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Abstract

This article deals with the analysis of the functional iteration, denoted Generalized Gummel
Map (GGM), proposed in [11] for the decoupled solution of the Quantum Drift–Diffusion
(QDD) model. The solution of the problem is characterized as being a fixed point of the
GGM, which permits the establishment of a close link between the theoretical existence
analysis and the implementation of a numerical tool, which was lacking in previous non-
constructive proofs [1,31]. The finite element approximation of the GGM is illustrated,
and the main properties of the numerical fixed point map (discrete maximum principle and
order of convergence) are discussed. Numerical results on realistic nanoscale devices are
included to support the theoretical conclusions.
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1 Introduction and Motivation

The continuous advancement of semiconductor industry makes it unavoidable to re-
sort to numerical simulation to predict the electric properties of devices of the next
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generation well before their construction is actually feasible. In the current tech-
nology, the channel length of Metal Oxide Semiconductor Field Effect Transistors
(MOSFETs) is of the order of tens of nanometers and the thickness of the oxide is
of a few nanometers. Because of such small dimensions, quantum confinement and
tunneling affect the performance of nanoscale devices in two main respects. First
of all, quantization of energy states for electrons confined in the channel produces
a shift of the charge peak, increasing the “equivalent oxide thickness” in such a
way that the coupling of the gate and channel voltages is reduced. Secondly, the
penetration of electrons under the channel barrier effectively smooths and lowers
such barrier, increasing the off–state leakage current. To limit quantization effects,
new device structures and geometries are investigated to overcome the traditional
single–gate MOS transistor (see [36] and [10, Chapt.1]). In any event, irrespective
of the adopted device technology, it is a fact that, on the one hand, quantum ef-
fects cannot be captured by a classical Drift–Diffusion (DD) description, and that,
on the other hand, the “full quantum” models proposed in the literature (Wigner
transport equation [16], non–equilibrium Green functions [9]) are, as of now, too
costly to be adopted in industrial applications. This is the reason for the develop-
ment of “Quantum Corrected Drift–Diffusion” (QCDD) models that are based on
the introduction of a correction potential in the DD equation to account for quantum
effects on the spatial distribution of charge carriers within the devices (see [3,32]).
By adopting such models the computational complexity can be contained within
reasonable limits at the cost of neglecting quantum effects on transport (coherent
transport, interferences, reflections), which can be considered of higher order for
devices of gate length higher than 10nm [26].

In Refs. [11] and [10], a general mathematical framework for QCDD models has
been proposed and subjected to extensive investigation in the numerical study of
advanced nanoscale MOSFET and Double-Gate (DG) MOSFET devices. One of
the main contributions of the cited references consists of the introduction of a fixed
point map, named Generalized Gummel Map (GGM), for the iterative solution of
the nonlinearly coupled system of model equations. The GGM is the natural exten-
sion to the quantum–corrected setting of the Gummel’s decoupled algorithm tra-
ditionally used in DD simulation [15,27,19], and has two significant benefits. The
first benefit is to maintain the same functional structure irrespective of the specific
choice of the quantum–corrected model. The second benefit, which applies to the
particular case of the Quantum DD (QDD) model, the object of this article, is to
provide an effective computational tool for the numerical solution of the variational
formulation proposed in Refs. [1] and [31] to treat the quantum correction to the
DD system. In the present article, we intend to characterize the solution of the QDD
transport model as being a fixed point of the GGM. This establishes a close link be-
tween the theoretical existence analysis and the implementation of a numerical tool
which was lacking in previous non-constructive proofs (cf. [1,31]). The principal
instruments used to demonstrate the existence of a fixed point of the GGM are i)
the introduction of a truncation operator, to prevent the occurrence of singularities
in the quantum corrections, as proposed in Ref. [1]; ii) the extension of the theory

2



of invariant regions, used in [19] in the DD case, to the case of systems of nonlinear
reaction–diffusion partial differential equations (PDEs) in non-gradient form; and
iii) a homotopy method based on the general theory developed in [17] to select the
solution of each equation yielding the quantum corrections, for which uniqueness
is not guaranteed due to the lack of monotonicity of the semi-linear terms. Once the
existence of a fixed point of the map is proved, the finite element approximation of
the GGM is worked out along the same lines as in the classical DD setting, ending
up with discrete maximum principles and optimal order of convergence.

A brief outline of the article is as follows. In Sect. 2, we introduce the QDD model
and the associated scaling and modeling parameters. In Sect. 3 we illustrate the
GGM for the iterative solution of the QDD model, and address some computational
remarks on the structure of the algorithm in Sect. 4. The analysis of existence of
a fixed point of the GGM is carried out in Sect. 5, while in Sect. 6 we illustrate
the discretized model and the numerical counterpart of the GGM. In Sect. 7, we
conduct a series of numerical experiments to demonstrate the validity of the GGM
applied to the simulation of realistic nanoscale devices, while in Sect. 8 we draw
some conclusions and future work perspectives. In Appendices A, B and C we il-
lustrate the main theoretical properties and instruments needed to extend the theory
of invariant regions to the treatment of the QDD model.

2 The Quantum Drift–Diffusion Model

Under isothermal and steady–state regimes, the Quantum Drift–Diffusion (QDD)
model for nanoscale semiconductor device simulation can be written in the follow-
ing dimensionless form [2,21]:

(1)



− div (λ2 ∇ϕ) = p− n+D,

−δ2
n4

√
n+

√
n (ϕn − ϕ+ ln (n)) = 0,

Gn = ϕn − ϕ+ ln (n) ,

−δ2
p4

√
p+

√
p (−ϕp + ϕ+ ln (p)) = 0,

Gp = ϕp − ϕ− ln (p) ,

− div (µn (∇n− n∇ (ϕ+Gn))) = −U,

− div (µp (∇p+ p∇ (ϕ+Gp))) = −U.

The structure of (1), comprising algebraic and partial differential equations, matches
closely the fixed point map that is adopted for its iterative solution, and qualifies the
QDD model as a special member of the family of quantum–corrected DD (QCDD)
models presented and extensively validated in [11]. In detail, (1)1 is the Poisson
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equation for the electrostatic potential ϕ, (1)6–(1)7 are the carrier continuity equa-
tions for the electron and hole carrier concentrations n and p, while (1)2–(1)3 and
(1)4–(1)5 provide a self-consistent definition of the quantum corrections Gn and
Gp as functions of ϕ, n, p and the quantum quasi–Fermi potentials ϕn and ϕp.
Inverting (1)3 and (1)5 yields the generalized Maxwell–Boltzmann statistics

(2) n = exp ((ϕ+Gn)− ϕn) , p = exp (ϕp − (ϕ+Gp)) .

System (1) is to be solved in a polyhedral semiconductor device domain Ω ⊂ Rd,
d = 1, 2, 3, with boundary Γ = ΓD ∪ ΓN ∪ ΓA and outward unit normal vector n,
having set ΓD = Γ+ ∪ Γ0. The pairwise disjoint partitions of Γ+ and Γ0 physically
represent the ohmic contacts and material interfaces, while ΓN and ΓA physically
represent the portions of the boundary separating the device domain from the exter-
nal environment and neighboring devices. Boundary conditions for system (1) are
enforced as follows:



ϕ = ϕD, n = nD, p = pD on Γ+,

ϕ = ϕD, n = p = 0 on Γ0,

∇ϕ · n = Jn · n = Jp · n = 0 on ΓN ,

(3)

having defined the current densities Jn = µn (∇n− n∇ (ϕ+Gn)) and Jp =
−µp (∇p+ p∇ (ϕ+Gp)). The boundary data ϕD, nD and pD are computed as-
suming charge neutrality and thermal equilibrium on Γ+, while on Γ0 the prescribed
value of ϕD is the external voltage applied at the gate contact up to the voltage drop
across the gate oxide layer. Our choice of the geometry and of the boundary condi-
tions is a rather crude simplification of a MOSFET, because Ω does not comprise
the oxide buffer region that is located over the interface Γ0, and a two–dimensional
example is depicted in Fig. 1. It is worth noting, however, that the iterative solution
map proposed in this work can be readily extended to deal also with the case where
the oxide region is included in the simulation domain, as documented by the numer-
ical experiments discussed in Sect. 7 and in Ref. [11]. Some remarks are in order

Figure 1. Two–dimensional cross-section of the semiconductor device.
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about the scaling and modeling parameters in (1). The quantities λ, δn and δp are
positive singular perturbation parameters resulting from the application of a scaling
procedure [11]. Setting δn = δp = 0, which corresponds to formally performing
the classical limit ~ → 0, allows the recovery of the standard DD model. We refer
to [11, Sect. 2.4], for the explicit expressions of the parameters and of their numer-
ical values. The quantity D is a given function and represents the doping profile of
the device. We assume that D ∈ L∞(Ω), with Dmin = inf

Ω
D and Dmax = sup

Ω
D,

where the operators inf
Ω

and sup
Ω

denote the essential infimum and the essential

supremum in Ω, respectively. The quantities µn and µp are the carrier mobilities,
and depend in a quite complex manner on the problem unknowns and on several
other physical parameters, as extensively discussed in [35, Chapt. 4]. We assume
that µν , ν = n, p are strictly positive bounded functions, referring to [19, Sect. 4.2],
for a precise characterization of the polynomial decay of µν at the transition points
of Γ. The quantity U is the net recombination rate, and accounts for recombination
(R) and generation (G) effects in the semiconductor material. Several models for U
are proposed in the literature to describe R/G effects in a quantum–modified setting
(see [1] and [4]). As the impact of R/G phenomena is not very relevant for the class
of applications we target in the numerical simulations of Sect. 7, in the following
we will assume, for sake of simplicity, that U = 0. The extension of the proposed
iterative solution map to cover also the case where U 6= 0 can be carried out by
properly adapting the “lagging ” procedure proposed for the DD model in Sect.4.4
of [19] and for the QDD model in Sect.2.3 of [1].

3 The Generalized Gummel Map

In this section, we illustrate the fixed point map for the iterative solution of the
QDD model (1). The method, proposed and extensively validated in Refs. [11,10],
is a consistent generalization of the classical Gummel map used in the decoupled
treatment of the DD equations [19], and for this reason it is henceforth denoted as
Generalized Gummel Map (GGM). Compared to the approach of Ref. [1], the GGM
proposed in the present article exhibits two main differences. The first difference is
that the GGM, unlike the maps of [1] and [31], embodies in a natural way a numeri-
cal algorithm suitable for implementation. In particular, the variational formulation
used in Refs. [1,31] to deal with the coupled subsystem comprising Eqns.(1)1–(1)5,
is replaced in the GGM by a fixed point iteration (Inner Loop) which is the ex-
tension to the quantum-corrected setting of the nonlinear iteration on the Poisson’s
equation (1)1 that is usually carried out in the DD setting. The second difference is
in the method used to enforce uniform ellipticity in the treatment of the carrier con-
tinuity equations. In Refs. [1,31], these latter equations are solved for the quantum
quasi–Fermi potentials, and a proper truncation of the densities is used to ensure
the strict positivity of the diffusion coefficient. In the present approach, the continu-
ity equations are solved for the Slotboom variables as in standard DD theory [19],
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and the strict positivity of the diffusion coefficient is imposed by truncating the
quantum corrections due to the Bohm potentials.

3.1 Preliminaries

Proceeding as in the case of the DD model (cf. [19], Sect.4.3), we define the fol-
lowing constants:

α = min
(
inf
Γ+

ϕn, inf
Γ+

ϕp

)
= inf

Γ+

ϕa + ln (θ) ,

β = max

(
sup
Γ+

ϕn, sup
Γ+

ϕp

)
= sup

Γ+

ϕa − ln (θ) ,

where ϕa is the externally applied bias and θ := nint/n, nint and n denoting the
intrinsic concentration in the semiconductor material and the scaling factor for car-
rier concentrations, respectively. For the purpose of the analysis of the existence of
a fixed point of the GGM, the above quantities should provide the upper and lower
bounds for the invariant region to which the fixed point belongs. With this aim, it is
useful to symmetrize the bounding interval [α, β] by introducing, as in Ref. [1], the
following constants:

m = −‖ϕa‖L∞(Γ+)+ln (θ)−1 ≤ α, M = −m = ‖ϕa‖L∞(Γ+)−ln (θ)+1 ≥ β,

withm ≤ 0 andM ≥ 0. For any nonnegative carrier concentrations n and p, we set
w := n1/2 and z := p1/2, and for any bounded potential ϕ, we define the auxiliary
variables

(4) σn(w,ϕ) := w2e−ϕ, σp(z, ϕ) := z2eϕ.

For any bounded quantum quasi–Fermi potentials ϕn and ϕp, we introduce the
quantum Slotboom variables

(5) ρ := exp (−ϕn) , ω := exp (ϕp) ,

in such a way that the generalized Maxwell-Boltzmann statistics (2) can be written
in the equivalent form

(6) n = ρ exp (ϕ+Gn) , p = ω exp (− (ϕ+Gp)) .

Then, we define the closed convex set

(7) K = {[v, w] ∈
(
L2(Ω)× L2(Ω)

)
: m ≤ [v(x), w(x)] ≤M, a.e. in Ω},

and for any function g and any fixed δ ∈ (0, 1], we introduce the truncation opera-
tor

[g]δ := max (g, δ) .

We also let V := H1(Ω) ∩ L∞(Ω).

6



3.2 The Outer Iteration Loop

Given a pair [ϕ̃n, ϕ̃p] ∈ K, and δ ∈ (0, 1], the GGM for the iterative solution of the
QDD system (1) consists of the following steps (Outer Loop):

(Step 1): Use the fixed point iteration described in Sect. 3.3 to solve in the domain
Ω the nonlinear system:

(8)



− div (λ2 ∇ϕδ) + w2
δ − z2

δ −D = 0,

−δ2
n4wδ + wδ (ϕ̃n − ϕδ + 2 ln ([wδ]δ)) = 0,

−δ2
p4zδ − zδ (ϕ̃p − ϕδ − 2 ln ([zδ]δ)) = 0,

subject to the boundary conditions:

(9)



ϕδ = ϕD on ΓD, ∇ϕδ · n = 0 on ΓN ,

wδ = n
1/2
D on Γ+, wδ = 0 on Γ0, ∇wδ · n = 0 on ΓN ,

zδ = p
1/2
D on Γ+, zδ = 0 on Γ0, ∇zδ · n = 0 on ΓN .

(Step 2): Define the regularized quantum corrections:

(10) Gnδ
= ϕ̃n − ϕδ + 2 ln ([wδ]δ) , Gpδ

= ϕ̃p − ϕδ − 2 ln ([zδ]δ) ,

and the quantum–corrected potentials

(11) Vnδ
:= ϕδ +Gnδ

, Vpδ
:= ϕδ +Gpδ

.

(Step 3): Solve in the domain Ω the linear, uncoupled continuity equations:

− div
(
µne

Vnδ ∇ρδ

)
= 0,(12)

− div
(
µpe

−Vpδ ∇ωδ

)
= 0,(13)

subject to the boundary conditions:

(14)


ρδ = ρD on Γ+, ∇ρδ · n = 0 on Γ0 ∪ ΓN ,

ωδ = ωD on Γ+, ∇ωδ · n = 0 on Γ0 ∪ ΓN .

(Step 4): Update the quantum quasi–Fermi potentials by inverting (5):

(15) ϕn = − ln (ρδ) , ϕp = ln (ωδ) .
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3.3 The Inner Iteration Loop

Given [ϕ̂δ, ŵδ, ẑδ] ∈ (V)3 and satisfying the essential boundary conditions in (9),
with ŵδ > 0 in Ω and ẑδ > 0 in Ω, the inner loop for the solution of the nonlinear
system (8) consists of the following steps:

(Step A): Solve the nonlinear Poisson equation for the updated potential ϕδ:
(16)

− div (λ2 ∇ϕδ) + σn,δ(ŵδ, ϕ̂δ) e
ϕδ − σp,δ(ẑδ, ϕ̂δ) e

−ϕδ −D = 0, in Ω

ϕδ = ϕD on ΓD,

∇ϕδ · n = 0 on ΓN .

(Step B): Solve the nonlinear Bohm equation for the updated square root of the
electron concentration wδ:

(17)



−δ2
n4wδ + wδ (ϕ̃n − ϕδ + 2 ln ([wδ]δ)) = 0, in Ω,

wδ = n
1/2
D on Γ+,

wδ = 0 on Γ0,

∇wδ · n = 0 on ΓN .

(Step C): Solve the nonlinear Bohm equation for the updated square root of the
hole concentration zδ:

(18)



−δ2
p4zδ − zδ (ϕ̃p − ϕδ − 2 ln ([zδ]δ)) = 0, in Ω,

zδ = p
1/2
D on Γ+,

zδ = 0 on Γ0,

∇zδ · n = 0 on ΓN .

3.4 Abstract Formulation of The GGM

The outer iteration loop described in Sect. 3.2 can be interpreted as the application
of the fixed point map T : K → K to a given pair [ϕ̃n, ϕ̃p], in such a way that the
following relation holds

(19) [ϕn, ϕp] = T(ϕ̃n, ϕ̃p).

To characterize in detail the action of T, we need to introduce the operators that
represent the various steps of the solution map. For a given δ ∈ (0, 1], we denote
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by U : K → (V)3 the operator associating with [ϕ̃n, ϕ̃p] the triple [ϕδ, [wδ]δ, [zδ]δ]
through the solution of (8) as described in Sect. 3.3. Then, we denote by Vn :
(L∞(Ω))3 → L∞(Ω) and Vp : (L∞(Ω))3 → L∞(Ω) the operators associating with
the triples [ϕδ, ϕ̃n, [wδ]δ] and [ϕδ, ϕ̃p, [zδ]δ] the bounded functions Vnδ

and Vpδ

through the combined use of (10) and (11). Finally, we denote by R : L∞(Ω) → V
and W : L∞(Ω) → V the operators associating with Vnδ

and Vpδ
the solutions of

the linear continuity subproblems (12)–(14)1 and (13)–(14)2. The composition of
the action of the above operators yields the following definition of the fixed point
operator associated with the GGM

(20) T := [− lnR ◦Vn ◦U, lnW ◦Vp ◦U].

It is interesting to notice that this definition generalizes to the quantum–corrected
setting the standard framework valid in the case of the DD model, because in this
latter case Vn and Vp coincide with the identity operator [20]. A flow–chart of the
GGM is depicted in Fig. 2.

Figure 2. A flow–chart of the GGM.

4 Computational Remarks on The GGM

We collect below some computational remarks on the various steps of the fixed
point map introduced in Sects. 3.2 and 3.3.

Let us start from the outer iteration loop.
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4.0.1 (Step 1)

(1) It is shown in Ref. [1] (cf. Thm. 2.1) that problem (8)–(9) admits a unique
solution [wδ, zδ, ϕδ = ϕδ (wδ, zδ)] ∈ (V)3 satisfying the a–priori estimates

(21) ‖wδ‖L∞(Ω), ‖wδ‖H1(Ω), ‖zδ‖L∞(Ω), ‖zδ‖H1(Ω) ≤ K,

where K = K(M) is a positive constant not depending on δ.
(2) The same structure of Step 1. is maintained if the QDD model is replaced by

other different quantum–corrected models (cf. Ref. [11], Sects. 4 and 6).

4.0.2 (Step 2)

The introduction of the truncation operator [·]δ prevents the occurrence of singu-
larities in the quantum–corrected potentials introduced in (11). As a matter of fact,
the numerical experiments of Sect. 7 show that the Bohm potentials Gnδ

and Gpδ

are bounded inside the device domain independently of the chosen value of δ, and
become unbounded only at the inversion layer contact Γ0, consistently with the
physical fact that, in the quantum–modified description, the carrier densities are
exactly set equal to zero at Γ0. This confirms the validity of (21) and agrees also
with the conclusions drawn from the simulations reported in Ref. [11].

4.0.3 (Step 3)

Using (6) and noting thatGn,δ = Gp,δ = 0 on Γ+, the boundary data ρD and ωD can
be computed as ρD = nD exp (−ϕD) = θ exp

(
−ϕa|Γ+

)
, ωD = pD exp (ϕD) =

θ exp
(
ϕa|Γ+

)
. Then, using Lemma 3.2.2 [27], it can be shown that BVPs (12)–

(14)1 and (13)–(14)2 admit a unique solution pair [ρδ, ωδ] ∈ (V)2 satisfying the
essential boundary conditions in (14) and the maximum principles

(22) e−M ≤ ρδ(x) ≤ eM , e−M ≤ ωδ(x) ≤ eM a.e. in Ω.

Let us now consider the inner iteration loop.

(1) The inner loop is a consistent generalization to the QCDD setting of the non-
linear iteration that is usually carried out in the DD setting, and provides a
constructive computational approach to the variational formulation used in [1]
and [31].

(2) System (16)–(18) is based on the combined use of the generalized Maxwell–
Boltzmann statistics (6) and of the Gauss–Seidel method in the nonlinear sys-
tem (8). As a matter of fact, the Poisson equation (16) is nonlinear with respect
to ϕδ, unlike the linear counterpart (8)1. This is the price to be paid for intro-
ducing an inner decoupling in system (8).
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(3) Each nonlinear problem in (16)–(18) is solved by resorting to a properly
damped Newton’s method and the numerical approximation of the correspond-
ing sequence of iterates is carried out by the Galerkin finite element method
(see [11], Sect. 5.1).

(4) A careful selection of the damping parameter in the linearization of the Bohm
potential equations (17)–(18) introduces a parabolic regularization which en-
sures that a discrete maximum principle holds for the approximate solutions
wδ,h and zδ,h. This, in turn, implies that

wδ,h(x) > 0 and zδ,h(x) > 0 ∀x ∈ Ω.

(5) Extensive numerical experiments carried out in [11] show that convergence of
the inner loop may be slowed down by the introduction of the damping strat-
egy, especially in presence of significant quantum corrections at the inversion
layer boundary Γ0. In such a case, the use of vectorial acceleration algorithms
gives rise to a substantial reduction of the computational cost associated with
the GGM iteration (see [10]).

5 Existence Analysis of a Fixed Point of The GGM

In this section, we address the issue of well-posedness of the various iteration steps
of the GGM and we prove the existence of a fixed point of the map.

5.1 Well-Posedness of The Outer Iteration

The well-posedness of the outer iteration described in Sect. 3.2 is based upon the
fixed point analysis of Ben-Abdallah and Unterreiter [1]. For fixed δ ∈ (0, 1], step
1 adopts the system arising as the Euler-Lagrange equations associated with the
functional minimization procedure of [1], while steps 2, 3 and 4 are equivalent to
the completion of the definition of the fixed point mapping Tδ of [1]. Subsequent
analysis in [1] demonstrates convergence as δ → 0. In Ref. [1], it is shown that for
each fixed δ ∈ (0, 1]:

(i) The outer loop has a fixed point pair, defined by the pair of quantum quasi-
Fermi levels ϕn, ϕp (cf. (15)).

(ii) There exist (non-constructive) bounds independent of δ for the functions wδ

and zδ (cf. (21)). This implies that ϕδ can be bounded independently of δ because
of the unique solvability of (8)1 for given wδ and zδ, and the same holds also for
the auxiliary variables σn,δ, σp,δ defined in (4), for which we have the following
‘a priori’ positive bounds

(23) 0 ≤ σn,δ(x) ≤ βn, 0 ≤ σp,δ(x) ≤ βp ∀x ∈ Ω,
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where βn and βp are positive constants depending on K but independent of δ.

The ‘a priori’ estimates (23) permit the definition of invariant regions for the com-
position mappings associated with the inner iteration loop. This is the object of the
following section.

5.2 Well-Posedness of The Inner Iteration: ‘A Priori’ Bounds and Invariant Re-
gions

As defined, the inner loop proceeds by first solving the nonlinear Poisson equa-
tion, and proceeds to determine the Bohm corrections. The Poisson equation is a
gradient equation, and may be treated by the theory of upper and lower solutions
developed in [6] and summarized in Appendix A. Notice that the more standard
results presented in [28] do not suffice in our situation, since the multipliers of the
exponentials in the first equation of (16) are not bounded away from zero. The sys-
tem for the Bohm corrections is not a gradient system; although it may be analyzed
by the conventional tool of geometric invariant regions, we are not aware of any
published reference, and we develop this general step more fully. In addition, a
proof is provided in Appendix B.2. We now discuss these situations in turn.

Lemma 5.1 Let σn,δ and σp,δ be given functions satisfying (23). Then, problem (16)
has a uniquely defined solution ϕδ within the order interval [ϕmin, ϕmax], where the
quantities ϕmin ≡ infΩ (ϕ) and ϕmax ≡ supΩ (ϕ) are independent of δ and the
functions ϕ and ϕ are the solutions of the gradient equations

(24) −λ2∆ϕ+ βn exp(ϕ) = Dmin

and

(25) −λ2∆ϕ̄− βp exp(−ϕ̄) = Dmax,

to which the boundary conditions (16)2−3 must be adjoined.

Proof. The signs of Dmin and Dmax determine the lower and upper bounds for ϕδ.
If either Dmin > 0, or Dmax < 0, it is straightforward to define the corresponding
bound. However, in the general case, we must apply Lemma A.1 to obtain bounds
for the nonlinear Poisson equation. Formally, it is straightforward to see that these
functions satisfy the defining conditions for lower and upper solutions. The rigor-
ous derivation of the well-posedness for ϕ and ϕ, together with invariant interval
bounds, is obtained as follows. Standard convex analysis, as outlined in the proof
of Lemma 3.1 of [18], yields existence and uniqueness for ϕ and ϕ. To prove that
these latter functions are in L∞, we remark that it is enough to show that the expo-
nential functions exp(ϕ) and exp(−ϕ) are bounded; in this case, Moser iteration
theory [14], utilizing L∞ right–hand sides, implies that the solutions of the rede-
fined linear boundary problems are also in L∞. To illustrate why the exponential
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function exp(ϕ) is bounded, it suffices to assume Dmin ≤ 0. It can be shown (we
omit the details for brevity) that the convex functional with effective L2 domain in
the H1 affine space defined by boundary trace and restricted by exp(ω) ∈ L2(Ω),

λ2

2

∫
Ω
|∇ω|2 dx+ βn

∫
Ω
{exp(ω)− 1} dx−Dmin

∫
Ω
ω dx,

for which ϕ is a minimizer, increases if ϕ does not coincide with its upper trun-
cation by the supremum of its (bounded) boundary values. This implies that the
exponential is bounded from above; it is bounded below by zero. A similar argu-
ment applies to ϕ when Dmax ≥ 0. 2

Lemma 5.2 Let ϕ̃n and ϕ̃p be given functions in K and let ϕδ be the unique solu-
tion of (16) as in Lemma 5.1. Then, problems (17) and (18) have uniquely defined
solutions wδ and zδ within the order intervals Qw = [0, wmax] and Qz = [0, zmax],
resp., wmax and zmax being the following positive quantities independent of δ

wmax = max{sup
Γ+

w, exp[(M + ϕmax)/2]},

zmax = max{sup
Γ+

z, exp[(M − ϕmin)/2]}.

Proof. As each of the nonlinear equations in Steps B and D of the inner iteration
loop is not a gradient equation, we employ the theory developed in Appendix B
which extends to the case of non-gradient systems the approach of invariant re-
gions. It can be seen that the vector fields associated with the boundary value prob-
lems (17) and (18) are Carathéodory mappings and are outward pointing on the
respective intervals Qw, Qz. Then, applying Theorem B.1 allows one to conclude
that each of the maps defined above has a solution with range in the respective Q-
interval. A continuous selection principle insures that the mapping is well-defined,
as discussed in Appendix C. 2

Remark 5.1 (Positivity of w and z) Suppose one replaces the boundary values on
Γ0 for w and z in (17)3 and (18)3 by strictly positive values, bounded below by δ.
Then, using the same arguments as in Lemma 5.2, it can be proved that the solutions
w and z of the boundary value problems (17) and (18) belong to the contracted
order intervals [wmin,δ, wmax], [zmin,δ, zmax], resp., where the strictly positive left
endpoint wmin,δ (depending on δ) is defined as

wmin,δ = min
(
δ∗, δ, inf w|Γ0∪Γ+)

)
,

δ∗ being the strictly positive quantity satisfying

sup(ϕn)− inf(ϕδ) + 2 ln δ∗ < 0

(with an analogous relation for zmin,δ.)
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5.3 Existence of a Fixed Point for The Generalized Gummel Map

The analysis of Sects. 5.2 and 5.1 has defined a consolidated mapping T : K → K,
in terms of:

(i) Components acting invariantly on the closed convex subsets of L2, defined
pointwise by theQ−bounds (Inner Iteration Loop, Lemma 5.1 and Lemma 5.2).

(ii) Components acting invariantly onK (Outer Iteration Loop, Sect. 5.1, item (i)).

Before continuing our analysis, we need the further following assumption (cf. [17]).

Assumption 5.1 (Continuous Selection Hypothesis) Let (Φ, N, P ) denote the com-
ponents of the mapping U introduced in Sect. 3.4. The homotopy mappings for
N,P , starting with Laplace’s equation, and terminating in a specified solution, are
continuous in the L2 sense with respect to the functions ϕ̃n, ϕ̃p, ϕδ.

A justification of this assumption is provided in Appendix C.

We are then able to state our main theoretical result.

Theorem 5.1 Under the hypotheses expressed in the bounds of inequalities (23)
and the Continuous Selection hypothesis 5.1, the fixed point map defined in (19)
has a fixed point in K. Moreover, a solution triple ϕ, n and p to the BVP (1)-(3)
exists in H1(Ω) ∩ L∞(Ω).

Proof. By design, the mapping T of equation (20) maps the closed convex set K
in L2 × L2, introduced in equation (7), into itself. The hypotheses of the Schauder
fixed point theorem include the continuity and relative compactness of T in the
topology of L2 × L2. The relative compactness follows from the action of R and
W as mappings with bounded range in H1(Ω). We shall return to this point at the
end of the proof. The continuity of the individual mappings is now considered. The
continuity of N,P is part of the content of the Continuous Selection hypothesis.
The continuity of Φ is verified as follows. Given two arbitrary pair of elements
[σn, σp] and [σ∗n, σ

∗
p] each satisfying (23), where we have suppressed δ-dependence

for clarity, consider the images ϕ and ϕ∗, resp. Since ϕ − ϕ∗ is a test function for
the weak formulation, one has

λ2
∫
Ω
|∇(ϕ−ϕ∗)|2 dx+

∫
Ω
σn(eϕ−eϕ∗)(ϕ−ϕ∗) dx−

∫
Ω
σp(e

−ϕ−e−ϕ∗)(ϕ−ϕ∗) dx

=
∫
Ω
(σ∗n − σn)eϕ∗(ϕ− ϕ∗) dx−

∫
Ω
(σ∗p − σp)e

−ϕ∗(ϕ− ϕ∗) dx.

The second and third terms on the left hand side are nonnegative. Since the term ϕ−
ϕ∗ has zero Dirichlet boundary trace, the first term on the left hand side dominates
c‖ϕ−ϕ∗‖2

L2 , for some constant c. Now, if we utilize the pointwise bounds satisfied
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by ϕ∗ as stated in Lemma 5.1, and estimate the right hand side terms by

|
∫
Ω
(σ∗n − σn)eϕ∗(ϕ− ϕ∗) dx| ≤ (c/4)‖ϕ− ϕ∗‖2

L2 + c′‖σ∗n − σn‖2
L2 ,

with a similar estimate for the second term, we obtain the L2 Lipschitz continuity
of Φ. The continuity of the mappings Vn,Vp follows from their definition in terms
of continuous composition. We now consider the continuity of the mappings: Vn 7→
ρ, Vp 7→ ω, where Vn, Vp are functions in L2 restricted by the pointwise bounds
for inequalities (23) and those for the range of the mappings N,P . To demonstrate
continuity, we consider the first of the two equations. If Vn, V

∗
n are given, satisfying

the bounds just described, consider the solutions ρ, ρ∗. Since ρ−ρ∗ is a test function,
the weak formulation leads to

∫
Ω
µne

Vn|∇(ρ− ρ∗)|2 dx =
∫
Ω
µn(eV ∗n − eVn)∇ρ∗·∇(ρ− ρ∗) dx.

To verify L2 continuity, we employ standard inequalities to obtain, for some con-
stant C, not depending on Vn, V

∗
n , ρ, ρ

∗,

(26)
∫
Ω
µne

Vn|∇(ρ− ρ∗)|2 dx ≤ C
∫
Ω
µn|eV ∗n − eVn|2|∇ρ∗|2 dx.

We shall now verify sequential continuity. Hold V ∗
n and ρ∗ fixed and identify Vn

and ρ with members of a sequence: V k
n → Vn. To obtain the gradient convergence

of the corresponding ρk sequence, we use the fact that a sequence converges to ρ if
any subsequence has a further subsequence converging to ρ. Thus, in the right hand
side of (26), we may employ the Lebesgue Dominated Convergence theorem to an
appropriate pointwise convergent subsequence of {V k

n } to obtain the convergence
to zero of the right hand side; the corresponding convergence to zero of the left
hand side yields the stated sub-sequential convergence. Note that we have used the
pointwise bounds derived by the invariant region analysis in a fundamental way to
apply the Lebesgue theorem. The analysis for the second mapping parallels this.

We now discuss concisely the H1 bounds for ρ and ω. Since we assume that the
boundary data for ρ is defined in terms of the (bounded) trace of an H1 function ρ̄,
we simply use ρ− ρ̄ as a test function. This yields:

∫
Ω
µne

Vn|∇ρ|2 dx ≤
∣∣∣∣∫

Ω
µne

Vn∇ρ·∇ρ̄ dx
∣∣∣∣ .

Standard inequalities give a fixed gradient bound in terms of ρ̄. Since the trace
is specified, one has the desired H1 bound, hence the relative compactness. The
arguments for ω are similar. Schauder’s fixed point theorem [14, Corollary 10.2, p.
222] gives the existence of a fixed point. 2
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5.4 Theoretical Remarks on The GGM

It seems clear that a viable approach to the analysis of the GGM proposed in this
work is represented by the ‘a priori’ bounds (23) for σn,δ, σp,δ. These estimates
permit a well–defined fixed point for the inner iteration map, and can be physically
justified by noting that σn = ρ exp (Gn). As the quantum correctionGn is expected
to be negligible far from the material interface Γ0 and to rapidly diverge towards
−∞ at Γ0, it is immediate to see that σn ≥ 0 in Ω, the equality holding only at
Γ0, while elsewhere in the device domain σn tends to coincide with the Slotboom
variable in the classical DD case.

One further issue concerning the solution of the Bohm equations (17)–(18) not
yet emphasized in the preceding discussion is the positivity of the solution in the
interior of the domain Ω, which in our analysis is the result of Lemma 5.2 and of
the related Remark 5.1. For an alternative approach, we refer the reader to [22],
where a continuous minimum principle is proved to hold for the solutions of the
Bohm equations (17)–(18), provided that the semi–linear terms satisfy a suitable
lower bound (cf. [22], Assumption B.3).

6 The Discretized Model and The Numerical GGM

In this section, we describe the finite element discretization of the differential sub-
problems involved in the GGM introduced in Sects. 3.2- 3.4. With this aim, we de-
note by Th a given regular partition of the domain Ω (cf. [7]) into non-overlapping
triangles K of diameter hK , and we indicate by h = max

K∈Th

hK the discretization

parameter. Then, we introduce the finite dimensional subspace Vh ⊂ V of affine
finite elements over Th, and for a given function φ : Th → R, we let Πhφ ∈ Vh be
the interpolant of φ mapping into Vh.

6.1 The Finite Element Maps

Each of the boundary value problems involved in the steps of the Inner and Outer
iteration loops is approximated with the Galerkin Finite Element Method (GFEM)
using basis functions in Vh.

Let us start with Step (1) of the Outer Iteration Loop of Sect. 3.2. This requires
executing the Inner Iteration Loop of Sect. 3.4.

Step (A) requires the solution of the nonlinear Poisson equation (16). This is done
through the Newton method with the introduction of a proper damping technique
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to ensure that the iteration is a descent method (cf. [35], Chapt.7). The resulting
algebraic system is characterized by having a symmetric positive definite and diag-
onally dominant coefficient matrix, provided that a lumping procedure is employed
to treat the zeroth order term arising from the linearization of (16). Steps (B) and
(C) are a critical issue of the algorithm, because of the need of maintaining positive
solutions for the (square root) of the carrier densities. With this aim, we have mod-
ified the standard Newton procedure by introducing a relaxation parameter, to be
chosen in such a way that the finite element approximation of the linearized bound-
ary value problem enjoys a Discrete Maximum Principle (DMP). This is a sufficient
condition to ensure positivity of the computed approximate carrier concentrations.
Details of the procedure can be found in [11,10]. The finite element approximation
of Steps (A), (B) and (C) defines the numerical map Uh : (Vh)

2 → (Vh)
3.

Once Step (1) is implemented as described above, the numerical approximation of
the remaining linear continuity equations (Step (3) of the Outer Iteration Loop of
Sect. 3.2) is carried out by the GFEM with harmonic average along the element
edges of the diffusion coefficient µν exp (±Vνδ,h), ν = n, p [19,11,10]. The actual
implementation is carried out with the addition of the change of discrete variables

nh = ρh exp (Vnδ,h) , ph = ωh exp (−Vpδ,h)

in order to prevent the occurrence of numerical overflows. This approach is a con-
sistent multi-dimensional generalization of the classical one-dimensional Scharfet-
ter-Gummel difference scheme [34]. It has the advantage of automatically intro-
ducing an upwinding treatment of the carrier densities along triangle edges, which
in turn ensures that the method satisfies a DMP with positive nodal values of the
carrier densities n and p, under the assumption that µn and µp are constant and
that Th is of Delaunay type (see [33,5,13] for a thorough discussion of this latter
subject). The finite element approximation of Step (3) defines the numerical maps
Rh : Vh → Vh and Wh : Vh → Vh.

6.2 The Numerical Fixed Point Map

The numerical GGM can be written in abstract form as

(27) Tn := [− lnh Rh ◦Vn,h ◦Uh, lnh Wh ◦Vp,h ◦Uh],

where lnh (·) := Πh (ln (·)) and Vn,h, Vp,h are the discrete counterparts of the maps
Vn, Vp introduced in Sect. 3.4.
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6.3 Convergence for the Numerical Fixed Point Map

We discuss the general question of whether the fixed points xn of Tn converge to
the desired fixed point x0 of T. Here, we refer to the mappings defined in (27) and
in (20), resp. In the linear theory, the Babuška-Brezzi inf-sup theory permits one to
transfer the corresponding question to one of best approximation, i. e. , consistency
of the approximating Galerkin subspace. The Krasnosel’skii theory [24,25] is the
analog for nonlinear differentiable problems: one may assert that xn → x0 at the
rate at which Tn approximates T (discretization order), provided a set of stabil-
ity conditions associated with the operator differential calculus are satisfied. It is
known that the theory of Babuška-Brezzi is strictly implied by the theory of Kras-
nosel’skii. In the present case, the maximal order of convergence with respect to the
discretization parameter h in the energy norm is O(hν), with ν ∈ (0, 1] (cf.[19],
Sect. 5.3.2), that is exactly the expected order for the linear mixed boundary-value
problem. An extensive analysis is required to establish the hypotheses, summarized
in [19, p. 119]. Although Tn differs from the mapping of the classical model in its
inclusion of the quantum correction terms, we expect a carry-over of the conver-
gence rate, for fixed δ > 0. The verification is outside the scope of the current
study.

7 Numerical Assessment Of The GGM

In this section, we present a set of numerical examples to validate the GGM pro-
cedure in the simulation of realistic nanoscale devices. In Sect. 7.1, we analyze
the convergence properties of the inner loop of the GGM procedure applied to a
one–dimensional (1D) test case, with the purpose of demonstrating the plausibility
of assumptions (23). In Sect. 7.2, we study the convergence properties of the full
GGM algorithm applied to the simulation of a two-dimensional (2D) device with
the same geometry as in Fig.1, with special care on the dependence of such proper-
ties on the truncation parameter δ. Finally, in Sect. 7.3 we illustrate the relevance of
QCDD models for the simulation of advanced CMOS structures. With this purpose,
a nanoscale device with intrinsically 3D geometry is presented together with a short
discussion of its electrical characteristics as predicted by computations performed
using the DD, QDD and Schrödinger–Poisson DD (SPDD) models.

7.1 A Nanoscale One–Dimensional MOS Capacitor

In this section we consider a 1D test case that can be regarded as a cross–section of
the device of Fig. 1 in the direction connecting the bulk contact (bottom portion of
Γ+) to the interface contact Γ0. As no current is expected to flow across the inter-
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face, the quasi–Fermi levels are known a priori to be constant, so that we only need
to solve the Poisson–Bohm subsystem (8) and only the Inner Iteration Loop of the
GGM needs to be executed. The device length is of 100nm, the doping is of p-type
and has a concentration of 1021m−3, and the boundary conditions for the potential
are ϕbulk = 0V , ϕinterface = 0.1V . A nonuniform mesh with a step-size varying
gradually from a maximum of 7.9168 · 10−9m at the bulk contact to a minimum of
1.7347 · 10−14m at the interface side of the device was used for the computations.
Fig. 3 (left) shows that the dependence of the computed electron density on the
truncation parameter δ is almost negligible, and that the variation of the quantum
correctionGn significantly occurs only across the mesh element closest to the inter-
face (Fig. 3, right). Fig. 4 (left) shows that the a priori bound (23) for σn is actually
consistent with the physics, as σn = 1 in the whole device except in the region cor-
responding to the steep boundary layer at the interface where it rapidly decreases
to σn = 0. Finally, Fig. 4 (right) shows that decreasing the value of δ only slightly
affects the convergence rate of the iteration scheme. Nevertheless, given the almost
linear rate of convergence, the use of vector extrapolation techniques is expected to
produce a noticeable reduction in the number of required iterations (see Ref. [10]).

δ = 10−152e+16
4e+16
6e+16
8e+16
1e+17

1.2e+17
1.4e+17
1.6e+17
1.8e+17

0 2e-08 4e-08 6e-08 8e-08 1e-07

n
[m

−
3]

x[m]

δ = 10−7

δ = 10−9

δ = 10−12

0
9.99999e-08

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

9.99998e-08 1e-07

G
n
[V

]

x[m]

δ = 10−7

δ = 10−9

δ = 10−12

δ = 10−15

9.99995e-08 9.99996e-08 9.99997e-08
-1.6

Figure 3. Left: electron concentration in the device; right: Bohm potential near Γ0.
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Figure 4. Left: spatial distribution of σn; right: convergence rate of the inner loop of the
GGM as a function of the truncation parameter δ.

7.2 Experimental Convergence Analysis on a Two-Dimensional Device

In this section, we perform an experimental convergence analysis of the Outer It-
eration Loop of the GGM. Reported computations refer to the 2D simulation of a
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device with the same structure as that of Fig. 1, having length in the x and y di-
rections equal to 75nm and 100nm, respectively. The piecewise constant doping
profile of the device is shown in Fig. 5. The n-type dopant in the source and drain
regions has a concentration of 1025m−3 while in the rest of the domain the doping
is of p-type and has a concentration of 1021m−3. Also shown in Fig. 5 is the nonuni-
form computational mesh which has a step-size gradually decreasing near the upper
side of the domain boundary. The computational results in Fig. 6 and Fig. 7 refer

Figure 5. Doping Profile and Computational Grid.

to the device biased in the off-state condition. The applied voltages in this case are
0.1V at the drain and gate contact and 0V at the source and bulk contacts. In this
regime, there is no conductive path between the source and drain contacts, which
can be clearly seen from Fig. 6(c) where the potential barrier under the gate contact
is visible and in Fig. 6(b) which shows that there is no inversion layer at the gate.
It is to be noted that, consistently with the discussion carried out in the theoretical
part of the present paper, the Poisson and Bohm equations have been solved with a
Dirichlet boundary condition applied at the gate contact (see Figs. 6(b)-(c)) while
the current continuity equation has been solved with an homogeneous Neumann
boundary condition at the gate contact, as is apparent from the spatial distribution
of the electron quasi–Fermi level shown in Fig. 6(a). Fig. 7 shows the spatial dis-

(a) Electron quasi–Fermi
Level

(b) Electron Density (c) Electric Potential

Figure 6. Simulation results for Vdrain = Vgate = 0.1V .
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tribution of the electron Bohm potential Gn in the device in the off–state condition,
corresponding to two different values of the truncation parameter δ. The results
show that Gn is vanishing everywhere in the domain except in the steep boundary
layer near the gate contact, where it attains an absolute value of about 1.5V , and
that the value of Gn at the contact depends on the truncation parameter, becoming
larger, as expected, as δ → 0. Fig. 8 shows the quantity ek defined as
(28)

ek := max
(∥∥∥δϕ(k)

∥∥∥
L∞(Ω)

,
∥∥∥δϕ(k)

n

∥∥∥
L∞(Ω)

,
∥∥∥δϕ(k)

p

∥∥∥
L∞(Ω)

,
∥∥∥δG(k)

n

∥∥∥
L∞(Ω)

,
∥∥∥δG(k)

p

∥∥∥
L∞(Ω)

)
as a function of the iteration number k. In (28), δ(·)(k) denotes the increment of each
quantity from iteration k to k+1. From Fig. 8 one can see that the convergence rate
of the outer loop is almost linear and that it changes slightly when the truncation
parameter is modified.

(a) Bohm Potential for δ = 10−8 (b) Bohm Potential for δ = 10−10

Figure 7. Results for Vdrain = Vgate = 0.1V .
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Figure 8. Convergence history for Vdrain = Vgate = 0.1V .

Fig. 9 and Fig. 10 show results of a simulation performed with the device biased
in the on-state condition. By comparing Fig. 6(c) with Fig. 9(b) one may notice
that the potential barrier between source and drain has disappeared. This causes
electrons to accumulate near the gate contact, forming the inversion layer which
is visible in Fig. 9(a). Fig. 9(c) displays a close-up view of the channel of the
device with the direction (arrows) and magnitude (color) of the electron current
density and shows that the shift of the charge peak due to the boundary condition
imposed on Γ0 causes the current to flow away from the boundary. The graphs in
Fig. 10 show that the Bohm potential in the on–state regime becomes very large in
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absolute value (more than 50V ) and negative at the gate contact, but still vanishes
elsewhere in the device domain as was the case in the off-state regime. It is also
to be noticed that, compared to the very large value attained by Gn at this bias, its
variation due to the choice of the truncation parameter is almost negligible. Finally,
Fig. 11 shows that the convergence rate of the outer loop is almost linear also in
the on–state condition, and that it changes slightly when the truncation parameter
is modified.

(a) Electron Density (b) Electric Potential

(c) Electron Current Density

Figure 9. Simulation results for Vdrain = 0.1V, Vgate = 0.7V .

(a) Bohm Potential for δ = 10−8 (b) Bohm Potential for δ = 10−10

Figure 10. Results for Vdrain = 0.1V, Vgate = 0.7V .
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Figure 11. Convergence history Vdrain = 0.1V, Vgate = 0.7V .

7.3 QCDD Simulation of a Three-Dimensional Device

The purpose of this section is to demonstrate the relevance of including the quantum–
correction termsGn andGp in the simulation of a realistic nanoscale device in terms
of their impact on the electrical performance of the device. Also, to assess the per-
formance of the QDD model both in terms of accuracy and computational cost, we
compare the simulation results obtained by the QDD model with those of both a
simpler (thus less computationally expensive) model, namely the DD model, and
those of a more accurate (but more computationally complex) model, namely the
SPDD model [11].

The chosen device is a 3D Double-Gate MOSFET [36] with the following geome-
try:

• Silicon film thickness TSi = 10nm
• Gate length Lg = 13nm, channel length LCH = 11nm
• Oxide thickness TOX = 2nm
• Total Source-to-Drain length L = 49nm
• Width W = 20nm

The doping profile D is a piecewise constant function and has a value equal to
N+

D = 5 ·1025m−3 in the source and drain regions and equal to −N−
A = −1021m−3

in the channel region, respectively. These values are consistent with the indications
of the latest release of the ITRS [8].

Fig. 12 displays the device geometry and the finite element mesh used in the nu-
merical computations, while the log-scale values of the doping profile are tabulated
on the right-hand-side color-bar. The computational grid consists of 89136 tetrahe-
dra (18081 mesh nodes). Fig. 13 shows the I–V (current-voltage) curves obtained
from full 3-D simulations with the DD, QDD and SPDD models, respectively, with
the purpose to highlight the non-negligible difference between a classical and a
quantum-corrected simulation for the given device geometry which, in turn, clearly
indicates the importance of taking into account electrostatic quantum effects in such
aggressively scaled devices. In Fig. 13(a) on the x-axis the value of the applied Gate
voltage Vg is tabulated, while on the y-axis the value of the computed Drain cur-
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Figure 12. Device geometry, doping profile and computational mesh.
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Figure 13. Drain current Id vs. Gate voltage Vg for the the biasing conditions Vd = 0.01 V
and Vs = 0V .

rent is plotted in logarithmic scale for a value of the voltage applied at the Drain of
Vd = 10mV . From this picture one can notice that the curve corresponding to the
QDD model results has degraded slope in the sub-threshold region in comparison
to the prediction of the DD model. Fig. 13(b) shows the results of the same com-
putations as above but with the y-axis in linear scale; from this picture one can see
that the QDD model predicts a larger value of the threshold voltage compared to the
classical simulation, which is an expected consequence of the increased effective
oxide thickness. Although both effects are underestimated by the QDD model in
comparison to a more accurate SPDD simulation, one might argue that the largely
inferior computational effort required by the QDD model compared to the SPDD
model for a full 3D simulation more than compensates the slight inaccuracy in the
current prediction. In fact, the computation of each bias point required about 10
minutes with the DD model, up to 45 minutes with the QDD model and more than
3 hours with the SPDD model 1 . Finally, Fig. 14 shows the electron density in the
device computed by the QDD model at the biasing conditions Vd = 0.01V and
Vg = Vs = 0V , the charge-peak-shift effect being evident in both pictures.

1 The code used for the simulation is a set of Octave scripts and was run on a MacBook
laptop with a 2 GHz CPU and 1Gb RAM with Octave 2.9.17
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(a) Section parallel to the x-z plane (b) Section parallel to the y-z plane

Figure 14. Electron density in the device computed by the QDD model at the biasing con-
ditions Vd = 0.01 V and Vg = Vs = 0 V ; lighter shades of gray indicate higher values of
the density.

8 Conclusions and Future Perspectives

In this article, we have addressed the analysis of existence of a fixed point of the
functional iteration procedure (GGM) for the solution of QCDD models, proposed
and thoroughly numerically investigated in [11]. Several numerical examples have
also been included to support the theoretical conclusions. The GGM has the benefit
of maintaining the same functional structure irrespective of the specific choice of
the quantum–corrected model, and, in the case of the QDD model, to provide an
effective computational tool for the numerical solution of the variational formula-
tion proposed in Refs. [1] and [31] to treat the quantum correction. The principal
instruments used in the analysis are i) the introduction of a truncation operator; ii)
the extension of the theory of invariant regions, used in [19] in the DD case; and
iii) a homotopy method based on the general theory developed in [17] to select the
solution of each equation yielding the quantum corrections. It is expected that, with
some modifications, the framework proposed in the present work can be extended
to deal with other quantum–corrected models, as considered in [11,23,29,30]. This
extension will be the object of a future study.
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A Upper and Lower Solutions for Gradient Equations

We cite in this section the essential results developed in [6]. Let Ω ⊂ RN be a
bounded domain with piecewise-C1-boundary ∂Ω, and ΓN ⊂ ∂Ω be such that
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ΓD = ∂Ω\ΓN is a relatively open C1-portion of ∂Ω with positive surface measure.
Consider the boundary value problem (BVP)

− div (a(x)∇u) + f(x, u) = 0 in Ω,(A.1)

u = uD on ΓD,
∂u

∂ν
+ g(x, u) = 0 on ΓN ,(A.2)

where a ∈ L∞(Ω) with a(x) ≥ µ > 0, and ∂/∂ν denotes the outward conormal
derivative on ΓN . Let H := W 1,2(Ω) denote the usual (real) Sobolev space, and let
H0 ⊂ H be the subspace of H defined by

H0 = {u ∈ H | γu = 0 on ΓD},

where γ : H → L2(∂Ω) is the trace operator which is linear and compact. The
corresponding dual spaces are denoted by H∗ and H∗

0 . It is known that ‖u‖2
H0

=∫
Ω |∇u|2 dx defines an equivalent norm on the subspace H0. We assume the bound-

ary values uD to be the restriction of a function ũD ∈ H , i.e., ũD|ΓD
= uD.

(C1) We assume the nonlinearities f and g in (A.1) and (A.2), respectively, to be of
Carathéodory type.We assume f and g are increasing in u.

The weak formulation of the BVP (A.1), (A.2) reads as follows.

Definition A.1 u ∈ H is called a solution of the BVP (A.1), (A.2) if

(i) u = uD on ΓD, and
(ii)

∫
Ω a∇u·∇ψ dx+

∫
ΓN
g(x, γu)γψ dΓ +

∫
Ω f(x, u)ψ dx = 0, ∀ ψ ∈ H0.

Let us recall for convenience the notion of (weak) super- and subsolutions.

Definition A.2 ū ∈ H is called a supersolution of the BVP (A.1), (A.2) if

(i) ū ≥ uD on ΓD, and
(ii)

∫
Ω a∇ū · ∇ψ dx+

∫
ΓN
g(x, γū)γψ dΓ +

∫
Ω f(x, ū)ψ dx ≥ 0,

∀ ψ ∈ H0 ∩ L2
+(Ω),

Similarly, u ∈ H is a subsolution if the reversed inequalities in Definition A.2 hold
with ū replaced by u. We make the following additional hypotheses.

(C2) There exist a supersolution ū and a subsolution u of the BVP (A.1), (A.2) such
that u ≤ ū.

(C3) There is a p ∈ L2
+(Ω) such that |f(x, s)| ≤ p(x) for a.e. x ∈ Ω and s ∈

[u(x), ū(x)].
(C4) There is a q ∈ L2

+(Γ) such that |g(x, s)| ≤ q(x) for a.e. x ∈ Γ and s ∈
[γu(x), γū(x)].

The following lemma was established in [6].
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Lemma A.1 Under the hypotheses (C1)–(C4), the BVP (A.1), (A.2) has a uniquely
defined solution u within the order interval [u, ū].

B Invariant Regions for Non-Gradient Systems

We consider in this section the following nonlinear system of m steady–state non-
linear reaction–diffusion equations on a bounded Lipschitz domain Ω ⊂ RN

(B.1) ∆u = f(· ,u), u = (u1, . . . , um)T , f = (f1, . . . , fm)T ,

where ∆ denotes the Laplacian, acting on each component. System (B.1) is sup-
plied with mixed boundary conditions as follows.

i. Dirichlet Boundary. There is a (relatively open) boundary component ΓD such
that the restriction of u to ΓD agrees with a smooth function û ∈ C∞(Ω̄), with
range in Q:

(B.2) γ(u− û)|ΓD
= 0.

Here, γ denotes the trace operator.
ii. Neumann Boundary. The normal derivative of u vanishes in a weak sense on

the complement of ΓD with respect to ∂Ω. This is a natural boundary condition
subsumed in the weak formulation.

Our aim is to extend to (B.1) the theory of super-and sub-solutions for linear elliptic
equations.

B.1 Generalities

For this, we characterize the structure of the vector field f .

1. Carathéodory Mapping (CM) Define the slab,

Q =
m∏
1

[ai, bi], ai < bi, i = 1, . . . ,m,

in Rm and the Cartesian product,D0 = Ω×Q. f is assumed to be a Carathéodory
mapping (CM) on D0.

2. Outward Pointing on the Boundary of Q (Property OP).

If ui = ai, i = 1, . . . ,m, then fi(· , u1, . . . , um) ≤ 0;

if ui = bi, i = 1, . . . ,m, then fi(· , u1, . . . , um) ≥ 0.
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The following result will be proved in the following section.

Theorem B.1 (Existence, with range in invariant regions.) Suppose f satisfies pro-
perties CM and OP, and is L2 bounded as a composition mapping. Then (B.1),
(B.2) has a weak solution u with range in Q.

B.2 A Trapping Principle for Semilinear Elliptic Systems

We consider again system (B.1). This framework has a significant implication, due
to Krasnosel’skii. We state it in the form of a lemma.

Lemma B.1 For a Carathéodory mapping h, if h maps (a subset of) L2(Ω) into
L2(Ω), via the composition,H(v) = h(· ,v), thenH defines a continuous mapping
from L2 to L2.

This was shown by Krasnosel’skii [24, Theorem 2.1, p. 22] (see also [12, p. 77]).

Since we may identify the components of f(· ,u) with elements of L2, then we
may identify these components with continuous linear functionals on H1. In this
identification, it is necessary to use the equivalent norms on Yi = H1, given by

(B.3) (v, w)Yi
=
∫
Ω
∇v·∇w dx+

∫
ΓD

γvγw dσ.

In order to define what is meant by weak solution, we introduce the inner product
on Y =

∏m
1 Yi as

(B.4) (v,w)Y =
m∑
1

∫
Ω
pi∇vi·∇wi dx+

m∑
1

∫
ΓD

γviγwi dσ.

We identify the zero trace subspace of Y :

Y0 = {v ∈ Y : γv|ΓD
= 0}.

Then u is a weak solution of (B.1),(B.2) if u satisfies (B.2) and the relation,

(B.5) (u, φ)Y + 〈f(· ,u), φ〉 = 0, ∀φ ∈ Y0.

Here, the duality relation is used with component summation.

B.2.1 The Variational Inequality

We begin by establishing some notation. We set

(B.6) K0 = {v ∈ Y : γ(v − û)|ΓD
= 0, v(x) ∈ Q for almost all x ∈ Ω}.
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The variational inequality can be formulated as: Determine u ∈ K0 such that, if
F (u) = f(· ,u), then

(B.7) 〈F (u),v − u〉+ (u,v − u)Y ≥ 0, ∀v ∈ K0.

Parallel to Theorem B.1 is the following proposition.

Proposition B.1 Suppose f satisfies property (CM), and is componentwiseL2 bounded.
Then the variational inequality (B.7) has a solution u ∈ K0.

We shall deduce Proposition B.1 from quadratic minimization, in conjunction with
the Schauder fixed point theorem in the following subsections.

B.2.2 Existence for the Variational inequality

We define the closed convex sets Ki ⊂ Yi, i = 1 . . . ,m, by

(B.8) Ki = {v ∈ Yi : γ(v − ûi)|ΓD
= 0, v(x) ∈ [ai, bi] for almost all x ∈ Ω}.

We notice that

K0 =
m∏
1

Ki.

If K0 = {v ∈
m∏
1

L2 : v(x) ∈ Q for almost all x ∈ Ω}, we define a map

T : K0 7→ K0

as follows. Set Tw = u if u solves the decoupled variational inequality: Determine
u ∈ K0 such that, if F (w) = f(· ,w), then

(B.9) 〈F (w),v − u〉+ (u,v − u)Y ≥ 0, ∀v ∈ K0.

In order to analyze this inequality, we first isolate an arbitrary inequality of the
decoupled system. Using the notation, for fixed i,

ui = u, vi = v, wi = w,Fi(w) = G, ûi = û,

we determine a unique element v0 via the Riesz representation theorem such that

(B.10) 〈G, φ〉 = (v0, φ)Yi
.

By standard results concerning quadratic minimization over closed convex sets, u
may be characterized as the unique element minimizing the functional,

Φ(v) = ‖v − v0‖2 − ‖v0‖2,
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over Ki. We easily obtain an ‘a priori’ estimate for u ∈ Yi.

We are now ready to verify the existence of a solution of the variational inequality.
In order to apply the Schauder fixed point theorem, we require the components of
the image of T to lie in closed, compact sets in L2, and for T to be continuous
(see [14, Theorem 10.1]). The intersection of Ki with the ball in Yi, described by

an ‘a priori’ estimate, is relatively compact in the closed convex set K0 ⊂
m∏
1

L2

by the compact embedding. Thus, it remains to verify the continuity of T . By
appropriately subtracting the inequalities corresponding to two distinct solutions
u∗ = Tw∗,u∗∗ = Tw∗∗, we finally obtain, for some positive constant C,

‖u∗ − u∗∗‖2
Y ≤ C‖F (w∗)− F (w∗∗)‖2

By use of Lemma B.1, we infer the continuity of T on
m∏
1

L2. Application of the

Schauder theorem concludes the proof.

B.2.3 Major Equivalence Theorem

In this section, we use the property (OP) satisfied by the vector field f to assert that
a solution of the variational inequality (B.6) is a weak solution of the system (B.1)–
(B.2), i. e. , satisfies (B.5). For details, cf. [19].

Theorem B.2 Let (u1, . . . , um)T be a solution of (B.7). Then, under the hypothesis
(OP) on f , (u1, . . . , um)T is a solution of (B.5). In particular, Theorem B.1 holds.

C Continuous Selection Hypothesis

The justification of Assumption 5.1 is outlined in this section. Without loss of gen-
erality, we consider the second equation of (8). If the consolidated Dirichlet bound-
ary is denoted by ΓD, we denote by wbdy the consolidated Dirichlet boundary data.
We write the trivial homotopy for the second equation of (8), inclusive of boundary
condition, in the operator format (with subscripts suppressed for simplicity):

F (w, λ) = [−δ2∆w + λf(x,w) = 0,Dirichlet trace = wbdy], 0 ≤ λ ≤ 1.

The first component of [· , · ] is understood in the weak sense: H1 is mapped into
its dual [H1]∗. We summarize the theory of [17], especially Theorem 3.1. Under a
minimal set of hypotheses:

• (i) Fw is locally Lipschitz continuous;
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• (ii) there are locally defined linear approximate right inverses G of Fw, which
are uniformly bounded in norm;

• (iii) the family {G} satisfies an approximation of the identity condition;

it is demonstrated in [17] that a discrete homotopy path exists over the interval [0, 1]
for F , permitting the precise ‘capture’ of a zero of F (· , 1). The argument presumes
a sufficiently small residual at λ = 0, and employs a predictor/corrector ‘algorithm’
with N0 steps to reach a starting iterate in the domain of convergence of Newton’s
operator method at λ = 1. The predictors are denoted {vi}N0

1 and the correctors,
including the starting iterate, {wi}N0

0 . The norm of the initial residual is denoted by
ρ−1. By the construction, elaborated below, this quantity can be chosen arbitrarily
small. One notes that Theorem 3.1 of [17] is a rigorous analytical result. This result
may be used:

(1) for local uniqueness;
(2) for establishing continuity of the mapping N .

The critical step in the construction is the definition of the approximate right in-
verse of the derivative of Fw at each step. We note that the inverse used during
the corrector/predictor step, denoted by H in [17], is required to satisfy a less
stringent approximation of the identity condition than the inverse used for the
predictor/corrector step, denoted by G. The algorithm is outlined now. One be-
gins by determining the solution w0 of Laplace’s equation with specified boundary
values wbdy. This produces a zero residual, which permits a starting ρ−1 satis-
fying inequalities (2.16)–(2.17) of [17]. The Fréchet derivative of F is elemen-
tary when λ = 0, and simply reproduces the Laplacian part of F , independent
of the calculated w0. Homogeneous Dirichlet boundary conditions on the Dirich-
let boundary ΓD are required for the specification of the linearizations. Each of
the approximate right inverses is denoted by the † notation. Initially, one defines:
[Fw(w0, 0)]† := [Fw(· , 0)]−1. After this obvious step, the algorithm requires defi-
nitions after both the Euler predictor and Newton corrector steps (cf. (3.7)–(3.8) of
[17]). Thus, if the predictor vk has been defined, one forms the residual F (vk, λk),
and the approximate right inverse, via the first two terms of the virtual Neumann
series for perturbations, as we now explain. For clarity, we suppress the second
component (always zero) of the derivative mapping of F . Also, define the negative
part g− of a function g to be the minimum of g and zero so that g− ≤ 0. Set

Γk = [Fw(wk−1, λk−1) + (λk−1[fw(vk)− fw(wk−1)]
+ + ∆λ[fw(vk)]

+)I]†.

Note that we have used the property that the approximate right inverses are invert-
ible, and remain so under perturbation of Fw by positive multipliers of the identity.
Inductively update the approximate right inverse by the formula:

(C.1) [Fw(vk, λk)]
† = Γk − Γk[λk−1[fw(vk)− fw(wk−1)]

− + ∆λ[fw(vk)]
−]Γk.
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This is the truncated virtual Neumann series. Now define wk by the Newton step
(the notationG is used for emphasis): wk = vk−G(vk, λk)F (vk, λk). An even sim-
pler construction is used to update from corrector to predictor (cf. (3.7) of [17]; the
updated approximate inverse utilizes the actual inverse: (−δ2∆+λk[fw(wk]

+I)−1).
If X0 denotes the Dirichlet zero trace functions in H1, analysis shows that the op-
erators G are bounded from X∗

0 to X0; at each stage a multiplier (not exceeding√
1 + γk) of the preceding bound is introduced. One computes, for J the Riesz map

in an equivalent norm: γk = ‖J‖2{sup |[fw(vk)− fw(wk−1)]
−|+ ∆λ|[fw(vk)]

−|}2

in the predictor/corrector case. It is elementary that γk ≤ γ, for a fixed positive
constant γ. The hypotheses on the corrector/predictor map lead to a simple uniform
bound in terms of the Laplacian. When restricted to L2, the approximate inverse
operators are positive definite, symmetric, and bounded. The maximum bound MG

for the family {G} defined in this way does not exceed δ−2‖(−∆)−1‖, multiplied
by the product expansion factor above:

√
1 + γ. The approximation of the identity

condition is now routine, as is the Lipschitz condition. At the completion of the ho-
motopy, the approximate inverses are defined in a manner similar to (C.1), with ∆λ
suppressed, and all iterates defined as correctors. The argument that MG remains a
valid bound for the inverse norms now requires an infinite product estimate based
on the convergence estimate (2.18) of [17]:

c0 =
∞∏
1

(1 + αk) ≤
(

MG

δ2‖(−∆)−1‖

)2

.

Here, αk is bounded by cρ−12−k for some constant c, as follows by estimating the
terms ‖wk −wk−1‖2

X0
via the analysis of [17]. The preceding discussion leads then

to MG as defined if ρ−1 satisfies exp(2cρ−1) < 1 + γ. It follows that, at the ter-
mination of the predictor/corrector steps, one is in the domain of convergence of
the approximate Newton method completely defined above. This permits the iden-
tification of a solution in an unambiguous manner. Continuity of N in L2, required
for the Schauder theorem, follows from the explicit definition of the approximate
inverses via a formula analogous to (C.1).
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