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Abstract

This paper has two major goals: (1) to study the effect of the common practice of
neglecting the convective terms (inertial approximation) in the hydrodynamic model in
the simulation of n+-n-n+ diodes and two dimensional MESFET devices; and, (2) to test
analytical criteria, formulated in terms of characteristic values of the Jacobian matrix, as
a method of determining the impact of first derivative perturbation terms in this model,
and in related energy transport models. This characteristic value analysis can be thought
of as generalizing the usual analytical solution of first order linear systems of ordinary
differential equations with constant coefficients. Concerning (1), we find that the inertial
approximation is invalid near the diode junctions, and near the contact regions of the
MESFET device. In regard to (2), we find a proper arrangement of terms, expressing
the flux, such that the first derivative part of the system is hyperbolic, both for the
hydrodynamic model and the energy transport model. For the hydrodynamic model, two
forms of the heat conduction term are studied, including the case of a convective term.
This suggests and validates the use of shock capturing algorithms for the simulation.
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1 Introduction

In earlier work (see [8]), we have advocated using modern nonlinear hyperbolic based shock

capturing algorithms (e.g., the ENO algorithm in [16]) in device simulations with hydrodynamic

(HD) and energy transport (ET) models; introductions to these models may be found in [13]

and [2], respectively. The first use of such methods in device simulation was [3]. They are very

successful in solving a hyperbolic conservation law of the form:

wt + f1(w)x + f2(w)y = 0, (1.1)

where w is a vector. In device simulation, both HD and ET models can be expressed in the

following form:

wt + f1(w)x + f2(w)y = r(w), (1.2)

where the right-hand-side r(w) contains both the forcing terms due to the relaxation, which

are nonlinear functions of w, and the second derivative terms due to the heat conduction. A

necessary precondition for the usage of hyperbolic based shock capturing algorithms is the

property that the first derivative part, f1(w)x + f2(w)y, is indeed hyperbolic, i.e., ξ1f
′
1(w) +

ξ2f
′
2(w), with real ξ1 and ξ2, has only real eigenvalues and a complete set of eigenvectors. Here,

f ′i denotes the Jacobian, ∂fi/∂w, for i = 1, 2. A common practice in the interpretation of

the hydrodynamic model is to employ the inertial approximation, which in our terminology

characterizes the transport effect as small if

τp
√
u2
x + u2

y + v2
x + v2

y � 1, (1.3)

where τp is the momentum relaxation coefficient and (u, v) is the velocity vector. Here we

use ux to denote the partial derivative of u with respect to x, i.e. ∂u/∂x, etc. Note that the

velocity derivatives, rather than the velocities themselves, appear in (1.3). The corresponding

one dimensional version is similar. The reader can find this approximation employed in many
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reduced hydrodynamic models (cf. [11]), where it is typically accompanied by the assumption

that the kinetic energy component is negligible in the total energy. As discussed in [13], the

use of (1.3) allows the extension of the Scharfetter-Gummel method to a hydrodynamic model

setting. A comparable hypothesis is well known in fluid mechanics, where the resulting flow is

termed a Stokes’ flow. In the electrical engineering community, one speaks of neglecting the

convective terms.

In this paper, we simulate a standard one dimensional n+-n-n+ channel and a two di-

mensional MESFET, using the complete HD model, as introduced in [13], with Baccarani-

Wordeman relaxation expressions (see [1]), and then check the validity of (1.3). From a physical

point of view, we wish to check whether the transport effect is uniformly small. If it is, hyper-

bolic based algorithms probably need not be used, and the inertial approximation would appear

justified. We can see from the simulations in the sequel (cf. §2) that the quantity measured

by the left-hand-side of (1.3) is not small near the junctions for the one dimensional case, and

near the contact regions for the two dimensional case. This verifies that the transport effect

is not uniformly small, and justifies the usage of hyperbolic based algorithms, at least in the

cases where computational resources limit the number of grid points one can put inside the

junction regions to fully resolve them. It also justifies using the full hydrodynamic model. We

are not aware of any prior work which tests the validity of (1.3) intrinsically, i.e., by using the

hydrodynamic model itself. Notice that this is logically different from an extrinsic check via,

say, the Boltzmann transport equation as employed in [17] to measure the effect on the kinetic

energy calculation near the diode junctions. Moreover, the kinetic energy component is distinct

from the calculation of the left-hand-side of (1.3).

The reader will notice that hyperbolicity means, via a separation of variables analysis in-

volving imaginary exponentials, that an oscillatory dependence on the spatial variables results

in a time dependence which neither grows nor decays. This results from separated solutions of
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the linearized problem of the form,

w = w0 exp(i(ξ1x+ ξ2y)) exp(iλt). (1.4)

Our assumption requires λ to be real. Notice that if this is not true, the system is of mixed

hyperbolic-elliptic type, and the mathematical theory about the solution to (1.2), when the

right-hand-side tends to zero, is very complicated and in many cases still unresolved. Likewise,

numerical methods for such mixed type systems are also complicated and not fully developed

(see e.g., [15]). We would thus desire to avoid the appearance of mixed type first derivative

part when modifying the models. Notice also that in many modifications to the hydrodynamic

models (e.g., [17], [12]), the right-hand-side of (1.2) is changed to contain some first derivative

terms also. Although in practical computations these terms are treated as small perturbations

and approximated separately, the justification that these terms are indeed “small” can only

come from moving these terms to the left-hand-side, absorbing them into f1(w) and f2(w),

and then checking hyperbolicity. We discuss such a hyperbolicity check for the standard HD

model, the modified HD model [17], and the ET model [2]. Another aspect of hyperbolicity

comes from a comparison of the hyperbolic part with the heat conduction term in the energy

equation; this comparison may be characterized by the stability condition, which is imposed

on the explicit numerical scheme. This paper does not address the latter issue directly, but we

experience no undue time step restrictions, induced by high density doping, relaxation, etc.,

with the numerical scheme.

The numerical scheme we use in this paper is the ENO (Essentially Non-Oscillatory) scheme

[16], adapted to device simulations in [3] and [8]. It has the advantage of both high order

accuracy and monotone sharp gradient transitions.
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2 The Transport Effect

Both the HD (hydrodynamic) and ET (energy transport) models can be written in a conser-

vation law format with other terms lumped into the right-hand-side, given by (1.2). The

transport effect can be expressed by the quantity τp|ux| in one space dimension, and by

τp
√
u2
x + u2

y + v2
x + v2

y in two space dimensions, where τp is the momentum relaxation coef-

ficient, and u or (u, v) is the velocity. Again, we note that ux denotes the derivative of the

velocity, ux = ∂u/∂x. A common practice in device modeling is to employ the inertial approx-

imation, which requires that the transport effect is uniformly small:

|u· ∇u| � |u|
τp
, (2.1)

which is implied by

τp|ux| � 1, (2.2)

in one space dimension, and

τp
√
u2
x + u2

y + v2
x + v2

y � 1, (2.3)

in two space dimensions. In order to verify whether these commonly assumed properties are

valid, we simulate, using the full HD model [13], both a one dimensional n+-n-n+ channel,

and a two dimensional MESFET. We note in passing that the Stokes’ flow assumption in fluid

mechanics assumes the left hand side of (2.1) is small in relation to the pressure gradient/density

ratio in steady-state.

The one dimensional n+-n-n+ channel we simulate is a standard silicon diode with a length

of 0.6µm, with a doping defined by nd = 5 × 1017cm−3 in [0, 0.1] and in [0.5, 0.6], and nd =

2 × 1015cm−3 in [0.15, 0.45], joined by smooth junctions (Fig. 1). The lattice temperature is

taken as T0 = 300 K. We apply a voltage bias of vbias = 0.5V, 1.0V and 1.5V, respectively. We

use the full HD model; the relevant parameters can be found in [8]. We use a high order ENO
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scheme (third order) and a very refined grid (200 points), in order to ensure that the physical

model is fully resolved by our numerical result.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1015

1016

1017

1018

nd

µm

cm-3

Fig. 1: The one dimensional n+-n-n+ channel: the doping nd in the logarithm scale.

From the computed velocity, we can easily obtain the transport effect τp|ux|. This should

be uniformly small as described in (2.2), in order to justify the assumption of the inertial

approximation. However, our result in Fig. 2 clearly shows that the transport effect is not

small near the junctions. The velocity itself, for the case vbias = 1.5V, is shown in Fig. 3.
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Fig. 2: The one dimensional n+-n-n+ channel: the transport effect τpux using the HD model.
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Fig. 3: The one dimensional n+-n-n+ channel: the velocity u using the HD model and the
reduced HD model with the inertial assumption.

In order to verify that this is not an artifact of the spurious velocity overshoot at the right
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junction, we also simulate with a reduced heat conduction coefficient κ0 = 0.5 to reduce this

spurious overshoot (see [7]). The result, Fig. 4, still shows a significant transport effect at the

junctions, especially at the left junction, although the spurious velocity overshoot is greatly

reduced (Fig. 5).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-1.0

-0.5

0.0

0.5

µm

τp ux

vbias=0.5V

vbias=1.0V

vbias=1.5V

κ0 = 0.5

Fig. 4: The one dimensional n+-n-n+ channel: the transport effect τpux using the HD model
with a reduced heat conduction κ0 = 0.5.
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κ0 = 0.5

Fig. 5: The one dimensional n+-n-n+ channel: the velocity u using the HD model with a
reduced heat conduction κ0 = 0.5, and the reduced HD model with the inertial assumption
using the same reduced heat conduction.

Another concern about the definition of the transport effect (2.2), is that it depends on

the relaxation coefficient τp, which is subject to modeling errors, especially near the junctions.

To reduce this artifact, we also simulate the same device with a doping dependent mobility

coefficient µ0 (see [9]). We can see that the transport effect remains large at the junctions,

especially at the left junction, in Fig. 6, although the spurious velocity overshoot is greatly

reduced (Fig. 7). Notice that this reduction occurs even with κ0 = 1.5.
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Fig. 6: The one dimensional n+-n-n+ channel: the transport effect τpux using the HD model
with a doping dependent variable mobility µ0.
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Fig. 7: The one dimensional n+-n-n+ channel: the velocity u using the HD model with a doping
dependent variable mobility µ0, and the reduced HD model with the inertial assumption using
the same variable mobility.
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To determine the effect of ignoring this transport effect, by using a reduced hydrodynamic

model, we also carry out the simulation of the same diode using the reduced HD model, with

the inertial assumptions (i.e., the assumption that τpux = 0 and the assumption that the kinetic

energy is negligible in the total energy). This reduced HD model does not have a momentum

equation, is a fully parabolic system, hence is much easier to solve numerically. The velocity is

a quantity derived from the concentration and energy. As a matter of fact, for this simplified

HD model, a simple central difference approximation can be used when the equivalent first

order system is employed. We can see from Figs. 3, 5, and 7 that the reduced HD model

underestimates the velocity in all the cases, throughout the middle region but especially near

the left junction. This is similar to what would happen if one uses the drift diffusion model,

although the discrepancy is less serious.

Next, we turn our attention to two space dimensions. We simulate a two dimensional

MESFET of the size 0.6×0.2µm2. The source and the drain each occupies 0.1µm at the upper

left and the upper right, respectively, with a gate occupying 0.2µm at the upper middle (Fig.

8). The doping is defined by nd = 3×1017cm−3 in [0, 0.1]×[0.15, 0.2] and in [0.5, 0.6]×[0.15, 0.2],

and nd = 1×1017cm−3 elsewhere (also shown in Fig. 8). This is the example we used in [8]. We

remark that in our numerical experiments, ENO schemes are stable and convergent for higher

absolute dopings (experiments up to 1020cm−3) and for higher doping ratios (experiments up

to 105).
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Fig. 8: The two dimensional MESFET: the geometry and the doping nd.

We apply, at the drain, a voltage bias vbias = 2V. The gate is a Schottky contact, with a

negative voltage bias vgate = −0.8V and a very low concentration value n = 3.8503× 104cm−3

(following Selberherr [14]). The lattice temperature is again taken as T0 = 300 K. A high order

(third order) ENO scheme with a very refined grid of 192× 64 points is used. Again, this is

to ensure that the physical model is fully resolved by the numerical scheme. We note that for

this problem, the third order ENO scheme already gives very accurate results for a grid of the

size 96× 32 points. Boundary conditions and other parameters can be found in [8].

From the computed velocity, we obtain the transport effect τp
√
u2
x + u2

y + v2
x + v2

y. Again,

this should be uniformly small as described in (2.3), in order to justify the neglect of the

transport effect. However, our result in Fig. 9 shows that the transport effect is not small near

the contacts. For easy presentation, we have listed an integer at every other grid point in the

MESFET in Fig. 9. This integer is obtained by

min
(
9,
[
10τp

√
u2
x + u2

y + v2
x + v2

y

] )
,
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where [a] denotes the greatest integer less than or equal to a. In other words, this integer is ten

times the transport effect formula value, capped from above by nine. The velocity field itself is

shown in Fig. 10.

000000000000013585632333467999999999999999999999999999999999999985110000000112599999999999999998
000000000000013345433445689999999987544642228543442343332233344672110000000011369887775432211100
000000000000113322333444579999999999965665555664445444444444444432100000000001123333322222211111
000000000000112212333444457999999999787555545555444554444444433321100000000000011111111111000000
000000000000112112334443344449979988756544444444444344444333322211000000000000000110000000000000
000000000000111222333333333335877876654443333333333333333322221110000000000000000000000000000000
000000000011111233333333222233566665444333332223333222222222111100000000000000000000000000000000
222222222233333443333222222223344444333322222222222222222111111000000000000000000000000000000000
222233333333444432222222222222233333322222222222222111111111110000000000000000000000000000000000
111111112222232221111111112222222222222221111111111111111110000000000000000000000000000000000000
111111111111111111111111111111111211111111111111111111111100000000000000000000000000000000000000
000001111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000
000000011111111111111111111111111111111111111000000000000000000000000000000000000000000000000000
000000000111111111111111111111111110000000000000000000000000000000000000000000000000000000000000
000000011111111111111111111111111100000000000000000000000000000000000000000000000000000000000000
000000111111111111111111111111111000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111111000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111110000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111110000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111100000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111000000000000000000000000000000000000000000000000000000000000000000
000011111111111111111111111111000000000000000000000000000000000000000000000000000000000000000000
010011111111111111111111111110000000000000000000000000000000000000000000000000000000000000000000
010011111111111111111111111110000000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111100000000000000000000000000000000000000000000000000000000000000000000
011111111111111111111111111111000000000000000000000000000000000000000000000000000000000000001110
011111111111111111111111111100000000000000000000000000000000000000000000000000000000000000011110
011111111111111111111111111000000000000000000000000000000000000000000000000000000000000000011110
011111111111111111111111111000000000000000000000000000000000000000000000000000000000000000111111
011111111111111111111111110000000000000000000000000000000000000000000000000000000000000000111111
011111111111111111111111111000000000000000000000000000000000000000000000000000000000000001111111
011111111111111111110000000000000000000000000000000000000000000000000000000000000000000000000110

Fig. 9: The two dimensional MESFET: the transport effect. The integers denote the integer
part of ten times the transport effect:

[
10τp

√
u2
x + u2

y + v2
x + v2

y

]
. If it is larger than 9, then 9

is shown.

13



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

The velocity

vbias=2.0

µm

µm

Fig. 10: The two dimensional MESFET: the velocity field (u, v).

From these two examples we can conclude that, in device simulations, the transport effect

is not uniformly small. This justifies the usage of hyperbolic based shock capturing schemes

(e.g., [16]) for device simulation. It also justifies the usage of the full HD model.

3 The Test for Hyperbolicity

In this section, we would like to check the hyperbolicity of the first derivative part in (1.2), for

the HD model, the modified HD model in [17], and for the ET model in [2]. As indicated in the

introduction, this check is necessary to justify the usage of hyperbolic based algorithms. It is

also necessary to justify that any modifications to the physical model, such as the modification

proposed in [17] to the HD model, indeed introduce only “small” perturbations to the original

model. Here “small” means that the mathematical property of the underlying first order part

of the partial differential equation is not fundamentally altered.

The first example to consider is the standard HD model, given by (1.2), with a left-hand-side
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defined by

w =


mn
mnu
mnv
E

 , f(w) =


mnu

mnu2 + p
mnuv

u(E + p)

 , g(w) =


mnv
mnuv

mnv2 + p
v(E + p)

 , (3.1)

where n is the concentration, (u, v) is the velocity vector, E is the total energy per unit volume,

p = (γ − 1)
[
E − 1

2mn(u2 + v2)
]

is the pressure, with γ = 5
3 . We do not write out the right-

hand-side r(w) (which includes the forcing terms due to the relaxation and the heat conduction

second derivative terms), since such terms do not affect our analysis.

Since (1.1), with the fluxes defined by (3.1), is just the Euler equation for a compressible gas,

it is well known that, for any real numbers ξ1 and ξ2, the linear combination of the Jacobians,

ξ1f
′(w)+ξ2g

′(w), has only real eigenvalues U−c, U, U, U+c, where U = ξ1u+ξ2v and c =
√

γp
mn

is the sound speed. It also has two independent eigenvectors for the double eigenvalue U . The

HD model thus has a first derivative part (1.1) which is hyperbolic. Note that the sound speed

associated with the full system, not simply the first derivative part, is c =
√

p
mn

. This fact

was discussed in [6] and [3], and emphasized in the derivation of classification described in [4]

and [5]. This has the implication that the sound speed experiences a discontinuity as the heat

conductivity tends to zero, reflective of the complex structure defined by the model.

Next, we consider the modification to the HD model suggested in [17]. Since only the

one dimensional case is considered there, we will also consider only the one dimensional case.

Although the modification can be formally considered as a presumably small perturbation, and

added to the right-hand-side of (1.2), a rigorous justification that it is indeed small can only

result from transferring the first derivative part of the modification to the left-hand-side, and

analyzing the hyperbolicity condition of the perturbed first derivative part. The new flux, as

was used in the numerical section of [17], can be written as

w =

 mn
mnu
E

 , f(w) =

 mnu
mnu2 + p

u(E + p) + αmnu

 , (3.2)
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where again n is the concentration, u is the velocity, E is the total energy per unit volume,

p = (γ−1)
[
E − 1

2mnu
2
]

is the pressure, with γ = 5
3 . The perturbation coefficient α is expressed

by

α = −5
2

(1− r)kT0

m
, (3.3)

with r = 0.72 (the choice suggested in [17] for computation), k = 0.138046× 10−4, T0 = 300,

and m = 0.26× 0.9109 in our units. This results in a perturbation parameter,

α = −0.0122404,

and we shall use this value to study the hyperbolicity of (3.2). Clearly,

f ′(w) =

 0 1 0
γ−3

2 u2 (3− γ)u γ − 1
γ−2

2 u3 − uc2

γ−1
3−2γ

2 u2 + c2

γ−1 + α γu

 ,
which differs from the Jacobian of the unperturbed case only slightly (the extra α at the third

row, second column position). Notice that the Jacobian depends only upon the velocity u and

the sound speed c =
√

γp
mn

. Unfortunately, this small difference produces a significant change

in the analytic form of the eigenvalues of the Jacobian f ′(w). We thus resort to a numerical

experiment, to determine whether the eigenvalues of f ′(w) are all real and distinct in the region

of interest to us. To be more precise, we fill the region 0 ≤ u ≤ 0.3 and 0.1 ≤ c ≤ 0.6 (in

the units of µm/ps) with a dense grid, then use a numerical eigenvalue routine to find the

three eigenvalues of the Jacobian f ′(w) at each grid point. We then plot the region of non-

hyperbolicity, that is, the region in which at least one of the eigenvalues of f ′(w) is not real (it

happens that repeated eigenvalues did not appear). This region is shown as the dark region

near the bottom in Fig. 11. We also plot the realized pairs (u, c) from the simulation of the one

dimensional n+-n-n+ channel described before, for vbias = 0.5V, 1.0V, and 1.5V respectively,

in Fig. 11. We can clearly see that the modified system is hyperbolic for those realized (u, c)

values. This verifies that the perturbation proposed in [17] does not change the hyperbolicity

of the first derivative part for this n+-n-n+ channel.
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c (µm / ps)
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Fig. 11: The hyperbolicity check for (3.2)-(3.3). The dark region at the bottom is the region of
non-hyperbolicity. The three closed loops are realized values of (u, c) for the one dimensional
n+-n-n+ channel with vbias = 0.5V, 1.0V, and 1.5V, respectively.

Thanks to a comment by one of the referees, we also notice that, in the first part of the dis-

cussion in [17], the perturbation (3.3) involves T rather than T0. The resulting first derivative

part of the perturbed system is somewhat more complicated, but with the help of MATHE-

MATICA, we are able to determine explicitly its three eigenvalues as

λ1 = u, λ2,3 =
[
1 +

1
2

(γ − 1)b
]
u±

√
[γ + b(γ − 1)]

p

mn
+

1
4
b2(γ − 1)2u2,

where γ = 5
3 and the perturbation constant b = −0.7, by use of the suggested value r = 0.72

of [17]. Clearly, all three eigenvalues are real as long as n > 0 and T > 0, thus the perturbed

system has a hyperbolic first derivative part. This analysis justifies the statement that the

perturbation to the HD model proposed in [17] is indeed small mathematically, and the usage

of hyperbolic based algorithms is adequate.

The last model we wish to check is the ET model [2]. In this case, the left-hand-side of

17



(1.2) is defined by

w =
(
emn
nE

)
, f(w) = φxmn

(
eµ(E)

µE(E) +D(E)

)
, g(w) = φymn

(
eµ(E)

µE(E) +D(E)

)
,

(3.4)

where n is the concentration, E is the particle energy, and φ is the electrical potential. The

energy E is related to the temperature T in this model by the formula,

E =
3
2
kT

(
1 +

5
4
{kT}

)
, (3.5)

and the three (mobility and diffusion) functions of E are defined by

µ(E) = µ0
T0

T
, µE(E) =

3
2
µ0kT0

(
1− 5

4

{
kT

e

})
, D(E) = kµ0T0. (3.6)

Here, we have employed a bracket notation to indicate the numerical, as distinct from dimen-

sional, values of kT, kT/e. The exact values of the constants can be found in [8]. It is not

difficult to obtain a necessary and sufficient condition for ξ1f
′(w) + ξ2g

′(w) (for real ξ1 and ξ2)

to have only real and distinct eigenvalues:

(
µ(E)−E d

dE
µ(E)−m d

dE
µE(E)

)2

+ 4m
d

dE
µ(E)

(
µE(E) +D(E)−E d

dE
µE(E)

)
> 0.

(3.7)

By substitution of (3.6) into (3.7), after some manipulations, we can verify that inequality

(3.7) is valid for any T > 0. This proves the hyperbolicity of the first derivative part of the ET

model. It also justifies the usage of hyperbolic based ENO schemes in [8].

4 Concluding Remarks

We have assessed the validity of the inertial approximation, by which the hydrodynamic model

is reduced by the elimination of certain convective terms. A principal motivation for this

approximation is the desire to retain the traditional exponential fitting (Scharfetter-Gummel)

numerical methods, which have proven so successful in simulation of the drift-diffusion model.
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Our conclusion is that this approximation is not warranted! In particular, it is invalid in

the vicinity of junctions of one dimensional devices, and near the contacts of two dimensional

devices. However, the full hydrodynamic model possesses hyperbolic modes, which allow for

the creation of steep fronts, and even shock formation. This suggests the use of numerical

methods explicitly designed for such behavior. We have employed one such method, ENO, and

verified its effectiveness.

We have also analyzed the first derivative perturbation of the Fourier law of heat conduction,

employed in the model of [17], and determined this to be benign with respect to the hyperbolic

character of the HD model. This justifies and suggests the use of shock capturing methods for

this model as well. Finally, we have analyzed the appropriateness of such methods for the ET

model (termed the RT model in an early version), and found that the first derivative part of

this system is hyperbolic as well.

The analysis of the first derivative component of the HD and ET models should not be

confused with the mathematical classification of the complete systems. Exclusive of the Poisson

equation, these are classified as hyperbolic/parabolic and parabolic, respectively. It is the

hyperbolic modes in the HD model which cause numerical fitting difficulty, and, while these

components are not technically present in the ET model, due to the second derivative terms,

we have found that these terms can be effectively viewed as perturbations from a first order

hyperbolic system. It is this viewpoint which distinguishes our analysis from that of Gardner

in [4] and [5], where a Fourier mode analysis was employed to examine the full system. This

is, of course, equivalent to mathematical classification. Our approach is ultimately motivated

by the effectiveness of numerical computation based on hyperbolic methods.

Finally, we should like to mention that, since Scharfetter-Gummel type schemes currently are

predominantly used in device simulation, it is important to perform a comprehensive comparison

between ENO (or any high resolution hyperbolic based scheme) and Scharfetter-Gummel type
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schemes. However, this is beyond the scope of this paper. Such a comparison actually exists in

the computational fluid dynamics community, where exponential type methods (the methods

similar to Scharfetter-Gummel type methods in device simulation) have been compared with

modern high resolution schemes (see, e.g., [10]) and have been shown to be less effective and

less accurate for high gradient or shocked solutions. We believe that a high resolution scheme

such as ENO has genuine potential in device simulation, based on its success in computational

fluid dynamics and the similarity (in mathematical classification) of the equations there, as

compared to those of device simulation. What we accomplish in this paper is to establish this

link by working out the mathematical classification of the first derivative part for several device

simulation models.
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