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Abstract

In recent years, substantial advances have been made in understanding hydrodynamic
models, both from the standpoint of analytical infrastructure, as well as the parameters
which play a decisive effect in the behavior of such models. Both classical and quantum
hydrodynamic models have been studied in depth. In this survey paper, we describe
several results of this type. We include, for example, well-posedness for both classical and
quantum reduced models, and the relaxation drift-diffusion limit as examples of analytical
results. As examples of computational results, we include some discussion of effective
algorithms, but most importantly, some information gleaned from extensive simulation.
In particular, we present our findings of the prominent role played by the mobilities in
the classical models, and the role of hysteresis in the quantum models. All models are
self-consistent. Included is discussion of recent analytical results on the use of Maxwell’s
equations. Benchmark devices are utilized: the MESFET transistor and the n+/n/n+

diode for classical transport, and the resonant tunneling diode for quantum transport.
Some comparison with the linear Boltzmann transport equation is included.
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1 Introduction

1.1 The Classical Hydrodynamic Model and Parameters

The equations as presented here are discussed in references [7], [27], and [22]. They are derived

as the first three moments of the Boltzmann transport equation,

∂f

∂t
+ u· ∇xf −

e

m
E· ∇uf = C. (1.1)

Here, f = f(x, u, t) is the numerical distribution function of the electron species, u is the

species’ group velocity vector, E = E(x, t) is the electric field, e is the electron charge modulus,

m is the effective electron mass, and C is the time rate of change of f due to collisions. The

moment equations are expressed in terms of certain dependent variables, where n is the electron

concentration, v is the average velocity, p is the momentum density, P is the symmetric pressure

tensor, Q is the the heat flux, eI is the internal energy, and Cn, Cp, and CW represent moments

of C, taken with respect to the functions, h0(u) ≡ 1, h1(u) = mu, h2(u) = m
2 |u|2. The equations

are:

∂n

∂t
+∇· (nv) = Cn, (1.2)

∂p

∂t
+ v(∇· p) + (p · ∇)v +∇·P = −enE + Cp, (1.3)

∂

∂t

(mn
2
|v|2 +mneI

)
+∇·

(
v
{mn

2
|v|2 +mneI

})
+∇· (vP ) +∇·Q = −env·E + Cw. (1.4)

Poisson’s electrostatic equation for the electric potential must be adjoined; each species con-

tributes a corresponding moment subsystem, with appropriately signed charge. The concen-

tration is given by n :=
∫
f du; the average velocity by v := 1

n

∫
uf du; the momentum by

p := mnv. Finally, for reference in subsequent subsections, the electron current density is given

by J := −env.
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In addition to these transport equations, we have Poisson’s equation for the electric field,

where nd := doping and ε := dielectric:

E = −∇φ, (1.5)

∇· (ε∇φ) = −
∑

eini − nd. (1.6)

Here, we have used the convention that there are different species, each of concentration ni

and charge ei. The entire system consists of equations (1.2), (1.3), (1.4), repeated according to

species, with possible coupling terms, and (1.5), (1.6).

By moment closure is meant the selection of compatible relations among the variables, φ,

n, v, P , eI , and Q. We begin by introducing a new variable T , the carrier temperature, defined

by Pij = nkTδij , where k is Boltzmann’s constant, and a scalar variable w, the total carrier

energy. Reduction to a set of basic variables, n, v, w, and φ, or a set equivalent to these, can

be implemented. The internal energy is expressed by meI = 3
2kT. We then have:

1. The total energy density (per unit volume) w is given by combining internal energy and

parabolic energy bands with m assumed constant:

w = mneI +
1
2
mn|v|2.

2. The heat flux is obtained by a differential expression involving the temperature (cf. (1.9)

to follow).

The final step deals with the replacement of the collision moments. For a one carrier system,

we define Cn = 0, and the momentum and energy relaxation times, τp and τw, respectively, in

terms of averaged collision moments as follows. We have:

1. The momentum relaxation time τp is given via

p

τp
:= −m

∫
uC du := −Cp.
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2. The energy relaxation time τw is given via

−w − w0

τw
:=

m

2

∫
|u|2C du := Cw.

Here, w0 denotes the rest energy, 3
2kT0, where T0 is the lattice temperature.

The forms for the relaxation times selected at 300 K are the Baccarani-Wordeman models [5],

τp = τp0

(
T

T0

)−1

, (1.7)

τw = τw0
T

T + T0
+

1
2
τp. (1.8)

Here, τp0 = m
e
µ0 and τw0 = 3kT0µ0

2ev2
s

, where vs is the saturation velocity. Typically, the low field

mobility µ0 is taken to be constant, but other choices are possible, such as doping dependent

mobilities. Units are given as µm2/V/ps.

The traditional form of Q has been (see [31] for more general expressions),

Q = −κ∇T. (1.9)

Here, κ is the thermal conductivity governed by the Wiedemann-Franz law. This may be

described by,

κ =
5r
2
n
k2µ0

e
T

(
T

T0

)−1

, (1.10)

where r is typically taken to be .6, giving a value of 1.5 for the dimensionless coefficient. The

well-posedness of the reduced hydrodynamic model, for two carriers, was demonstrated in [11].

1.2 The Drift-Diffusion Model

The drift-diffusion model may be obtained by taking zeroth order moments of the BTE and

adjoining the Poisson equation. Thus, one obtains the system for N carriers with recombination

Ri, current density Ji, (signed) charge ei, i = 1, · · · , N :

ei∂ni
∂t

+∇· Ji = −eiRi, (1.11)
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together with (1.5) and (1.6). There still remains the issue of determining the constitutive

current relations. Classical drift-diffusion theory gives, for N = 2, n1 = n, and n2 = p,

Jn = −eµnn∇φ+ eDn∇n, (1.12)

Jp = −eµpp∇φ− eDp∇p. (1.13)

The electronic charge modulus e is positive here, and n and p denote the electron and hole

densities, respectively. The use of the Einstein relations linking the mobilities, µn, µp, and the

diffusion coefficients, Dn, Dp, is common. These relations are specified by

Dn = (kT/e)µn, (1.14)

Dp = (kT/e)µp. (1.15)

A detailed existence and approximation theory for this model was presented in [22].

1.3 The Quantum Hydrodynamic Model

The model used in this paper was derived by Gardner in [20]. In this section, we shall review

the basic characteristics of the model as described in [14]. An existence theorem for the reduced

model was obtained in [33]. The model is also discussed in [22].

The QHD model has exactly the same structure as the classical hydrodynamic model (elec-

trogasdynamics), where we now permit a non-isotropic stress tensor:

∂n
∂t

+ ∂
∂xi

(nvi) = 0, (1.16)

∂
∂t

(mnvj) + ∂
∂xi

(vimnvj − Pij) = −n ∂V
∂xj
− mnvj

τp
, (1.17)

∂w
∂t

+ ∂
∂xi

(viw − vjPij + qi) = −nvi ∂V∂xi −
(w− 3

2nT0)
τw

, (1.18)

in conjunction with Poisson’s equation, (1.6), where V = −eφ is the potential energy, and

temperature here is expressed in energy units (k is set equal to 1). Spatial indices i, j equal 1,

2, 3, and repeated indices are summed over.
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Quantum mechanical effects appear in the stress tensor and the energy density. Gardner

derived the stress tensor and the energy density based upon the O(h̄2) momentum-shifted

thermal equilibrium Wigner distribution function:

Pij = −nTδij +
h̄2n

12m
∂2

∂xi∂xj
log(n) +O(h̄4), (1.19)

w =
3
2
nT +

1
2
mnu2 − h̄2n

24m
∇2 log(n) +O(h̄4). (1.20)

In one dimension, the QHD model requires eight boundary conditions. Well-posed boundary

conditions for the resonant tunneling diode are n = nd, ∂n/∂x = 0, and ∂T/∂x = 0 at the left

and right diode boundaries xL and xR, with a bias ∆V across the device: V (xL) = T log(n/n∗)

and V (xR) = T log(n/n∗) + e∆V , where n∗ is the intrinsic electron concentration.

1.4 Euler-Maxwell Systems

We shall also examine a form of the Euler-Maxwell system for semiconductor transport. In

particular, we shall consider the ‘isentropic’ mass-momentum transport system, coupled to

Maxwell’s equations for the electric and magnetic fields, instead of Poisson’s equation for the

electric field only. This Euler-Maxwell system in the isentropic case assumes the following form

([3, 4]):



nt +∇ · (nv) = 0,
(nv)t +∇ · (nv ⊗ v) +∇p(n) = − e

m
n(E + v ×B)− nv

τ
,

µHt +∇× E = 0,
εEt −∇×H + J = 0,
−ε∇ · E = en− nd(x), ∇ ·H = 0,
B = µH, J = −env, x ∈ R3, t > 0,

(1.21)

where p = p(n) = nγ/γ is the pressure of the flow, expressed in normalized units, γ > 1 is

the adiabatic exponent, H ∈ R3 is the magnetic field, B ∈ R3 is the magnetic induction,

−e(E + v ×B) is the Lorentz force, and µ is the permeability of the medium.
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2 Relaxation Limit to Drift-Diffusion Equations

In this section we study the singular limit of (1.2)–(1.6) when the relaxation times τw and τp

tend to zero with 0 ≤ 2τw − τp ≤M
√
τpτw. An examination of the relaxation expressions (1.7,

1.8) reveals that this is equivalent to the following parametric limit:

• µ0
vs
→ 0, with vs ≥ v∗ > 0.

We first scale the variables (n, v, T, φ), and then show that the limit functions satisfy the

drift-diffusion system as τp, τw → 0 in the manner specified.

Let

nτ (x, s) = n

(
x,
s

τp

)
, vτ (x, s) =

1
τp
v

(
x,
s

τp

)
,

θτ (x, s) =
1
τw

(
T

(
x,

s

τw

)
− T

)
,

φτ (x, s) = φ

(
x,
s

τp

)
, nτd(x, s) = d

(
x,

s

τp

)
.

Then (1.2)–(1.6) is transformed as follows, if τp, τw, κ are treated as constants:

nτs + (nτvτ)x = 0, (2.1)

τ2
p v

τ
s + τ2

p v
τvτx +

1
nτ

((τwθτ + T )nτ )x + vτ = φτx, (2.2)

τ2
wθ

τ
s −

2κτw
3nτ

θτxx + τpτwv
τθτx +

2τp
3

(τwθτ + T )vτx −
τp(2τw − τp)

3τw
(vτ )2 + θτ = 0,

(2.3)

φτxx = nτ − nτd, (2.4)

with the following initial-boundary data on the interval (0, 1):

(nτ , vτ , θτ ) = (n0(x), v0(x), T0(x)− T ),

(vτ , θτx, φ
τ )(i, s) = 0, i = 0, 1, s ≥ 0.

We assume that initial data (n0(x), v0(x), T0(x) − T ) are independent of τp and τw and are

“small” as measured in appropriate norms.
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Theorem 2.1 Assume that a unique smooth solution, (n, v, T, φ), exists for (1.2)–(1.6). Then

there exists ν(x, s) such that

(nτ , φτx)→ (ν,
∫ 1

0

∫ x

η

(ν(ξ, s)− nd(ξ))dξdη), a.e. as τp, τw → 0.

The limit function ν satisfies the drift-diffusion equation,

νs +
(
ν

∫ 1

0

∫ x

η

(ν(ξ, s)− nd(ξ))dξdη − νx
)
x

= 0,

in the sense of distributions. The double integral may be identified with Φx, where Φ is the elec-

trostatic potential in the Poisson equation. Note that physical constants have been homogenized

to unity in the limiting equation.

3 Results on Well-Posedness for the Classical Model

A detailed study of the well-posedness of the initial/boundary-value problem for the reduced

hydrodynamic model was carried out in [11]. The reduction refers to the assumption of a

pressure-density relationship of adiabatic type, and the subsequent elimination of the energy

equation from the system. The mathematical theory of (perturbed) conservation laws is not

capable of handling the full system in terms of demonstrating the existence of physical solu-

tions to the initial/boundary-value problem. We briefly sketch a few rudiments of the theory

in the following subsections. The interested reader may consult the references for elaboration.

The basic idea is to construct approximate solutions, via so-called Riemann problems. The

extraction of a convergent subsequential limit involves a relatively new idea of compensated

compactness. The analysis of [11] actually includes the two-carrier case, as well as more com-

plicated equations arising from multidimensional symmetry reduction to one dimension. We

now describe the basic idea of Riemann problems in the homogeneous case.
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3.1 Riemann Problems as Building Blocks

In this section, we review some basic facts about the Riemann solutions for homogeneous

systems. Although the reduced hydrodynamic model represents a perturbation of such a system,

the homogeneous system is the starting point in the construction of the approximate solutions.

We find it convenient to use the notation ρ = mn, and formulate the system in terms of ρ, the

mass density. Consider the homogeneous system:

ut + f(u)x = 0, 0 < x < 1, (3.1)

where u = (ρ, p)> and f(u) = (p, p
2

ρ
+ P (ρ))> with P (ρ) = ργ/γ, γ > 1.

The discontinuity in the weak solution of (3.1) satisfies the Rankine–Hugoniot condition:

σ(u− u0) = f(u)− f(u0), (3.2)

where σ is the propagation speed of the discontinuity, and u0 and u are the corresponding left

state and right state, respectively. The shock with speed σ = 0 is called the standing shock.

Consider the Riemann problem consisting of (3.1) with initial data,

u|t=0 =
{
u−, x < x0,
u+, x > x0,

(3.3)

where x0 ∈ (0, 1), u± = (ρ±, p±)>, and ρ± ≥ 0 and p± are constants satisfying
∣∣∣p±ρ± ∣∣∣ <∞.

For the Riemann problem with data (3.3) and the Riemann initial-boundary problem of

(3.1) with data:

u|t=0 = u+, p|x=0 = 0, (3.4)

we have the following facts regarding the solutions.

Lemma 3.1 There exists a piecewise smooth entropy solution u(x, t) for each of the problems

(3.3) and (3.4), respectively, satisfying an invariant region condition for some region
∑

. That
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is, if the Riemann data lie in
∑

, then the Riemann solutions u(x, t) ∈
∑

and 1
b−a
∫ b
a
u(x, t)dx ∈∑

. For the Riemann initial-boundary problem of (3.1) with data:

u|t=0 = u−, p|x=1 = 0, (3.5)

we have the similar results to those for (3.4). The entropy solutions are the physically relevant

solutions.

The method by which the Riemann solutions are utilized in the reduced hydrodynamic

model is by a variant of Godunov’s method, well-known in gas dynamics, where typically there

are no forcing terms. Piecewise constant starting values, an approximation to initial data, are

used to construct solutions locally in time by the theory of Riemann solvers; the perturbation

terms are evaluated explicitly via a fractional step, and the procedure is repeated to advance

in time. The Courant-Friedrich’s condition on the time step is essential for the construction.

One thereby obtains a family of approximate solutions, indexed by spatial grid length. The

next subsection sketches the underlying theory which permits the extraction of a limit.

3.2 H−1 Compactness of Entropy Measures

In the theory of conservation laws, the notion of entropy pairs, or weak entropy pairs, plays a

decisive role. They are (usually) convex functions which may be thought of as facilitating the

estimates. We have the following. A pair of mappings (η, q) : R2 → R2 is called an entropy–

entropy flux pair if ∇q = ∇η∇f . If η̃(ρ, v) ≡ η(ρ, ρv) satisfies η̃(0, v) = 0, for any fixed v = p
ρ
,

then η is called a weak entropy. For example, the mechanical energy-energy flux pair

η∗ =
1
2
p2

ρ
+

1
γ(γ − 1)

ργ, q∗ = p

(
1
2
p2

ρ2 +
ργ−1

γ − 1

)
, (3.6)

is a strictly convex weak entropy pair for (3.1).

In order to extract convergent sequences from approximate solutions, it is necessary to have

a compactness criterion in function space. We need the following basic lemma (cf. [10, 16, 32]).
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For readers not familiar with the notation of the following lemma, we are employing negatively

indexed (dual) Sobolev spaces of distributions.

Lemma 3.2 Let Ω ⊂ RN be a bounded domain. Then

(compact set of W−1,q(Ω)) ∩ (bounded set of W−1,r(Ω))

⊂ (compact set of W−1,2
loc (Ω)),

where q and r are constants, 1 < q ≤ 2 < r <∞.

The approximate solutions satisfy this lemma. This is expressed in the following proposition.

Proposition 3.1 If {uhi }, i = 1, 2, are the approximate solutions, then the measure sequence

η(uhi )t + q(uhi )x

is a compact subset of H−1
loc(Ω) for all weak entropy pairs (η, q), where Ω is any bounded and

open set in the space-time domain ΠT .

The compensated compactness framework is designed to handle the case when the approx-

imate solutions satisfy an invariant region principle, and when the entropy pairs are compact

in a suitable topolgy. We have the following framework (see [10]):

Lemma 3.3 Assume that the approximate solutions uh = (ρh, ph) satisfy

(1) There is a constant C > 0 such that 0 ≤ ρh(x, t) ≤ C,
∣∣∣ph(x,t)
ρh(x,t)

∣∣∣ ≤ C.

(2) The measure η(uh)t + q(uh)x is compact in H−1
loc(Ω), for all weak entropy pairs (η, q),

where Ω ⊂ ΠT is any bounded and open set.

Then, for 1 < γ ≤ 5/3, there exists a convergent subsequence (still labeled uh) such that

uh(x, t) −→ u(x, t) = (ρ(x, t), p(x, t)), a.e.

This is the final component required to demonstrate that u is a weak solution of the reduced

hydrodynamic system. Additional references, such as [26], may be found in [11].
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4 Existence for the QHD Model

The quantum hydrodynamic (QHD) model is a moment model, derived from the Wigner equa-

tion. It may be viewed as a quantum corrected version of the classical hydrodynamic equations,

with the stress tensor and the energy density corrected by O(h̄2) perturbations. Some applica-

tions, such as the resonant tunnel diode, also involve quantum well potentials. Ancona, Iafrate,

and Tiersten ([2], [1]) derived the expression for the stress tensor, and Grubin and Kreskovsky

formulated a one dimensional version of the model [21]. It is of considerable physical and prac-

tical importance. The model which we study is of physical importance; in fact, a simplification

of our model been characterized as a pure state, single carrier transport model in [21].

Our approach is completely novel to this application area, in that we reduce the system

to an integro-differential equation, with a set of boundary conditions, including a nonstandard

second order boundary condition, which is equivalent to specifying the quantum potential at

the (current) inflow boundary.

4.1 Formulation and Summary of Result

We shall present the equations for the simplified QHD model as developed in [21] and [20].

nt + (nv)x = 0, (4.1)

(mnv)t + (mnv2 + p(n) +Q(n))x = −nφx −
mnv

τ
, (4.2)

φxx = e(nd − n). (4.3)

The pressure function, p = p(n), has the property that n2p′(n) is strictly monotonically in-

creasing from [0,∞) onto [0,∞). A commonly–used hypothesis is:

p(n) = cnγ , γ > 1, c > 0. (4.4)

Quantum mechanics is represented by the quantum potential [1]:

Q(n) = − h̄2

12m
n(log(n))xx. (4.5)
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The device domain is the x–interval, I ≡ (0, 1).

In this section we describe the steady-state case nt = (nv)t = 0. Then, after the introduction

of the current density j = nv, the system (4.1)-(4.3) reduces to

j(x) = const., (4.6)(
mj2

n
+ p(n) +Q(n)

)
x

= −nφx −
mj

τ
, (4.7)

φxx = e(nd − n). (4.8)

Assume that j is a specified positive constant. Since (4.7) is a third order ordinary differ-

ential equation, and (4.8) is Poisson’s equation, three boundary conditions for (4.7) and two

boundary conditions for (4.8) are prescribed as follows:

n(0) = n0, n(1) = n1, n0nxx(0)− 1
2
n2
x(0) = n2, (4.9)

φ(0) = φ0, φ(1) = φ1, (4.10)

where n0, n1, and n2 are positive constants; φ0 and φ1 are the applied bias potentials.

4.2 The Integral Equation

In order to transform the above equations, we first use a Green’s function to solve Poisson’s

equation (4.8), and then we reduce the system (4.7)-(4.8) to an integro-differential equation.

We shall see that the existence of a smooth solution of the original system is equivalent to that

of a smooth solution of the integro-differential equation.

The solution of (4.8) with boundary data (4.10) is given uniquely by

φ = e

∫ 1

0
G(x, ξ)(nd − n)dξ + x(φ1 − φ0) + φ0, (4.11)

where G(x, ξ) is the Green’s function for this problem, and is defined by

G(x, ξ) =
{
x(ξ − 1), x < ξ,
ξ(x− 1), x > ξ.

(4.12)
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We now transform the equation (4.7) to a second order ordinary differential equation by

integration. Dividing (4.7) by n, we have

−1
n

(Q(n))x =
(
mj2

2n2 +
kγ

γ − 1
nγ−1 + φ

)
x

+
mj

nτ
. (4.13)

Since

−1
n

(Q(n))x =
h̄2

6m

(
1√
n

(
√
n)xx

)
x

,

then (4.13) becomes

h̄2

6m

(
1√
n

(
√
n)xx

)
x

=
(
mj2

2n2 +
kγ

γ − 1
nγ−1 + φ

)
x

+
mj

nτ
. (4.14)

Integrating (4.14) from 0 to x and using the boundary data (4.9), we have

h̄2

6m

(
1√
n

(
√
n)xx

)
=
mj2

2n2 +
kγ

γ − 1
nγ−1 +mj

∫ x

0

dy

nτ
+ φ

+
h̄2

12m
n2

n2
0
− mj2

2n2
0
− kγ

γ − 1
nγ−1

0 − φ0. (4.15)

Let w =
√
n. By substituting (4.11) for φ in (4.15), the system of equations (4.6)–(4.8)

reduces to an integro-differential equation with Dirichlet conditions:

h̄2

6m
wxx =

mj2

2w3 +
kγ

γ − 1
w2γ−1 +mjw

∫ x

0

dy

w2τ

+w
(
e

∫ 1

0
G(x, ξ)(nd − w2)dξ + x(φ1 − φ0) + b

)
, (4.16)

w(0) = w0, w(1) = w1, (4.17)

where

b =
h̄2

12m
n2

n2
0
− mj2

2n2
0
− kγ

γ − 1
nγ−1

0 , w0 =
√
n0, w1 =

√
n1.

If w is a smooth solution of (4.16)-(4.17), then

2w3
0wxx(0) = n2.
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That is, the third boundary condition of (4.9) holds for w. Hence, the existence of a smooth

solution of (4.6)-(4.10) is equivalent to that of a smooth solution of (4.16)-(4.17), provided n

does not vanish on I. The main result, proven in [33], is as follows.

Theorem 4.1 Assume that

φ1 ≥ φ0 +
e

2
‖ND −NA‖L∞, n2 ≥

12m
h̄2

(
mj2

2
+

kγ

γ − 1
nγ+1

0

)
, ‖∂τ

∂n
‖L∞ ≤M.

Then, for each j > 0, there exists a classical solution (n, φ) of (4.7)-(4.10), satifying the

properties that n ∈ C3
B(I) (for compact subsets of I) and 1

K
≤ √n ≤ K for a positive constant

K.

5 Euler-Maxwell Well-Posedness

We shall be brief in this section since we have already described the general approach to Euler-

Poisson systems in §3. The approach of [12] adopts this method, but extends the ideas to the

Euler-Maxwell system in one spatial variable. The critical boundary conditions, as before, are

with the momentum:

p|x=0 = p|x=1 = 0. (5.1)

For general large initial data in L∞, the solutions of (1.21) will develop singularities or shocks

in finite time. Therefore, there are only global weak solutions, including shock waves, for

general large initial data. The global solution of (1.21) is constructed under the assumption

of a linearized Lorentz force. In this sense, the well-posedness result is partial. If the initial-

boundary conditions are bounded, the global solution will be bounded. The global approximate

solutions constructed by the Godunov method with the fractional step procedure, are then

shown to be convergent to the global weak solution.
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6 Numerical Algorithms

The simulations contained in [23], [24], and [25], as well as the earlier simulations in [18, 17],

were based upon ENO schemes, or upon careful calibration between ENO and upwinding.

Such schemes are actually discrete Godunov schemes. Alternative algorithms, particularly

those based upon upwinding finite element methods, are perhaps less known, and we mention

these briefly now. These were particularly successful in the studies carried out for the QHD

model in [14].

The method is described as follows. First, we triangulate our domain Ω with triangulations

Th made solely of rectangles R such that the intersection of two distinct rectangles of the

triangulation Th is either an edge, a vertex, or void. Then, for each t ∈ (0, tf ], we take each of

the components of our approximate solution uh(t) in the space

Vh = {p ∈ L∞(Ω) : p|R is linear, ∀R ∈ Th}. (6.1)

We define each of the components of u0h to be the L2-projection of the corresponding component

of u0 into Vh and discretize the equation (3.1) in space by using the Discontinuous Galerkin

(DG) method. Since the functions of the space Vh are discontinuous, the mass matrix of the

DG method is block-diagonal. Thus, the resulting discrete equations can be rewritten as the

following ODE initial value problem:

duh
dt

= Lh(uh,g) + Rh(uh), t ∈ (0, T ], (6.2)

uh(t = 0) = u0h, (6.3)

where Lh is the approximation of −∇·F. The exact solution of the above initial value problem

gives an approximation which is formally second-order accurate in space; see [15]. Accordingly,

a second-order accurate in time Runge-Kutta method must be used to discretize our ODE; see

[15], [29], and [30]. Finally, a local projection ΛΠh is applied to the intermediate values of the

Runge-Kutta discretization in order to enforce nonlinear stability.
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The general definition of the DG method in the case of a scalar u can be found in [15].

To define the method in our case, we simply have to apply the procedure for the scalar case

component by component. When the formal integration by parts is carried out after the

equations are multiplied by test functions, the flux appears as a term of the boundary line

integrals. The upwinding is applied in the definition of the flux representation. A local Lax-

Friedrichs flux is typically employed.

7 Simulation of the MESFET
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Figure 1: The MESFET: Geometry and Doping

A benchmark MESFETis displayed above. We present some recent results of our simula-

tions, particularly with respect to symmetry and symmetry-breaking.

7.1 Symmetry Breaking Role of Bias Potentials

Next, we show the result of using the 1D model with a spherical symmetry assumption, to

approximate the 2D MESFET shown above. We take our 1D domain from r = 0.025 to

r = 0.1, measured from the top middle point at (x, y) = (0.3, 0.2) downward. The boundary

conditions for the concentration n, the temperature T and the potential φ are prescribed, using

the values of the 2D simulations; the boundary condition for the velocity is floating (Neumann).
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In Fig. 2, we show the comparison, for the concentration n, of the 2D MESFET result with

the 1D model assuming spherical symmetry, at vbias = 0.5 V, 1.0 V, 1.5 V, and 2.0 V. We can

clearly see a qualitatively correct agreement. This is very promising since it means that other

quantities (such as T and φ) which are not spherically symmetric have minimal effect on the

concentration through the nonlinear coupling of the equations.
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Figure 2: The 1D model with spherical symmetry assumption, in comparison with the 2D

MESFET results, at vbias = 0.5 V, 1.0 V, 1.5 V and 2.0 V. The concentration n.

8 Mobility Calibrations

This work describes results presented in [9], but not previously published. We demonstrate,

by comparison of the kinetic and hydrodynamic model, the critical role played by the mobility

functions. The device we consider is the one dimensional GaAs n+-n-n+ structure of length

0.8µm. The device used is as follows: x ∈ [0, 0.8]; the doping is defined by nd(x) = 106/µm3 in

0 ≤ x ≤ 0.175 and in 0.625 ≤ x ≤ 0.8, and by nd(x) = 2× 103/µm3 in 0.225 ≤ x ≤ 0.575, with

a smooth intermediate transition. This is exactly the device used in Baranger and Wilkins [6],

except for a smooth transition of width 0.05µm at the junctions.
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We rewrite the kinetic model for the linearized version we consider. The one-dimensional

kinetic model can be written as follows:

∂f(x, u, t)
∂t

+ u
∂f(x, u, t)

∂x
− e

m
E(x, t)

∂f(x, u, t)
∂u

=
n(x, t)M(u)− f(x, u, t)

τ
, (8.1)

where

M(u) =
1√
2πθ

e−
u2
2θ (8.2)

is a Maxwellian, with

θ =
kb
m
T0. (8.3)

The concentration n(x, t) is obtained by

n(x, t) =
∫ ∞
−∞

f(x, u, t)du. (8.4)

Also, the electric field E(x, t) is obtained by solving the coupled potential equation,

E(x, t) = −φx, (εφx)x = e(n− nd), (8.5)

with the boundary conditions

φ(0, t) = 0, φ(0.8, t) = vbias, (8.6)

and the relaxation parameter τ is computed by

τ =
mµ

e
. (8.7)

µ is the mobility and we have the following characterizations.

1. Constant µ. We have used values:

µ = 0.75µm2/(V ps), (8.8)

µ = 4.0µm2/(V ps). (8.9)
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2. Variable µ depending on the doping nd:

µ =
{

0.75µm2/(V ps), in the n+ region,
4.0µm2/(V ps), in the n region. (8.10)

3. Variable µ depending on the electric field E, used in drift-diffusion simulations to model

saturation:

µ(E) = 2µ0/
[
1 +

√
1 + 4(µ0|E|/vd)2

]
, (8.11)

where

µ0 = 4.0 µm2/(V ps), vd = 2.0 µm/ps. (8.12)

vd here is taken to be the maximum of the velocity in the kinetic run with vbias = 1.0

and µ = 4.

More specific conditions for various models are listed below.

1. For the kinetic model (8.1):

• The velocity space is artificially cut at

−a ≤ u ≤ a (8.13)

where we monitor to ensure that f(x, u, t) is always very small at the boundary

u = ±a for the final steady state results. We learned that it is more than enough in

all our runs to use a = 3.5. Larger values of a are also used to verify that the results

do not change in the pictures.

• At x = 0, take

f(0, u, t) = nd(0)M(u) (8.14)

if u ≥ 0, and no boundary condition (extrapolation of the numerical solution from

inside the domain to the boundary) if u < 0. Also take φ(0, t) = 0.
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• At x = 0.8, take

f(0.8, u, t) = nd(0.8)M(u) (8.15)

if u ≤ 0, and no boundary condition (extrapolation of the numerical solution from

inside the domain to the boundary) if u > 0. Also take φ(0, t) = vbias.

• At u = −a and u = a, take no boundary condition (extrapolation of the numerical

solution from inside the domain to the boundary).

2. For the hydrodynamic (HD) model (1.2)-(1.4):

• At x = 0, take

n(0, t) = nd(0), T (0, t) = T0, φ(0, t) = 0, (8.16)

with other quantities extrapolated from inside the computational domain to the

boundary.

• At x = 0.8, take

n(0.8, t) = nd(0.8), T (0.8, t) = T0,

φ(0.8, t) = vbias, (8.17)

with other quantities extrapolated from inside the computational domain to the

boundary.

We compare the simulation results of the hydrodynamic (HD) model, with various assump-

tions on µ as given in (8.8), (8.9), (8.10) and (8.11), with the kinetic simulation results obtained

with the same mobility assumptions. Fig. 3 shows the results of concentration n. We can see

that the results between the two models are very similar for µ = 4 and µ = µ(nd) as given by

(8.10), but are quite different for µ = 0.75 and µ = µ(E). Alternative simulations were carried

out in [19].
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Figure 3: Hydrodynamic (HD) results (circles) versus kinetic simulation results (solid line),
vbias = 1 volt. The concentration n in µm−3. Top left: µ = 4; top right: µ = 0.75; bottom
left: µ = µ(nd) as given by (8.10); bottom right: µ = µ(E) as given by (8.11).

9 Simulations of the QHD Model

One of the encouraging features of the QHD model is the recovery of two fundamental properties

of quantum transport as observed in quantum structures such as the resonant tunneling diode.

These are negative differential resistance and hysteresis. Below, we indicate in Fig. 4 the

current-voltage curves reproduced from [14].

To exhibit hysteresis, we simulate a GaAs resonant tunneling diode with double Al0.3Ga0.7As

barriers (the barrier height B = 0.209 eV). The doping density nd = 1018 cm−3 in the n+ source

and drain, and nd = 5×1015 cm−3 in the n channel. The channel is 250 Å long, the barriers are

50 Å wide, and the well between the barriers is 50 Å wide. The device has 50 Å spacers between
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the barriers and the contacts (source and drain) to enhance negative differential resistance.

The current-voltage curve for the resonant tunneling diode is plotted in Fig. 4 for ∆V

increasing from 0 volts to 0.22 volts (upper curve) and decreasing from 0.22 volts to 0 volts

(lower curve). Note that hysteresis occurs predominantly in the region of negative differential

resistance. The physical mechanism for hysteresis is that electrons “see” a different potential

energy due to different accumulated electron charges in the diode when the applied voltage is

decreasing than when the applied voltage is increasing.

Figure 4: Current-voltage curve exhibiting negative differential resistance and hysteresis.
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