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Abstract

The Cauchy problem for the one-dimensional isothermal Euler-Poisson system was
investigated by F. Poupaud, M. Rascle, and J.-P. Vila in [J. Diff. Equations 123
(1995), 93–121]. Glimm’s scheme was employed to obtain a global entropic solu-
tion. It appears that the initial-boundary value problem has not been investigated
previously for this system, except in the isentropic case, via an approach based on
compensated compactness. While the isothermal case, employing the ideal gas law
for the pressure, suggests artificial diffusion/viscosity, the underlying infrastructure
(the analog of Glimm’s scheme) has not yet been established to analyze the initial-
boundary value problem. We begin a program here, utilizing diffusion and viscosity.
By employing Kato’s theory of evolution operators, we provide a local smooth ex-
istence/uniqueness theory. A theorem of Smoller, as generalized by Fang and Ito
[Nonlinear Anal. 28 (1997), 947–963], is used to obtain invariant region bounds
for the evolution. Because the theory is local, shocks do not appear, either in the
parabolic system, or its vanishing viscosity limit.

1 Introduction

The isothermal Euler-Poisson gas was studied by F. Poupaud, M. Rascle, and
J.-P. Vila in [8], where a global entropic solution to the Cauchy problem in one
dimension was established by Glimm’s method [3]. Noteworthy aspects include
the non-vacuum assumption on the initial concentration, which is maintained
in the present study. Here, we are concerned with the initial-boundary value
problem for this system, and we suggest a vanishing viscosity method. The
boundary conditions are discussed later in the introduction.
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The isothermal model uses the ideal gas law as the pressure constitutive re-
lation. This is consistent with modeling of transport in semiconductors and
ion channels [6]. It excludes, however, approaches based on compensated com-
pactness (cf. [2,1]) where the so-called isentropic model is employed, via the
adiabatic pressure relation.

1.1 The Isothermal Euler-Poisson System

We present here the equations of the isothermal Euler-Poisson gas.

nt + (nv)x = 0 Conservation of particles (1)

pt + (pv + nkT0)x = −enE − p/τp Conservation of momentum (2)

The electric field E = −Φx is determined by

ε0Φxx = e(n + nD) Poisson equation, (3)

where we use the subscripts t, x for derivatives with respect to t, x. The fun-
damental dependent variables are n, p, Φ. For simplicity, the spatial interval is
selected as [0, 1]. The above symbols are defined as follows:

ε0 is the dielectric constant of the device; nD is the (smooth) doping; n is the
electron concentration; v is the electron translational velocity; p is the electron
momentum density, p = mnv; m is the mass of the electron; k is Boltzmann’s
constant; e is the electron charge; Φ is the electric potential as a function
of position; τp is the momentum relaxation time of the electrons; T0 is the
constant electron temperature.

Boundary Conditions

Homogeneous Dirichlet boundary conditions are specified for p, and homoge-
neous Neumann boundary conditions are specified for Φ.

Initial Conditions

Initial conditions are specified for n, p at time t = 0, with a no vacuum as-
sumption for n. Regularity is specified by the space Y of the sequel.

1.2 Introduction of Diffusion and Viscosity Parameters

We present here the modified equations. Previous boundary conditions are
augmented by homogeneous Neumann boundary conditions for n.
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nt + (nv)x = εnxx Artificial diffusion (4)

pt + (pv + nkT0)x = −enE − p/τp + εpxx Artificial viscosity. (5)

The electric field E = −Φx is determined by the equation (3).

2 A Stable Method for Smooth Solutions of the Viscosity System

We outline the approach to the parabolic system, based on evolution operators.
It will follow the following lines: (i) reformulation in symmetrizable format; (ii)
a general summary of the abstract theory; (iii) its application to the parabolic
system. Solutions remain stable as ε → 0.

2.1 System Reformulation in Nonconservative Form

We reformulate the system (4, 5) in nonconservative form via the dependent
variables n and v. As always, there is coupling to (3). Elementary differential
calculus gives the equivalent system:

nt + vnx + nvx = εnxx , (6)

vt + vvx +
kT0

mn
nx −

2εnxvx

n
= εvxx −

e

m
E −

v

τp
. (7)

Define the 2-vector u and the system symmetrizer A0(u) by

u =







n

v






, A0(u) =







kT0

mn
0

0 n






. (8)

Upon factorization, the system may be written in matrix format:

du

dt
+ A−1

0 A1
du

dx
= ε

d2u

dx2
+ F (t,u(t)), (9)

where A1 is given by the symmetric matrix:

A1(u) =







c0v
n

c0

c0 nv − 2εnx





 , (10)

with c0 = kT0/m. F is defined below, and incorporates the forcing terms.
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2.2 The Abstract Cauchy Problem

Consider the Cauchy problem:

du

dt
+ A(t, u)u = F (t, u), 0 ≤ t ≤ T, u(0) = u0, (11)

where the unknown u takes values in a Banach space and A(t, u) is a linear
operator depending on t and u. A concise framework, due to Kato, is intro-
duced to define and analyze this problem. This theory is outlined in [5]. We
begin with some familiar terminology.

Definition 2.1 Let U be a closed linear operator with domain and range dense
in a Banach space X. Denote by R(λ, U) the resolvent (λI − U)−1 for λ in
the resolvent set of U . For M > 0 and ω ∈ R denote by G(X, M, ω) the set of
all operators A = −U such that

‖[R(λ, U)]r‖ ≤ M(λ − ω)−r, r ≥ 1, λ > ω.

Finally,
G(X) = ∪ω,MG(X, M, ω).

The operators U are generators of strongly continuous semigroups on X. This
property extends to smooth spaces Y embedded in X. We extract now the
basic hypotheses required for an abstract existence/uniqueness theory. For
this, we follow [5, Chaps. 6,7].

1. Topology

Y, X and Z are reflexive Banach spaces satisfying

Y ⊂ X ⊂ Z,

where the inclusions are dense and continuous; W is an open subset of Y . If
N(Z) denotes the metric space of norms equivalent to ‖· ‖Z, with metric

d(‖· ‖µ, ‖· ‖ν) = ln max

{

sup
z 6=0

‖z‖µ

‖z‖ν

, sup
z 6=0

‖z‖ν

‖z‖µ

}

,

a subfamily {N(t, w)} exists for each pair (t, w) ∈ [0, T ] × W , satisfying:

d(N(t, w), ‖· ‖Z)≤λN , (12)

d(N(t′, w′), N(t, w))≤µN (|t′ − t| + ‖w′ − w‖X) . (13)
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2. Generator Properties

Assume A(t, w) ∈ G(ZN(t,w), 1, ω), ∀ w ∈ W, ∀ 0 ≤ t ≤ T. Furthermore,
the mapping t 7→ A(t, w) ∈ B[Y, X] is continuous in norm for each w, with
‖A(t, w)‖Y,X ≤ λA and

‖A(t, u) − A(t, v)‖Y,X ≤ µA‖u − v‖X . (14)

It is assumed that Y is a subset of the domain of each generator.

3. Hypotheses on F

t 7→ F (t, w) is required to be strongly continuous into X for each w; the image
F (t, w) is required to be in Y with ‖F (t, w)‖Y ≤ λF . Furthermore,

‖F (t, u) − F (t, v)‖X ≤ µF‖u − v‖X .

4. Isomorphism

There is an isomorphism, denoted S : Y 7→ Z, satisfying, for each A(t, w),

SA(t, w)S−1 = A(t, w) + B(t, w), (15)

where B(t, w) is a bounded linear operator on Z, with ‖B(t, w)‖Z ≤ λB.

The following result was proved in [4] (also found in [5]).

Proposition 2.1 Under the hypotheses (1–4) just stated, and the hypothesis
u0 ∈ W , there is a time T ′ ≤ T and a unique u ∈ C([0, T ′]; W ), with du

dt
∈

C([0, T ′]; X), satisfying the Cauchy problem (11).

2.3 Application of the Theory to the Viscosity System

We will make the proper identifications with the preceding abstract result. We
begin with the topological identifications. Define

Z :=L2(0, 1) ⊗ L2(0, 1),

X :=H2(0, 1) ⊗ H2(0, 1),

D = {f ∈ H2(0, 1) : f ′(0) = f ′(1) = 0} ⊗ {f ∈ H2(0, 1) : f(0) = f(1) = 0},

Y ⊂ D ∩ (Hs(0, 1) ⊗ Hs(0, 1)), s > 5/2. (16)
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Here, the precise specification of Y will be made below in the course of the
definition of the isomorphism. If initial data n0, v0 are given, set

u0 =







n0

v0






, (17)

and suppose that the pointwise inequality n0(x) ≥ α > 0 holds uniformly on
[0, 1]. Because the symmetrizer experiences vacuum singularities, we regularize
A0 as follows. If 0 < α′ < α, and ζ(r) is a non-decreasing C∞ function which
vanishes for r ≤ 0 and is unity for r ≥ 1, define the regularized symmetrizer
Ã0 by the replacement:

n 7→ (1/2)n (1 + ζ(n/α′))

in the diagonal positions; Ã0 agrees with A0 if n ≥ α′. We identify the set W
of the previous proposition with a ball containing the initial datum u0 (radius
r arbitrarily specified in advance). Finally, the equivalent norms required for
the generators are given by:

‖f‖N(w) = ‖Ã0(w)f‖Z.

Note the absence of direct dependence on t. In fact, in the interpretation of
(11), the operators A(t,u) do not depend explicitly upon t. We now discuss
the generators. The domains of these operators A(u) are invariant: D. The
operator definitions are given by:

A(u)w = Ã−1
0 (u)A1(u)

dw

dx
−

εd2w

dx2
. (18)

Note that we use here the definitions of (8,10).

In order to define the isomorphism S, we proceed as follows. It is known that

Γs = (I − d2/dx2)s/2 (19)

is an isomorphism from Hs(R) to L2(R). We now define S−1 and, simultane-
ously, Y . It is more convenient to consider the individual components of the
mapping. Thus, for the first component, let f ∈ L2(0, 1), and denote by f̃ its
extension by zero to R. Set g = Γ−sf̃ , and w = Γ2g. Denote by u the unique
solution of the two-point boundary value problem on [0, 1]:

Γ2u = w, u′(0) = u′(1) = 0.

We have defined the first component u of S−1. The second is analogously
defined, via the boundary-value problem:

Γ2u = w, u(0) = u(1) = 0.
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This defines S−1, and we set Y = S−1(L2(0, 1) ⊗ L2(0, 1)). Note that Y is a
Hilbert subspace as described in (16). We assert that S is an isomorphism of
Y onto L2(0, 1) ⊗ L2(0, 1). It suffices to prove that S−1 is injective. Suppose
that u = S−1f1 and u = S−1f2. By maintaining the above notation, one infers
that Γ2 ⊗ Γ2g1 agrees with Γ2 ⊗ Γ2g2 on [0, 1]. One argues, via elementary
solutions, that g1 − g2 is in the L2(0, 1)⊗L2(0, 1)- null space of Γ2 ⊗Γ2, hence
is the zero element. It follows that f̃1 = f̃2, so that f1 = f2.

The definition of F incorporates the nonlocal Poisson solver map Φ:

F (t,u) =







0

− e
m

(−dΦ(u)
dx

) − v
τp






. (20)

Note that F (t,u) ∈ Y for each t.

Theorem 2.1 Under the hypotheses stated above, including s > 5/2, there
exists a T > 0 such that a unique solution u of the system (6,7,3) (equivalently,
(4,5,3)) exists on [0, T ]. The system satisfies the initial condition and is in the
regularity class specified in the general theorem:

u ∈ C([0, T ]; W ),
du

dt
∈ C([0, T ]; X).

W is any open set containing the initial data, and the time evolution can be
constrained to remain in W . Note that W does not depend on ε. In particular,
the solutions converge to the conservation law solution of (1, 2, 3) as ε → 0.
The invariant region estimates to follow remain stable under ε → 0.

Proof We infer from the Friedrich’s inequality and the perturbation theory of
generators that A(w) ∈ G(ZN(w), 1, ω). Specifically, both the second order op-
erator term and the first order operator term are separately in G(ZN(w), 1, ω).
The sum is stable with respect to the second argument because of relative
boundedness. Here, ω may be estimated in terms of the C1 norm of the en-
tries of A0 and A1, which leads to a functional form: ω = ω(r), not depending
upon ε.

The Lipschitz property (14) requires the introduction of the space X interme-
diate between Y and Z. If we use the notation,

E(u) = Ã−1
0 (u)A1(u(t))∂/∂x,

then it is seen that the mapping u 7→ E(u) ∈ B(Hs ⊗ Hs, Hs∗ ⊗ Hs∗) is
Lipschitz continuous in the norm topology for 1 ≤ s∗ ≤ s − 1. The Lipschitz
constant is proportional to a simple algebraic function of the radius r of W .
This is a standard result; its verification begins with the multiplier property
of the partial derivative term acting on the target space for the designated
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indices. One then estimates the target norm of the difference of the matrix en-
tries in the matrix multiplier A2(u) = Ã−1

0 (u)A1(u). The choice s∗ > 3/2 gives
the desired result. The analysis of the linear second order term is immediate.
The Lipschitz property follows for the consolidated operator.

The hypotheses on F are directly verified, given the linear dependence on n, v,
once the smoothing property of the operator Φx is noted. In particular, Φx is
bounded on both X and Y . The remaining property to verify is the similarity
relation contained in the isomorphism hypothesis (4). This is a consequence
of Kato’s commutator relation. Indeed, it was shown in [7, appendix] that
the commutator [Γs ⊗ Γs, A2] is bounded on L2(R) ⊗ L2(R), if the operator
A2 is interpreted now as extended to a subspace of Hs

0(R) ⊗ Hs
0(R), via the

Calderón extension theorem. As shown by Kato, the bound does not exceed a
constant times the C1 norm of the coefficients of A2. This is satisfied if s > 5/2
(note the presence of derivatives in A2). Since the isomorphism S constructed
earlier can be interpreted as (the restriction) of Γs ⊗ Γs, plus a finite rank
interpolation operator on the null space of (I − d2/dx2) ⊗ (I − d2/dx2), we
may infer the validity of the final condition (4). One has now verified the
hypotheses of the general result; if T is sufficiently small, the uniform norm of
n is not smaller than α′; in particular, A0 coincides with Ã0. The convergence
as ε → 0 has appeared in a number of publications (see, for example, [6]). The
proof is complete.

3 Expanding Invariant Regions

The following result is quoted in [2] as a generalization of a result of Smoller
[9, Theorem 14.7]. The bounds of this section apply to the solution derived in
Theorem 2.1.

Lemma 3.1 (Fang-Ito) Given a system of nonlinear diffusion equations,

ut = εuxx + M(u, x)ux + f(u, x, t), x ∈ (0, 1),

with initial and boundary conditions specified. Let

Gj : RN 7→ R, j = 1, . . . , J,

be smooth functions, and let ω and A be two constants. Define

Σ(t) = ∩J
j=1{u ∈ RN : Gj(u) ≤ A exp(ωt)}.

Suppose for (t0, u0) such that u0 ∈ ∂Σ(t0), i.e.,

Gj(u0) = A exp(ωt0) for some j,
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the following conditions hold:

(1)

∇Gj at u0

is a left eigenvector of M(u0, x) ∀x ∈ (0, 1);
(2) Gj is quasi-convex at u0, i.e., whenever ∇Gj is orthogonal to r, then the

Hessian quadratic form is nonnegative when evaluated at r:

∇2Gj(r, r) ≥ 0;

(3)

∇Gj· f < ωA exp(ωt0).

Then the trajectory satisfies u(t) ∈ Σ(t) ∀ 0 < t ≤ T.

Write the equations (4, 5) as:

ut = εuxx + M(u, x)ux + f(u, x, t), x ∈ (0, 1),

where

M(u, x) =







0 − 1
m

p2

mn2 − kT0 − 2p
mn





 ,

u(x, t) =







n(x, t)

p(x, t)





 ,

and

f(u, x, t) =







0

−enΦx −
p
τp





 .

Proposition 3.1 If a solution of the smoothed Euler-Poisson system exists
with n(x, t) ≥ α > 0, then u as just defined satisfies the hypotheses of the
preceding Fang-Ito lemma with N = 2 and

G1(n, p) = −
p

n
+ mc log(n), G2(n, p) =

p

n
+ mc log(n), c =

√

kT0

m
,

and

ω =
e2

ε0

∫ 1

0
(n(x, 0) + |nD(x)|) dx, A = 1.

Proof The eigenvalues of M are determined as

λ1 = −
p

mn
+ c, λ2 = −

p

mn
− c.
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Corresponding left eigenvectors are:

ξ1 =
[

p
n2 + mc

n
− 1

n

]

, ξ2 =
[

− p
n2 + mc

n
1
n

]

.

By direct computation, it is seen that

∇G1 = ξ1, ∇G2 = ξ2.

Thus, (1) of the lemma holds. To verify (2), suppose that orthogonality holds
for j = 1, so that

r1

(

−
p

n2
−

mc

n

)

+ r2

(

1

n

)

= 0,

for a vector r. The quadratic form induced by the Hessian of G1 is just

∇2G1(r, r) = −
(

2p

n3
+

mc

n2

)

r2
1 +

(

2

n2

)

r1r2 =
mc

n2r2
1

≥ 0.

Here, we have made use of the orthogonality. The calculation for G2 leads to

∇2G2(r, r) =
(

2p

n3
−

mc

n2

)

r2
1 −

(

2

n2

)

r1r2 =
mc

n2r2
1

≥ 0.

It follows that (ii) holds. We now consider (iii). Suppose that

G1(u0) = exp(ωt0), G2(u0) ≤ exp(ωt0).

In particular, p
n
≤ 0, which follows from subtracting G2 from G1. Since

∇G1· f = −eΦx +
p

nτp

,

we are led to obtain a gradient estimate for Φ. Specifically, we know that

∇G1· f ≤ −eΦx.

If the Green’s function is employed, one obtains

Φx =
e

ε0

∫ 1

0
Gx(x, ξ)(n + nD) dξ,

where the Green’s function is given by

G(x, ξ) =







(1 − x)ξ, 0 ≤ ξ ≤ x ≤ 1,

(1 − ξ)x, 0 ≤ x ≤ ξ ≤ 1.







Since the derivative of the Green’s function has an upper bound of unity, we
deduce that

|Φx| ≤
e

ε0

∫ 1

0
(n + |nD|) dξ.
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In order to estimate
∫ 1
0 n(x, t) dx, we use (4):

∫ 1

0
n(x, t) dx =

∫ 1

0
n(x, 0) dx−

∫ t

0
{nv(1, s)−nv(0, s)−ε[(n)x(1, s)−(n)x(0, s)]}ds.

From the boundary conditions, it follows that

∫ 1

0
n(x, t) dx =

∫ 1

0
n(x, 0) dx.

When coupled with the inequality for Φx, we conclude that

|Φx| ≤
e

ε0

∫ 1

0
(n(x, 0) + |nD(x)|) dx.

The argument in the case, G1 ≤ exp(ωt0), G2 = exp(ωt0), is similar. This
concludes the proof.
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