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1 Introduction

The linear Boltzmann transport equation is an integro-differential equation
modelizing neutral and charged particle transport. It is extensively used in
computational neutron transport for the analysis of nuclear reactors and ra-
diation shields. Such nuclear engineering applications constitute the authors’
background and determine the notations used throughout this paper. Assum-
ing isotropic scattering and sources, the mono-energetic time-independent ver-
sion of the Boltzmann equation for the angular flux ¥(r, ) reads [9]

Q- VU(r, Q)-f—a(r)\Il(r,Q):os(r)/SdQ\Il(r, Q) + s(r). 1)

In (1), the unit vector €2 represents the traveling direction of a neutron, S
represents the unit sphere in R?, the nabla operator V acts on the spatial
variable r only, o(r) and o4(r) are the macroscopic total and scattering cross
sections (i.e.reaction probability per unit length) with o5 < o, and s(r, Q) is
the source term. The direction € is expressed in terms of (f,#) in spherical
coordinates, with @ the colatitude (6 € [0,7]) and ¢ the azimuthal (or polar)
angle (¢ € [0,27]). We adopt the convention that [ dQ2 = 1. As for boundary
conditions, we consider vacuum and reflected boundaries, corresponding re-
spectively to a zero incoming flux in the domain and an incoming flux equals
to the spectrally reflected outgoing flux. To avoid re-entrant fluxes, we consider
convex domains.

A widely used angular discretization technique for (1) is based on the spherical
harmonics, that form an orthogonal basis for square integrable functions on
the unit sphere in three dimensions. Angular dependences are then expanded
in spherical harmonics series, truncated at order NV, leading to a Py approx-
imation [4,9]. A previous paper [19] dealt with the lowest-order (N = 1) of
these angular discretizations, that is the P, approximation, where no explicit
angular dependence remains in the equations. We here intend to generalize
this approach to the general Py approximation.

The transport equation in its integro-differential first-order form (1) was in-
vestigated mathematically in [6, Ch.XXI]. A second-order (with respect to
the spatial variable) form can be obtained using the even- and odd- (angular)
parity decomposition for the angular flux ¥(r,€2) introduced by Vladimirov
[20] (who also gives credit for it to Kuznetsov [8]). This decomposition reads

UE(r, Q) = = (U(r, Q) + ¥U(r, —NQ))

N =

and yields the following coupled pair of first order equations



Q-VU (r,Q) + oV (r, Q) =0,0(r) + s(r) (2)
Q-VIH(r, Q)+ 00 (r,2)=0 (3)

where ¢(r) = [¢dQU(r,Q) = [¢dQUT(r,€) is the scalar flux. The current
vector is given by J(r) = [4 dQQU(r, Q) = [ dQQV~ (r, Q). Eliminating the
even- or odd-parity flux from (2) or (3) yields a second-order equation in the
remaining unknown.

Mixed methods can be obtained based on equations (2-3). These methods
yield simultaneous approximations of ¥+ and ¥, thus of flux and current
(the physically interesting values in computational neutron transport) avoid-
ing errors to propagate from one to the other. Note that, opposite to the
traditional mixed methods for purely spatial problems, both unknowns ¥+
and U~ are here scalar quantities. Besides, hybrid methods using Lagrange
multipliers to enforce interface regularity constraints have been proved useful
in nuclear engineering codes [11]. Non-standard finite element discretization
methods such as mixed and hybrid methods have been widely studied in the
finite element literature for second-order elliptic problems [15,5]. This work
aims at generalizing such approaches to the Boltzmann equation in the form
(2-3). The complexity of the finite element discretization for the spatial vari-
able is then supplemented with the presence of the Py discretization for the
angular variable.

Specifically, we establish a mathematical setting for mixed-hybrid (i.e. simul-
taneously mixed and hybrid) discretization methods for the Boltzmann equa-
tion, and use this setting to investigate the well-posedness of the resulting
problems. This way, we provide insight for both purely hybrid and purely
mixed methods, while the mixed-hybrid methods presented here can also be
used as such. Mixed-hybrid (primal) methods were first introduced for purely
spatial second-order PDE’s by Babiiska et al. [3], whose paper strongly influ-
enced the present work.

The paper is organized as follows. Some useful notations and results are first
mentioned in section 2. Then a mathematical setting is introduced in section
3, that provides the necessary framework for the investigation in section 4 of
the continuous mixed-hybrid problems, that is the abstract problems posed in
infinite dimensional spaces. The discrete problems are investigated in section
5. Both continuous and discrete well-posedness results are proved in appendix.
Furthermore, illustrative numerical results are given in section 6.



2 Preliminaries

With n < 3 the number of space dimensions, let V' be a convex open bounded
Lipschitzian domain of the Euclidean space R" with piecewise smooth bound-
ary dV. We thus use neutronic standard notations by denoting the considered
spatial domain V" and keeping the letter €2 for the neutron traveling direction.
We denote by L?(V) = H°(V), H (V) and H(div, V) the usual Lebesgue and
Sobolev spaces on V' with their elements understood in the sense of distribu-
tions. In this section, || - ||, || - || and || - ||ai»v denote their respective associated
norms.

The following theorems [15,17] define the spaces H'/2(9V) and H~/?(0V)
that respectively contain the trace of functions in H*(V') and H (div, V). Their
correspondence with Sobolev spaces of fractional order is proved in [10]. Also,
V denotes the closure of V', and n denotes the unit outward normal vector to
the considered (sub)domain.

Theorem 1 (Trace mapping theorem) The map v — v|gy defined a pri-
ori for functions v continuous on V, can be extended to a continuous linear
mapping called the trace map of H (V') into L?*(0V'). The kernel of the trace
mapping is denoted H}(V), and its range H'/?(0V') is a Hilbert space, subset
of L2(0V), equipped with the norm

||1/J||1/2,av = [@l,v-

inf
{veH (V):v|gy =9}

Theorem 2 (Normal trace mapping theorem) The map q — n - q de-
fined a priori for vector functions q from (H*(V))"™ into L?(0V) can be ez-
tended to a continuous linear mapping from H(div,V) onto H=Y2(dV), the
dual space of HY?*(0V), called the normal trace mapping. H=Y2(0V) is a
Hilbert space with norm

||X||—1/2,6V = sup W, X)
{we H/2(0V):|[¢]l1/2,0v =1}

where (1, x) = [o ¥ x dU'. We also have the characterization

Ixll-1/2,6v = }Ilqlldm,v-

inf
{a€H(div,V): n-qlov=x
The kernel of the normal trace mapping is denoted Hy(div, V).

We have HY2(0V') C L2(0V) Cc H~Y/2(aV).



3 Mathematical setting for transport

3.1 Definitions

We introduce the Lebesgue space L?(S x V) defined on the spatio-angular
domain. From now on, (-,-) and || - || denote the scalar product and norm in
L*(S x V). Also, we often emphasize the domain where this and subsequent
norms are taken, by writing ||-||y, shorthand notation for ||-||sxv. Furthermore,
we define

H(grad,S x V)={W¥ € L*(S x V) such that VQ € S, V¥ € L*(S x V)},
H(div,S x V)={® € L*(S x V) such that VQ € S,V - ¥ € L*(S x V)},
L*(92,8 x V)={¥ € L*(S x V) such that VQ € S,Q¥ € L*(S x V)}, and

H(Q-V,SxV)={¥ e L*(Q,S x V) such that YQ € S,Q-VV¥ € L*(S x V)},

The scalar product in L?(€2,S x V) is defined as
(T, Wy)g = /S /V (QUy) - (QU5)dVdQ = (U5, ¥y)

since €2 is a unit vector, and thus L*(€2, S x V) = L*(S x V). We nevertheless
go on using both notations. The other scalar products are defined as follows:
in H(grad,S x V)

(\Ifl,qlg)gmdz//V\Ill-V\IIQdVdQ—i-// W, W, dVdQ,
SJV SJV

in H(div,S x V)

(\1;1,‘1/2)4,-1,:/S/Vv-\plv-%dvczmr/s/v W, - W, dVdS,

and in H(Q-V,S x V)

(1, U)oy = /S /V (Q- VU,)(Q - V) dVdQ + /S /V U, UadV d.

The corresponding norms are thus [|¥[2 ., = [|[¥|*+3; [|6:¥||* in H(grad, S x
V), 1912, = 5 1, P+ [V & | in H{div, S x V), and | ¥y = [10]+ |02
V|2 in H(2-V,S x V). Note that H(grad, S x V) could have been denoted
H'(S x V) as in Sobolev space theory, but here the first-order derivative has
to be taken with respect to only part of the variables, and besides the choice
of H(grad,S x V) makes a more homogeneous set of notation together with

H(div,S x V). These two spaces are Hilbert spaces, and we also have



Theorem 3 H(Q2-V) is a Hilbert space, and H(grad) C H(2-V) C L*(S x
V).

Proof of theorem 3 One has to show the completeness of H(2 - V). In
this view, one can proceed similarly to what is usually done to prove the
completeness of the Sobolev space H!, that is take a Cauchy sequence {¥,}
in H(Q-V), note that {¥, } and {Q-V¥, } are Cauchy sequences in L?(S x V),
and, denoting by W and W' their respective limits (in L?(S x V')), prove using
integration by parts that - VU¥° = ¥l that is ¥° € H(Q - V). The second
part of the theorem follows from ||¥||q.v < ||¥||graa- O

Note that an advection operator similar to €2 - V was already introduced and
studied in [6, XXI §2.2 ].

3.2 Trace theorems

The following two trace theorems generalize the theorems 1 and 2:

Theorem 4 There exists a continuous linear map ¥ — |y from H(grad, S x
V) into L*(S x OV). The kernel of this mapping is denoted Ho(grad, S x V),
and its range, denoted HY?(S x V), is endowed with the norm

e = inf v . 4
|| ||1/2,6V {\IIEH(grad,le‘I}): U|sxoy ="} || ||g7‘ad,V ( )

Proof of theorem 4 Apply theorem 1, the angular variables playing a passive
role. O

Theorem 5 There ezists a continuous linear map ¥ — V(s from H(S2 -
V,S x V) onto H51/2(S x OV') where

Hy'(S x 8V) ={¥ defined on S x OV
such that n- QU € H™/2(S x 9V)},

with H=Y2(S x V') the dual of HY?(S x 8V'). The kernel of this mapping is
denoted Hy(Q2-V,S x V), and its range HQI/Q(S x 0V') is endowed with the
norm

W], -1/2,0v = [0 - Q|| _1/2,0v, (5)



with

|- = inf W] giv.v -
A {\I"IEH(div,Sle)Izln.\Itq\SxaV:\IIa}” i (6)

Proof of theorem 5 ¥ € H(2-V,Sx V) if and only if QU € H(div,SxV),
and one can apply the normal trace mapping theorem 2. O

3.8 Domain decomposition and tools for hybrid methods

To obtain a hybrid method, we need to subdivide the spatial domain V" into a
finite family of elements V; such that V,\V}, = 0 ifl # k, and V = U[-, V;, with
L positive integer. In the sequel, we assume that all the considered elements
V, are open subsets of R with piecewise smooth boundaries. We also define

r=Jov.
l

The spaces Hé/ >(§xT) and HK;})/ ?(S xT) respectively designate the subsets of

H'Y2(S xT) and Hg;"*(S x T') whose elements vanish on the outer boundary

0V'. Besides, with the subdivision just described, norms in H(lo/)Q(S x I') and
—1/2 .

HQ,((/)) (S x I') are respectively ||\II||%/2,I‘ = 2 ||\I’||%/2,8V1 and ||q’||52),—1/2,r =

> ||\I’||?2,71/2,a\/,- Furthermore, we introduce

X ={¥ € L*(S x V) such that VI, ¥|sxy, € H(grad, S x V;)} and
Xo={¥ € L*(2, S x V) such that VI, ¥|sxy; € H(-V,S x V))}

with corresponding norms ||¥||x = > [|¥||graa,v; and [|¥]xq = X0 || ¥]|@-v,u-
The following two theorems (generalizing propositions 1.1 and 1.2 of [5, p.95])
tell us how to enforce the interface regularity (with respect to the spatial
variable) of members of X(q).

Theorem 6

H(grad,$ x V) = {¥* eX:Z/SdQ [ dr@-m¥e = =0
1 l

VI® € Ho*(SxT) }.

Proof of theorem 6 Following theorem 5, there exists a ¥ in H(Q2 -V, S x
V') whose restrictions to each S x V| have traces equal to the corresponding



restrictions of ¥ € Hgy/*(S x I). Thus ¥ € Ho(Q - V,S x V). Clearly,
H(grad,S x V) C X, and if ¥* € H(grad, S x V), we obtain successively

zlj/SdQ [ arQ nieut= Z/dQ v Q- v (V)

=/d9/dvn-v(\1npi)

/dQ AL Q- n T* U

which vanishes for any ¢ € ng/ 2(5 x I'). Conversely, the proposed charac-
terization of H(grad,S x V') implies using integration by parts

/qu/vdvmi(n-VW)=—/qu/vdv (Vid)-Qu
YU € Hy(Q-V,S x V),

and thus for all ¥ in C§°(V) (i.e. compactly supported infinitely continuously
derivable),

1/2
SdQ/VdV\IIi(Q-V\IJ‘ (ZII‘I’ngmde) 192 9]].

Since (VI%,QU) = —(¥*, V- Q) in the distribution sense, (V ¥*,-) is
thus a bounded linear functional that can be extended to L?(S x V). Hence
U* € H(grad,S x V). O
Similar arguments lead to

Theorem 7

HQ-V,SxV)={0* € Xq:> [d2[ dI'Q-n¥*T¥*=0
I S [2)%]

vie e H/2(SxT) }.

4 Continuous mixed-hybrid problems
4.1  Weak form derivation

We apply the distributions in equations (2) and (3) respectively to test func-
tions UT(r, Q) and U~ (r, Q). These test functions are respectively of even-



and odd- angular parity. Integrating over space and angle, we obtain:
[ao [ dV\T!“L(Q-V\II—i-a‘IFL o, [ dQ’\IJ+> = [do [ avs* (1)
s v S s v

and
[ao [ avi- (n VUt 4 J‘Il_) — 0. (8)
S Vv

Integrating by parts (with respect to r), and introducing the notations ¥¥ (€2, r)
and UX(Q, ) to respectively represent the traces on 9V of ¥+ and ¥~ we get
successively

—/dQ/ AV - Vit o- +/dQ AT Q - nd+

+ [0 [ avir <ax1f+ o, [ dQ'\Iﬁ) = [do [ avs 9)
S 1% S S 14
and
—/dQ/dvqﬁn Vi +/dQ dr Q- n¥ ¥
+/ dQ/ dVob—0~ = 0. (10)
S 1%

Equations (8) and (9) lead to the mixed primal weak form, while (7) and (10)
lead to the mixed dual weak form. We now introduce hybridization, keeping
only weak (but natural) regularity conditions at the interfaces of the spatially
decomposed domain. In this view, we restrict the above equations to S x V}
(that is spatial integrations are now taken on V; and 0V}), and sum them
up. In the choice of approximation spaces, regularity requirements can then
be restricted to each S x V| separately, and interface regularity conditions
are enforced by a third equation arising from theorem 6 or 7. In the sequel,
we require oy(r) and o,,(r) to be in C*®(V}). Using a subscript [ to denote
restrictions to S X Vj, the mixed-hybrid primal weak form equations are from

(8) and (9)

— > JdQ [y, dV U7 Q- VU + [5dQ [,y dT Q- n ¥ Uy

+ [odQ fy, AV (o0l — 04y f5 dYE]) = 5, f5 dQ iy dV s B
S fe dQ [y, AV Q- VO + [dQ [, dVol U =0
21 J5 dS2 [oy, dIS2 - n Yo =0,

(11)

and we consider two possibilities for the choice of spaces where to find the un-
knowns (the denominations introduced here will be motivated by the angular
discretization; they refer to the parity of the angular expansion order N in
section 5):



e even-order primal choice: we look for (¥, ¥, UX) in X x L*(2, S x V) x
H3?(S x I) for all (I+, ¥~ \IIX) in X x L2(Q, S x V) x Hoy*(S x T) (in
this case we require s to be in X'),
e odd-order primal choice: we look for (UF, ¥~ ¥X) in Xq x L2(S x V) x
HY2(S x T) for all (F+, &=, ¥%) in Xq x L2(S x V) x He/*(S x T') (in this
case we require s to be in Xj,).

Besides, we require ¥~ and ¥X to be odd in 2, and U to be even in Q. These
angular parity properties are assumed throughout the remaining of this study
even if they are not explicitely included in the notations (to avoid making
them too cumbersome). For the mixed-hybrid dual formulation, we obtain

from (7) and (10)

(Y0 JodQ Jy, dV O] (- VU + 0,0 — 0y B [5dYT])
=Y JsdQ [y, dV s U

$ = s dQ fy, AV UF Q- VT + [odQ [y, dT Q- n T T (12)
+ [5dQ [y, dVo U U7 =0

(1[5 2 foy; dT Q-0 T7 T, =0,

and the two choices of spaces are here:

e even-order dual choice: we look for (U=, ¥* ¥¥%) in X x L2(S x V) x
H'Y2(S x T) for all (U=, ¥ ¥¥) in X x L3S x V) x Hy/*(S x ') (then
se L*(SxV)),

e odd-order dual choice: we look for (U—, U+ ¥¥) in X x L*(2,S x V) x
Hg'?(8 x T) for all (U, ¥+, ¥%) in X x L2(Q,S x V) x Hgy (S x I)
(then s € L*(€2, S x V)).

Besides, we require ¥+ and U¥ to be even in £, and U~ to be odd in . Note
that UX and U can be interpreted as Lagrange multipliers in the third equa-
tion of the primal and dual weak forms (respectively), enforcing the interface
continuity of ¥ and ¥~ (again respectively).

4.2 Well-posedness

Without loss of generality, any flux ¥(r, ) can be extended in spherical har-
monics Yy, according to W = 3202 4 3 <n (¥, Yom)a Yam, where the Yy, form
an orthonormal basis and (¥, YY) = [qdQUY,,,. Clearly, the coefficients
(¥, Yum)o must decrease for n — oo in order to meet the square integrable
requirement with respect to the angular variable. We make this behavior more
precise in the next definition.

10



Definition 8 We say that a flur ¥(r, Q) is mildly anisotropic when

(ta) I Yol 2 Y 02, Yawlall? for any n > 1,n odd

|m|<n |m|<n

where

o, — 0 when n — oo, and o, < a* Vn
with o = 2U—”l7 — 1.

Besides, we consider vacuum and reflected boundary conditions, which cover
all practical applications. The neutron flux vanishes on vacuum boundaries,
and thus, for any r on such a boundary, one has ¥(r, Q) = 0, that is, in terms
of even- and odd-parity fluxes,

U~ (r, Q) Q-n>0

U~ (r,Q) Q-n<0 (13)

Ut(r, Q) = {

where n is the outward unit normal on the vacuum boundary. On a reflected
boundary perpendicular to the prescribed normal, ¥=(r,0,¢) = U*(r,II —

0,0).

The following theorem is proved in appendices A.1 (primal case) and A.2 (dual
case).

Theorem 9 Assume boundary or reflected boundary conditions on the ex-
ternal boundary 0V . Assume o, and os; constant on each element Vi, and
op > os; > 0 for all I. The mized-hybrid continuous primal and dual weak
forms (11) and (12), together with the odd- or even-order choice of spaces
described in section 4.1, have a unique solution provided the flux ¥(r,2) =
Ut (r, Q) + U (r,Q) is mildly anisotropic in each element.

The hypothesis o, > o,; > 0 excludes void (i.e. o; = 0), pure scattering
(05, = 0y) and pure absorbing (os; = 0) media.

Finally, an alternative proof is given in appendices A.1 and A.2, showing that
the mild anisotropy assumption in the previous theorem can be replaced by
the assumption o,; < éal, for all {.

11



5 Discrete mixed-hybrid problems
5.1 Choice of finite-dimensional spaces

The subscript A is used to distinguish the unknowns that have been discretized
in both space and angle. We denote by Py, M; and By, (respectively for Plus,
Minus and Boundary) the finite-dimensional approximation spaces. In the
primal case, we look for a triple (U}, ;" , UX) € B, x My, X By, that verifies
the primal weak form equations (11) for any (\i!;, \Tl;, ‘ilif) € P, x My, x By
1 with in the even-order formulation

P,CX, M,CL*Q,8xV), and By C Hyp(SxT),

and in the odd-order formulation

Py C Xa, MyCL*SxV), and By CHY(SxD).

Similarly in the dual case, we look for a triple (U}, \I!,}L,}Iﬂ,f)ﬁ My, x Py x By,
verifying the dual weak form equations (12) for any (¥, ¥}, ¥¥) € M), x
Py, x By, o, with in the even-order formulation

My, C Xo, P, CL*SxV), and By CH(SxT),

and in the odd-order formulation

MyC X, P,CL*(Q,SxV), and By C Hsg}(gf(s x T).

We need to introduce both spatial and angular discrete expansions to build
Ph, Mh; and Bh-

For the spatial variable, with regularity requirements made natural in our
mixed-hybrid formulations, we use limited polynomial expansions whose mo-
ments become the coefficients to be determined. Note that this differs from
the finite element technique commonly used for standard methods, that leads
to determine coefficients that are grid point values (and possibly derivatives
at these points) of the unknown(s), consequently enforcing essential regularity
requirements. For historical reasons, the technique we use here is called “nodal
finite elements” in the nuclear engineering community. We denote by P,(V})

1 By, o is the subset of By, where all the functions vanish on the external boundary
ov.

12



the space of polynomials of (total) order lower or equal to z on V. Also, for
the interface unknowns, we write I' = J,I'y where Iy is any smooth closed
arc on the interface between two elements or on an element side that is part
of the external boundary. Then Py(I';) is the space of polynomials of (total)
order lower or equal to b on I7.

For the angular expansions, we use the spherical harmonics, well-known to
form an orthogonal basis for square integrable functions on the unit sphere.
As in [11], Y., (Im| < n) designates the real and imaginary parts of the
spherical harmonics, with the convention that values m > 0 refer to the real
(cosine) part, and values m < 0 refer to the imaginary (sine) part. We do a
so-called Py approximation, that is truncate the series at the value n = NV in
Y,m. We denote by Yy and Yy the sets spanned by the spherical harmonics
Y,m up to order n = N that are respectively even or odd in €2, that is

YN = span{Ypm,n < N,n even}, and Yy = span{Ynm,n < N,n odd}

where if Niseven Nt = N = N~ +1andif Nisodd N~ = N = N*+1. These
sets are used to expand the angular dependence of the internal unknowns ¥¥.
For the interface unknowns UX and ¥, we define the sets Y3 and Y;]p , and
for parity reasons Y3 C Yy and Y}y C Y,

Total expansions are obtained by tensor (or Kronecker) product of spatial and
angular expansions, and we are now prepared to define our approximation
spaces:

P,=PNP(V) = {TF: Ut € V¥ @ P,(V)), Vi},
My=M>"(V)={0": ¥~ € Yy @ Pn(V)),Vi},

By=By*(I) = {WX° ¥ : WX € YE OV @ Py(Iy), Vg}, and
Bho=Byy () = {¥xr v . gxorv € BYI(I), ¥X ¥ =0 on 9V}

Finally, plugging the above described expansions into the weak forms (11) and
(12) leads to a linear system in the expansion coefficients.

5.2 Well-posedness

The following theorem is proved in appendices B.1 and B.2.

Theorem 10 Assume boundary or reflected boundary conditions on the ex-
ternal boundary 0V . Assume o, and os; constant on each element Vi, and
o > 05, > 0 for all I. With the notation introduced above, assume further-
more that the primal mized-hybrid discrete problems verify either

13



[} VPh]/v’pCQM’JZV’m (tT'U,e pr_]_gm andN+ SN_+].), or
) Q-VPéVaPCMéV’m (true pr—l <m andN++1 SN—)’

and assume that the dual mized-hybrid discrete problems verify either

¢ Q-VMY™ C PYP (trueifm —1<pand N~ +1< Nt ), or
o VMY™ Cc QPN (true if m —1<p and N~ < Nt +1).

Then, these discrete problems have a unique solution provided the flux ¥(r, Q) =
Ut (r, Q) + U (r,Q) is mildly anisotropic in each element, and in the primal
case, for any Vi, € BY* (V) in any V},

/Q dQ [ drQ-nWU}, U, =0 VU e PN(V) implies that T}, = 0,

Vi
(14)
while in the dual case, for any \Ilf,l e BI"(V)) in any V},

/ a0 [ drQ-nUY, U, =0 VU € MY™(V) implies that ¥¥, = 0.
n 6‘/1 b 3 3
(15)

Conditions (14) and (15) are in fact equivalent to rank conditions. If the
mixed-hybrid weak forms are given a matrix system shape, such conditions
typically requires the matrix coupling internal and interface expansions in each
V; to have maximum rank. Since the total expansions are obtained by tensor
product of spatial and angular expansions, both conditions (14) and (15) lead
here to a spatial and an angular rank condition.

The spatial rank condition requires the matrix coupling internal and interface
spatial expansions in each V; to have maximum rank. This condition is well-
known in the hybrid finite element literature [14], and was detailed in [19].
It establishes a dependence between the main internal expansion order (p or
m) and the interface expansion order (b). Thus it characterizes the interface
spatial expansion once the internal spatial expansions are defined.

The angular rank condition requires the matrix coupling internal and inter-
face angular expansions to have maximum rank. It characterizes the interface
angular expansions (thus Y¥ " ¥) once the internal angular expansions are de-
fined. Although the choice is not unique, this condition can be satisfied using
the following interface angular expansions:
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Yf\}zspan{ > (/SdQQ-nY;,qYljmj)Yljmj with |m;| <1; <N,

lj,m;

such that [ 409 0¥, Yim, #0, where ¥;, € Yg}, (16)
S

Y;V”:span{ ) (/SdQQ-anqnjmj)njmj with |m;| < ; < N,

lj,m;

such that / dQ2Q-nYp, Y., # 0, where Y, € YN}. (17)
s

These expansions correspond to what is known in the nuclear engineering
community as the Rumyantsev boundary conditions [16]. The /; in the char-
acterization (16) of Y are necessarily odd, while those in (17) are necessarily
even.

While the rank conditions are typical of hybrid methods, inclusion conditions
of the type VP, C QM,, Q-VP, C M,,... are typical of mixed methods.
The main difference with the usual condition for mixed formulations of (purely
spatial) second order elliptic equations is that our conditions involve not only
the nabla operator V, but also €2.

Taking the maximal spatial and angular order allowed by theorem 10, we can
define four methods as

e even-order primal (p =m + 1 and N even),

e odd-order primal (p =m + 1 and N odd),

e even-order dual (m =p+1 and N even), and
e odd-order dual (m =p+1 and N odd).

The primal/dual distinction related to the spatial variable and therefore well-
known in the second-order PDE’s literature, is thus completed with an even/odd
order Py approximation distinction related to the angular variable. Even-order
Py approximations have long been neglected in computational neutron trans-
port. This work shows that equal interest should in fact be given to even- and
odd-order Py approximations.

Note that the mild anisotrpy assumption is not very restrictive since such
an assumption is implicetely made whenever a truncated spherical harmonic
series is used to extend an angularly dependent function.

6 Numerical results

We consider here a shielding problem known as the Azmy [1] benchmark.
This two-dimensional problem is based on a “square in a square” geometry
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depicted on figure 1: a square whose bottom left quarter (zone 1) has a constant

Vacuum Boundary

10
2
Reflected Boundary 5 Vacuum Boundary
1
0 y
0 5 10 b x

Reflected Boundary

Fig. 1. Azmy benchmark geometry

non-zero source and whose three other quarters (zone 2) are source-free. The
cross-section data are detailed in [1]. Boundary conditions are reflected on
the bottom and left edges, and vacuum on the right and top edges. Square
elements forming a 32 x 32 grid were used to decompose the domain.

To concentrate on the effect of the different Py approximations, we used fixed
spatial polynomial expansion order, namely 6th order inside (p = 6 = m + 1
in the primal case), and 2nd order on interfaces (b = 2). Such choice verify
the spatial rank condition described in section 5.2. Also, we used the interface
angular expansions (16) and (17) corresponding to the Rumyantsev conditions,
such that the angular rank condition is verified.

Figure 2 displays the mixed-hybrid primal flux (i.e. Yoo component) along the
line y = 9.84375, together with corresponding results from the well-known
neutronic code VARIANT [11]. This code uses a primal (non-mixed) hybrid
formulation and provides the interface flux as output. As the other exist-
ing neutronic codes using spherical harmonic expansions, it is restricted to
odd-order Py approximations. Figure 2 shows that for the odd-order Py ap-
proximations, the match is fine between mixed-hybrid and VARIANT results.
As for the even-order Py approximations, they yield here intermediate values.

7 Conclusions and perspectives

We developed mixed-hybrid discretization methods for the linear Boltzmann
transport equation. With constant o; > o,; > 0 in each element V;, and in-
troducing a mostly non-restrictive mild anisotropy assumption, we first proved
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Fig. 2. Mixed-hybrid primal and VARIANT flux along y = 9.84375 for the Azmy
benchmark.

the existence and uniqueness of a solution in the continuous (infinite-dimensional)
problems. Next, discrete (finite-dimensional) problems were obtained using a
finite element technique in space, and a Py spherical harmonic technique in
angle. Approximation space inclusion conditions involving both V and €2, and
spatio-angular rank conditions were proved to guarantee the existence and
uniqueness of a discrete solution. Our well-posedness investigation showed
that, beside the well-known primal/dual distinction induced by the spatial
variable, the angular variable leads to an even/odd distinction for the spheri-
cal harmonic expansion order N. While odd-order methods have been widely
employed in computational neutron transport, our work shows the usability
of even-order methods, also in numerical experiments.

As mentioned in appendix B, uniform stability and error estimates could be
further investigated based on what was done in [3] and [19] for purely spatial
PDE’s. Furthermore, the mathematical setting introduced here could be used
to particularize our results to purely mixed or purely hybrid formulations. Fu-
ture research also includes the development of efficient solution techniques for
the linear system arising after discretization. Early results show that a con-
densation approach such as the one developed in [5, V.1] could be generalized
to the transport case. Finally, time dependence could be incorporated in the
Boltzmann equation, and our results used to establish a well-posedness theory
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in a semi-group framework. Such a study was performed in [6, XXI] for the
time-dependent integro-differential first-order form of the transport equation.
Our results could be used to generalize this theory to mixed and/or hybrid
formulations arising from the even- and odd-parity flux decomposition.

A Proofs for the continuous problems (Theorem 9)
A.1 Proofs for the primal case

A.1.1 Ewven-order primal method

We define

A=X x L*€,S x V) x Hy"*(§ x T),
Ao=X x LX(€,8 x V) x Hg*(S x I),
A= (T, 07, ¥X) € A and X = (I, T, IX) € Ay 2. As for norms, we have

IMA = 1% + 19112 + [[9X]|§,_1jo,r- Then we introduce the symmetric
bilinear form

Kl(/\,:\):—/dQ/ dV\IJ[Q-V‘ilfL—i-/dQ dT Q- n T w)
Vi oV

/ 4 [ avouj vy - / 4o dv(as,lif; / dQ’xpf)
S

Vi
- / dQ dV\ilfQ-V\If;‘ - / dQ [ dvo, by vy
Vi S Vi

+/dQ T Q- nGXTF.
oV
With
(s, T%) = Z/dQ st\II;L,

we have to examine the problem: find A € A such that

2 We as well assume the usual parity properties.
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K\ =(s,0%),  VXeA,.

According to the generalization of the Lax-Milgram theorem for the non-
coercive operators, existence and uniqueness of a solution is ensured provided
we can demonstrate the continuity of K, as well as the “Ladyshenskaya-
Babuska-Brezzi” (LBB, or just BB) or “inf-sup” condition for K. See for in-
stance [15, Theorem 9.1], [3, Theorem 2.1], and [2, Theorem 2.1]. We therefore
prove here the existence of strictly positive constants C; and Cy such that

Ki(M, M) < Crlidla X, (A.1)
and -
inf M > 02 (A.Q)
AEANE0 5o 50 (AN (A 4q
as well as
sup K(AMA) >0  VAeAy with A#0. (A.3)
AEANAO

To check (A.1), we introduce for each V; a UY € H(grad, S x V) as the weak
solution of the auxiliary problem

—AW + W =0in V]

n-VU/ =n-QUf on dV,

such that

/ dQ [ dUQ-nUf U = (U, 9Y), 00y, (A.4)
s P\

Letting ¥} = VU7, we get

VWU =0in W
n- ¥’ =mn- QU on gV,

and therefore U} = V - ®¥ in V], and
AT 4 T =0 in V]
n-¥'=mn- Q¥ on gV,

where AW} = V(V - ¥}). This implies
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WY, — inf wa| . = -QUX||
1 llaiv,ve {\I'qeH(div,Sle){ln-\Irq|3V:n-Q\Pf} ¥l = fim tll-/20m
=9 lla,-1/2.6v

where we used (5) and (6). Since

19 iy = [ a2 [ 0@y 0 = 1y

we have
19 a,-1/2,0v = 197 llgrad,vi- (A.5)

Using Schwartz inequality, we can now write from (A.4)
/dQ A Q- n U U < U] 191200
s avi

and, assuming o; and o,; constant in each V;,

K\ ) < V97 19, |+ 195 o1 /200197 Nlgraays + (01 + o) IEF T
HIQU IV + ol [ (1] + 1197
< (Il [ + [[9¥]/5,-

||\Ijl+||gmd,Vz
(o0 + o )P+ IVE]1? + o[ 7|2

1/2
19 oraani)
(VT2 + 19 2y + (o1 + o DI TP + 1920, 1% + o[ 8 |2

~ 1/2
HITXII, 1 /200)

<2+ 01+ 050) [Nl [l
so that the continuity of K, i.e. (A.1), is proved.
For the LBB condition (A.2), assume g; > o,; > 0 and consider A = (¥}, U7, ¥)) €
A() with 3

U =20} 4 07
. 1 1
QU = ——Wf; —QU; - — VU7
01

r=(-3+2 )‘1’z|avl,0a

where W[y, 0 is the restriction of U) to 9V, \ 9V (extended by zero on 9V N dV)),
and U} € H(grad,S x V}) is the weak solution of the auxiliary problem

3 The presence of dimensional factors is understood.
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—A\Iff + O'l(O'l - 0'5,1) U?P=0inV,
n- V¥ = (0, —0s;)n- QU) on 9V,.

Then, after some manipulations (including the addition and subtraction of the
term [gd€2 f,, dV o, U7 UF), we obtain

2 1
i\, 3) = 200G | + IV + o072+ /5 4o /W dT' Q- n UXT?
l 1

- / i [ dv 20,0} / AU
S Vi S

. / d [ dv o, v ( / AT — T)
s Vi s

+ [ a0 drQ-n(3—
S avi(ov

Os,1

UXT
Ul) Y

The last term is non-negative as soon as vacuum or reflected boundary con-

ditions are enforced. Indeed, (13) shows that Q- n¥f¥;" = |- n| (¥))? on a
vacuum boundary, while on a reflected boundary, the last term vanishes since

[ ar [ doe nuiv
aviav S
1 27 7'('/2 . N N
/Wlnavdr/o do| [ d0sindcos 0 U0, 6)¥7 (6, 9)

" ir
+ /ﬂ i sin 6 cos 0 WY (0, )] (6, )]

and the reflection condition WX"*P) (g, ¢) = TXPH (7 _ g ) implies

s 0
/ |, d0sin 0 cos OV (0, )/ (0, 6) = / , d0sin 0 cos OU(0, 6) ¥/ (0, 9).
/2 /2

Defining || Y117 0a,v;,» = [IVWII* +0u(01 = 050) 101, 1 ¥0llG, 13,0 = IV - @l|* +

o1(o1 — 043) || ®4]|?, and consequently ||¥)||o,_1/2,6v;,+ as in (5) and (6), with
starred norms replacing unstarred ones, we have that

dQ [ drQ- — 0y) UYO7 = || 07| :
/9 oV II(O'[ U,Z) 1 *1 || l”grad,Vl,*

Then,
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3 1 _
Ki(A,A) 2 2(00 — o) 19 11” + ;IIIV‘I’?II2 + o[ 2 )"
1

0y — 0Os,1

+ tllge =7l

”\IIZngadVl,*

where ¢, = [4dQV;". Now, since for any ¥, we can write without loss of
generality W =337 /3% (¥, Yam)aYnm, we have

leriir= > > (¥, Yam)all®,

n=1,n odd |m|<n

loe =9 112= > > (¥, Yam)all”
n=2,n even |m|<n
Thus if
1+an Z || ‘Illa nm ||2> Z || ‘Illa n+1m) ||

|m|<n |m|<n

for any n > 1, n odd, then (1 + ) ||¥; || > || — /||, and we can write

5 1 _
Ki(X, A) > 2(01 — o) |9/ 1” + ;IIIV‘I’TH2 + o[ 7 |?

1 ; 1 ; _
195 raayre = 50ne (19517 + (1 + ) 27 12)

+
0y — 0Os,1
The coefficient of ||[¥~||? is thus 0; — 30,,(1 + a,)? which is strictly positive
if the angular flux W; is supposed mildly anisotropic. With the starred norms
introduced above, we have ||U7|> < WH PlI2rad v« and the coefficient
of [|F[[3
proceeding as previously to obtaln (A.5), we here obtain

Usl

orad Vi 1S ﬁ( =*) and thus as well strictly positive. Moreover,

01(01 = Os )17 [graavi,e = (01 = 050) ¥, 12,001, (A.6)

Furthermore, || - ||@,—1/2,0v;,» and || - [|[@,~1/2,sv; are equivalent norms. Thus,
there is a strictly positive constant C; such that

K\ ) > Cl||/\l||?x0,l

provided we can assume mild anisotropy in each V;. Since we also have || \; 1300 <
CilIM||%, for another strictly positive constant Cj, we obtain

Il I, -

f

Thus there is a constant C, > 0 such that
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K\
sip KON S ol Vae,
AeAQ,A£0 ||)‘||A0

and the LBB condition (A.2) is verified. Besides, the symmetry of K (), \)
leads to (A.3).

A.1.1.1 Alternative proof in the even-order primal case In the
absence of the mild anisotropy assumption, well-posedness can be proved with
the assumption 0 < o,; < %al for all . Indeed, consider A = (¥}, ¥, , U¥) € Ay
with

U =20} 4 0,07
N 1 1
QU, =——VV - QU — —V7}
o ol
U = =3 v,

where U} € H(grad, S x V;) is the weak solution of the auxiliary problem

—AV? + 0207 =01inV,

n-VU{ =o;n-QUy on V.

Then, some manipulations yield

2 1
K\, ) = 201|952+ — [V + o7 | +/SdQ /av dr' Q- n W?
l 1

~ [a0 dv(as,l[ler,*+\1;f] / dQ\I;l*)
s Vi s
+/ do dC Q- n (30,) UITT
S avi(ov
The last term is again non-negative as soon as vacuum or reflected boundary
conditions are enforced. Defining this time [|¥;]|2 ;1. . = [[V¥||* 4 o7 [|¥]]?,

Il vie = V" + o7 [[W4]]* (and consequently [[UXlq, 1/2,0v,« as in (5)
and (6) with starred norms replacing unstarred ones), we have

/ng dl' Q- no; \I];(‘ij = ||\Illz||g2]1'ad,Vl,*'

oV

Then,
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3 1 _
Ki(AA) > 2 (01— o) 19/ 1” + ;IIIV‘I’TII2 + o[ 2 )"

1 2|12 2
b e — /wdv(/sdw;/sdml).

Now, with

z z 1 z
[av( [ aouy [ aoui) < iwi) i) < SO0 +191P),
17 s S

and ||\Ijlz||2 S 0_112 ”\I]lz”f]rad,\/l,*’ we have

) 5 1 _
Ki(X, ) > (200 = Sosa) 1951 + ;lllv\lffll2 + ol 7 |?

2
1 1 Os,l 2
+ ;l(l - 5;) ||\Illz||grad,Vl,*'
We can also show that ||\Ilf||§md’vh* = %||\Ilf‘||g,,1/2,aw7*, and since ||-[|o,1/2,6v; «

and ||-||q,—1/2,6v; are equivalent norms, there is thus a strictly positive constant
C; such that

K\ ) > Cll|MllA,

provided 0 < o,; < %ol. We conclude as before that the LBB condition is

satisfied under this condition.

A.1.2 Odd-order primal method

Define

A=Xqgx LS xV)x HY?(S x T,
Ao = Xo x L*(S x V) x H{'*(S x T),

A= (UH, ¥, 0X) € A and A = (IF, ¥, U%) € A,. As for norms, we have
AR = 1%, + 1% ]17 + ||\IIX||%/27F. The bilinear form K (), A), as well as
the problem to solve, are formally the same as in the even-order case, but
the functional spaces are different. We thus check the continuity and the LBB
condition for K within this new framework.

First we introduce for each V; a U} € H(Q - V,S x V}) as the weak solution
of the auxiliary problem

24



VQ-VI) QU =0 iV

Q-VI/ =9 ondV,

such that

/dQ dL Q- n U = (U, Wa.v.
S oV

Then, letting ¥}' = Q- V¥, we can show similarly to the even-order case

Y levy = 197 lgraavi = 1971 /2,0v-

We then can write using Schwartz inequality

KA\ A) <190 VUS| + 198 2,00 1] o + (00 + o )T
IR VI + ol T ]+ 1920w 19 T,
< constant||Al[a, [|Alla,,

so that the continuity of K is verified.

Next, the LBB condition can be proved adapting what is done in the even-
order case. The A to consider here is

U =20 + 17

- 1 1

U, =——Q -VU -9, — —Q .V}
(o] 0y

N o
U= (-3+ U—l)‘l’?‘\aw,m

s,l

where U7 € H(Q2-V, S x V}) is the weak solution of the auxiliary problem

—V(Q . V\I/f) + Ul(as,l - O'l)Q\I/lZ =0 inV

QV\IIZ‘/ = (Ul_as,l) \I’;( on 81/}
A.2  Proofs for the dual case

A.2.1 FEwven-order dual method

Here we define
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A=Xox L*(Sx V) x H'/*(S x T,

Ag = Xq x L2(S x V) x Hy*(S x I),
A= (T, 0t 0% € Aand X = (I, 0+, U?%) € Ay. As for norms, we have
IAIR = 11w~ ||XQ + 1 %F|[* + [ %¥]li)5,r- Define then

()‘7 5‘) = ZKl()‘a 5\),

where

KON = / 4 [ VeV - / i [ dvo, ¥}
l
/dQ dVasl xIﬁ/quﬁ /dQ AV U Q- v,
S Vi

+[do [ drent v+ [ do [ aved v
v s v

+/dQ drQ-ndYv; .
A%

With

(s, %) = Z/dﬂ v s Uf |

we have to examine the problem: find A € A such that

K\ ) = (s, %), VXeA,.
From there, we can check the continuity and the LBB condition for K in a

way similar to what we did in the odd-order primal case.

A.2.2 Qdd-order dual method
Define
A=X xL*€,S x V) x Hy*(§ x T),
Ao =X x L*(£2,5 x V) x Hog*(S x T),
A= (U, ¥t 0X) € A and A = (I~,¥F, %) € A,. As for norms, we have

IMZ = 1o H % + 12|12 + ||\IIX||?),_1/2,F. The bilinear form K (), \) is formally
the same as in the even-order dual case. The continuity and LBB condition for
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K can be proved in a way similar to what was done in the even-order primal
case.

B Proofs for the discrete problems (Theorem 10)
B.1 Proofs for the primal case

B.1.1 FEven-order primal method

We introduce

_ pN,p N,m N,b _ pNp N,m N,b

where the different finite-dimensional spaces were defined in section 5.1. We
define IT;" and II; as the orthogonal projections of H(grad, SxV;) and [L?(S X
V))]" (with respect to their scalar product) respectively onto P;\” and Q M, ™.

We need to verify the LBB condition in the discrete case ([15, Theorem 9.2
p.564], [3, Theorem 2.2}, and [2, Theorem 2.2]). In this view, we define A, =
(U}, 0, U¥) € Ay, with

Wy =20, + 117 (5 )

o 1. _ 1 2
Q‘I’h,l = _;lHl (V‘I’il) - Q‘I’h,l - ;lHl (VH;F(‘I’h,z))

Og1
3 \I;X
Ul) halovi,o

@%,l =(-3+

where U} | € H(grad, S x V;) is the weak solution of

—AVE, + o (01— 0s4) Ui, =0 inSxV

n-VU;, = (o —oy)n-Q¥y, onSxadV.

We define as in the primal even continuous case [|¥]|2 4v: . = [[VE]* +
O'I(O'l — Us,l) ||\Ifl||2 such that

I g e = (01 = 00) [ [ dVm- Qi I (w7,

grad,Vy* Vi

Orthogonal projections properties provide
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(V‘I’hla f(v\l’?:,l)) = IIHZ(V‘I’ZJ)IIQ V\I’Z,l € Pfiv’p(vl)
(QU,, V&, -1, (V) =0 VU, € M™(V)
(QW,, VIIF(T; ) — T, (VI (¥5 ) =0 V¥, € My"™ (V).

Then some manipulations using these properties lead to

A T _
Ki(An, Ant) = 200][ 3| + ;IIHl (VI + ol |, I
1

0y — Osl

a0 dV(V‘I’ o I (VIL(9)) — VILH(T,))

+

||H+(\IIZ l)”grad Vi,*

/dQ dvzas,\p /dQ’xp;l

_/dQ/ dV o, I ( (Y5.) /dQ\I’ \IIhl)

0-sl
ds? dl (3 — =22 UX o
+/5 ovinoy ( o )V Wy

The last term can again be proved non-negative when reflected or vacuum
boundary conditions are imposed. Besides, mild anisotropy implies as before
(1+an) [P, \If+
any ¥, € H(grad,S x V}), we can write

||\Il l”2 = W” hl”g'radVl, for

Ki( Mg M) > 2 (00 — o) 15551 + l||Hf(V‘I’Z,z)||2

1 _
+ (Ol - 5(1 + )’ o l) ||\I’h,l||2

1 10'31
+0l — 0y (1 - 57) ||H+(\I’}zzl)”gradVl,

dQ | dv (V) (17 (VI (85 ,) — VI () .

oy Js Vi

Thus there exist a constant C; > 0 such that

Ki(Angs Ang) > Cr (195117 + 1T (V)

12 4 I (95 )12 0 vi0)

o [0 [ v (V) (U7 (VI (%) - VI (7).
1

We now introduce the parameters

28



2
grad,Vj,*

+ z
N,p N,b . ||Hl (\Ijh,l)
m=m(P, ", B,") = inf
nOTE T e [NIR ey
1T (V05|12
2 7

b

N, N, .
M) = it S
h,l h )

VU, =10, (VI
N=y(PY?, My"™) = sup NATH V\Ill""( h’l)”,
ufepy? | h,l”

and note that they are all contained in the interval [0, 1]. Then

Kyt M) = C (1112 + v IV + 11917 + i 19X, 00)
= IV IV (EE )

Using [|VIT (95 )l < 1% i llgrad,vi,«» €quation (A.6), and the equivalence of
the norms || - |3, 1261, and || - |3, 1241, » We obtain that there exists a
constant £ > 0 such that

. 1 .
Ki(Anis Ang) 2 € (II‘I’fT,zII2 + (= W VLI + 1517+
(ke = k) 10,1 /2001.4)
that is
A . 1 9
Ki(Angy Apyg) > Cymin(1, v — 3 H = Eyi) || Allx-
Also there is a constant C} > 0 such that
1M1, < Gl
The LBB condition is thus verified provided
) 1
min(1, v, — o Vi Hi — k) > 0. (B.1)

In case VP,fv’p - QM,]LVm in any V;, which occurs as soon as p — 1 < m and
Nt < N-+1, we get ;=1 and 7; = 0. Then, the condition becomes p; > 0.
Similarly to what is proved in [3], we have:

Lemma 11 The parameter y > 0 if and only if, for any Wy, € BY*(W),

/ A [ drQ-nUX, U, =0 VUt e PYP(V)) implies that WY, = 0.
S oV, ’ ? )
l (B.2)
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Proof of lemma 11 If we suppose u; = 0, then by the definition of y,; there
exist a non-zero Wy, € BY*(V}) such that

L (Y% ) graa, i, = O- (B-3)
Since fS dQ fa‘/l drﬂ -n \Il?l(,l \I;;,l == Ul_lo's,l (\I;;,l’ H+(\Il}z7,,l))g7‘ad,‘/l,*’ (BQ) and

(B.3) imply ¥, = 0, a contradiction. Now take s > 0. Then, if ¥}, # 0,

dQQ dl Q - n U¥, L (? 0,
/5 oV, n /( h,l)7é

which is the contrapositive of (B.2). O

As discussed in section 5.2, condition (B.2) is in fact equivalent to a spatio-
angular rank condition.

In (B.1), v, and 7, do not depend on A, but y; does. To ensure uniform stability
of the method, we should therefore show the existence of a lower bound for
iy as h — 0. This can probably be obtained adapting what is done in [3] and
[19] for purely spatial PDE’s, that is using a master element of unit diameter.
Also, error estimates could then be derived.

B.1.2 Odd-order primal method

The spaces Aj, and Agj, are formally the same as in the even-order case, but the
definition of the approximation spaces P,fv P M ,]LV ™ and B,]ZV b differ as explained

in section 5.1. We here define II;” and II, as the orthogonal projections of
H(Q-V,S x V;) and L?(S x V]) respectively onto P, and M, ™.

The LBB condition can be proved here using A, = (U3, ¥, ¥)) € Ay, with

Uy =20 + I (T7))

s 1 -~ 1 B
‘I’h,z = _;le (Q : V‘I’fL) - ‘I’z - ;lHl (Q : VHfL(‘I’h,l))
z Os,l

Uh=—0B+ E)‘I’ﬂavl,oa

where W% € H(Q - V,S x V) is the weak solution of the auxiliary problem

—V(Q . V\I/z) + Ul(as,l - O'l)Q\I/Z =0 inV

Q-VU?* = (0'[ — Us,l) X on 81/}
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The proof follows the same lines as in B.1.1. In case Q-VP,"? ¢ M, which
occurs as soon as p—1 < m and Nt +1 < N, we obtain that the LBB
condition becomes p; > 0 where

I (W7 D18
H MK h Ph ) WiﬁBN” ”Q%J

|2
h 1/258‘/1

Lemma 11 remains valid in this case.

B.2  Proofs for the dual case

Roughly speaking, the roles of P,iv P and M,]LV "™ are swapped when going from
primal to dual. Working with the finite-dimensional subspaces

_ N,m N,p N,b _ N,m N,p N,b

we can again verify the LBB condition and obtain theorem 10.
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