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1 Introduction
The Lax-Majda theory for symmetrizable hyperbolic systems has been of significant importance
for establishing local well-posedness in the class of smooth solutions of the Cauchy problem
(see [21], [2]). The theory is not directly designed to deal with incompletely parabolic systems,
which are singular perturbations of symmetrizable hyperbolic systems. An example is a charged
compressible fluid conducting heat, and the limit of vanishing heat conduction. The theory also
does not lend itself to coupled systems written in block matrix form, of which only one block
component along the principal diagonal is a symmetrizable hyperbolic system, or a singular
perturbation of such a system. An example is a coupled Navier-Stokes/charge transport system,
remaining stable under the singular limit of vanishing viscosity. In this concise survey, we
describe an adaptation of Kato’s semigroup theory applicable to these cases. The theory we
describe has the added advantage that it can balance the restriction on the initial datum with that
on the terminal time in terms of an analytic inequality.

2 First Example: Hydrodynamic-Maxwell System
This model treats the propagation of electrons in a semiconductor device as the flow of a com-
pressible, charged, heat-conducting fluid. Coupling to electrostatic fields has been well studied,
involving equations for the conservation of density, momentum and energy, coupled to Pois-
son’s equation for the electrostatic potential. When semiconductor devices are operated under
high frequency conditions (including technologies such as microwave devices, electro-optics,
spintronics, and semiconductor lasers), magnetic fields are generated by moving charges inside
the device, and the charge transport interacts with the propagating electromagnetic waves. In this
case, the electromagnetic field satisfies Maxwell’s equations, which are coupled to the transport
system. Therefore, the hydrodynamic model for high-frequency charge transport in semicon-
ductors consists of the conservation laws, coupled to Maxwell’s equations for the electric and
magnetic fields.

The evolution system assumes the following (nonconservative) form:

∂ρ
∂t

+ v· ∇ρ+ ρ∇·v = 0,
∂v
∂t

+ (v · ∇)v + k
m
∇T + kT

mρ
∇ρ = − q

m
F− v

τp
,

∂T
∂t
− κ0

ρ
∇· (ρ∇T ) + v· ∇T + 2

3
T ∇·v = −2m|v|2

3k

(
1

2τw
− 1

τp

)
− T −T∗

τw
,

εEt −∇×H + J = 0,

µHt +∇× E = 0,

−ε∇ · E = q
m
ρ−D(x), ∇ ·B = 0,

B = µH, J = − q
m
ρv, x ∈ IR3, t > 0,

(2.1)

where ρ is the electron mass density, v ∈ IR3 is the electron velocity, T is the electron tempera-
ture, E ∈ IR3 is the electric field, H ∈ IR3 is the magnetic field, J ∈ IR3 is the current density,
B ∈ IR3 is the magnetic induction, F = E + v × B and −qF is the Lorentz force, D is the
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permanent charge profile, q is the electronic charge modulus, m is the effective electron mass, k
is Boltzmann’s constant, τp is the momentum relaxation time, τw is the energy relaxation time, µ
is the permeability of the medium, ε is the permittivity of the medium, κ0 is a constant multiplier
(with the variable density) of heat conduction, and T∗ is the ambient temperature.

Define the vector u by

u =


ρ
v
T
E
B

 =

[
y
z

]
. (2.2)

Choose units in which the following numerical relationships hold: q/m = 1, k/m = 1, εµ = 1.
The system (2.1) as defined above has matrix multipliers of ∂y

∂xj
, j = 1, 2, 3, given by

C̃j =



vj ρδ1j ρδ2j ρδ3j 0
T
ρ
δ1j vj 0 0 1δ1j
T
ρ
δ2j 0 vj 0 1δ2j
T
ρ
δ3j 0 0 vj 1δ3j

0 2T
3
δ1j

2T
3
δ2j

2T
3
δ3j vj

 , (δij = 1, i = j; 0, i 6= j). (2.3)

The matrix multipliers of ∂z
∂xj
, j = 1, 2, 3, are given by the matrices Dj:

Dj =

[
0 Gj

Gt
j 0

]
, (2.4)

where

G1 =

 0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

 0 −1 0
1 0 0
0 0 0

 . (2.5)

Here, and throughout, 0 denotes an appropriate (possibly non-square) zero matrix, possibly a
row or column vector. Note the presence of heat conduction in the system. The hydrodynamic-
Maxwell equations are more intricate than the Euler-Poisson equations. The only rigorous stud-
ies appear to be that made by Chen, Wang and the author in [3], where a global weak solution is
proved in one spatial dimension, and by the author in [14], which is surveyed here as pertains to
local theories. References to the applied literature are furnished in these two references.

2.1 The Symmetrizer
The symmetrizer of C̃j is then given by:

C0 =

 T
ρ

0 0

0 ρI3 0

0 0 3ρ
2T

 , (2.6)
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where I3 is the identity matrix of order 3. C0 is symmetrizing in the following sense:

Cj = C0C̃j =


T vj

ρ
T δ1j T δ2j T δ3j 0

T δ1j ρvj 0 0 ρδ1j
T δ2j 0 ρvj 0 ρδ2j
T δ3j 0 0 ρvj ρδ3j

0 ρδ1j ρδ2j ρδ3j
3ρvj

2T

 (2.7)

is symmetric for each j = 1, 2, 3. We may then define the system symmetrizer and the symmetric
multipliers via

a0 =

[
C0 0
0 I6

]
, aj =

[
Cj 0
0 Dj

]
. (2.8)

We then obtain:

a0(u)ut + L(u)u +

[
3∑
j=1

aj(u)
∂u

∂xj
+ b(u)u

]
= 0, (2.9)

where

L(u) = −diag(0,0, γ0/T ,0)∇· (ρ∇), γ0 =
3

2
κ0, c =

(
1

2τw
− 1

τp

)
,

b =


0 0 0 0
F ρ

τp
I3 0 0

3(1−T∗T )

2τw
cρvT 0 0

0 −µρI3 0 0
0 0 0 0

 . (2.10)

It remains to discuss the divergence conditions in the Maxwell system, expressed in terms of
E and B. The latter condition is imposed by requiring B to belong to a divergence free space.
In regard to E, it is enough to impose the appropriate condition on the initial electric field; by
taking the divergence of the equation involving Et, we infer that

ε(∇·E)t = −∇·J = ∇· (ρv),

and the latter is given, by the conservation of particle density equation, by

−ρt = −(ρ−D(x))t,

so that the equality of ε∇·E and −(ρ − D(x)) at t = 0 implies equality for 0 ≤ t ≤ T . The
initial condition for the Cauchy problem is then given by,

u(· , 0) = u0, (2.11)

for a given function, u0 ∈ Hs(IR3; IR11), satisfying certain positivity conditions reflecting re-
striction of vacuum states. The density-dependent heat conduction requires s > 7/2. The com-
ponents corresponding to B are required to have zero L2 divergence in the sense of distributions;
those corresponding to E must satisfy the divergence condition at t = 0.
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3 Second Example: Fluid Transport System
Modeling of electrodiffusion in electrolytes is a problem of major scientific interest [22]. At
the present time, it finds application in biology (ion channels), chemistry (electro-osmosis),
and pharmacology (transdermal iontophoresis). Self-consistent charge transport is represented
by the Poisson-Nernst-Planck system, and the fluid motions by a Navier-Stokes system with
forcing terms. The current densities are given on IRm in terms of the electron density n, the hole
density p, the electrostatic potential φ, and the fluid velocity v, by

Jn = qDn∇n− qµnn∇φ− qvn, (3.1)
Jp = −qDp∇p− qµpp∇φ+ qvp. (3.2)

The respective diffusion and mobility constants are denoted by Dn, Dp, µn, µp. The charge-
transport component of the system is given by

q∂n

∂t
−∇·Jn = 0,

q∂p

∂t
+∇·Jp = 0, (3.3)

E = −∇φ, (3.4)
∇· (ε∇φ) = q(n− p)−D (Poisson equation). (3.5)

The velocity of the electrolyte is determined by the Navier-Stokes equations:

ρ(vt + v· ∇v)− η∆v = −∇Pf − q(p− n)∇φ, (3.6)
∇·v = 0, (3.7)

where ρ is the (mass) density of the electrolyte, Pf denotes fluid pressure, and η is the dynamic
viscosity. The constants q, ε have retained their meaning from the first example. These equations
have been introduced by Rubinstein [22]. We shall make use of the kinematic viscosity, ν = η/ρ,
in the statement of the mathematical model.

3.1 The Mathematical Model
It has been traditional since the observations of Leray in 1933–34, to consider a reduced Navier-
Stokes system, in tandem with the projection P onto divergence free distributions. The idea,
discussed by Temam in [24, Chapter 1, §1,2], is to solve the equation of the pressure free part
of the system, projected onto divergence free functions; it follows by the DeRham property that
the reduced system is the gradient of a function (pressure). It is also required for well-posedness
of the problem that the concentrations n and p be nonnegative. This is easily handled within the
present framework as follows. One requires that

n0 ≥ α0 > 0, p0 ≥ β0 > 0, (3.8)

where n(· , 0) = n0, p(· , 0) = p0. Since the solution regularity implies that the vector solution
is uniformly continuous on [0, T ] × IRm, we select T ′ ≤ T so that n ≥ 0, p ≥ 0, i. , e. , the
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physical solution can be taken as an appropriate restriction of the solution of the mathematical
model developed here.

Define the m+ 2-vector u by

u =

 v
qn
qp

 . (3.9)

The initial condition for the Cauchy problem on IRm is given by,

u(· , 0) = u0,

for a given function,
u0 ∈ Hs(IRm; IRm+2), s > m/2 + 1.

We require a block system format. Thus, if u1 denotes the first m components of u, and u2

denotes the remaining 2 components, we rewrite the system as

du

dt
+ Au =

d

dt

[
u1

u2

]
+

[
A11 A12

0 A22

] [
u1

u2

]
=

[
F1

F2

]
= F. (3.10)

We have permitted an external forcing term F. The nonlinear dependence of A is given by the
operator representations:

A11(u1) = −νI∆ + Pu1· ∇,
A12(u2) = P[ ρ−1(−φx1 , . . . ,−φxm)T ρ−1(φx1 , . . . , φxm)T ],

A22(u1,u2) = −diag(Dn, Dp) ∆ + diag(µn∆φ,−µp∆φ)

+
m∑
i=1

diag(ui + µnφxi
, ui − µpφxi

)(∂/∂xi).

(3.11)

In the above system, the function φ has been used implicitly in its dependence upon n, p. We
make this explicit:

φ = Φ(u2), where − ε∇2φ = u2· (−1, 1)T +D. (3.12)

The assumptions on the smoothing map Φ are specified later. It is most convenient to rewrite the
entire system in operator/vector format.

If we define the diagonal matrix Dm+2 by

Dm+2 = diag (ν, . . . , ν,Dn, Dp), (3.13)

and the matrices ai and b by

ai(u) = diag (u1, ui + µnφxi
, ui − µpφxi

), i = 1, . . . ,m,

b(u) = b(u2) =

[
0 ρ−1(−φx1 , . . . ,−φxm)T ρ−1(φx1 , . . . , φxm)T

0 (µn∆φ, 0)T (0,−µp∆φ)T

]
,
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then the system may be written,

ut −Dm+2∆u + PE(u)u = F(t,u), (3.14)

where A(u) = −Dm+2∆ + PE(u), and

E(u) =

[
m∑
i=1

ai(u)
∂

∂xi
+ b(u)

]
,P =

[
P 0
0 I2

]
, (3.15)

with I2 the identity matrix of order two. Finally, the following assumption on F is made for
consistency: PF = F. This model was first analyzed in [13].

4 A Semigroup Framework

4.1 Basic Facts
We begin with some familiar terminology.

Definition 4.1. Let U be a closed linear operator with domain and range dense in a Banach
space X . Denote by R(λ, U) the resolvent (λI − U)−1 for λ in the resolvent set of U . For
M > 0 and ω ∈ R denote by G(X,M,ω) the set of all operators A = −U such that

‖[R(λ, U)]r‖ ≤M(λ− ω)−r, r ≥ 1, λ > ω.

Finally,
G(X) = ∪ω,MG(X,M,ω).

The operatorsU are generators of strongly continuous semigroups onX . Systematic theories
date to the volumes of Hille [8] and Hille-Phillips [9]. Canonical examples include self-adjoint
extensions (weak = strong) of symmetric, semi-bounded operators [6]. Friedrichs’ work, con-
tinued in [7], represented a major advance in the applications of semigroup theory to partial
differential equations. Later, Kato considered the question of when the generation property
extends to smooth spaces Y embedded in X . The following lemma is the cornerstone.

Proposition 4.1. Suppose Y is a Banach space densely and continuously embedded in X and
S : Y 7→ X is an isomorphism. We write ‖v‖Y = ‖Sv‖X . Suppose A ∈ G(X,M,ω) such that

A1 = SAS−1 = A+B, (4.1)

where B is a bounded linear operator on X and

D(A1) = {v : AS−1v ∈ Y }.

Then the semigroup generated by−A, restricted to Y , is the semigroup generated by the restric-
tion of −A to {v ∈ Y ∩ D(A) : Av ∈ Y }. In fact, Se−tAS−1 = e−tA1 holds. It follows that
A1 ∈ G(X,M,ω +M‖B‖) so that A ∈ G(Y,M, ω1), with ω1 = ω +M‖B‖.

Kato used this idea to construct the evolution operators [15, 16]. This theory, as improved
by Dorroh [5], is presented in [12, Ch. 6].
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4.2 The General Initial-Value Problem
The evolution operators constructed for the linear theory were used in conjunction with appro-
priate fixed point theory to analyze nonlinear Cauchy problems in a reflexive Banach space X ,
of the form,

du

dt
+ A(t, u)u = F (t, u), u(0) = u0, (4.2)

where A(t, u) ∈ G(X,M,ω) for u restricted to a subset of a ‘smooth’ reflexive Banach space
Y , densely and continuously embedded in X . The function F (t, u) is required to be in Y , and
a solution u(t) ∈ Y, 0 ≤ t ≤ T is sought with derivative, du/dt required to belong to an
intermediate space, V . The mapping (t, u) 7→ A(t, u) is required to be continuous into B[Y,X]
and (t, u) 7→ F (t, u) is required to be strongly continuous into X . It is required that A(t, u) and
F (t, u) satisfy a (uniform in t) Lipschitz condition:

‖A(t, u)− A(t, v)‖Y,X ≤ CA‖u− v‖X , ‖F (t, u)− F (t, v)‖X ≤ CF‖u− v‖X .

A similarity relation connecting A to A1 as in (4.1) is required for this smooth theory. Kato
developed these ideas in [17, 18], and an illustration of the versatility of the theory was demon-
strated in [10] where the vacuum field equations of general relativity and the general problem
of elastodynamics were studied. A presentation of the nonlinear Kato theory was given in [12,
Ch. 7]. Later extensions of the theory, with some discussion of the initial/boundary problem,
appeared in [19, 20]. When symmetrizers are required to expedite the semigroup theory, as is
the case in the first example, a more general initial value problem of the form,

A0(t, u)
du

dt
+ A(t, u)u = F (t, u), u(0) = u0,

must be considered. The Lipschitz properties are appropriately generalized, and equivalent
norms involving the symmetrizer are necessary. This technique appears most notably in [10].

4.3 The Rothe Method
Use of the Kato framework, but with the substitution of Rothe’s method of lines for the evolution
operators, first appeared in [11] (see also [4]). The models presented earlier in this paper were
analyzed in this way in [13, 14]. There is a distinct advantage to this approach in terms of esti-
mating explicit sufficient conditions for local well-posedness. This is described in the following
subsections.

If ∆t is given as the ratio T/N , then the method of horizontal lines applied to (4.2) yields a
semidiscrete set of implicit equations,

A(tk, u
N
k )uNk + (1/∆t)uNk = (1/∆t)uNk−1 + F (tk, u

N
k ), k = 1, . . . , N. (4.3)

If we set µ2 = 1/∆t = N/T , then the uNk can be characterized formally as fixed points of

Qv = QN
k v = −R(µ2 − 1,−A(tk, v))v + µ2R(µ2 − 1,−A(tk, v))uNk−1+
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+R(µ2 − 1,−A(tk, v))F (tk, v). (4.4)

By repeated back substitution, one obtains the following useful formula for uNk−1:

uNk−1 =
k−1∏
j=1

µ2R(µ2,−A(tj, u
N
j ))u0 +

k−1∑
j=1

(µ2)k−1−j
k−1∏
i=j

R(µ2,−A(ti, u
N
i ))F (tj, u

N
j ). (4.5)

Pivotal to the entire study is the demonstration of the existence of fixed points for this map
within an appropriately smooth ball. The concept of stability proves useful in estimating the
contraction constant for the mapping Q on both X and Y when (4.4, 4.5) are used.

4.4 The Invariance and Lipschitz Constant for Q
The invariant set B on which Q is defined is described:

B = {u ∈ Y : ‖u‖Y ≤ σ‖u0‖Y , ‖u‖X ≤ σ‖u0‖X}.

For convenience, we take ‖· ‖X ≤ ‖· ‖Y . Here, σ > 1 is to be determined, and represents the
a parameter related to the local nature of the analysis. Since Y is assumed reflexive, B is a
complete metric subspace of X . One must show that QB ⊂ B, independent of k,N , and that Q
is a strict X− contraction. As shown, for example, in [13], one can set

σ = σ(δ, ρ,M, ω),

where the stability constants M,ω are natural extensions to products of resolvents on X and Y
of the constants introduced in Definition 4.1, and where δ, ρ are selectable parameters. For the
mapping Q, there are four terms to estimate in verifying invariance. We illustrate by studying
one of these terms: For given δ > 0 and ρ > 0, if the integer N satisfies:

µ2 =
1

∆t
=
N

T
> [2(1 + δ−1)M + (ρ+ 1)(ω + 1)], (4.6)

then µ2 ≥ (1 + ρ)(ω + 1) so that

µ2

µ2 − ω − 1

(
µ2

µ2 − ω

)k−1

≤
(

µ2

µ2 − ω − 1

)N
≤ e(1+1/ρ)(1+ω)T =

σ

2M(1 + δ)

if σ is defined by
σ = 2(1 + δ)Me(1+1/ρ)(1+ω)T .

The term to be estimated is actually the product of this term with M‖u0‖X , so that the final
upper bound for this term is of the form

σ

2(1 + δ)
‖u0‖X .
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There is a second upper estimate of this form, and two of the form

σδ

2(1 + δ)
‖u0‖X ,

so that one finally arrives at an upper bound of r = σ‖u0‖X . The estimates have thus been
designed so that X−norm invariance holds. By employing the similarity transformation, one
also obtains Y−norm invariance. The estimation of the contraction constant in the X−norm
(which is all that is required) reveals proportionality to 1/(µ2 − ω − 1), which can be made
arbitrarily small by the choice of ∆t.

4.5 Parameter Selection
M is generally determined as a function of the admissible radius r of B in Y and the terminal
time T , while ω is typically a function of r. In terms of these, one can define numbers δ and ρ.
Set γ = 1 + ω, and select ρ satisfying

2M(r, T )‖u0‖Y e(1+1/ρ)γ(r)T < r.

This is possible if the assumption,

2M(r, T )‖u0‖Y e1γ(r)T < r, (4.7)

holds for a particular pair r, T . For such r, T , define δ by the relation:

1 + δ = re−(1+1/ρ)γT/(2M‖u0‖Y ).

It is immediate that
2(1 + δ)Me(1+1/ρ)γT‖u0‖Y = r,

which permits the definition of σ consistent with the previous subsection:

σ = 2(1 + δ)M(r, T )e(1+1/ρ)γ(r)T .

5 Discussion of the Examples
We concisely describe how the theory outlined in the previous section is interpreted for the
examples discussed earlier in the paper.

5.1 The Function Spaces and the Isomorphism
We introduce the classical Bessel potential space Hs(Rm;Rk). It can be characterized, via the
isometric Fourier transform F , as the linear space of functions v with norm,

‖v‖2Hs =

∫
Rm

(1 + |x|2)s|Fv(x)|2 dx, s > 0.
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It follows from the definition that the diagonal operator S = Ik(I −∆)s/2 induces an isometry
of Hs(Rm;Rk) onto L2(R

m;Rk).
We may now define, for the second example,

X = X1 ⊗X2, X1 = PL2(R
m;Rm), X2 = L2(R

m;R2),

Y = Y1 ⊗ Y2, Y1 = PHs(Rm;Rm), Y2 = Hs(Rm;R2).

P denotes the projection onto divergence free distributions. The projection for the first example
is P = I8 ⊗P3, where P3 projects the final three components onto divergence free distributions.
Thus, for example one,

X = PL2(R
3;R11), Y = PHs(R3;R11).

5.2 The Friedrichs and Kato Inequalities
The Friedrichs inequality [6] derives a semibounded relation for a first order differential operator
A(t) with symmetric (matrix) coefficients aj = aj(x, t), j = 1, . . . ,m, of ∂/∂xj and zeroth
order coefficient b(x, t):

(A(t)u,u)L2 ≥ −ωt(u,u)L2 ,

where

ωt =
1

2

m∑
j=1

‖aj(· , t)‖C1
b

+ ‖b‖Cb
.

The subscript b indicates ‘boundedness’. The operator A(t) can be thought of as arising in a
nonlinear theory via the freezing of coefficients. This allows one to use the Hille-Yosida theorem
in the applications to infer the generator property−A(t) ∈ G(X, 1, ωt). In the general nonlinear
theory, ωt depends on the radius r of the admissible balls in Y . This can be combined with the
theory of relatively bounded perturbations to cover the case of second order generators. What is
significant is that the constants ωt do not depend on the diffusion or viscosity coefficients. This
ultimately accounts for stability when these parameters tend to zero.

The commutator estimate is used to deduce the similarity relation,

SA(t)S−1 = A(t) +B(t), B ∈ B[X],

for a first order operator, and this can easily be extended to the case where the first order operator
is a relatively bounded perturbation of a second order operator. The result for first order operators
uses the relation,

SA(t)S−1 = A(t) +
m∑
j=1

[S, aj]

(
∂

∂xj

)
S−1 + [S, b]S−1 = A(t) +B(t),

where [· ] denotes the commutator. Kato used a result of Calderón [1] to deduce the L2 bound-
edness of [S, aj] with bound not exceeding c‖aj‖C1

b
, hence the fact that B ∈ B[X] when

s > dim/2 + 1. Here, dim denotes the dimension of the relevant Euclidean space. The condi-
tion on s carries over to simple perturbations with constant diffusion or viscosity. However, the
variable heat conductivity of the first example requires a more stringent assumption on s.

11



5.3 The Block Resolvent
The second example requires the use of a block resolvent. Since

λI + A =

[
λI + A11 A12

0 λI + A22

]
, (5.1)

we have by a standard invertibility result for the block resolvent:

R(λ,−A) =

[
R(λ,−A11) −R(λ,−A11)A12R(λ,−A22)

0 R(λ,−A22)

]
. (5.2)

The Friedrichs and Kato inequalities are applied to the block diagonal terms in the analysis. The
off-diagonal block must be separately estimated.

5.4 Regularization Near the Vacuum
The symmetrization employed for the first example introduces terms which can become singular
at vacuum and absolute zero. Regularization is employed and it is the regularized problem which
is analyzed. An ‘a posteriori’ study related to the positivity assumptions on the initial conditions
then allows for (local) well-posedness of the original Cauchy problem.

5.5 Solutions on the Space-Time Domain
The semidiscrete solutions are interpolated by piecewise linear (in time) functions. Limit points
of this set as ∆t→ 0 can be shown to be solutions in the models of interest. The arguments are
technical, but now standard, making use of the Aubin lemma [23]. The regularity property,

u ∈ C([0, T ];Hs),

requires a postconvergence proof, analogous to that contained in [21, pp. 44–46], to strengthen
the regularity statement derived from sequential convergence:

u ∈ L∞([0, T ];Hs).

5.6 Explicit Criteria for Local Existence
We will illustrate the local hypothesis for the second example. One estimates

ω(r) = a+ br,

for positive constants a, b. M is a more complicated expression which we may write as

M(r, T ) =
(c+ dr)e(1+1/ρ0)ω(r)T

ω(r)
,

for appropriate constants, c, d, ρ0. This is inclusive as can be seen from the following cases.
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1. T is given
If we write,

H(r, T ) =
1

2
e−(1+αω(r))Th(r), h(r) =

r(a+ br)

c+ dr
,

where α = 2 + 1/ρ0, then we may maximize H(· , T ) as a function of r. We find that r is
determined by

h′(r)

h(r)
= αbT. (5.3)

By direct computation,
h′(r)

h(r)
=
c(a+ br) + br(c+ dr)

r(a+ br)(c+ dr)
.

The latter function is strictly decreasing on (0,∞), and satisfies

h′(r)

h(r)
→∞, r → 0+;

h′(r)

h(r)
→ 0, r →∞. (5.4)

It follows that (5.3) has a unique solution, r(T ). In this case where T is arbitrary, the
condition (4.7) reduces to: ‖u0‖Y < H(r(T ), T ).

2. ‖u0‖ is given
Since h(r) is a strictly increasing mapping of (0,∞) onto itself, there is a unique r0 such
that

‖u0‖Y =
1

2
h(r0) = H(r0, 0).

It follows that, for each r > r0, there is a T0 = T0(r) such that

‖u0‖Y < H(r, T ), for T < T0, r fixed.

This gives an admissible range of r and T which satisfy (4.7) in this case where ‖u0‖Y is
arbitrary.

5.7 Summation
The condition (4.7) provides a range of r, T for which the evolution system possesses a smooth
solution which remains stable under possible singular limits; the convergence can be measured
in L2 norms, if desired. More precisely, the rate in the norm C([0, T ];L2(IR

k) is proportional to
the parameters ν or κ0 as these tend to zero. Although (4.7) is sufficient, and not necessary, it
does suggest a possible parametric relation to investigate for potential blowup; see [21] for the
formulation of such a principle.
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