is

‖∇vk‖2H−1 = ‖vk‖2L2 ≤
(

4(b− a)2

π2ε

)(
‖ek‖2H−1 + ‖qk‖2H−1 + ‖r1‖2H−1

)
. (112)

The remainder of the proof proceeds similarly to the proof of Theorem 3. The new
choices of c0 and c1 are given by

c0 = κCu + T0µ̄
(
Cn + Cp + ‖(T 1/2n)tt‖2L2(Ω×(0,T0)) (113)

+‖(T 1/2p)tt‖2L2(Ω×(0,T0))

)
,

c1 = κ+ µ̄2

[
1 + 6 max(C′21n, C

′2
1p) + 6

(
b− a
π

)2

max(C2
2n, C

2
2p)

]
(114)

+µ̄
[
max(Cn, Cp) + 6 supC2

µ

]
,

κ =
3π2ε

2(b− a)2

{[
max

(
µ5

0n

v2
sn

,
µ5

0p

v2
sp

)
supC2

µ + 4µ̄4
(
b− a
π

)2
]

(115)

·
(
‖∇n‖2L∞ + ‖∇p‖2L∞

)
+ µ̄2

(
b− a
π

)2 (
C2

3n + C2
3p
)}

with µ̄ = max(µ0n, µ0p) and C′1p = C1p + ‖p‖L∞ + cp. In (114) and (115), supC2
µ

refers to all choices of µ = µn, µp, obtained from the semidiscrete system. The
finiteness of this follows, ultimately, from the pointwise boundedness assumptions.

The new choices of C1 and C2 are given by

C1 =
c0 exp{c1T0/[min(inf µn, inf µp)− c1∆t]}

min(inf µn, inf µp)− c1∆t
, (116)

C2 =
(

4(b− a)2

π2ε

)
(Cu + C1) . (117)
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4 Approximate Newton Methods for the Semidis-
crete System

We shall describe a rather general approximate Newton method, in which the ap-
proximate linear inversion is based upon an arbitrary inner iteration, arranged in
such a way that the algorithm is quadratically convergent. Though the description
is general, we shall aim for the development of an algorithm with a small number
of outer iterations. The reader will recall from § 3 that it is the residual of the non-
linear map, defining the semidiscrete system, which is to be controlled of order ∆tk
(cf. Theorem 3). It follows that the analysis of the approximate Newton method
of this section will address this property, although, typically, quadratic convergence
of the residuals occurs in tandem with quadratic convergence of the approximants
themselves.

The plan of the section is as follows. An operator tableau for the linearized
problem is presented in § 4.1, while the properties required of an approximate
Newton method are presented in § 4.2. A study of these properties, as they affect the
semiconductor model, is presented next (§ 4.3 and § 4.4), followed by a description
of continuation from the previous discrete time in § 4.5.

4.1 The Linearized Problem

This is primarily a formal subsection, in which we briefly present the operator for
the linearized problem. At the conclusion, we mention considerations of operator
domain and range.

Suppose the system (11)–(13) is denoted by

F (uk, nk, pk) = 0, (118)

and the mth linear increment, i.e., the difference between the mth and the (m−1)th
Newton iterates, is denoted by [φmk , ψ

m
k , ω

m
k ]. This increment satisfies −ε∇2? ? −?

(F ′)21 (F ′)22 (∂Up/∂p)?
(F ′)31 (∂Un/∂n)? (F ′)33

 φmk
ψmk
ωmk

 = −

 rm−1
1
rm−1
2
rm−1
3

 (119)

where

(F ′)21
def= −∇

[
∇nm−1

k µ′n(∇um−1
k )∇?

]
+∇nm−1

k ∇um−1
k µ′n(∇um−1

k )∇ ? (120)

+∇nm−1
k µn(∇um−1

k )∇ ?+
∂Un
∂u
∇ ?

(F ′)22
def=

?

∆tk
−∇

[
µn(∇um−1

k )∇?
]

+ µn(∇um−1
k )∇um−1

k ∇ ?+
∂Un
∂n

? (121)

(F ′)31
def= −∇

[
∇pm−1

k µ′p(∇um−1
k )∇?

]
−∇pm−1

k ∇um−1
k µ′p(∇um−1

k )∇ ? (122)
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−∇pm−1
k µp(∇um−1

k )∇ ?+
∂Up
∂u
∇ ?

(F ′)33
def=

?

∆tk
−∇

[
µp(∇um−1

k )∇?
]
− µp(∇um−1

k )∇um−1
k ∇ ?+

∂Up
∂p

? . (123)

Moreover, rm−1
1 , rm−1

2 , and rm−1
3 are the residuals of F (um−1

k , nm−1
k , pm−1

k ), given
explicitly in (11)–(13); [um−1

k , nm−1
k , pm−1

k ] is the Newton iterate; and,

∂Un
∂u

def=
∂Un
∂u

(um−1
k , nm−1

k , pm−1
k )

= ε−1[2µ′n(∇um−1
k ) + µ′′n(∇um−1

k )∇um−1
k ] (124)

·[(nm−1
k )2 − nm−1

k pm−1
k − nm−1

k N ]
∂Up
∂u

def=
∂Up
∂u

(um−1
k , nm−1

k , pm−1
k )

= −ε−1[2µ′p(∇um−1
k ) + µ′′p(∇um−1

k )∇um−1
k ]

·[nm−1
k pm−1

k − (pm−1
k )2 − pm−1

k N ] (125)
∂Un
∂n

def=
∂Un
∂n

(um−1
k , nm−1

k , pm−1
k )

=
(τp + pm−1

k τn)(pm−1
k + 1)

(dm−1
k )2

(126)

+
1
ε

[µn(∇um−1
k ) + µ′n(∇um−1

k )∇um−1
k ](2nm−1

k − pm−1
k −N)

∂Up
∂p

def=
∂Up
∂p

(um−1
k , nm−1

k , pm−1
k )

=
(τn + nm−1

k τp)(nm−1
k + 1)

(dm−1
k )2

(127)

−1
ε

[µp(∇um−1
k ) + µ′p(∇um−1

k )∇um−1
k ](nm−1

k − 2pm−1
k −N)

with
dm−1
k

def= τp(nm−1
k + 1) + τn(pm−1

k + 1). (128)

We shall find it advantageous to consider two distinct application frameworks
for the mappings F and F ′. Note that (119)–(123) is a delineation of the equation,

F ′(um−1
k , nm−1

k , pm−1
k )

 φmk
ψmk
ωmk

 = −

 rm−1
1
rm−1
2
rm−1
3

 . (129)

(Also note that (119) represents a considerable notational economy; a similar tab-
leau was introduced by Bank et al. [4].) We shall permit both an L2 and H−1

residual measurement framework because of the variety of applications. Thus, F
will be defined from triples in the affine subspace of Hs(Ω) given by

Xs = [ū(·, tk), n̄, p̄] + Ys, s = 1, 2, (130)
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where

Ys =
3∏
1

Hs(Ω) ∩H1
0 (Ω), s = 1, 2, (131)

to the triple product of copies of Hs−2(Ω). F ′(z), for fixed z, is defined from Ys to
the same space. Any approximate inverse, denoted G(z) in the next subsection, re-
verses domain and range. Finally, we shall find it convenient, and, in fact, necessary
to restrict F to have local domain of definition.

4.2 A Class of Approximate Newton Methods

We begin by recalling the three fundamental properties required of an approximate
Newton method, based on a family of linear maps, G(zm), where {zm} comprises
the Newton sequence, defined by

zm − zm−1 def= −G(zm−1)F (zm−1), (132)

and where z, F (z) = 0, is sought as z = limm→∞ zm. The three properties are:

‖G(zm−1)F (zm−1)‖ ≤M1‖F (zm−1)‖, (133)
‖[F ′(zm−1)G(zm−1)− I]F (zm−1)‖ ≤M2‖F (zm−1)‖2, (134)
‖F ′(x) − F ′(y)‖ ≤ 2M3‖x− y‖, (135)

together with a mechanism insuring that successive iterates lie within the domain
of definition of F . Here, the constants M1, M2, and M3 are independent of the
elements in the domain of definition of the respective maps. This framework is
reminiscent of that described by Bank and Rose [3].

In order to estimate ‖F (zm)‖, we write

F (zm) = −[F ′(zm−1)G(zm−1)− I]F (zm−1) +R(zm−1, zm) (136)

where
R(zm−1, zm) = F (zm)− F (zm−1)− F ′(zm−1)(zm − zm−1). (137)

Notice that the first term in (136) may be dominated by M2‖F (zm−1)‖2, via (134),
and the second term by

‖R(zm−1, zm)‖ =
∥∥∥∥∫ 1

0

[
F ′
(
zm−1 + s(zm − zm−1)

)
− F ′(zm−1)

]
(zm − zm−1) ds

∥∥∥∥
on use of a standard Taylor expansion. From these remarks we have the estimate

‖F (zm)‖ ≤ (M2
1M3 +M2)‖F (zm−1)‖2. (138)

We have proved the bulk of the following lemma.
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Lemma 5 Let F be a map defined on a closed ball Br in an affine subspace x0+X0,
contained in a Banach space X, with Fréchet derivative

F ′(z) : X0 7→W, z ∈ Br.

Here W is a Banach space containing the range of F . Suppose that G(z) : W 7→ X0
is defined for each z ∈ Br, and that F , F ′, and G satisfy (133), (134), and (135).
If z0 satisfies

M1‖F (z0)‖ ≤ (1− α)r, (139)

where 0 ≤ α < 1 is such that z0 ∈ Bαr, then z1 ∈ Br and the residual F (z1) satisfies

‖F (z1)‖ ≤ (M2
1M3 +M2)‖F (z0)‖2. (140)

Remark 2 The hypothesis (135) can be weakened from x, y ∈ Br to x, y on the line
segment between zm−1 and zm. This remark is especially applicable to hypotheses
(170) and (171) to follow, which need only hold along such line segments, and, in
fact, can only be expected to hold in such a local fashion as induced by numerical
approximation schemes.

4.3 Estimation of the Constants

We shall estimate the constant M3 of the previous section, and determine an esti-
mate for M1 in the special case G = (F ′)−1. In the following section we shall show
how this provides constant estimates for general G. As a preliminary comment,
we recall again that the carrier approximations, unlike the solutions, can assume
negative values. Some mechanism in any computing process must be found to en-
sure that the recombination term is well-defined. In practice, one might wish to
redefine this term for negative values of n and p, when the term appears explicitly
(as opposed to implicitly). In any event, we shall assume that the denominators
dm−1
k of the recombination term are bounded away from zero, independently of m

and k:
dm−1
k ≥ d > 0. (141)

Hypothesis (141) is an intrinsic hypothesis associated with the model. We now
estimate (F ′)−1.

Proposition 6 Let F be the map of (118), defined on a ball of radius r0 in Xs.
The inversion map of (129) satisfies, for m ≤ m0,

‖[F ′(um−1
k , nm−1

k , pm−1
k )]−1rm−1‖Hs ≤M‖rm−1‖Hs−2 , (142)

where M is a constant depending only on r0, m0, and a bound for ‖∇2u0
k‖L∞. For

s = 2, there are no further unspecified hypotheses, whereas for s = 1 the ‘a posteri-
ori’ hypotheses (157) and (158) of Lemma 7 are assumed to hold. Alternatively, in
lieu of (157) and (158), the result holds if

‖∇nmk ‖L∞ ≤ C‖P‖‖∇nmk ‖L2, m ≤ m0, (143)

with C2
‖P‖‖P‖ → 0 as ‖P‖ → 0.
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Proof: We begin with the case s = 2. From the tableau (119)–(123) we obtain
the estimates

(∆tk)−1‖ψmk ‖2L2 +
1
2

inf µn‖∇ψmk ‖2L2

≤ 1
2
‖rm−1

2 ‖2L2 +
(

A2

inf µn

)
‖∇φmk ‖2L2 (144)

+
(

5
4

+
v2
sn

inf µn
+ sup

∣∣∣∣∂Un∂n

∣∣∣∣) ‖ψmk ‖2L2 +
1
2

sup
∣∣∣∣∂Up∂p

∣∣∣∣2 ‖ωmk ‖2L2

and

‖∇φmk ‖2L2 ≤
(

4(b− a)2

π2ε

)
(‖ψmk ‖2L2 + ‖ωmk ‖2L2 + ‖rm−1

1 ‖2L2). (145)

Here,

A = µ0n

[(
µ0n

vsn

)
sup |∇nm−1

k |+
√

inf µn

(
2 sup |∇nm−1

k |+ sup
∣∣∣∣∂Un∂u

∣∣∣∣)] . (146)

In conjunction with the estimate for ωmk , we obtain, from (144) and (145),

‖ψmk ‖2L2 + ‖ωmk ‖2L2 ≤ c‖rm−1‖2L2 , (147)

where c is the positive number defined by

c−1 =
(

1
2

+
4(b− a)2

π2ε

)−1{
1− ‖P‖

[
4A2(b− a)2

π2εmin(inf µn, inf µp)
(148)

+ max

(
sup

∣∣∣∣∂Un∂n

∣∣∣∣2 , sup
∣∣∣∣∂Up∂p

∣∣∣∣2
)

+
9
4

+
max(v2

sn, v
2
sp)

min(inf µn, inf µp)

]}
.

Clearly, A ≤ A0 if the H2 norm is restricted as specified.
The estimate (147) implies

‖∇2φmk ‖2L2 ≤ 4ε−2(‖rm−1
1 ‖2L2 + c‖rm−1‖2L2), (149)

which, in conjunction with

‖φmk ‖2L2 ≤ 4ε−1
(
b− a
π

)4

(‖rm−1
1 ‖2L2 + c‖rm−1‖2L2), (150)

yields an H2 estimate for φmk . The bootstrapping can now proceed. One views the
second equation defined by (119)–(123) as having the form

(∆tk)−1ψmk −µn∇2ψmk −µ′n∇2um−1
k ∇ψmk +µn∇um−1

k ∇ψmk = −rm−1
2 +qm−1

k , (151)

where
‖qm−1
k ‖L2 ≤ C‖rm−1‖L2. (152)
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The latter inequality follows from (149) and (150) and the tableau display (119)–
(123). Note that the constant C depends only on r0.

If (151) is multiplied by ψmk , with the second and third terms collapsed into
divergence form, then integration by parts yields the estimate,

‖∇ψmk ‖2L2 ≤ (1 + C2)(inf µn)−1‖rm−1‖2L2 , (153)

provided

1− ‖P‖ − 1
2
‖P‖max(v2

sn, v
2
sp)/min(inf µn, inf µp) > 0. (154)

Here we have used (152). For the estimate (153), there is a corresponding estimate
for ∇ωmk .

If (151) is multiplied by −∇2ψmk and the resultant integrated over Ω, one has

(∆tk)−1‖∇ψmk ‖2L2 +
1
2

(inf µn)‖∇2ψmk ‖2L2 (155)

≤ 2(inf µn)−1(µ2
0n‖∇2um−1

k ‖2L∞ + v2
sn)‖∇ψmk ‖2L2 + 2(1 + C2)‖rm−1‖2L2 .

The conjunction of (153), (155), and the inequality

‖∇2um−1
k ‖L∞ ≤ ‖∇2u0

k‖L∞ + (m0 − 1) sup
m
‖φmk ‖L∞ (156)

for m ≤ m0, leads to (142) in the case s = 2. Note that (149) and (150) yield a
bound for the supremum in (156).

With one major exception, the proof for s = 1 proceeds as above, where the
Riesz maps are employed as in § 3.4. The exception relates to uniform gradient
bounds for nmk and pmk , which, in the case s = 2, are assured by the action of the
mapping F on a bounded set in H2. The lemma to follow provides these bounds, but
specifies additional residual control necessary to achieve the bounds. This explains
the residual hypothesis in the case s = 1. The alternative hypothesis, which bounds
the gradient pointwise according to (143), does not require Lemma 7, and enters in
(148) so that c > 0. In the interest of brevity, we omit the remaining details.

Lemma 7 Suppose that, for uk = umk , nk = nmk , and pk = pmk , the L2-norm of the
residual associated with (70)–(72), denoted rk = [r1,k, r2,k, r3,k], is square summable
bounded, independently of the partition P and the level of the Newton iteration:∑

k

‖rk‖2L2 ≤ α (157)

and that the residuals are uniformly bounded in L∞:

‖rk‖L∞ ≤ β. (158)

Suppose that the quadratic terms n2 and p2 are replaced by (n+)2 and (p+)2 in Un,k
and Up,k, respectively. Then the solution triples are bounded in

∏3
1H

2:

‖[uk, nk, pk]‖H2 ≤ C. (159)
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Proof: Although it appears natural to use the system (70)–(72) to derive these
estimates, the nonlinear diffusion coefficients present technical obstacles to this
approach. Somewhat surprisingly, it is advantageous to use a perturbation argument
employing the solution. The latter does, however, require preliminaryL∞ estimates,
for which it is possible to use (70)–(72). In order to obtain a format conducive to
integration by parts, we subtract the boundary values. More precisely, set

νk
def= nk − n̄, (160)

so that

νk − νk−1

∆tk
−∇(µn∇νk) = ∇(µn∇n̄)−µn∇uk∇νk −µn∇uk∇n̄−Un,k + r2,k (161)

is the equivalent version of (71). If (161) is multiplied by νγ−1
k , for γ an even integer,

then an application of the inequality

αβ ≤ αγ

γ
+
β1−1/γ

1− 1/γ
, α ≥ 0, β ≥ 0, γ > 0 (162)

yields, after integration over Ω,∫
Ω
|νk|γ + (γ − 1)∆tk

∫
Ω
µn|∇νk|2νγ−2

k

≤ vsn∆tk
∫

Ω
|∇νk| |νk|γ−1

+
∫

Ω

∣∣∣(∇(µn∇n̄)− µn∇uk∇n̄− Ûn,k + r2,k
)

∆tk + νk−1

∣∣∣ |νk|γ−1

≤ v2
sn∆tk

2 inf µn(γ − 1)

∫
Ω
|νk|γ +

γ − 1
2

∆tk
∫

Ω
µn|∇νk|2νγ−2

k

+
1
γ

∫
Ω

∣∣∣(∇(µn∇n̄)− µn∇uk∇n̄− Ûn,k + r2,k
)

∆tk + νk−1

∣∣∣γ
+
γ − 1
γ

∫
Ω
|νk|γ .

Here we have recognized that Un,k(uk, ·, pk), where · stands for νk + n̄, can be
written as a sum of two terms, one of which is Ûn,k, and the other of which has
the same sign as νk, Ûn,k has the property that it is of linear growth in its final
two arguments (cf. (164)); the other summand, when multiplied by νγ−1

k , may be
neglected. A parallel statement holds for Up,k.

Multiplication by γ and extraction of γth roots leads to (cf. (154))

2−1/γ‖νk‖Lγ ≤ ‖νk−1‖Lγ + c∆tk

[(
µ2

0n

vsn

)
‖∇2uk‖Lγ + vsn|Ω|1/γ

]
(163)

+∆tk
[
‖Ûn,k‖Lγ + ‖r2,k‖Lγ

]
,
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where c = |∇n̄| is a constant. We may now let γ →∞. There is a parallel expression
for $k

def= pk − p̄. The linear growth of Ûn,k and Ûp,k and the equation (70) lead to
expressions of the form

‖Ûn,k‖L∞ + ‖Ûp,k‖L∞ + ‖∇2uk‖L∞ ≤ c1(‖nk‖L∞ + ‖pk‖L∞) + c0, (164)

where c0 does not depend on k. The Gronwall inequality now leads to an exponential
bound for ‖νk‖L∞ and ‖$k‖L∞ .

We may now proceed to second-derivative estimates. Multiplication of (82) by
−∇2ek gives the algebraic relation

(∆tk)−1(ek − ek−1)(−∇2ek) + µn(∇2ek)2

= −µ′n∇2uk∇ek∇2ek + µn∇uk∇ek∇2ek

+∇n∇2uk[µ′n(∇uk)− µ′n(∇u)]∇2ek −∇n[∇2u−∇2uk]µ′n(∇u)∇2ek(165)
−∇n[µn(∇uk)∇uk − µn(∇u)∇u]∇2ek + [µn(∇uk)− µn(∇u)]∇2n∇2ek

−Vn,k∇2ek + r2,k∇2ek − fk∇2ek.

Here, fk and Vn,k have the meaning of (86) and (83), respectively. Integrate (165)
over Ω, integrating the first term by parts, and utilize (91) with λ = 9/ inf µn. We
sum over k = 1, . . . , L to obtain

(∆tL)−1‖∇eL‖2L2 +
1
2

inf µn
L∑
k=1

‖∇2ek‖2L2

≤ 9
2 inf µn

L∑
k=1

[(v2
sn + µ4

0n sup |∇2uk|2/v2
sn)‖∇ek‖2L2 + C(‖ek‖2L2 + ‖qk‖2L2) (166)

+‖r2,k‖2L2 + ‖fk‖2L2 +B2(‖ek‖2L2 + ‖qk‖2L2 + ‖r1,k‖2L2)]

where

B =
2(b− a)µ0n

π
√
ε

(
µ2

0n

v2
sn

sup |∇n| sup |∇2uk|+ 2 sup |∇n|+ µ0n

vsn
sup |∇2n|

)
(167)

+
(

2µ2
0n

εvsn

)
sup |∇n|,

and C is a constant arising from the fact that Vn,k can be written as a sum of terms
exhibiting linear growth in ek and qk (cf. (75) and (76)). Note that we have used
the Lipschitz properties of ξ 7→ µn(ξ), ξ 7→ µ′n(ξ), and ξ 7→ ξµ′n(ξ). Use of the
auxiliary estimate,

‖∇2uk‖L∞ ≤ ε−1(‖nk‖L∞ + ‖pk‖L∞ + ‖N‖L∞ + ‖r1,k‖L∞), (168)

and the hypotheses of the Lemma, now yield the inequality∑
k

(‖∇2ek‖2L2 + ‖∇2qk‖2L2) (169)

≤ C1

∑
k

‖rk‖2L2 + ‖P‖
(
‖ntt‖2L2(Ω×(0,T0)) + ‖ptt‖2L2(Ω×(0,T0))

)
.
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The conclusion (159) now follows from (168) and (169) and the specification of the
boundary conditions.

Our next result details the estimation of the Lipschitz constant for F ′.

Proposition 8 For the domain of definition of F restricted to a ball of radius r0
in Xs, a constant M3 exists, depending only on r0, in the case s = 2, such that
(135) holds. In the case s = 1, the hypotheses of Lemma 7 are also required, as well
as a generalized inverse inequality:

‖∇n1 −∇n2‖L∞ ≤ C‖P‖‖∇n1 −∇n2‖L2 , (170)
‖∇p1 −∇p2‖L∞ ≤ C‖P‖‖∇p1 −∇p2‖L2. (171)

In this case, M3 depends upon ‖P‖. Inequalities (170) and (171) need only hold in
the sense of Remark 2. In the case s = 1, hypothesis (143) may be substituted for
the hypotheses of Lemma 7.

Proof: We consider first the case s = 2. Thus, we must estimate M3 in

‖[F ′(v1)− F ′(v2)][φ, ψ, ω]‖L2 ≤M3‖v1 − v2‖H2 ‖[φ, ψ, ω]‖H2 , (172)

where
v1 = [u1, n1, p1], v2 = [u2, n2, p2]. (173)

The first component of F ′(v1) − F ′(v2) is zero, as is evident from (119)–(123).
We estimate separately the terms in the second component of the element on the
left-hand side of (172), and we begin by estimating

∇ · [∇n1µ
′
n(∇u1)∇φ] −∇ · [∇n2µ

′
n(∇u2)∇φ]

= ∇2(n1 − n2)µ′n(∇u1)∇φ+∇2n2 [µ′n(∇u1)− µ′n(∇u2)]∇φ
+∇(n1 − n2)µ′′n(∇u1)∇2u1∇φ (174)
+∇n2

[
µ′′n(∇u1)∇2u1 − µ′′n(∇u2)∇2u2

]
∇φ

+∇(n1 − n2)µ′n(∇u1)∇2φ+∇n2 [µ′n(∇u1)− µ′n(∇u2)]∇2φ.

We find the norm of this expression is bounded by(
µ2

0n

vsn

){
‖n1 − n2‖H2‖∇φ‖L2 +

(
µ0n

vsn

)
‖∇φ‖L∞ [‖n2‖H2‖∇(u1 − u2)‖L2

+‖u1‖H2‖∇(n1 − n2)‖L2 + ‖∇n2‖L2‖u1 − u2‖H2 ] (175)

+
(

15µ3
0n

v2
sn

)
‖∇n2‖L∞‖∇2u2‖L2‖∇(u1 − u2)‖L2‖∇φ‖L∞

+‖∇(n1 − n2)‖L2‖φ‖H2 +
(
µ0n

vsn

)
‖∇n2‖L2‖∇(u1 − u2)‖L∞‖φ‖H2

}
.

These terms are clearly of the form given by the right-hand-side estimate of (172).
The constant M3 is seen to depend on r0. The next two terms to estimate are given
by

∇n1∇u1µ
′
n(∇u1)∇φ−∇n2∇u2µ

′
n(∇u2)∇φ
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and
∇n1µn(∇u1)∇φ−∇n2µn(∇u2)∇φ.

Each of these two differences can be represented analogously to (174). The first
difference replaces ∇n1 and ∇n2 by n1 and n2, respectively, and ξ 7→ µ′n(ξ) by
ξ 7→ ξµ′n(ξ), in the first two terms of the right-hand side of (174). The latter
replacement simply means that, in (175), a bound for µ′n is replaced by a bound for
ξµ′n; this bound is simply µ0n. The second difference is handled even more easily.
The estimation of the (2, 1) block differences is completed by consideration of the
terms

ε−1 {2 [µ′n(∇u1)− µ′n(∇u2)] + [µ′′n(∇u1)∇u1 − µ′′n(∇u2)∇u2]} (n2
1 − n1p1 − n1N)

+ε−1 [2µ′n(∇u2) + µ′′n(∇u2)∇u2] [(n2
1 − n2

2)− (n1p1 − n2p2)− (n1 − n2)N ].

Estimates for these terms in the matrix product are provided by(
5µ3

0n

εv2
sn

)
‖∇(u1 − u2)‖L2‖n2

1 − n1p1 − n1N‖L∞‖∇φ‖L2

+
(

3µ2
0n

vsn

)
‖∇φ‖L2 (‖n1 − n2‖L2‖n1 + n2‖L∞ + ‖n1 − n2‖L2‖p1‖L∞

+‖p1 − p2‖L2‖n2‖L∞ + ‖n1 − n2‖L2‖N‖L∞) .

Again this fits into the format of (172).
From the (2, 2) block, we estimate the difference

∇ [µn(∇u1)∇ψ]−∇ [µn(∇u2)∇ψ]
= [µn(∇u1)− µn(∇u2)]∇2ψ + µ′n(∇u1)∇2u1∇ψ − µ′n(∇u2)∇2u2∇ψ

as (
µ2

0n

vsn

)[
‖∇(u1 − u2)‖L2‖ψ‖H2 +

(
µ2

0n

vsn

)
‖∇(u1 − u2)‖L2‖∇2u1‖H2‖∇ψ‖L2

+ ‖u1 − u2‖H2‖∇ψ‖L2

]
,

which is again of the form (172). The difference

µn(∇u1)∇u1∇ψ − µn(∇u2)∇u2∇ψ

is estimated by
2µ0n‖∇(u1 − u2)‖L2‖∇ψ‖L2,

which is of the form (172). The terms[
∂Un
∂n

(u1, n1, p1)− ∂Un
∂n

(u2, n2, p2)
]
ψ

and [
∂Up
∂p

(u1, n1, p1)− ∂Up
∂p

(u2, n2, p2)
]
ω



32 W. M. Coughran, Jr. and J. W. Jerome

are estimated by techniques similar to the above. This concludes the proof for s = 2.
In the case s = 1, the estimation of the linear functional,

(F ′[u1, n1, p1]− F ′[u2, n2, p2])[φ, ψ, ω],

proceeds by estimating terms from the (2, 1) block differences beginning with∫
Ω

(∇n1 −∇n2)µ′n(∇u1)∇φ∇ψ0 +
∫

Ω
∇n2 (µ′n(∇u1)− µ′n(∇u2))∇φ∇ψ0,

where the functional acts on the test function [φ0, ψ0, ω0]. This can be estimated
by (

µ2
0n

vsn

)
‖∇(n1 − n2)‖L∞‖∇φ‖L2‖∇ψ0‖L2

+
(
µ3

0n

v2
sn

)
‖∇n2‖L∞‖∇(u1 − u2)‖L∞‖∇φ‖L2‖∇ψ0‖L2.

This is the most delicate of the estimates, since it involves ‖∇(n1 − n2)‖L∞ and
‖∇n2‖L∞. The latter can be estimated by Lemma 7, or alternatively (143). The
former requires an estimate of the form

‖∇(n1 − n2)‖L∞ ≤ C∆t‖∇(n1 − n2)‖L2 ,

which is a property of the inverse hypothesis (170). The next two terms in the (2, 1)
block difference do not require special hypotheses, while the final term in the (2, 1)
block may make use of the estimate for s = 2. The terms in the (2, 2) and (2, 3)
blocks are routinely estimated.

4.4 Interface with the Inner Iteration

In Part II of this series, we shall examine decoupling inner iterations, giving rise to
approximate inverses of the derivative maps F ′(u, n, p). Detailed analysis of typical
decouplings of this type suggests that the approximate inverse satisfies an inequality
of the form

‖[(F ′ ◦G)(um−1
k , nm−1

k , pm−1
k )− I]rm−1‖Hs−2 ≤ C∆tk‖rm−1‖Hs . (176)

Once again, rm−1 denotes the residual, at the kth time step, of the (m − 1)th
Newton iteration. The conjunction of (176) and (142) suggests the inequality

‖G(um−1
k , nm−1

k , pm−1
k )rm−1‖Hs ≤M(1 + C∆tk)‖rm−1‖Hs−2 , (177)

leading to the choice of M1 in (133), dictated by

M1
def= M(1 + C‖P‖). (178)
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Here M is defined in (142). To draw the circle completely around (133)–(135), we
can identify M2 of (134) with M1 and M3 by

M2
def= M2

1M3, (179)

and then link this choice of M2 with that induced by (176):

M2
1M3‖rm−1‖Hs−2 ≥ C∆tk. (180)

The choice of M2 in (179) is motivated by (140). Clearly, (180) is implied by

M2M3‖rm−1‖Hs−2 ≥ C‖P‖, (181)

for each m ≤ m0. Inequality (181) suggests that a small number of Newton iter-
ations is desirable, to minimize the restriction on ‖P‖, provided this is consistent
with the residual tolerance described by Theorems 3 and 4. If, as motivated by
those theorems, we desire

‖rm‖Hs ≤ c∆tk, (182)

for specified c, then (138) shows that

c∆tk ≥ (2M2
1M3)m‖r0‖2mHs−2 (183)

must be satisfied.
Condition (183) imposes an implicit condition on ‖r0‖Hs−2 . For example, if only

one Newton iteration is desired, then

‖r0‖Hs−2 ≤
√

c∆tk
2M2

1M3
. (184)

One is tempted to use as a starting guess in the Newton iteration the accepted
approximation at the previous time step. Such a selection may fail to satisfy con-
ditions such as (183) or (184). In the next section we briefly discuss suggested
procedures, specifically continuation, to achieve this.

4.5 Bridging Time Steps

In an actual implementation, one might select a second-order extrapolation method,
based upon the accepted approximations at the two preceding time steps, as a way of
determining the starting iterate. Since this depends on the fully discrete algorithm
which we shall consider in the sequel to this paper (Part II), we prefer to describe
a continuation procedure, which is amenable to the modularity inherent in our
algorithmic analysis.

For simplicity, denote the map (118) at the (k − 1)th time step by Fk−1 and
the map at the kth time step by Fk. By the criterion established in Theorem 3 or
Theorem 4, if an approximation triple zk−1 is accepted at the (k − 1)th time step,



34 W. M. Coughran, Jr. and J. W. Jerome

then Fk−1(zk−1) is of magnitude c∆tk−1, in an appropriate norm. We shall allow
Fk−1 and Fk to act, more generally, on elements of the form

vλ = v + (1− λ)z̄k−1 + λz̄k,

where v ∈ Ys (cf. (131)) and z̄k−1, z̄k assume the boundary values. Define the
homotopy map,

F (v, λ) = (1− λ)Fk−1(vλ) + λFk(vλ), v ∈ Ys, 0 ≤ λ ≤ 1. (185)

Knowing that Fk−1(zk−1) is of magnitude c∆tk−1, we wish to vary λ, introducing
intermediate approximations thereby, so that at termination, z0

k is obtained, where
Fk(z0

k) satisfies, say, (184), or the more general residual condition (183). Here
z0
k is a starting guess for a Newton outer iteration. A strategy consistent with the

framework of the paper is a predictor/delayed-corrector method. Roughly, assuming
∆tk−1 = ∆tk = ∆t, we have bN/2c for the number of Euler predictor iterations
performed at successive λ-values λi, before a series of m Newton corrector iterations
is performed at some λi. Here

N−1 = (c∆t)1−1/2m(2M2
1M3)m/2

m

. (186)

The effect of the corrector iterations is to restore the residual to the order c∆t. We
shall present the theory underlying these statements.

The map defined by (185) satisfies the algebraic relation

F (v, λ) = F (w, µ) + F ′w(w, µ)(v − w) + F ′µ(w, µ)(λ − µ) +R(v, w;λ, µ), (187)

where

R(v, w;λ, µ) def= (1− µ){Fk−1(vλ)− Fk−1(wµ)− F ′k−1(wµ)(vλ − wµ)}
+µ{Fk(vλ)− Fk(wµ)− F ′k(wµ)(vλ − wµ)} (188)
+(µ− λ){[Fk−1(vλ)− Fk−1(wµ)]− [Fk(vλ)− Fk(wµ)]}.

If hypothesis (135) is satisfied, then (187) and (188) imply the smoothness estimate

‖R(v, w;λ, µ)‖ ≤ c1‖vλ − wµ‖2 + c2(λ− µ)2. (189)

The hypotheses which are analogous to, but weaker than, (133) and (134) are:

‖H(v, λ)z‖ ≤ M ′1‖z‖, (190)
‖[F ′v(v, λ)H(v, λ) − I]z‖ ≤ M ′2‖z‖, (191)

for z = F ′λ(v, λ), where {H(v, λ) } comprises a set of approximate right inverses for
F ′v(v, λ). Note that ‖z‖, not ‖z‖2, appears in (191); also, notice that F ′λ(v, λ) has
the representation

F ′λ(v, λ) = [Fk(vλ)− Fk−1(vλ)] + [λF ′k(vλ) + (1− λ)F ′k−1(vλ)](z̄k − z̄k−1). (192)

The control of |∆λ| ‖F ′λ(v, λ)‖ is critical for the continuation, as vi−1 is replaced by
a new predictor vi. In practice, ∆λ is chosen adaptively, but here we assume for
simplicity that the λ-points are equally spaced. We have the following.
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Proposition 9 Let
ρ = ‖Fk−1(zk−1)‖ ≤ c∆tk−1, (193)

suppose that zk−1 ∈ Bαr0 , 0 ≤ α < 1, and let ∆λ be specified, with λi
def= i∆λ. Here

Br0 is a ball in H2 of radius r0. Suppose, for simplicity, that ∆tk−1 = ∆tk = ∆t
and that the successive Euler predictors are defined by v0

def= zk−1,

vi − vi−1

∆λ
= −H(v̂i−1, λi−1)F ′λ(v̂i−1, λi−1), for each i. (194)

Here, v̂i denotes the affine translate of vi such that v̂i ∈ Ys. Then, if ∆λ is such
that (197) does not exceed c∆t, and such that

|∆λ|M ′1‖F ′λ(v̂i−1, λi−1)‖ ≤ 2(1− α)r0/N, (195)

where N is given by (186), then it follows that v1, . . . , vbN/2c are in Br0, and vbN/2c
satisfies the residual condition (183). In particular, the mth Newton iterate, starting
with vbN/2c as the zeroth iterate, again has residual of magnitude c∆t.

Proof: By direct estimation, if w0 denotes the center of Br, we have, for i =
1, . . . , bN/2c,

‖vi − v0‖ ≤ ‖vi − vi−1‖+ ‖vi−1 − v0‖+ ‖v0 − w0‖
≤ |∆λ| ‖H(v̂i−1, λi−1)‖ ‖F ′λ(v̂i−1, λi−1)‖+ 2(i− 1)(1− α)r0/N + αr0

≤ 2i(1− α)r0/N + αr0

if (195) and the induction hypotheses are invoked. It follows that v1, . . . , vbN/2c are
in Br0 .

For the residual we have,

F (v̂i, λi) = −∆λ[F ′v(v̂i−1, λi−1)H(v̂i−1, λi−1)− I] ◦ F ′λ(v̂i−1, λi−1) (196)
+R(v̂i, v̂i−1;λi, λi−1) + F (v̂i−1, λi−1).

The estimation of the first two terms is given by

|∆λ|M ′2‖F ′λ(v̂i−1, λi−1)‖{1 + c1M
′
2|∆λ| ‖F ′λ(v̂i−1, λi−1)‖}+ c2|∆λ|2. (197)

By the hypothesis on ∆λ, this quantity does not exceed c∆t. It follows from this
analysis that the residual corresponding to vbN/2c does not exceed Nc∆t. By direct
computation, this satisfies (183).

5 Postscript

This paper has described a modular algorithm development beginning with the
semidiscrete systems determined by a fully implicit time discretization. Though
first-order methods are analyzed here, the ideas are capable of extension to higher-
order time discretizations.
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The modular development proceeds from the fundamental observation, con-
tained in Theorems 3 and 4, that the accuracy of Euler’s method is maintained
by approximate solvability, as specified by the residuals. The approximate solu-
tions will not, in general, satisfy the invariant-region principle developed for the
exact semidiscrete solution in Theorem 1, though this theory provides the appro-
priate analytical infrastructure, as well as a guide to the properties desired of a
computational procedure.

Newton’s method is our choice for approximate solvability. If the approximate
solvability condition is expressed in terms of a residual, numerically bounded in
norm by c∆tk, and if m is the number of outer Newton iterations at tk, then
inequality (183) determines the necessary condition on the starting guess at the
commencement of the outer iterations at t = tk. The constants M1 and M3 in
this inequality are associated with a class of generic approximate Newton methods.
Their relation to the semiconductor model is drawn via (178) and Propositions 6
and 8. Although the constants appear not to be completely explicit, the existential
components can be eliminated by a careful correlation between the radius of the
local domain of definition of F and gradient estimates induced by Sobolev-type
inequalities in one dimension.

It is natural to wish to use the accepted approximation at the previous time step
as the starting guess at the current time step. Such a starting iterate, however, may
fail to satisfy (183), if m is maintained as a small positive integer, e.g., m = 1 orm =
2; the potential boundary conditions are clearly not satisfied either. An approximate
time-stepping bridge is furnished by a continuation method, specifically, a predictor-
corrector method as described in Proposition 9. The analytical framework permits
several Euler predictor steps, before approximate Newton steps are applied.

The function-space framework, in which the approximate Newton methods are
analyzed at the differential equation level, admits both a classical and variational
formulation. These are loosely organized via L2 and H−1 settings. The latter
requires a significant amount of technical supporting analysis; e.g., the s = 1 subcase
of Proposition 6 requires the companion Lemma 7. Both the settings have been
included with an eye to the fully discrete algorithms to be developed in the sequel
to this paper, Part II.

We have deliberately refrained from specifying the specific form of the approx-
imate Newton method. In fact, we view the exact Newton iterations as outer
iterations, each realized in terms of a number of so-called inner iterations. The sum
total of these inner iterations, corresponding to each outer iteration, represents the
approximate Newton iteration; this process is repeated m times at each time step.
The inner iterations are visualized as cumulative, in the sense that each succeeding
iteration enhances the previous; also, it must be fully discrete in its final form. Our
numerical studies thus far have indicated that the substitution giving rise to (14)
and (15) creates a ‘de facto’ scale imbalance in the Jacobian; in order for a stable
computation to proceed, some time-step restriction must be imposed. We shall
deal with these issues in Part II, where a specific class of algorithms together with
numerical studies, will be presented.
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