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Abstract

The Euler-Maxwell equations as a hydrodynamic model of charge transport of
semiconductors in an electromagnetic field are studied. The global approximate
solutions to the initial-boundary value problem are constructed by the fractional
Godunov scheme. The uniform bound and H−1 compactness are proved. The ap-
proximate solutions are shown convergent by weak convergence methods. Then,
with some new estimates due to the presence of electromagnetic fields, the existence
of a global weak solution to the initial-boundary value problem is established for
arbitrarily large initial data in L∞.
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1 Introduction

In this paper, we consider the hydrodynamic model of charge transport of semiconduc-

tors in an electromagnetic field. The analysis of physical models of charge transport

in semiconductor devices is important in order to predict and understand device behav-

ior. The hydrodynamic model treats the propagation of electrons in a semiconductor

device as the flow of a compressible charged fluid. One of the important models is the

Euler-Poisson system for a charged fluid in an electric field, which consists of the Euler
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equations for the conservation of density, momentum and energy, coupled to Poisson’s

equation for the electrostatic potential. See [3, 17, 11, 12, 16, 6, 8] and the references

therein for discussion and analysis of the Euler-Poisson equations. When semiconductor

devices are operated under high frequency conditions (in such technologies as photocon-

ductive switches, electro-optics, semiconductor lasers, high-speed computers), magnetic

fields are generated by moving charges inside the device, and the charge transport inter-

acts with the propagating electromagnetic waves. In this case, the electromagnetic field

obeys Maxwell’s equations. Therefore, the hydrodynamic model for high-frequency charge

transport in semiconductors consists of the Euler equations for conservation laws, coupled

to Maxwell’s equations for the electric and magnetic fields, instead of Poisson’s equation

for the electric field only. This Euler-Maxwell system in the isentropic case assumes the

following form ([1, 2, 16]):



ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu⊗ u) +∇p(ρ) = qρ(E + u×B)− ρu

τ
,

µHt +∇× E = 0,
εEt −∇×H + J = 0,
−ε∇ ·E = qρ−D(~x), ∇ ·H = 0,
B = µH, J = −qρu, ~x ∈ R3, t > 0,

(1.1)

where ρ is the electron density, u ∈ R3 is the electron velocity, p = p(ρ) = ργ/γ is the

pressure of the flow, γ > 1 is the adiabatic exponent, E ∈ R3 is the electric field, H ∈ R3

is the magnetic field, J ∈ R3 is the current density, B ∈ R3 is the magnetic induction,

E + u × B is the Lorentz force, D ∈ L∞ is the doping profile, τ is the momentum

relaxation time, q is the electronic charge, µ is the permeability of the medium and ε is

the permittivity of the medium. There is no electrostatic potential for the electric field in

this model.

There have been studies of the Euler-Poisson equations by many authors, including

ourselves (see [8, 6, 12] and the references therein). The Euler-Maxwell equations are

much more complicated than the Euler-Poisson equations, not only because of Maxwell’s

equations, but also because of the complicated coupling of the Lorentz force. There have

been some numerical simulations ([1, 2]) but no mathematical studies of this model. In

this paper, we study the global solution to the Euler-Maxwell flow with special structures:
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the flow depends only on one space variable x ∈ R, but the velocity, the electric field

and the magnetic filed still have three components. That is, this is a three-dimensional

flow which does not change in the transverse directions. For general large initial data,

the hyperbolic mode of this system supports the formation of shocks in the solutions.

Therefore, we should seek global weak solutions, including shock waves with large initial

data. The discontinuities in the solutions cause considerable difficulty in the study of this

flow. To solve this problem, we employ a finite difference method. The basic strategy

is to construct approximate solutions by a certain finite difference scheme, and then to

show that the approximate solutions converge to the solution of the system in a certain

compactness framework.

To construct the approximate solutions, we will use Godunov’s method with the frac-

tional step procedure. The Riemann solutions will be used as the natural fundamental

building blocks. The convergence of the approximate solutions will be studied by the

weak convergence method and by the compensated compactness framework developed for

isentropic gas dynamics by DiPerna [10], Chen [4], Lions-Perthame-Souganidis [13] and

Lions-Perthame-Tadmor [14]. (See [7] for Chen-LeFloch’s recent work on the isentropic

Euler equations with general pressure law.) For this purpose, we first have to make a uni-

form estimate on the approximate solutions. The high nonlinearity in the Lorentz force

causes extreme difficulty in solving this system, and the Lorentz force is usually removed

from the model in current literature. We resolve this problem with this term linearized.

The approximate solutions will be shown to be uniformly bounded, and therefore are

convergent in the weak-star topology of L∞. To show that the limit of the approximate

solutions is a weak solution, we need the strong convergence of the approximate density ρh

and velocity uh. To this end, we need to show the H−1 compactness of the entropy dissipa-

tion measures of the approximate solutions. This can be achieved by certain energy-type

estimates and embedding theorems. For 1 < γ < 2, the H−1 compactness can be proved

by using the strict convexity of the mechanical energy. For γ > 2, however, the mechanical

energy is no longer strictly convex, and then the H−1 compactness can be obtained by an

estimate similar to the proof in [9]. Due to the presence of electromagnetic fields, some

new estimates on the approximate solutions are also needed to show the consistency.

In Section 2, we will formulate our problem in one space variable and state the initial-
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boundary value problem. Section 3 is for the review of the Riemann solutions, and some

important facts are given in this section. In Section 4, we will construct the global ap-

proximate solutions to the initial-boundary value problem by the Godunov scheme, with

the fractional step procedure. Then we will prove, in Section 5, the L∞ stability to ob-

tain the uniform estimate on the approximate solutions. In Section 6, we will show the

H−1 compactness of the entropy dissipation measures and some energy-type estimates

will also be made. Finally, in Section 7, we will use the weak convergence method and

the compensated compactness framework to show weak or strong convergence of the ap-

proximate solutions and the property that the limit function is the weak solution of the

initial-boundary value problem.

2 Reformulation of the Problem

The Euler-Maxwell flow (1.1) in one space variable x ∈ R:

ρ = ρ(x, t),

u = (u1, u2, u3)(x, t) = (u,w)(x, t), u = u1, w = (u2, u3),

E = (E1, E2, E3)(x, t) = (E, e)(x, t), E = E1, e = (E2, E3),

H = (H1, H2, H3)(x, t) = (H,h)(x, t), H = H1, h = (H2, H3),

(2.1)

with w, e, h ∈ R2 the transverse velocity, transverse electric field, and transverse magnetic

field, respectively (the velocity, the electric field and the magnetic filed still have three

components), satisfies the following equations:

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = ρ(E + f1(w,h))− ρu

τ
,

(ρw)t + (ρuw)x = ρ(e +Aw + f2(u,h))− ρw
τ
,

et +Ahx = f3(ρ,w),
ht −Aex = 0,
−Ex = ρ−D(x),

(2.2)

where f1 = w ·Ah, f2 = −uAh, f3 = ρw, and A is the 2× 2 constant matrix

A =
[

0 1
−1 0

]
.
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In (2.2), we take all the parameters to be 1, and the constant H = 1, without loss of

generality.

E can be solved as

E = E0(t) +
∫ x

0
(D(ξ)− ρ(ξ, t))dξ, (2.3)

where E0(t) ∈ L∞ is the boundary value:

E|x=0 = E0(t). (2.4)

Set

a = e +Ah, b = e− Ah;

then

e = (a + b)/2, h = A(b− a)/2, (2.5)

and a and b satisfy the following equations:

at + ax = f3(ρ,w), bt − bx = f3(ρ,w). (2.6)

We consider the following initial-boundary value problem:
ρt +mx = 0, 0 < x < 1, t > 0,

mt +
(
m2

ρ
+ p
)
x

= ρ(E + f1(w,h))− m
τ
,

qt +
(
mq
ρ

)
x

= ρ(e +Aw + f2(u,h))− q
τ
,

(2.6),

(2.7)

with the initial-boundary conditions
(ρ,m,q, a,b)(x, 0) = (ρ0(x),m0(x),q0(x), a0(x),b0(x)),
m|x=0 = m|x=1 = 0,
a|x=0 = ā(t), b|x=1 = b̄(t),

(2.8)

where

m = ρu, q = ρw,

and the initial-boundary values satisfy the following condition:

0 ≤ ρ0(x) ≤ C, |u0(x)| =
∣∣∣∣m0(x)
ρ0(x)

∣∣∣∣ ≤ C,

|w0(x)| =
∣∣∣∣q0(x)
ρ0(x)

∣∣∣∣ ≤ C, |a0(x)| ≤ C, |b0(x)| ≤ C,

|ā(t)| ≤ C, |b̄(t)| ≤ C,

(2.9)
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for some positive constant C. For the general large initial data in L∞, the solutions of

(2.7) will develop singularities or shocks in finite time. Therefore, there are only global

weak solutions, including shock waves, for general large initial data. We will construct the

global solution of (2.7)-(2.8) with linearized f1, f2, f3, and show that if the initial-boundary

conditions are bounded in L∞, the global solution

V (x, t) = (ρ,m,q, a,b)(x, t)

to (2.7)-(2.8) will be bounded globally. The global approximate solutions

V h = (ρh,mh,qh, ah,bh)(x, t)

will be constructed by the Godunov method with the fractional step procedure, and then

shown to be convergent to the global weak solution.

3 Riemann Solutions

We first recall some basic properties about the Riemann solutions to the homogeneous

equations ([4, 5]):

ρt +mx = 0, 0 < x < 1, t > 0, (3.1)

mt +
(
m2

ρ
+ p

)
x

= 0, (3.2)

qt +
(
mq
ρ

)
x

= 0, (3.3)

or in compact form:

ṽt + f(ṽ)x = 0, (3.4)

where

ṽ = (ρ,m,q)>, f(ṽ) =
(
m,

m2

ρ
+ p(ρ),

mq
ρ

)>
,

with p(ρ) = ργ/γ, γ > 1. The eigenvalues of (3.4) are

λ1 =
m

ρ
− ρθ, λ2 =

m

ρ
+ ρθ, λ3 = λ4 =

m

ρ
,
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where θ = (γ−1)/2. The first two characteristic fields of (3.4) are genuinely nonlinear. The

third and the forth characteristic field are linearly degenerate. The Riemann invariants

are

w =
m

ρ
+
ρθ

θ
, z =

m

ρ
− ρθ

θ
, w =

q
ρ
.

The discontinuity in the weak solutions of (3.4) satisfies the Rankine-Hugoniot condi-

tion:

σ(ṽ − ṽ0) = f(ṽ)− f(ṽ0),

where σ is the propagation speed of the discontinuity, and ṽ0, ṽ are the corresponding

left state, right state, respectively. A discontinuity is a shock if it satisfies the entropy

condition:

σ[η̃]− [q̃] ≥ 0,

with

[η̃] = η̃(v)− η̃(v0), [q̃] = q̃(v)− q̃(v0),

for any weak entropy pair (η̃, q̃).

Consider the Riemann problem of (3.4) with initial data

ṽ|t=0 =

{
ṽ−, x < x0,

ṽ+, x > x0,
(3.5)

where x0 ∈ (0, 1), ṽ± = (ρ±,m±,q±)>, and ρ± ≥ 0, m±, and q± are constants satisfying

|m±/ρ±|+ |q±/ρ±| <∞; and the Riemann initial-boundary problem of (3.4) with data:

ṽ|t=0 = ṽ+, m|x=0 = 0. (3.6)

We have the following lemmas on the Riemann solutions.

Lemma 3.1. There exists a piecewise smooth entropy solution ṽ(x, t) for each problem of

(3.5) and (3.6) satisfying
w(ṽ(x, t)) ≤ max(w(ṽ−), w(ṽ+)),
w(ṽ(x, t))− z(ṽ(x, t)) ≥ 0,
min(qi−, qi+) ≤ qi(x, t) ≤ max((qi−, qi+), i = 1, 2,

where qi (i = 1, 2) are the two components of q = (q1, q2). And

z(ṽ(x, t)) ≥ min(z(ṽ−), z(ṽ+)), for (3.5),

z(ṽ(x, t)) ≥ min(z(ṽ+), 0), for (3.6).
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Lemma 3.2. For the Riemann problem (3.5), the region∑
= {(ρ,m,q) : w ≤ w0, z ≥ z0, w − z ≥ 0, qi− ≤ qi ≤ qi+, i = 1, 2}

is invariant. For the Riemann initial-boundary problem (3.6), the region∑
= {(ρ,m,q) :w ≤ w0, z ≥ z0, w − z ≥ 0, qi− ≤ qi ≤ qi+, i = 1, 2},

z0 ≤ 0 ≤ w0 + z0

2

is invariant. That is, if the Riemann data lie in
∑

, then the Riemann solutions ṽ(x, t) ∈∑
and 1

b−a
∫ b
a
ṽ(x, t)dx ∈

∑
.

For the Riemann initial-boundary problem of (3.4) with data: ṽ|t=0 = v−, m|x=1 = 0,

we have similar results to those for (3.6) in the above two lemmas. The Riemann problems

associated with the linear conservation laws

at + ax = 0, bt − bx = 0, (3.7)

with boundary conditions in (2.8) are very basic, and we omit the discussion.

Lemma 3.3. Assume 0 ≤ ρ ≤ M , |m/ρ| + |q/ρ| ≤ M , for some positive constant M .

Then, for any weak entropy pair (η̃, q̃) of (3.4), there exists a positive constant C, depending

only on η̃ and M , such that

|∇η̃(ρ,m,q)| ≤ C, |∇q̃(ρ,m,q)| ≤ C;

for any four-dimensional vector ṽ and any weak entropy η̃ of (3.4),

|ṽ>∇2η̃ṽ| ≤ Cṽ>∇2η̃∗ṽ;

and the rate of entropy production of a shock for any weak entropy pair (η̃, q̃) of (3.4) is

dominated by the associated rate of entropy production for (η̃∗, q̃∗) in the sense:

|σ[η̃]− [q̃]| ≤ C (σ[η̃∗]− [q̃∗]) ,

where

η̃∗ =
m2 + |q|2

2ρ
+

ργ

γ(γ − 1)
, q̃∗ = m

(
m2 + |q|2

2ρ2 +
ργ−1

γ − 1

)
,

is the mechanical energy-energy flux pair of (3.4).
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Lemma 3.3 is also true for the system (3.1)-(3.2) with the following mechanical energy-

energy flux pair:

η∗ =
m2

2ρ
+

ργ

γ(γ − 1)
, q∗ = m

(
m2

2ρ2 +
ργ−1

γ − 1

)
.

The mechanical energy is strictly convex if 1 < γ ≤ 2, but is not strictly convex if

γ > 2.

4 Approximate Solutions

In this section, we construct the approximate solutions V h = (ρh,mh,qh, ah,bh)(x, t) to

(2.7)-(2.8) in the strip ΠT = [0, 1]× [0, T ] for any fixed T > 0. Here h = 1/M > 0, with

M a large positive integer, is the space mesh length. The time mesh length is ∆t > 0.

These mesh lengths satisfy the Courant-Friedrichs-Levy condition

max
κ=1,2,3

(
sup

0≤t≤T
|λκ(vh)|, 1

)
≤ h

4∆t
.

Assume that V h(x, t) is defined for t < n∆t. Then we define V n
j as:

V n
1 =

2
3h

∫ 3
2h

0
V h(x, n∆t− 0)dx,

V n
j =

1
h

∫ (j+ 1
2 )h

(j− 1
2 )h

V h(x, n∆t− 0)dx, 2 ≤ j ≤M − 2,

V n
M−1 =

2
3h

∫ 1

1− 3
2h

V h(x, n∆t− 0)dx.

(4.1)

In the strip n∆t ≤ t < (n + 1)∆t, we define V h
0 (x, t) as the solution to the Riemann

problem for the following homogeneous equations:
ρt +mx = 0,

mt +
(
m2

ρ
+ p
)
x

= 0,

qt +
(
mq
ρ

)
x

= 0,

at + ax = 0, bt − bx = 0,

(4.2)
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with initial data

V |t=n∆t = V n
1 , m|x=0 = 0, a|x=0 = ā(t), 0 ≤ x ≤ h,

V |t=n∆t =

{
V n
j , x < (j + 1

2)h,
V n
j+1, x > (j + 1

2)h,
jh ≤ x ≤ (j + 1)h, 1 ≤ j ≤M − 2,

V |t=n∆t = V n
M−1, m|x=1 = 0, b|x=1 = b̄(t), 1− h ≤ x ≤ 1.

Then we define the approximate solution V h(x, t) = (ρh,mh,qh, ah,bh)(x, t) of (2.7)-(2.8)

in the strip n∆t ≤ t < (n+ 1)∆t by the fractional step procedure:

ρh(x, t) = ρh0(x, t),
mh(x, t) = mh

0(x, t) +G2(V h
0 (x, t))(t− n∆t),

qh(x, t) = qh0(x, t) +G3(V h
0 (x, t))(t− n∆t),

ah(x, t) = ah0(x, t) + f3(V h
0 (x, t))(t− n∆t),

bh(x, t) = bh0(x, t) + f3(V h
0 (x, t))(t− n∆t),

(4.3)

where

G2(V ) = ρ(E + f1)− m

τ
, G3(V ) = ρ(e +Aw + f2)− q

τ
.

We will show that the approximate solutions V h are uniformly bounded for any small h >

0, and vh = (rh,mh) satisfy certainH−1 compactness criteria. Therefore the theory of weak

convergence and compensated compactness can be applied to show that the approximate

solutions converge to the weak solution.

5 L∞ Stability

In this section, we will make the L∞ estimates to get the uniform bounds of the approx-

imate solutions V h(x, t). For simplicity of notation, we denote by C > 0 a universal

constant depending only on T .

From the construction of the approximate solutions,∫ 1

0
ρh(x, t)dx =

∫ 1

0
ρh0(x, t)dx ≤ C. (5.1)

We now make estimates on the Riemann invariants

w(ρh,mh) =
mh

ρh
+

(ρh)θ

θ
, z(ρh,mh) =

mh

ρh
− (ρh)θ

θ
, wh =

qh

ρh
,
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ah, and bh. Assume

f1(w,h) = w · Ah̄ + w̄ · Ah− w̄ · Ah̄, (5.2)

|f2(u,h)| ≤ C1|u|+ C2|h|, |f3(ρ,w)| ≤ C1ρ
θ + C2|w|, (5.3)

where w̄ =
∫ 1

0 w0(x)dx, h̄ =
∫ 1

0 h0(x)dx. For n∆t ≤ t < (n+ 1)∆t, we have the following

estimates from (4.3), (2.5) and (5.1),

w(ρh,mh)(x, t) =
(

1− t− n∆t
2τ

)
w(ρh0 ,m

h
0)(x, t)− t− n∆t

2τ
z(ρh0 ,m

h
0)(x, t)

+
(
E0(t) +

∫ x

0
(D(ξ)− ρh0(ξ, t))dξ

)
(t− n∆t)

+
(
Ah̄ ·wh

0 (x, t) + w̄ ·A2(bh0(x, t)− ah0(x, t))/2− w̄ · Ah̄
)

(t− n∆t)

≤
(

1− t− n∆t
2τ

)
w(ρh0 ,m

h
0)(x, t)− t− n∆t

2τ
z(ρh0 ,m

h
0)(x, t)

+ C
(
|wh

0(x, t)| + |ah0(x, t)|+ |bh0(x, t)|+ 1
)

(t− n∆t),

and similarly,

z(ρh,mh)(x, t) ≥
(

1− t− n∆t
2τ

)
z(ρh0 ,m

h
0)(x, t)− t− n∆t

2τ
w(ρh0 ,m

h
0)(x, t)

−
(
C|wh

0(x, t)|+ C|ah0(x, t)|+ C|bh0(x, t)|+ C
)

(t− n∆t).

By (4.3) and (2.5),

wh(x, t) = wh
0 (x, t) +

(
ah0(x, t) + bh0(x, t)

2
+Awh

0 (x, t)
)

(t− n∆t)

+
(
f2
(
uh0(x, t), A(bh0(x, t)− ah0(x, t))/2

)
− wh

0 (x, t)
τ

)
(t− n∆t),

then, from (5.3) and the observation,

|uh0 | = |mh
0/ρ

h
0 | ≤ max

(
w(ρh0 ,m

h
0),−z(ρh0 ,mh

0)
)
,

we have

|wh(x, t)| ≤
(

1 +
τ + 1
τ

∆t
)
|wh

0(x, t)|+ C
(
|ah0(x, t)|+ |bh0(x, t)|

)
(t− n∆t)

+ max
(
w(ρh0 ,m

h
0)(x, t),−z(ρh0 ,mh

0)(x, t)
)

(t− n∆t).
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We also have from (4.3),

|ah(x, t)| ≤ |ah0(x, t)|+ C
(
w(ρh0 ,m

h
0)(x, t)− z(ρh0 ,mh

0)(x, t) + |wh
0(x, t)|

)
(t− n∆t).

|bh(x, t)| ≤ |bh0(x, t)|+ C
(
w(ρh0 ,m

h
0)(x, t)− z(ρh0 ,mh

0)(x, t) + |wh
0(x, t)|

)
(t− n∆t).

Set

Mn = max
(

sup
x
w(ρh0 ,m

h
0)(x, n∆t+ 0),− inf

x
z(ρh0 ,m

h
0)(x, n∆t+ 0),

sup
x
|wh

0(x, n∆t+ 0)|, sup
x
|ah0(x, n∆t+ 0)|, sup

x
|bh0(x, n∆t+ 0)|

)
.

Then, from Lemma 3.1, we have, for n∆t ≤ t < (n+ 1)∆t,

w(ρh,mh)(x, t) ≤Mn(1 + C∆t) + C∆t,

−z(ρh,mh)(x, t) ≤Mn(1 + C∆t) + C∆t,

|wh(x, t)| ≤Mn(1 + C∆t),

|ah(x, t)| ≤Mn(1 + C∆t), |bh(x, t)| ≤Mn(1 + C∆t),

and from Lemma 3.2, we further obtain the following estimate:

Mn+1 ≤Mn(1 + C∆t) + C∆t,

that is,

Mn+1 −Mn

∆t
≤ C(1 +Mn). (5.4)

Indeed, consider the corresponding ordinary differential equation:

dr

dt
= C(1 + r), r(0) = M0. (5.5)

There exists a positive constant C(T ) such that

M0 ≤ r(t) ≤ C(T ), t ∈ [0, T ]. (5.6)

The integral curve r = r(t) is convex since

d2r(t)
dt2

= C2(1 + r) ≥ 0.
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It follows from (5.4)-(5.6) and the convexity that

Mn ≤ r(n∆t) ≤ C(T ).

Indeed, one uses arguments based upon the convex curve lying above its tangent line,

which in turn dominates the chord, with slope given by the right hand side of (5.6). This

implies

w(ρh,mh)(x, t) ≤ C(T ), −z(ρh,mh)(x, t) ≤ C(T ),

w(ρh,mh)(x, t)− z(ρh,mh)(x, t) ≥ 0,

|wh(x, t)| ≤ C(T ), |ah(x, t)| ≤ C(T ), |bh(x, t)| ≤ C(T ),

that is, for x ∈ [0, 1], t ∈ [0, T ],

0 ≤ ρh(x, t) ≤ C(T ),
∣∣∣∣mh(x, t)
ρh(x, t)

∣∣∣∣ ≤ C(T ), (5.7)

|wh(x, t)| ≤ C(T ), |ah(x, t)| ≤ C(T ), |bh(x, t)| ≤ C(T ). (5.8)

In summary, the following theorem holds.

Theorem 5.1. Under the assumptions (5.2)-(5.3), there exists a positive constant C(T )

such that the approximate solutions V h(x, t) constructed in Section 4 satisfy the uniform

estimates (5.7)-(5.8) for any (x, t) ∈ ΠT = [0, 1]× [0, T ].

6 H−1 Estimates of the Entropy Dissipation Measures

In this section, we prove the H−1 compactness of the approximate solutions (ρh,mh). The

following lemma ([4, 18]) is required for the proof.

Lemma 6.1. Let Ω ⊂ RN be a bounded domain. Then

(compact set of W−1,l(Ω)) ∩ ( bounded set of W−1,r(Ω))

⊂ ( compact set of W−1,2
loc (Ω)),

where l and r are constants satisfying 1 < l ≤ 2 < r <∞.
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To prove the H−1 estimates, we will consider two cases: 1 < γ ≤ 2 and γ > 2, since η∗
is no longer strictly convex if γ > 2.

Theorem 6.1. For the approximate solutions vh = (ρh,mh), the measure sequence

η(vh)t + q(vh)x

is a compact subset of H−1
loc (Ω) for all weak entropy pairs (η, q) of (3.1)-(3.2), where Ω is

any bounded and open set in ΠT .

Proof. For any test function φ ∈ C1
0(Ω), we have∫∫

ΠT

(η(vh)φt + q(vh)φx)dxdt = S1(φ) + S2(φ) + S3(φ) + S4(φ), (6.1)

with

S1(φ) =
∫∫

ΠT

(
(η(vh)− η(vh0 ))φt + (q(vh)− q(vh0 ))φx

)
dxdt,

S2(φ) =
∫ 1

0
φ(x, T )η(vh0 (x, T ))dx−

∫ 1

0
φ(x, 0)η(vh0 (x, 0))dx,

S3(φ) =
∫ T

0

∑
(σ[η]− [q])φ(x(t), t)dt,

and

S4(φ) =
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(
η(vn0−)− η(vnj )

)
φ(x, n∆t)dx,

where vn0− = vh0 (x, n∆t − 0), φnj = φ(1 + jh, n∆t), the summation in S3(φ) is taken over

all discontinuities in vh0 at a fixed time t, σ is the propagating speed of the discontinuity,

and

[η] = η(vh0 (x(t) + 0, t))− η(vh0 (x(t)− 0, t)),

[q] = q(vh0 (x(t) + 0, t))− q(vh0 (x(t)− 0, t)),

are the jumps of η(vh0 (x, t)) and q(vh0 (x, t)) across a discontinuity (x(t), t) in vh0 (x, t).

First we have, from the fractional step procedure in (4.3),

|S1(φ)| ≤
∫∫
ΠT

(‖∇η‖∞ + ‖∇q‖∞)(|φt|+ |φx|)|vh − vh0 |dxdt ≤ Ch‖φ‖H1
0 (Ω).
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Since C∞0 (Ω) is dense in H1
0(Ω), then

‖S1‖H−1
loc (Ω) ≤ Ch→ 0, as h→ 0,

and thus S1 is compact in H−1
loc (Ω).

We now use Lemma 6.1 to prove the H−1 compactness of the other terms. The uniform

boundedness of vh implies the boundedness of S2 + S3 + S4 in W−1,r(Ω) for any r > 1.

Therefore it remains to show the compactness of these terms inW−1,l(Ω) for some l ∈ (1, 2].

Substituting

η = η∗ =
m2

2ρ
+

ργ

γ(γ − 1)
, q = q∗ = m

(
m2

2ρ2 +
ργ−1

γ − 1

)
, φ ≡ 1,

in the equality (6.1), we obtain∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(
η∗(vn0−)− η∗(vnj )

)
dx+

∫ T

0

∑
(σ[η∗]− [q∗]) dt ≤ C0. (6.2)

Set

Θ(η, s) = (1− s)(vn0− − vnj )>∇2η(vnj + s(vn0− − vnj ))(vn0− − vnj ).

From the construction of vh, one has, by use of the Taylor expansion,∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(η∗(vn0−)− η∗(vnj ))dx

=
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
∇η∗(vnj )(vn0− − vnj )dx+

∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

∫ 1

0
Θ(η∗, s)dsdx

= ∇η∗(vnj )
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(vn0− − vh(x, n∆t− 0))dx

+
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

∫ 1

0
Θ(η∗, s)dsdx.

(6.3)

From the fractional step procedure and Lemma 3.3 we deduce that∣∣∣∣∣∇η∗(vnj )
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(vn0− − vh(x, n∆t− 0))dx

∣∣∣∣∣ ≤ C.

Since σ[η∗]− [q∗] ≥ 0 holds across the shock waves, we have the following inequalities

from the above estimates and (6.2):∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

∫ 1

0
Θ(η∗, s)dsdx ≤ C, (6.4)
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∫ T

0

∑
(σ[η∗]− [q∗])dt ≤ C, (6.5)

and then ∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(η∗(vn0−)− η∗(vnj ))dx ≤ C, (6.6)

for some constant C > 0.

From the fact |σ[η] − [q]| ≤ C(σ[η∗] − [q∗]) and (6.5), the following estimates hold

immediately:

|S2(φ)| ≤ C‖φ‖C0(Ω), |S3(φ)| ≤ C‖φ‖C0(Ω).

Rewrite S4(φ) ≡ S5(φ) + S6(φ) with

S5(φ) =
∑
j,n

φnj

∫ (j+ 1
2 )h

(j− 1
2 )h

(η(vn0−)− η(vnj ))dx,

S6(φ) =
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(η(vn0−)− η(vnj ))(φ− φnj )dx.

By Lemma 3.3 and (6.4), we obtain, in a manner similar to (6.3),

|S5(φ)| ≤ ‖φ‖C0

∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

∫ 1

0
Θ(η, s)dsdx+O(1)‖φ‖C0

≤ ‖φ‖C0

∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

∫ 1

0
Θ(η∗, s)dsdx+O(1)‖φ‖C0

≤ C‖φ‖C0.

Then

|(S2 + S3 + S5)(φ)| ≤ C‖φ‖C0,

i. e.

||S2 + S3 + S5||C∗0 ≤ C.

By the embedding theorem, (C0(Ω))∗ ↪→ W−1,l1, for 1 < l1 < 2, the set S2 + S3 + S5 is

compact in W−1,l1(Ω).

To make estimates on S6(φ), we have to consider two cases: 1 < γ ≤ 2 and γ > 2.
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(1). For 1 < γ ≤ 2, the strict convexity of η∗ yields from (6.4)

∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
|vn0− − vnj |2dx ≤ C. (6.7)

For any φ ∈ Cα
0 (Ω), 1

2 < α < 1, using Hölder’s inequality and (6.7), we have

|S6(φ)| ≤ C‖φ‖Cα0 h
α−1/2‖∇η‖∞

(∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
|vn0− − vnj |2dx

) 1
2

≤ Chα−1/2‖φ‖Cα0 .

(2). For γ > 2, from (6.6) and η∗ = 1
2ρu

2 + 1
γ(γ−1)ρ

γ , we have

∑
j,n

∫ (j+1/2)h

(j−1/2)h

(
ρn0−(un0− − unj )2/2

+
∫ 1

0
(1− r)(ρnj + r(ρn0− − ρnj ))γ−2dr(ρn0− − ρnj )2

)
dx ≤ C.

(6.8)

If ρnj > ρn0−, then∫ 1

0
(1− r)(ρnj + r(ρn0− − ρnj ))γ−2dr ≥ 1

γ − 1
|ρnj − ρn0−|γ−2;

and, if ρnj ≤ ρn0−, then∫ 1

0
(1− r)(ρnj + r(ρn0− − ρnj ))γ−2dr ≥ 1

γ(γ − 1)
|ρnj − ρn0−|γ−2.

Combining these estimates with (6.8), one has

∑
j,n

∫ (j+1/2)h

(j−1/2)h

(
ρn0−(un0− − unj )2 + |ρn0− − ρnj |γ

)
dx ≤ C.

Therefore, by the Hölder inequality, we have

∑
j,n

∫ (j+1/2)h

(j−1/2)h
ρn0−|un0− − unj |dx

≤
(∑

j,n

∫ (j+1/2)h

(j−1/2)h
ρn0−dx

)1/2(∑
j,n

∫ (j+1/2)h

(j−1/2)h
ρn0−|un0− − unj |2dx

)1/2

≤ Ch−1/2,
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and

∑
j,n

∫ (j+1/2)h

(j−1/2)h
|ρn0− − ρnj |dx ≤

(∑
j,n

∫ (j+1/2)h

(j−1/2)h
|ρn0− − ρnj |γdx

)1/γ (∑
j,n

h

)(γ−1)/γ

≤ Ch(1−γ)/γ .

That is, for γ > 2,

∑
j,n

∫ (j+1/2)h

(j−1/2)h

∣∣ρn0− − ρnj ∣∣ dx ≤ Ch(1−γ)/γ ,

∑
j,n

∫ (j+1/2)h

(j−1/2)h
ρn0−

∣∣un0− − unj ∣∣ dx ≤ Ch−1/2.

(6.9)

For any φ ∈ Cα
0 (Ω), 1− 1/γ < α < 1, we have from (6.9) that

|S6(φ)| ≤
∑
j,n

∫ (j+1/2)h

(j−1/2)h
|φ(x, n∆t)− φnj ||η(vn0−)− η(vnj )|dx

≤ Chα||φ||Cα0
∑
j,n

∫ (j+1/2)h

(j−1/2)h

(
|ρn0− − ρnj |+ ρn0−|un0− − unj |

)
dx

≤ C||φ||Cα0 h
α−1+1/γ .

With the above estimates and Sobolev’s theorem: W 1,p
0 (Ω) ⊂ Cα

0 (Ω), 0 < α < 1− 2/p,

one has

|S6(φ)| ≤ Chα0−1/2||φ||W 1,p
0 (Ω), p > 2/(1− α0), α0 = max(α/2, α− 1 + 1/γ).

That is,

||S6||W−1,l2(Ω) → 0, h→ 0,

for 1 < l2 < 2/(1 + α0). Therefore,

S2 + S3 + S4 is compact in W−1,l,

for 1 < l ≡ min(l1, l2) < 2/(1 + α0) < 2. The proof is completed.

Remark: from the above proof, we see, by manipulation of the following integral,∫∫
ΠT

(
(η̃∗(ṽh) + |ah|2 + |bh|2)φt + (q̃∗(ṽh) + |ah|2 − |bh|2)φx

)
dxdt,
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in (6.1), we can obtain the following estimates similar to (6.7) and (6.9):

∑
j,n

∫ (j+1/2)h

(j−1/2)h
|V n

0− − V n
j |2dx ≤ C, if 1 < γ ≤ 2, (6.10)

∑
j,n

∫ (j+1/2)h

(j−1/2)h

∣∣V n
0− − V n

j

∣∣ dx ≤ Ch(1−γ)/γ , if γ > 2, (6.11)

where V n
0− = V h

0 (x, n∆t− 0).

7 Convergence and Consistency

In this section, we show that the approximate solutions V h(x, t) converge to the weak

solution to (2.7)-(2.8). We need the following compensated compactness theorem to show

the strong convergence of vh = (ρh,mh).

Lemma 7.1. Assume that a sequence of measurable functions vh = (ρh,mh), defined on

R2
+, satisfies:

(1). There is a constant C > 0 such that 0 ≤ ρh ≤ C, and |mh/ρh| ≤ C;

(2). The measure sequence η(vh)t + q(vh)x is compact in H−1
loc (R2

+) for all weak entropy

pairs (η, q) of (3.1)-(3.2).

Then, for γ > 1, there exists a convergent subsequence (still labeled) vh, such that

vh(x, t)→ v(x, t) = (ρ(x, t),m(x, t))

almost everywhere.

This compensated compactness theorem was proved in [10] for γ = 1 + 2/K,K ≥ 5

odd, in [4] for the case of gases 1 < γ ≤ 5/3, and in [13, 14] for the case γ > 5/3. (See

[7] for Chen-LeFloch’s recent work on the isentropic Euler equations with general pressure

law.)
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Theorem 7.1. With the initial condition (2.9) and the hypotheses (5.2)-(5.3), there is a

subsequence (still labeled) V h in the approximate solutions V h(x, t) = (ρh,mh,qh, ah,bh)(x, t)

such that, as h→ 0,

(ρh,mh)(x, t)→ (ρ(x, t),m(x, t)), a.e.

(qh, ah,bh)(x, t) ∗
⇀ (q, a,b)(x, t), weak star in L∞.

The vector function (ρ,m,q, a,b)(x, t) is the weak solution to (2.7)-(2.8) in ΠT = [0, 1]×
[0, T ] for any T > 0 in the sense of distributions and satisfies

0 ≤ (x, t) ≤ C(T ), |m(x, t)/ρ(x, t)| ≤ C(T ),

|w(x, t)| ≤ C(T ), |a(x, t)| ≤ C(T ), |b(x, t)| ≤ C(T ),

for (x, t) ∈ ΠT with C(T ) some positive constant.

Proof. The strong convergence of (ρh,mh) follows from (5.7), Theorem 6.1 and Lemma

7.1. The weak-star convergence of (qh, ah,bh) follows from the uniform boundedness (5.8).

Now let φ ∈ C1
0(ΠT ) be any test function with φ(0, t) = φ(1, t) = φ(x, T ) = 0.

(1). By the construction of the approximate solutions and the Rankine-Hugoniot condition,

we have∫∫
ΠT

(
ρhφt +mhφx

)
dxdt+

∫ T

0
ρh0(x)φ(x, 0)dx

=
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

φ(x, n∆t)(ρh0(x, n∆t− 0)− ρnj )dx+
∫∫

ΠT
(mh −mh

0)φxdxdt.
(7.1)

From the fractional step procedure, one has∣∣∣∣∫∫
ΠT

(mh −mh
0)φxdxdt

∣∣∣∣ ≤ Ch‖φ‖C1
0
→ 0, as h→ 0.

From the definition of the Godunov value ρnj , we have

∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

φ(x, n∆t)(ρh0(x, n∆t− 0)− ρnj )dx

=
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(φ− φnj )(ρh0(x, n∆t− 0)− ρnj )dx.
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For 1 < γ ≤ 2, by Hölder’s inequality and (6.7),∣∣∣∣∣∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(φ− φnj )(ρh0(x, n∆t− 0)− ρnj )dx

∣∣∣∣∣
≤ C‖φ‖C1

0

√
h

(∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
|ρh0(x, n∆t− 0)− ρnj |2dx

) 1
2

≤ C
√
h‖φ‖C1

0
, as h→ 0.

For γ > 2, by (6.9), ∣∣∣∣∣∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(φ− φnj )(ρh0(x, n∆t− 0)− ρnj )dx

∣∣∣∣∣
≤ C‖φ‖C1

0
h
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
|ρh0(x, n∆t− 0)− ρnj |dx

≤ Ch1/γ‖φ‖C1
0
, as h→ 0.

Taking the limit h→ 0 in (7.1) and using the dominated convergence theorem, we have∫∫
ΠT

(ρφt +mφx) dxdt+
∫ T

0
ρ0(x)φ(x, 0)dx = 0.

(2). From the construction of the approximate solutions, and the Rankine-Hugoniot con-

dition, we have∫∫
ΠT

(
mhφt + ((mh)2/ρh + p(ρh))φx +G2(V h)φ

)
dxdt+

∫ T

0
mh

0(x)φ(x, 0)dx

=
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(mh
0(x, n∆t− 0)−mn

j )φ(x, n∆t)dx+
∫∫

ΠT
G2(V h

0 )φdxdt

+
∫∫

ΠT

(
(mh −mh

0)φt + ((mh)2/ρh + p(ρh)− (mh
0)2/ρh0 − p(ρh0))φx

)
dxdt

+
∫∫

ΠT

(
G2(V h)−G2(V h

0 )
)
φdxdt

= I1 + I2 +O(h)‖φ‖C1
0
,

(7.2)

with

I1 =
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(φ(x, n∆t)− φnj )(mh
0(x, n∆t− 0)−mn

j )dx,

I2 =
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(mh
0(x, n∆t− 0)−mn

j )φnj dx+
∫∫

ΠT
G2(V h

0 )φdxdt.
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For 1 < γ ≤ 2, by Hölder’s inequality and (6.7),

|I1| ≤ C‖φ‖C1
0

√
h

(∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h
|mh

0(x, n∆t− 0)−mn
j |2dx

)1/2

≤ C
√
h‖φ‖C1

0
,

and for γ > 2, by (6.9),

|I1| ≤ C‖φ‖C1
0
h
∑
j,n

∫ (j+ 1
2 )h

(j− 1
2 )h

(
ρ0−|u0− − unj |+ |ρ0− − ρnj |

)
dx

≤ Ch1/γ‖φ‖C1
0
.

We observe that estimates similar to [15] yield the following inequalities from (6.10)

and (6.11):∑
n

∫ n∆t

(n−1)∆t

∫ 1

0

∣∣V h
0 (x, t)− V h

0 (x, n∆t− 0)
∣∣2 dxdt ≤ Ch, if 1 < γ ≤ 2, (7.3)

∑
n

∫ n∆t

(n−1)∆t

∫ 1

0

∣∣V h
0 (x, t)− V h

0 (x, n∆t− 0)
∣∣ dxdt ≤ Ch1/γ , if γ > 2. (7.4)

From the fractional step procedure,

I2 =
∑
j,n

∫ n∆t

(n−1)∆t

∫ (j+ 1
2 )h

(j− 1
2 )h

(
G2(V h

0 (x, t))φ(x, t)−G2(V h
0 (x, n∆t− 0))φnj

)
dxdt

=
∑
j,n

∫ n∆t

(n−1)∆t

∫ (j+ 1
2 )h

(j− 1
2 )h

(
G2(V h

0 (x, t))−G2(V h
0 (x, n∆t− 0))

)
φ(x, t)

+
∑
j,n

∫ n∆t

(n−1)∆t

∫ (j+ 1
2 )h

(j− 1
2 )h

G2(V h
0 (x, n∆t− 0))(φ(x, t)− φnj )dxdt,

so that, for 1 < γ ≤ 2, by Hölder’s inequality and (7.3), one has

|I2| ≤ C‖φ‖C1
0

(∑
n

∫ n∆t

(n−1)∆t

∫ 1

0

∣∣V h
0 (x, t)− V h

0 (x, n∆t− 0)
∣∣2 dxdt)1/2

+O(h)‖φ‖C1
0

≤ Ch1/2|φ‖C1
0
,

and for γ > 2, by estimates similar to those in Section 6, one has,

|I2| ≤ C‖φ‖C1
0

∑
j,n

∫ n∆t

(n−1)∆t

∫ (j+ 1
2 )h

(j− 1
2 )h

∣∣V h
0 (x, t)− V h

0 (x, n∆t− 0)
∣∣ dxdt+O(h)‖φ‖C1

0

≤ Ch1/γ‖φ‖C1
0
.

22



Taking the limit h→ 0 in (7.2) and using the dominated convergence theorem, we see that

the second equation of (2.7) is satisfied in the sense of distributions. Similar estimates

also show that the other equations in (2.7) are satisfied in this weak sense. The uniform

boundedness (5.7)-(5.8) of the approximate solutions implies the boundedness of the weak

solution. This completes the proof of Theorem 7.1.
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