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Abstract
The traditional techniques of approximation theory in the form of kernel in-

terpolation and cubic spline approximation are used to obtain representations and
estimates for functions implicitly defined as solutions of two-point boundary-value
problems. We place this benchmark analysis in the following more general context:
the approximation of operator fixed points, not known in advance, through a bal-
anced combination of discretization and iteration. We have chosen to make use of
the pendulum and elastica equations, linked by the Kirchhoff analogy, to illustrate
these ideas. In the study of these important classical models, it is approximation
theory, not numerical analysis, which is the required theory; a significant example
from micro-biology is cited related to nucleosome repositioning. In addition, other
suggested uses of approximation theory emerge. In particular, the determination
of approximations via symbolic calculation programs such as Mathematica is pro-
posed to facilitate exact error estimation. No numerical linear inversion is required
to compute the approximations in any case. The basic premise of the paper is
that approximations should be exactly computable in function form (up to round-
off error), with error estimated in a smooth averaged norm. Functional analysis is
employed as an effective organizing principle to achieve this ‘a priori’ estimation.
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1 Introduction

Fixed point theorems and theorems which predict zeros of nonlinear mappings occupy a

central position in mathematical analysis and its applications. Two constructive theorems,

which also serve as tools to prove existence, are:

1. The Banach contraction mapping theorem [4];

2. The Newton-Kantorovich theorem [8].

The Schauder fixed point theorem, which is the natural generalization to infinite dimen-

sional spaces of the Brouwer theorem, is non-constructive, and would appear to have no

direct use in computation. However, it can be effectively used in conjunction with the

convergence of numerical fixed points; a useful such theory is due to Krasnosel’skii et al

[12]. One can think of a numerical fixed point as the solution of a discretization scheme.

Various combinations of these theorems have been employed to analyze complex mod-

els. This article will illustrate the interplay of the ideas above with iteration and dis-

cretization. It may be viewed as a sequel to [10].

In order to present the ideas effectively, we employ a classical bench-mark example, the

two-point boundary-value problem defining a quarter period of the undamped oscillating

pendulum. This may also be interpreted, via Kirchhoff’s kinetic analog (see [11, 16]), as

an equilibrium position for the elastica. The pendulum equation is nonlinear, but pos-

sesses a structure sufficiently transparent for illustration. The original results of the paper

include the central Theorem 4 providing an ‘a priori’ estimate of the accuracy of an ex-

plicit approximation to a fixed point known only implicitly. We also obtain approximation

representations and estimates for the pendulum equation and the elastica never obtained

previously, in terms of cubic spline approximation, and a variational characterization of

the elastica required by the kinetic analog. The derived formulas permit symbolic cal-

culation and completely bypass numerical linear algebra, so that no inversion is required
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for the approximations. Moreover, the goal goes well beyond the numerical solution of

two-point boundary-value problems. There exist reliable software packages for this, such

as AUTO and CONTENT. What we require is an approximation theory, including an-

alytical approximations. For example, in the formation of loops in the repositioning of

nucleosomes along DNA (see [13]), the loops are approximated via the circle-line approx-

imation, depending locally on curvature. The analysis of this paper may be seen to give

rise to a more sophisticated analytical approximation, and may find some systematic use

in this, and similar applications.

2 The Pendulum Equation

In the first two sections, we discuss the applications: the oscillating pendulum and the

elastica.

2.1 The Oscillating Pendulum

Consider the boundary-value problem for the well-known (undamped) pendulum equation

[3, pp. 217-218],

−`θ̈(t) = cos θ(t), 0 ≤ t ≤ t̄, θ(0) = 0, θ(t̄) = −π, (2.1)

where ` denotes the length of the pendulum, subjected to unit gravitational force g down-

ward. The pendulum swings in a fixed plane along a circle with displacement `θ, starting

from horizontal position θ = 0 with velocity θ̇ = 0 at time t = 0, and reaching velocity

θ̇ = 0 again at t = t̄ when θ = −π. This swing constitutes a half-period. It is useful to

consider the canonical case ` = 2 and to track the pendulum only during the first half of

its swing. Thus we get the two-point boundary-value problem,

−θ̈ =
1

2
cos θ, θ(0) = 0, θ(L) = −π/2, (L = t̄/2). (2.2)
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Because we choose standard coordinates, with θ the angle made by the pendulum with

respect to the positive x-axis, θ will assume values between 0 and −π/2. Equation (2.2) is

also characterized variationally as the Euler-Lagrange equation satisfied by critical points

of the Lagrangian. For the interested reader, a formal derivation of Hamilton’s principle,

and of the Euler-Lagrange equations is given in [17], where a derivation of the system for

the double pendulum is carried out (see section 5.5 of [17]). There is also a discussion

of the single pendulum in [22, Ex. 2, p. 255]. We shall see presently that the Banach

contraction mapping theorem applies to the boundary-value problem.

2.2 Elastica Configurations

Elastica are critical curves of the strain energy,
∫ 1

0
κ2 ds, where κ is the curvature. Suitable

constraints on the curves produce a boundary-value problem in the form of the pendulum

equation (see [7] for an early study). The relationship between (2.2) and elastica config-

urations is clarified with the help of Jacobi elliptic functions (see [14] for a discussion of

these functions). Moreover, Mathematica provides built-in Jacobi elliptic functions and

elliptic integrals; see [15] for its applications to elastic curves. The unique solution of (2.2)

occurs (using the convention of Mathematica with m = 1/2) when
√
mL is the quarter

period of the Jacobi elliptic function sn(· ;m). In this case, the solution is given explicitly

by

θ(t) = −π/2− 2 arcsin[
√
m sn(

√
m(t− L);m)], 0 ≤ t ≤ L.

Mathematica gives the approximate value L = 2.62206 when L = Km/
√
m and Km is

the complete elliptic integral of the first kind. With this value of L, the three conditions,

θ(0) = 0, θ̇(0) = 0, θ(L) = −π/2 are satisfied.

It is of interest whether this equation and boundary conditions, with their unique

solution, can be replicated by an elastica, especially since these curves are significant

tools in approximation theory.
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The elastica is to have representation

x(s) = h cos θ(s), 0 ≤ s ≤ 1, y(s) = h sin θ(s), 0 ≤ s ≤ 1,

for h to be determined. We give the details of the derivation in the appendix, but indicate

the essential facts here.

Change parameter from time t to arclength s according to t =
√

2Kms so that

θ̃(s) = −π
2
− 2 arcsin[

√
m sn(Km(s− 1);m)],

and θ̃′′(s) = −K2
m cos θ̃(s). This kinetic transformation gives an effective length of unity

for the elastica, which has its initial position at the origin, and extends downward. It is

shown in the appendix how this curve arises from the critical point equations, augmented

by a constraint on the y-coordinate h of the terminal point of the elastica, to guarantee

the boundary conditions. This value is h ≈ −0.456947. For this particular value, there

is an elastic curve that starts horizontally, and then bends downward until it reaches the

‘height’ h, at which point its tangent is vertical. Moreover, the curvature at the initial

point vanishes, and the tangent angle θ̃(s) agrees with the pendulum’s deflection angle

θ(t) at time t =
√

2Kms when the length of the pendulum satisfies l = 2.

2.3 Green’s Function Formulation

We can rewrite the boundary-value problem (2.2) by use of the Green’s function [18, Sec.

8.1] G(t, s):

θ(t) =

∫ L

0

G(t, s)

[
1

2
cos θ(s)

]
ds − πt

2L
, 0 ≤ t ≤ L. (2.3)

G is a continuous symmetric kernel on the square S = [0, L]× [0, L], satisfying G(t, s) =

1
L
s(L− t), 0 ≤ s ≤ t, with symmetric continuation for t ≤ s ≤ L. The Green’s function

is the kernel of the operator G, which is a continuous linear operator on L2(0, L), with
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norm ‖G‖ bounded by the expression{∫
S

|G(t, s)|2 dtds
}1/2

= .724708.

By L2(0, L) we mean the linear space of real Lebesgue measurable functions on (0, L),

which are square integrable, with inner product:

(f, g)2 =

∫ L

0

f(t)g(t) dt.

We refer to the classic reference [1] for basic facts concerning L2 and Hilbert space linear

operators. The operator G is actually an operator of Hilbert-Schmidt type. It serves as

the inverse of the closed linear operator − d2

dt2
, with domain consisting of functions u, with

two L2 derivatives, such that u(0) = u(L) = 0.

2.4 Fixed Point Framework: Contraction Mapping

If we write Tθ for the r.h.s. of (2.3), so that it may be represented as

θ(t) = (Tθ)(t) =

∫ L

0

G(t, s)

[
1

2
cos ◦θ(s)

]
ds − πt

2L
, (2.4)

then we have identified the solution as a fixed point of the nonlinear mapping T . The

choice of normed space on which T is defined is flexible; L2(0, L) would work. However,

because of later comparisons with the discretization TN of T , it is more appropriate to

employ a smooth Hilbert space, which we describe now. Define the Sobolev space

H2(0, L) = {f : f, f ′, f ′′ ∈ L2(0, L)},

with inner product

(f, g)H2 = (f ′′, g′′)2 + f(0)g(0) + f(L)g(L).

By the preceding theory, we can recover f from f ′′ via

f(t) = Gf ′′(t) + f(0) + (f(L)− f(0))(t/L). (2.5)
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This technique allows us to use the completeness of L2 to infer the completeness of H2.

We introduce some additional notation. We define the closed subspace,

H2
0 (0, L) = {f ∈ H2(0, L) : f(0) = 0, f(L) = 0}. (2.6)

This deviates from standard notation: no endpoint conditions are assumed for the deriva-

tives. If Lin denotes the two-dimensional space of linear functions p(s) = A+Bs on [0, L],

we consider the orthogonal sum within H2, given by

H = H2
0 ⊕ Lin = H2(0, L).

Throughout this paper, we shall consider T as acting on the set,

U = {f ∈ H : f(0) = 0, f(L) = −π/2}, (2.7)

which describes the boundary conditions of (2.2). This is the natural metric space con-

taining the domain and range of T . Thus, T : U 7→ U ,

T f(t) =

∫ L

0

G(t, s)

[
1

2
cos ◦f(s)

]
ds − πt

2L
, 0 ≤ t ≤ L.

We now proceed to estimate the contraction constant of T .

Lemma 1. The domain U of T is a closed affine subset of H. The contraction constant of

T is C = .362354. In particular, there is a unique fixed point θ of T in U . This function

is the unique solution of (2.2).

Proof. The affine property of U is immediate from the representation,

U = θ0 +H2
0 (0, L),

where θ0(s) = −πs/(2L). The property that U is closed follows from (2.5). To estimate

the contraction constant, we note that φ 7→ cosφ is non-expansive on L2(0, L), so that

the definition gives

‖Tφ− Tψ‖H2 ≤ 1

2
‖φ− ψ‖2 ≤ C‖φ− ψ‖H2 , (2.8)
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if φ, ψ ∈ U . Here, we have used the estimate,

1

2
‖φ−ψ‖2 ≤

1

2

{∫
S

|G(t, s)|2 dtds
}1/2

‖φ−ψ‖H2 = C‖φ−ψ‖H2 , C = .362354. (2.9)

Since U is a complete metric space, and C < 1, we have the hypotheses of the contraction

mapping theorem [4], which yields a unique fixed point.

2.5 Successive Approximation

If we define θ0 as above, and θn = Tθn−1, n = 1, 2, . . . , then θn ∈ U , n ≥ 0. According to

the estimates of the contraction mapping principle, the successive approximations θn are

convergent to the unique fixed point θ ∈ U and the estimate,

‖θn − θ‖H2 ≤ Cn

1− C
‖θ1 − θ0‖H2 , n = 1, . . . , (2.10)

is valid. We readily estimate:

‖θ1 − θ0‖H2 =
1

2
‖ cos ◦θ0‖2,

so that we obtain

‖θn − θ‖H2 ≤ 1

2

Cn

1− C
‖ cos ◦θ0‖2, where

‖ cos ◦θ0‖2 = 1.145. (2.11)

When n = 1, (2.11) gives an upper estimate of .325334 for ‖θ1−θ‖H2 . If we wish accuracy

to within a norm error of .1, we require iteration through θ3: In this case, we have the

estimate,

‖θ3 − θ‖H2 ≤ .0427165.

This is a viable bound only if θ3 is analytically representable. However, this is problem-

atical, since the computation involves both the composition in defining the integrand, as

well the integral,

θn(t) =
1

2

∫ L

0

G(t, s) cos ◦θn−1(s) ds−
πt

2L
.
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2.6 Approximation of the Recursion

Although θ1 is analytically computable, this is not the case for iterates beyond n = 1.

One might consider power series expansions of cos θ in order to compute this integral,

but this complicates error estimation as the iteration proceeds; in addition, since θn−1

is a function of s, a uniform polynomial approximation of cos(· ) of degree m expands

to a polynomial of degree O(mn−1) by the completion of the n-th iteration. One first

encounters this in computing θ2. Instead, compute θ2 as follows. Given the equally

spaced points (uniform grids are not essential, simply convenient): ti = ih of [0, L],

i = 0, . . . , N + 1, introduce the piecewise linear interpolant γ1, linear on [ti−1, ti], and

satisfying γ1(ti) = cos ◦ θ1(ti), i = 0, . . . , N + 1. Define an approximation to θ by

1

2

∫ L

0

G(t, s)γ1(s) ds−
πt

2L
,

and thereby obtain a C2 cubic spline, with ‘knots’ at the nodal points ti, i = 1, . . . , N ,

which can be exactly expressed by an analytical formula, and will be adopted as the basis

for our discretization of T . It is directly computable by Mathematica, for example. We

refer to [2] for an introduction to this important subject, and [20] for additional exposition.

We now systematically develop the discretization.

2.7 The Discretization of T

We first introduce some notation. The affine space U is contained in H. Further, if the

spline space is described as

S = {q : q ∈ C2[0, L] : q|[ti−1,ti] is a cubic polynomial, i = 1, . . . , N+1, q(0) = q(L) = 0},

(2.12)

we define EN to be the orthogonal sum of S and Lin:

EN = S ⊕ Lin ⊂ H.
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Analogous to the contraction mapping T , one has the contraction mapping TN , defined

on the affine space UN = U ∩ EN :

TNφ(t) =
1

2

∫ L

0

G(t, s)IN cos ◦ φ(s) ds− πt

2L
. (2.13)

Here IN denotes the interpolation operator acting on f = cos ◦ φ. Thus, INf is linear

on [ti−1, ti], and satisfies INf(ti) = f(ti), i = 0, . . . , N + 1. The contraction constant

is described in Lemma 6 to follow. Let us return to the earlier question of computing

an approximation of θ with error not exceeding .1 in the H2 metric. By employing the

computable operator TN , one is really approximating the fixed point of TN on EN . Note

that the ‘hidden’ assumption is that exact evaluation of the cosine is possible at φ(ti) in

(2.13). This simply means that we have exactness, up to the precision of the computer

arithmetic. This (roundoff) error is not considered in this article. One can repeat this

process for appropriate choice of h = L/(N + 1). At the third stage, we compute an

approximation ψ3 to θ3, but the ‘discretization’ error has entered, and we are uncertain

whether our calculated approximation lies within a tolerance of .1. In this case, we know

the exact solution, and can check, but this is not possible in more complicated cases.

We are led to inquire whether there are any general principles for doing this. We shall

investigate this now in a general framework.

3 Nonlinear Operator Approximation

Given a Banach space X and a subset U of X, suppose T is a mapping from U into X

with a fixed point:

Tx0 = x0.

The reader may conveniently make the identification x0 = θ. If {XN} denotes a sequence

of subspaces of X of finite dimension r(N) ≥ N , suppose that UN = U ∩ XN and that

10



TN : UN 7→ XN , has a fixed point:

TNxN = xN .

Suppose we have an algorithm, such as can be obtained from (2.13) with φ 7→ ψn−1,

which permits the calculation of approximations x̃N of xN . The ultimate question is the

accuracy of approximation of x0 itself. We proceed to answer this question.

3.1 Zeros of Smooth Mappings

We first record a general proposition on the zeros of C1 mappings, followed by a corollary

adapted to the present situation. The proposition is a restatement, with slight modifi-

cations, of [12, Lemma 19.1]. The principal use of C1 differentiability is the operator

mean value theorem [12, p. 12]. Recall that C1-Fréchet differentiability is equivalent to

C1-Gateaux differentiability.

Proposition 2. Let X be a Banach space and let A be an operator, with domain an

open set Ω in X and range in X, which possesses a C1-Gateaux derivative with respect to

directions u ∈ X, denoted

A′(x)[u] = lim
ε→0

(
A(x+ εu)− A(x)

ε

)
, x ∈ Ω, u ∈ X.

In particular, A′(x) is a bounded linear operator on X for each x ∈ Ω and A′ is continuous

in the uniform operator topology on X and satisfies the mean value theorem. Suppose, for

some x∗ ∈ Ω, [A′(x∗)]
−1 exists as a bounded linear operator on X, and that the following

conditions hold:

sup
‖x−x∗‖≤δ0

‖[A′(x∗)]
−1[A′(x)− A′(x∗)]‖ ≤ q, (3.1)

α := ‖[A′(x∗)]
−1A(x∗)‖ ≤ δ0(1− q), (3.2)

for some δ0 and 0 < q < 1. Then the equation Ax = 0 has a unique solution x0 in the

closed ball of radius δ0: ‖x0 − x∗‖ ≤ δ0.
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Proof. The proof, as described in [12], relies on the construction of the operator,

Bx = x∗ − [A′(x∗)]
−1{Ax∗ + [Ax− Ax∗ − A′(x∗)(x− x∗)]}.

The hypotheses imply that B maps the closed ball ‖x − x∗‖ ≤ δ0 into itself, with con-

traction constant q < 1. The unique fixed point is the unique zero of A in the ball. The

principal tool is the mean value theorem. Details may be found in [12].

There is an important corollary, pertinent to the application we are considering.

Corollary 3. Suppose the mapping A of the proposition has the property that its restric-

tion A0 to Ω0 = Ω ∩ {x∗ + X0} has range in X0, where X0 is a closed subspace of X.

Define Bδ0 := {y ∈ X0 : ‖y‖ ≤ δ0}, and suppose that the mapping S : Bδ0 7→ X0,

Sy = A0(x∗ + y), y ∈ Bδ0 ,

is continuously differentiable, so that S ′(y) is a bounded linear operator from X0 to X0

for each y ∈ Bδ0. Suppose the derivative maps satisfy the inequalities

sup
y∈Bδ0

‖[S ′(0)]−1[S ′(y)− S ′(0)]‖ ≤ q, (3.3)

α := ‖[S ′(0)]−1S(0)‖ ≤ δ0(1− q), (3.4)

for some 0 < q < 1. Then a unique solution x exists in x∗ +Bδ0, satisfying A0x = 0.

Proof. The proposition is applied to the mapping S, yielding a unique y ∈ Bδ0 such that

Sy = 0. We note that x = x∗ + y satisfies A0x = 0.

The effectiveness of the proposition lies in the precision of its formulation. The corol-

lary is particularly formulated for the application of this paper. We now illustrate its use

in obtaining error estimates.
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3.2 An Error Estimate for the Fixed Point

We shall identify x∗ with an approximate fixed point x̃N of TN . We can prove the following.

Theorem 4. Let X be a Banach space and X0 a closed subspace of X, let x̃N be given

(as an approximate fixed point of TN) and define the affine space U = x̃N +X0. Suppose

T : U 7→ U is differentiable in the sense

T ′(x)[y] = lim
ε→0

(
T (x+ εy)− T (x)

ε

)
, x ∈ U , y ∈ X0,

exists as a bounded linear operator on X0 for each x ∈ U . Suppose that T ′ is Lipschitz

continuous on the intersection of U with the closed ball BR(x̃N) in X of radius R, in

the uniform operator topology, with Lipschitz constant λ. Suppose that [I − T ′(x̃N)] is

invertible, and define the numbers

α = ‖[I − T ′(x̃N)]−1(x̃N − T x̃N)‖, κ = ‖[I − T ′(x̃N)]−1‖.

If these are sufficiently small so that

ε = 4ακλ < 1, (3.5)

define

q =
1

2

(
1−

√
1− ε

)
, δ =

q

λκ
.

We suppose, for consistency, that δ ≤ R. It follows that T has a unique fixed point x0 in

the ball of radius δ centered at x̃N in U .

Proof. We shall use the corollary and the identifications A 7→ I−T, x∗ 7→ x̃N , δ0 7→ δ. The

mapping S : X0 7→ X0 is now defined by Sy = (I − T )(x̃N + y), y ∈ X0. The hypothesis

(3.3) of the corollary follows from the hypothesis of Lipschitz continuity for T ′ and from

the definitions of δ, λ, κ. The hypothesis (3.4) follows from the direct calculation,

α =
q(1− q)

λκ
= δ(1− q).
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Note that we have used the algebraic fact that q(1 − q) = ε/4, together with (3.5). The

corollary is now applicable, and the theorem follows with the cited identifications.

The reader may be surprised that the hypotheses make no direct assumption upon TN .

However, the estimation of ‖x̃N − T x̃N‖, implicit in the requirement that ε < 1, requires

this. Typically, one uses the triangle inequality:

‖x̃N − T x̃N‖ ≤ ‖x̃N − TN x̃N‖+ ‖T x̃N − TN x̃N‖. (3.6)

Calibration of error

The two right hand side terms in (3.6) indicate how iteration and discretization should

be balanced. The first term on the r.h.s. is strictly governed by the speed of the iteration

convergence for TN . The second term depends on the discretization error. In principle,

the two terms should be of comparable size.

3.3 Synopsis of the Estimation

We have defined TN in (2.13). In order to avoid possible confusion between the iteration

index, designated by n, and the discretization, described by h = L/(N + 1), we shall

reserve the use of these symbols to this interpretation. In the following sections, we will

use Theorem 4 to estimate the error in selecting an approximation defined by TN , for N

fixed. We are retaining the notation, ψn = TNψn−1. This involves the following steps.

1. Estimate κ by a truncated Neumann series.

2. Estimate the Lipschitz constant λ for T ′.

3. Estimate α by using the estimate for κ and estimating ‖ψn − Tψn‖H2 .

4. Test for ε < 1, and, if valid, calculate q and δ.
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5. Test for δ < tol, the prescribed tolerance or error bound.

There are two principal iterative strategies studied in this paper: Picard iteration, based

upon the contraction mapping theorem, and Newton iteration, based upon the Newton-

Kantorovich theorem.

4 Estimation of the Error for Picard Iteration

We begin with the specific estimation of quantities referenced in Theorem 4.

4.1 The Differentiability of T

Lemma 5. For each ψ∗ ∈ U , the Fréchet derivative of T exists as a bounded linear

operator T ′(ψ∗) : H2
0 7→ H2

0 and is given by (4.1) below. The inverse operator [I−T ′(ψ∗)]−1

can be represented by a Neumann series,
∑∞

j=0[T
′(ψ∗)]

j, with

κ = ‖[I − T ′(ψ∗)]
−1‖ ≤ 1.56827.

Moreover, an estimate for the global Lipschitz constant of T ′ is given by

‖T ′(u)− T ′(v)‖ ≤ λ‖u− v‖H2 , λ = .28089.

Proof. For basic facts about Neumann series, we refer to [23, p. 69]. In order to calculate

the operator T ′(ψ∗), we use the previously mentioned fact that C1-Fréchet differentiabil-

ity is equivalent to C1-Gateaux differentiability. Thus, by simple directional derivative

arguments, we compute, for ψ ∈ H2
0 ,

T ′(ψ∗)[ψ] =
1

2
lim
ε→0

∫ L

0

G(· , s)
{

cos ◦(ψ∗(s) + εψ(s))− cos ◦ψ∗(s)
ε

}
ds

= −1

2

∫ L

0

G(· , s) sin ◦ψ∗(s)ψ(s) ds. (4.1)
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Implicit in this calculation is the interchange of limit operations (differentiation and inte-

gration), permitted by the uniform convergence of the difference quotients. One uses the

bound for ‖G‖ and the natural bound | sin | ≤ 1, to obtain, for ψ ∈ H2
0 ,

‖T ′(ψ∗)[ψ]‖H2 ≤ 1

2
‖ψ‖2 ≤ C‖ψ‖H2 .

We thus obtain the expression,

‖T ′(ψ∗)‖ ≤ .362354.

This could have been predicted from the contraction constant estimate for T in (2.8),

which provides an independent proof. This gives the existence of the Neumann series for

[I − T ′(ψ∗)]
−1 as a bounded linear inverse operator, and the bound,

κ ≤ 1

1− .362354
= 1.56827.

The estimation of λ is as follows. For ψ ∈ H2
0 , and u, v ∈ U ,

‖[T ′(u)− T ′(v)][ψ]‖H2 ≤ 1

2
‖[sin ◦u− sin ◦v]ψ‖2 ≤ C max

0≤t≤L
|u(t)− v(t)|‖ψ‖H2 .

To bound the latter, we use the representation (2.5):

max
0≤t≤L

|u(t)− v(t)| ≤
{∫ L

0

max
0≤t≤L

|G(t, s)|2 ds
}1/2

‖u− v‖H2 .

Now the first factor is estimated from above by .775181 since

max
0≤s≤L

G(t, s) = G(s, s) =
s

L
(L− s) ,

so that we obtain the estimate λ = (.362354)(.775181) = .28089.

4.2 Estimation of the Residual

The following lemma addresses the estimation of the individual terms in (3.6).
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Lemma 6. The contraction constant for TN on UN is given by

Ch =
1

2

(
.724708 + h2/π2

)
. (4.2)

Thus, the following hold.

i) For n ≥ 1 we have the estimate:

‖ψn − TNψn‖H2 ≤ Cn
h‖ψ1 − ψ0‖H2 ≤ ‖ cos ◦ψ0‖2

2
Cn

h = .572501Cn
h .

ii) An estimate for (3.6) is given by

‖ψn − Tψn‖H2 ≤ .572501 Cn
h + .448265 h2. (4.3)

Proof. Let φ, ψ be given in UN . Direct representation gives

TNφ− TNψ =
1

2
G ◦ IN(cos ◦φ− cos ◦ψ),

so that, upon taking second derivatives, and estimating the L2 norm, we have

‖TNφ− TNψ‖H2 =
1

2
‖IN(cos ◦φ− cos ◦ψ)‖2 ≤

1

2
‖IN(φ− ψ)‖2,

where the final step employs the inequality,

|IN(cos ◦φ− cos ◦ψ)| ≤ |IN(φ− ψ)|.

This makes use of the positivity of the operator IN and the domination of the difference

of cosines by the difference φ − ψ. Denoting the latter function by ω, and using the

interpolation error estimates derived in [21, Theorem 1.3, p. 45] for estimating ‖ω−INω‖2,

we obtain, after addition and subtraction of ω:

‖INω‖2 ≤ ‖ω − INω‖2 + ‖ω‖2 ≤
(
h2

π2

)
‖ω′′‖2 + ‖ω‖2.
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The use of (2.5) in the second term gives a contraction constant in the H2(0, L)-norm

bounded by

Ch =
1

2

(
.724708 +

h2

π2

)
. (4.4)

Part i) follows when the process is carried out inductively. Note that we use the estimate

‖ψ1 − ψ0‖H2 = ‖ cos ◦ψ0‖2 = 1.145.

The first term in (3.6) is estimated by the result of part i). The second term in (3.6) is

written:

(T − TN)ψn =

[
1

2
G cos ◦ψn −

1

2
G ◦ IN cos ◦ψn

]
.

This expression is estimated from above by ( h2

2π2 )‖ d2

ds2 cos ◦ψn‖2, as a direct application of

the error estimates for interpolation of the function cos ◦ψn [21, p. 45]. Differentiation

of cos ◦ψn and use of the triangle inequality yield ‖ d2

ds2 cos ◦ψn‖2 ≤ ‖[ψ′n]2‖2 + ‖ψ′′n‖2. By

differentiation of the Green’s function and use of the Schwarz inequality, we obtain the

uniform upper bound:

|ψ′n(t)| ≤ π

2L
+
√
L/3‖ψ′′n‖2, 0 ≤ t ≤ L.

Since ‖ψ′′n‖2 ≤
√
L, we obtain the second term of (4.3), which yields the lemma.

4.3 The ‘A Priori’ Estimate

We are now able to calculate ε in Theorem 4. We use the upper bound ε ≤ 4κ2λ· residual,

where the residual is estimated by (3.6), and κ, λ are estimated by Lemma 5. We find

that the iteration index n can be selected to be 3, as is the case when the iteration

integrals are computed exactly. The minimal value of N + 1 required is then 10 (recall

that h = L/(N + 1)). We obtain for these choices:

‖ψ3 − Tψ3‖H2 ≤ .0280311 + .0308191 = .0588501, (4.5)
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where the two balanced terms appearing in (3.6) have been displayed. We then obtain:

ε ≤ .162624, δ ≤ .0963852 < .1.

The interpretation is as follows. The ‘computable’ approximation ψ3 is strictly within a

tolerance of .1 of the solution θ of the pendulum equation, as measured in the H2 norm.

This estimate does not require knowledge of θ itself. We then have the following.

Theorem 7. The computable sequence defined recursively for s ∈ [0, L] by ψ0(s) = − πs
2L

,

and

ψn(t) =
1

2

∫ L

0

G(t, s)IN cos ◦ψn−1(s) ds+ ψ0(t), n ≥ 1,

converges to θ according to Theorem 4. In particular,

‖ψ3 − θ‖H2 ≤ .0963852

for N + 1 = 10. The iteration and discretization terms are described by (4.5) above, and

this is optimal for (3.6) if n = 3; δ > .1 if N + 1 ≤ 9. The asymptotic value of δ, as

h → 0, predicted by these estimates is δ = .0435521 for n = 3. This should be compared

with the estimate of ‖θ3 − θ‖H2 ≤ .0427165 obtained earlier for the exact iterate θ3.

5 Newton-Kantorovich Iteration

In the preceding, we have attempted to approximate the fixed point of TN by ‘Picard

iteration’, based upon the contraction mapping theorem. In this section, we shall illustrate

the use of Newton-Kantorovich iteration in conjunction with Theorem 4. The Fréchet

derivative of TN is given by, where ψ∗ ∈ UN :

T ′N(ψ∗)[ψ] =
1

2
lim
ε→0

∫ L

0

G(· , s)IN
{

cos ◦(ψ∗(s) + εψ(s))− cos ◦ψ∗(s)
ε

}
ds

= −1

2

∫ L

0

G(· , s)IN{sin ◦ψ∗(s)ψ(s)} ds.
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This can be seen by noting the uniform convergence of the difference quotients defining

the Gateaux derivative, which coincides here with the Fréchet derivative. Integration and

interpolation are continuous with respect to uniform convergence, permitting interchange

of the limit with these operations. Note that the difference quotient can be written,{
cos ◦(ψ∗(s) + εψ(s))− cos ◦ψ∗(s)

ε

}
= −{sin ◦(ψ∗(s) + ε0ψ(s))ψ(s)}

where ε0 is selected by the mean value theorem to belong to the open interval with

endpoints 0 and ε. This makes the stated (derivative) evaluation clear. We will interpret

this map as the extended map with domain and range given by:

T ′N(ψ∗) : H2
0 (0, L) 7→ S ⊂ H2

0 (0, L).

Here, S is the C2 cubic spline subspace defined in (2.12). It is customary to introduce

the mapping, FN(u) = u− TN(u) = (I − TN)(u), so that we are attempting to determine

a zero of FN . This is analogous to the approach of §3.2. We shall suppress the depen-

dence on N in characterizing the exact Newton iterates {un}, which satisfy the following

characterization:

un − un−1 = −[F ′
N(un−1)]

−1 FN(un−1), (5.1)

in integral equation format. Since this is not solvable in a closed form which would allow

for exact computation, approximation methods are required. Therefore, we shall use

an operator approximation method, whereby [F ′
N(un−1)]

−1 is approximated by a finite

truncated Neumann series:

[F ′
N(un−1)]

−1 7→
j=J∑
j=0

[T ′N(un−1)]
j.

The new definition, characterizing the approximate Newton method

un − un−1 = −
j=J∑
j=0

[T ′N(un−1)]
j FN(un−1), (5.2)
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yields an exactly computable (by Mathematica, for example) sequence. Here, J is an

integer to be determined. It is nontrivial, however, to estimate the residual term, i. e. ,

‖un − TNun‖2, which is the first term in (3.6). Theorems in the literature tend to esti-

mate error for the exact Newton method (see [8]). The first author has shown that the

Newton-Kantorovich theorem has an analog for approximate Newton methods in which

the derivative inverse is approximated as above. We have not found this estimate in

the form required here in any of the excellent references which have appeared since the

1980s, such as [5], [19], and [6]. We quote the result for a general mapping F , in terms

of the residual decrease of the iterates. We omit the estimates for the convergence of the

sequence itself. The following is a restatement of results in [9, Lemma 2.2 (esp. (2.11a))

and Theorem 2.3].

Theorem 8. Let F be a mapping defined on a closed ball Br = {x : ‖x − x0‖ ≤ r} in a

Banach space X with range in a Banach space Z. We assume the following.

Derivative Lipschitz continuity F ′ exists and has a Lipschitz constant λ on Br.

Approximation of the identity There is an approximation subspace Y of X and there

are operators {Γ(u) : u ∈ Br ∩ Y } ⊂ L(Z, Y ), such that

‖I − F ′(u)Γ(u)‖ ≤M‖F (u)‖, u ∈ Br ∩ Y.

The operators Γ(u) are approximate right inverses of F ′(u).

Boundedness of approximate derivative inverses It is assumed that

‖Γ(u)‖ ≤ κ, u ∈ Br ∩ Y.

Now suppose a ‘starting guess’ u0 ∈ Bαr, 0 ≤ α < 1, is given. If ‖F (u0)‖ ≤ ρ−1, and H

is defined by

H = (2M + λκ2)ρ−1,
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suppose that

H ≤ 1

2
,

κ(1−
√

1− 2H)

2M + λκ2
≤ (1− α)r.

Then the approximate Newton sequence defined by

un − un−1 = −Γ(un−1)F (un−1), n ≥ 1,

is well defined and is residually quadratically convergent in the following sense:

‖F (un)‖ ≤ Θn

Hρ

(
n∏

j=0

τ 2n−j

j

)
(1−

√
1− 2H)2n

2n
(5.3)

Here, {Θn} and {τn} are decreasing sequences bounded by one, and explicitly given by

Θ0 = 1, Θk+1 =
Θ2

k

2k
√

1− 2H + Θk(1−
√

1− 2H)2k
, k ≥ 1.

τk =
√

1− 2H +
Θk(1−

√
1− 2H)2k

2k
, k ≥ 0.

A more complete description, including the convergence of {un}, can be found in [9],

although with modified notation. We will simply use the bound of unity for the parameters

Θk, τk.

5.1 Estimation of the Newton-Kantorovich Parameters

We set F (u) = (I − TN)(u). In order to fit F within the framework of the previous

theorem, we identify F with

F0(u+ ψ0) = F (u), u ∈ UN , ψ0(s) = −πs/(2L).

For F0, we select X = Z = H2
0 , Y = S. We shall not explicitly refer to F0. Its mention

is simply to create a theoretical bridge to Theorem 8.
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Proposition 9. For ψ∗ ∈ UN , set

β = ‖[T ′N(ψ∗)]‖H2 ,

where the operator norm is taken on H2
0 . Then we have the estimate, independent of ψ∗,

β ≤ 1

2

(
.724708 +

h2

π2

)
.

The upper bound is recognized as the contraction constant Ch for TN on H2
0 identified in

(4.4). Similarly, we also have the estimate, for u, v ∈ UN ,

‖T ′N(u)− T ′N(v)‖ ≤ λ‖u− v‖H2 ,

where λ = .775181 β. Also,

‖[I − T ′N(ψ∗)]
−1‖ ≤ κ :=

∞∑
j=0

βj =
1

1− β

If we define

Γ(ψ∗) =

j=J∑
j=0

[T ′N(ψ∗)]
j,

where J ≥ 1, then ‖Γ(ψ∗)‖ ≤ 1
1−β

, and

‖I − (I − T ′N(ψ∗))Γ(ψ∗)‖ ≤ βJ+1.

This means that M = 1, and J is selected such that βJ+1 ≤ ‖F (un−1)‖H2.

Proof. By direct estimation, for ψ ∈ H2
0 ,

‖T ′N(ψ∗)[ψ]‖H2 =
1

2

∥∥∥∥∫ L

0

G(· , s)IN{sin ◦ψ∗(s)ψ(s)} ds
∥∥∥∥

H2

≤ 1

2
‖INψ‖2,

where we have noted that the H2-norm evaluation is achieved by applying the L2 norm

to the twice differentiated integral expression, and have employed the positivity of the
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operator IN . The remainder of the argument for β follows the corresponding argument

for Ch in the proof of Lemma 6. In order to estimate λ, we write

‖[T ′N(u)− T ′N(v)][ψ]‖H2 ≤ 1

2
‖IN{[sin ◦u− sin ◦v]ψ}‖2 ≤

1

2
max
0≤s≤L

|u(s)− v(s)|‖INψ‖2.

We may use the analysis of §4.1 to estimate the maximum, and the above analysis to

identify the other factor with β. We then estimate

‖Γ(ψ∗)‖ ≤
j=J∑
j=0

‖[T ′N(ψ∗)]
j‖ ≤

∞∑
j=0

βj.

5.2 The Residual Estimate for TN

We are now prepared to apply Theorem 8 to estimate the residual ‖un−TN(un)‖H2 . The

stipulation that H ≤ 1/2 suggests that we choose as our starting ‘guess’ the second iterate

defined by successive approximation: u0 := ψ2. Direct calculation with N + 1 = 10 gives,

via (i) of Lemma 6:

β = .365837, ρ−1 = .572501 β2 = .0766217.

We then calculate, with the aid of Proposition 9,

H = (2 + λκ2)ρ−1 = .207274.

The error estimate (5.3) then yields for n = 1:

‖u1 − TNu1‖H2 ≤ .0101945.

5.3 The ‘A Priori’ Estimate

We are now prepared to apply Theorem 4. The residual estimate for T uses the triangle

inequality:

‖u1 − Tu1‖H2 ≤ .0101945 + .0308191 = .0410136.
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We compute from Theorem 4:

δ ≤ .0662541

which is a better approximation than the third iterate computed by Picard iteration (cf.

Theorem 7). Note that J must be selected so that J ≥ 2, since

βJ+1 ≤ ρ−1.

Corollary 10. If (5.2) is applied with J = 2 and u0 = ψ2, then the computed approxima-

tion u1 satisfies ‖θ − u1‖H2 ≤ .0662541.

Appendix

A The Elastica Critical Point Formulation

In the solution to the pendulum equation (2.2), set t =
√

2Kms so that

θ̃(s) = −π
2
− 2 arcsin[

√
m sn(Km(s− 1);m)], 0 ≤ s ≤ 1,

and θ̃′′(s) = −K2
m cos θ̃(s). Let H be the Sobolev space H1(0, 1) with inner product so

that ‖ψ‖2 = ψ2(0) +
∫ 1

0
ψ̇2(s)ds. Let

Ωh =

{
ψ ∈ H : ψ(0) = 0, ψ(1) = −π

2
, G(ψ) :=

∫ 1

0

sinψ(s)ds = h

}
,

and search for critical points of F : H → R, restricted to Ωh, with F (ψ) = 1
2

∫ 1

0
ψ̇2(s)ds.

The gradients in H are given by

∇F (ψ) = ψ, ∇G(ψ) = −
∫ s

0

∫ u

0

cosψ(v)dv du+ (1 + s)

∫ 1

0

cosψ(u)du .

The tangential projection of ∇F (ψ) = ψ onto TΩh vanishes if and only if

ψ(s)− λ(−
∫ s

0

∫ u

0

cosψ(v)dv du+ (1 + s)

∫ 1

0

cosψ(u)du )− µ0 − µ1(1 + s) = 0.
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Let s = 0 and conclude that λ
∫ 1

0
cosψ(u)du + µ0 + µ1 = 0. The equation simplifies to

ψ(s) + λ

∫ s

0

∫ u

0

cosψ(v)dv du+ sµ0 = 0,

and

λ

∫ 1

0

∫ u

0

cosψ(v)dv du+ µ0 =
π

2
.

Thus, ψ is regular: ψ̇(s) + λ
∫ s

0
cosψ(u)du + µ0 = 0, so that ψ̇(0) = −µ0, and ψ̈(s) =

−λ cosψ(s); in particular, ψ̈(0) = −λ. Observe that it is not assumed a priori that

ψ̇(0) = 0, but a careful choice of h will yield this condition. Multiply by an integrating

factor to get

2ψ̇(s)ψ̈(s) = −2λψ̇(s) cosψ(s), ψ̇2(s) = −2λ sinψ(s) + µ2
0.

Combine this with
...
ψ(s) = λψ̇(s) sinψ(s) to get

...
ψ(s) +

ψ̇3(s)

2
− µ2

0

2
ψ̇(s) = 0.

One possible solution is given by ψ̇(s) = Acn(αs+ β;m), where

Acn(β;m) = −µ0, Aαsn(β;m)dn(β;m) = λ, A2 = 4mα2, −µ
2
0

2
= α2(1− 2m).

To have a critical elastic curve that matches the pendulum solution θ̃, the following values

are needed: m = 1/2, µ0 = 0, β = −Km, α = Km, A = −Km

√
2, and

λ = Aαsn(−Km;m)dn(−Km;m) = K2
m.

Integrate ψ̇2(s) = −2λ sinψ(s) + µ2
0 and use the constraint G(ψ) = h to get∫ 1

0

ψ̇2(s)ds = −2K2
mh.

With the help of Legendre’s formula, it follows that

h = −
∫ 1

0

cn2(Km(s− 1);m)ds = − 1

Km

∫ Km

0

cn2(u;m)du =

1− 2Em(Km)

Km

= − π

2K2
m

≈ −0.456947.

This gives the solution discussed in section 2.2.
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