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Abstract. The classical drift-diffusion model employed in semi-conductor simulation is now seen as part of a
hierarchy of mathematical models designed to capture the intricate patterns of current flow in solid-state devices.
These models include those incorporating quantum mechanical effects. Scientific computation has vastly outpaced
our mathematical understanding of these models. This article is restricted in its focus, and describes mathematical
understanding achieved during the last few decades primarily in terms of Gummel decomposition, as applied to
drift-diffusion models and the closely related family of quantum corrected drift-diffusion models. Drift-diffusion
models are being employed once again in organic devices, and in bio-chip devices, and a re-examination is now

seen as timely, as such studies proceed beyond solid state devices.
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1. Historical Introduction

As organic devices emerge with a variety of applica-
tions (see [17] for a detailed solar cell model), it seems
appropriate to take stock of drift-diffusion models and
quantum-perturbed drift-diffusion models, in terms of
the understanding achieved via Gummel decomposi-
tion for the analysis of these systems. We shall restrict
our detailed attention to the steady case. Since evolu-
tion models are often employed to reach steady-state,
some discussion of these models is appropriate. The
plan for this article is as follows. In the introduction,
we sketch out briefly the progression of macroscopic
models for device simulation, including macroscopic
models more involved than drift-diffusion, such as hy-
drodynamic and energy transport models. This treat-
ment is not intended to be exhaustive. We mention,
only in passing, kinetic and strictly quantum mechan-
ical models. The goal is to describe mathematical ad-
vances which provide the underpinning for scientific
computation: Gummel decomposition and invariant
regions. The quantum-perturbed drift-diffusion model
has proven to be quite challenging. It occupies a sig-
nificant portion of the following sections.

1..1 Relevant Literature

In this section, citations for both the steady and un-
steady models are given. The papers of Gummel [46)
and Scharfetter-Gummel [97] were the milestone pa-
pers in introducing Gummel decomposition (Gummel
iteration) and the advection-diffusion flux approxima-
tion, sometimes called exponential fitting, to resolve
disparate diffusion rates. These studies were based
on the classical Van Roosbroeck model [93] (see also
[100]). The paper of Mock [86] appears to be the first
mathematical study of the model; this was followed by
Seidman’s article [98]. The article [8] described com-
putational and well-posedness approaches, later de-
tailed in [11] and [55]. The former study involved a
finite volume approach in two dimensions, represent-
ing a generalization of the Scharfetter-Gummel dis-
cretization (see [7,43,44,104] for more recent presen-
tations). The study [55] introduced the fixed point
approach based upon Gummel decomposition; the in-
variant domains were defined by maximum principles,
and convex analysis; [35] was exploited for this model
for the first time. Although it is sometimes inferred
that Gummel iteration implies the convergence of suc-
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cessive approximations, this is only selectively true; a
rigorous study was carried out in [56] and in the Yale
dissertation of Kerkhoven [71]. This thesis blended
the analytical and convergence properties associated
with the semiconductor model (see also [72]). Well-
posedness for the unsteady problem was studied in
[57]. A significant paper which described the numeri-
cal linear algebra involved in an approximate Newton
iteration was [74].

Noteworthy during this period were the books [9, 10,
48,49,81-83,87,99,103]. At about this time, more at-
tention was devoted to sophisticated models which in-
corporated energy tracking and/or quantum mechan-
ical effects. The study [75] addressed the resonant
tunneling diode. The hydrodynamic model, intro-
duced earlier by Blotekjaer [13], was re-introduced
with systematic analysis and discretization, by Rudan
and Odeh [96]. Ancona and Tiersten [4] and Ancona
and Iafrate [3] introduced and studied the quantum-
corrected drift-diffusion model (QCDD; see also [5]).
Mathematical progress on the QCDD model has
lagged. A survey of this progress is one of the goals
of this article, and will be discussed in subsequent sec-
tions. This paper does not discuss the quantum hy-
drodynamic model. A comprehensive recent study is
given in [34] (for earlier studies, including numerical
simulations, cf.[23,41,69,106]). Reference [106] was
the first well-posedness result based upon [41].

The remainder of the introduction will round out the
above discussion. The derivation of the hydrodynamic
model is typically based on phase space moments of
the Boltzmann equation (for an in depth presenta-
tion of the Boltzmann equation, see [19,20]; for an
early analysis of particle simulations, see [32, 33, 88];
for a ballistic study, see [102]; for an outline of the
hydrodynamic methodology, see [58,60]). The ver-
sion of this model utilized in the device community
makes use of the so-called inertial approximation, ef-
fectively suppressing the convective term in the mo-
mentum equation. The study [67] examines the effect
of this approximation. The approximation induces a
type of energy transport system, although this term
is usually reserved for a special structure of the type
examined in [21] (see also [66, 68]). A relatively recent
presentation, based upon entropy principles, can be
found in [69, Chapter 4]; numerical simulation is car-
ried out in [40]. When the inertial approximation is
not employed, the unsteady system is hyperbolic. This
presents challenges to both the mathematical analysis
and the numerical approximations, which in the gen-
eral setting are required to be shock capturing in the

time-dependent case. In the steady case, it is possible
to identify subsonic regimes [42] and to compute di-
rectly, but, in general, the computational literature in
this area has emphasized convergence to steady state
(see[36]) via time-stepping. A substantial mathemat-
ical literature has developed around this; see [47] for
a recent rigorous analysis (also, cf. the bibliography of
[47] for parallel mathematical studies of convergence
to scaled drift-diffusion models). Various mathemat-
ical papers have appeared on the topic of the hydro-
dynamic model, and tend to fall into two classes. The
Cauchy problem for the unsteady system (pure initial
value problem) is known to be well-posed for short
time or small initial data if the latter are smooth. The
general underlying theory is due to Kato (see [61] for
the coupled Poisson/hydrodynamic system). Kato’s
theory is very powerful, and has been used to study
the equations of gravitation (see [51]; see also the fi-
nal two chapters of [53] for a presentation of Kato’s
theory). However, the situation is quite different for
global (in time) solutions. The most general analytical
studies in this regard are given by [37] and [22]; the for-
mer is strictly analytical, while the latter also contains
simulations of the Gunn oscillator and the MESFET.
Finally, the closely related field of electrodiffusion of
ions can lead to models similar to drift-diffusion. Early
contributions were due to Rubinstein [94, 95]. We close
the paper with a brief summary of the general case,
which couples fluid transport to ion diffusion.

1..2 Finite Element Approximation

Two elegant theories of approximation appeared con-
currently in the early 1970s. One was termed the inf-
sup theory (see [6,15]; a comprehensive theory can be
found in [14]). This theory is valid, however, only for
linear formulations.and applications. A second the-
ory for nonlinear formulations required a functional
analytic framework, which had been discovered at ap-
proximately the same time as the inf-sup theory, by a
group of authors working in the former Soviet Union
[76]. Tt was later shown in [59] that this nonlinear
theory logically generalizes the inf-sup theory of [6].
In a series of two papers [64, 73], Kerkhoven and the
writer made use of the results of [76] to position the
steady Van Roosbroeck system within this framework,
and thereby obtain convergence results for the clas-
sical drift-diffusion system. They are consistent with
the convergence order expected from linear equations,
though with greater anticipated computational com-
plexity. The convergence order is that of best ap-



proximation in the Hilbert space energy metric. A
significant aspect of the theory is the use of discrete
maximum principles; this was first outlined in [27,73]
(see also [70] for a more recent study). The notions
of maximum and discrete maximum principles have
been generalized via invariant region theory. These
regions are seen as indispensable for the Gummel de-
composition theory (see [63] for a very recent and gen-
eral study). Since this theory is well understood only
for ‘de facto’ diffusion-reaction’ systems, the quasi-
Fermi levels are employed in the application to the
semi-conductor model. Early studies for the unsteady
problem are due to Smoller and others [101], who in-
troduced the concepts of outward and inward pointing
vector fields on the boundary of the invariant region.
This has been retained, or generalized, in subsequent
studies, including those of trapping regions. Finite ele-
ments (discontinuous Galerkin method) have also been
used for the hydrodynamic model [24].

2. The Quantum-Corrected Drift-Diffusion
Model

There are two principal reasons to seek an en-
hanced drift-diffusion model. First, as noted in [30],
quantization of energy states for electrons confined in
the channel produces a shift of the charge peak, in-
creasing the equivalent oxide thickness in such a way
that the coupling of the gate and channel voltages is re-
duced. Second, the penetration of electrons under the
channel barrier effectively smooths and lowers this bar-
rier, increasing the off-state leakage current. New de-
vice structures and geometries have been investigated
to limit quantization effects (see [105]). The quantum
models proposed in the literature (Wigner transport
equation [52], non-equilibrium Green’s functions [29])
do not appear to be uniformly incorporated into indus-
trial applications. Quantum Corrected Drift—Diffusion
(QCDD) models are based on the introduction of a
correction potential in the DD equation to account for
quantum effects on the spatial distribution of charge
carriers within the devices (see 3,4, 90]). This approx-
imation neglects quantum effects on transport which
can be considered of higher order [77].

We follow the original idea contained in [55] to char-
acterize the solution of the QCDD transport model as
a fixed point of the the Gummel decomposition map-
ping. This close link between the theoretical existence
analysis and the numerical algorithms was lacking in
previous nonconstructive proofs (cf. [2,89]). The ar-
ticle [2] formed the basis of the study [30]. The au-
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thors of [2] employed a truncation operator, to prevent
the occurrence of singularities in the quantum correc-
tions, and then proved convergence to the solution of
the original system. This was retained in [30], whose
notable mathematical features included a new theory
of gradient equations for the Poisson equation, and a
theory of invariant regions for the quantum correction
equations, for which uniqueness is not guaranteed due
to the lack of monotonicity of the semi-linear terms.
We present, in summary form, the constructive aspects
of [30].

2..1 Equations of the Quantum Drift—
Diffusion Model
Under isothermal and steady—state regimes, the Quan-

tum Corrected Drift-Diffusion (QCDD) model can be
written in the following dimensionless form [3, 69]:

—div()\QVgO) =p—-n+D,

—820n+ i (on — @ +1n(n)) =0,
Gn=¢n—@+1In(n),

—GAPHVP (—pp+e+In(p) =0, (1)
Gp=p —p—In(p),

—div (pn (Vn =0V (¢ + Gy))) = —U,

—div (up (Vp+pV (0 +Gy))) = —U.

(1)1 is the Poisson equation for the electrostatic poten-
tial ¢, (1)6—(1)7 are the carrier continuity equations for
the electron and hole carrier concentrations n and p,
while (1)2—(1)3 and (1)4—(1)5 provide a self-consistent
definition of the quantum corrections G,, and G, as
functions of ¢, n, p and the quantum quasi—Fermi po-
tentials ¢, and ¢,. Generalized Maxwell-Boltzmann
statistics are given by:

n=exp((¢+Gn)—¢n), p=exp(pp— (‘P"’Gp)()j
2
System (1) is solved in a domain Q C R? with
boundary I' = I'p UT' 5 and outward unit normal vec-
tor n, with I'p =T' UTy. The pairwise disjoint par-
titions of I'y and T’y physically represent the ohmic
contacts and material interfaces, while I'y physically
represents the portions of the boundary separating the
device domain from the exterior region. Boundary
conditions for system (1) are:

Y =YD, n=mnp, P=PbD on P-‘ra
©=¢pD, n=p=20 on Iy, (3)
Ve-n=J, n=J, n=0 on 'y,
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with the current densities J,, = pup, (Vn —nV (0 + Gy))
and J, = —pu, (Vp+pV (¢ +Gp)). The boundary
data ¢p, np and pp are computed assuming charge
neutrality and thermal equilibrium on I' , while on I'y
the prescribed value of ¢p is the external voltage ap-
plied at the gate contact up to the voltage drop across
the gate oxide layer. The quantities A, §,, and ¢, in (1)
are positive singular perturbation parameters result-
ing from the application of a scaling procedure [31].
Setting 0, = d, = 0, which corresponds to formally
performing the classical limit A — 0, allows the re-
covery of the standard DD model. We refer to [31,
Sect. 2.4], for the explicit expressions of the parame-
ters and of their numerical values. The quantity D is
a given function and represents the doping profile of
the device. We assume that D is a bounded function.
The quantities p, and p, are the carrier mobilities.
These are discussed in [99, Chapt. 4]. We assume that
Ly, V = n, p, are strictly positive bounded functions.
The quantity U is the net recombination rate, and
accounts for recombination (R) and generation (G)
effects in the semiconductor material. Several models
for U are proposed in the literature to describe R/G
effects in a quantum-modified setting (see [2] and [5]).
The impact of R/G phenomena is not relevant for the
present discussion; its effects are not included.

2..2 Preliminaries

Proceeding as in the case of the DD model (cf. [60],
Sect.4.3), we define the following constants:

o = min (lrnf On, 11“n+f spp> = 1lp+f 0o +1n(0),

B =max [ sup ¢n, supy, | =supp, —In(4),
Iy I, I,

where ¢, is the externally applied bias and 6 :=
Nint /T, Nint and T denoting the intrinsic concentration
in the semiconductor material and the scaling factor
for carrier concentrations, respectively. For the pur-
pose of the analysis of the existence of a fixed point
of the Gummel Decomposition Map (GDM), defined
in the following section, the above quantities should
provide the upper and lower bounds for the invariant
region to which the fixed point belongs. With this aim,
it is useful to symmetrize the bounding interval [, 3]
by introducing, as in Ref. [2], the following constants:

m = —||allper,) +1In(0) -1 < a,

M = —m = ||@al| oo,y —In(0) +1 > 5,

with m < 0 and M > 0. For any nonnegative car-
rier concentrations n and p, we set w 1/2 and
z 1= p'/2, and for any bounded potential ¢, we define
the auxiliary variables,

=n

on(w, ) = w?e ¥, op(z,0) = 2%?.  (4)

For any bounded quantum quasi-Fermi potentials ¢,
and ¢, we introduce the quantum Slotboom variables

p:=exp(—en), w = exp (pp) (5)

in such a way that the generalized Maxwell-Boltzmann
statistics (2) can be written in the equivalent form

p=wexp(=(p+Gp)).
(6)

n=pexp(p+Gn),

Then, we define the closed convex set

K ={[v, w] € (L*(Q) x L*(Q)) :

m < [v(z), w(z)] < M, a.e. in Q}, (7)
and for any function g and any fixed 6 € (0,1], we
introduce the truncation operator

[g]s :=max (g, 5) .
We also let V := H(Q) N L>®(Q).

2..3 The Gummel Decomposition Map

Given a pair [y, ¢p] € K, and 6 € (0, 1], the GDM for
the iterative solution of the QCDD system (1) consists
of the following steps (OQuter Loop):

(1): solve in the domain €2 the nonlinear system:
—div (A\* Vs) +wj — 25 — D =0,
=02 Aws + ws (Pn — s +2In ([ws];)) = 0,
_5§Az(; — 25 (Pp — w5 — 2In([zs]5)) = 0, .

subject to the boundary conditions:

ws =¢p onlp, Ves-n=0 only,

1/2

ws =mnp- only, ws =0 on Iy,
Vws - n=0 on 'y,
1/2
z(;:pD/ on 'y, zs =0 on Iy,

Vzs-n=0 onlIy.
9)
(2): Define the regularized quantum corrections:
Gy = Pn — s +2In ([w5]6) )
Gps = Pp — 5 — 2111([26]5) ) (10)
and the quantum—corrected potentials

Vs = s + Gny, Vps =05 + Gps. (11)



(3): Solve in the domain 2 the linear, uncoupled con-
tinuity equations:

—div (ppe"s Vps) =0, (12)
—div (ppe™"7s Vws) =0, (13)
subject to the boundary conditions:

ps=pp only,
ws =wp only,

Vps-n=0onT'gUTly,

(14)

(4): Update the quantum quasi-Fermi potentials by
inverting (5):

pp=In(ws).  (19)

The GDM T is now defined. We summarize: Given a
pair [@n, @p] € K, carry out Steps (1-4) to determine
the image of this pair under the action of T

on = —1In(ps) ,

3. Analysis of the Gummel Decomposition

In [30], the Gummel decomposition is described as
the outer iteration, which it is in a computing pro-
cedure. Two major results are derived in [2]: (i) a
derivation of the bounds m, M, followed by a proof of
existence of a fixed point for each pair of regularization
parameters (the methods are nonconstructive, and dif-
fer from the Gummel decomposition approach); (ii) a
proof of convergence as the regularization parameters
tend to zero. In this paper, we explain the original con-
tribution of [30] in analyzing the well-posedness of the
individual components of the Gummel decomposition.
The ‘a priori’ bounds m, M of [2] translate immedi-
ately into bounds (see eq. (23) of [30] and (4) above)
given by:

0 < On,s < 671; 0 < Op,5 < ﬂp' (16)

3..1 The Inner Iteration Loop

Given [ps, Ws, 2s], satisfying the essential boundary
conditions in (9), the inner loop for the solution of the
nonlinear system (8) consists of the following steps:

(A): Solve the nonlinear Poisson equation for the up-
dated potential ¢s:

—div (A\* Vs) + 0 5(W5, Ps)

e¥s — Up75(/2’\5, 5/55) e ¥ — D=0, in Q
w5 = ¥D on I'p,
Vs n=0 onI'y.

(17)

Vws - n=0onTgUIy.
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(B): Solve the nonlinear Bohm equation for the up-
dated square root of the electron concentration

ws.
—JZAw,;—i—
ws (Pn — s + 21n ([wsls)) = 0, in Q,
12
ws =np onI'y,
ws =0 on Iy,
Vws - n=0 on I'y.
(18)

(C): Solve the nonlinear Bohm equation for the up-
dated square root of the hole concentration zs:

—52&25—

25 (@p — s — 21In([25]5)) = 0, in Q,

s = p}:)/Q onI'y,

zs =0 on I'p,

Vzs-n=0 on I'y.
(19)

3..1.1 Gradient Equation

The following result is quoted from [30]. Full details
of the proof are given in this reference.

Lemma 3..1 Let 0,5 and o,s5 be given func-
tions satisfying (16).  Then, problem (17) has a
uniquely defined solution @s within the order interval
[©min, Pmaz], where the quantities pmin = info (¢)
and Ymaz = supg (@) are independent of § and the
functions ¢ and P are the solutions of the gradient

equations

—AzAg + Bn exp(¢) = Dmin (20)

and
—)\2A¢7 - ﬁp exp(—@) = Dmaxu (21)

to which the boundary conditions (17)a_s must be ad-
joined.

It is surprising that the maximum principles, originally
derived in [55], and also found in [82], are not adequate
to derive the bounds for the potential equation ana-
lyzed here. The explanation lies in the core definition
of the closed convex set introduced above in (7), and
in the corresponding generality of inequalities (16).
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3..1.2 The Density System

Lemma 3..2 Let @, and @, be given functions in
K and let @5 be the unique solution of (17) as in
Lemma 3..1. Then, problems (18) and (19) have
uniquely defined solutions ws and zs within the or-
der intervals Qu = [0, Wmax] and Q. = [0, zZmax|, resp.
Wmax ond zmax are the following positive quantities,
independent of 6:

Wiax = max{sup w, exp[(M + ¢max)/2]},
ry
Zmax = max{sup z, exp[(M — omin)/2]}.

Ly

Since neither of the nonlinear equations in Steps B and
C of the inner iteration loop is a gradient equation, a
new theory is required to examine the corresponding
boundary value problems. This is outlined in detail
in the appendices of [30], based on invariant regions.
The bounds of the lemma define the respective invari-
ant regions for the principal variables. A key connec-
tion between the vector field and the boundary of the
invariant region is that it is outward pointing on the
region’s boundary. Since solutions are not unique, in
general, a continuous selection principle, based upon
a homotopy argument, insures that the mapping is
well-defined. The selection principle is based upon the
functional-analytic arguments of [54], where an Eu-
ler predictor/Newton corrector method is introduced.
The method is designed so that, along the homotopy
path, the approximations remain in the domain of con-
vergence of Newton’s method. This construction over-
comes the lack of demonstrated uniqueness in the sys-
tem. The hypothesis, justified in [30], is stated as fol-
lows.

Assumption 3..1 (Continuous Selection Hypothesis)
Let (N, P) denote the components of the mapping in-
troduced in Steps B,C above, via w,z. The homotopy
mappings for N, P, starting with Laplace’s equation,
and terminating in a specified solution, are continuous
in the L? sense with respect to the functions ¢n, @p, 5.

3..2 Existence of a Fixed Point for The
Generalized Gummel Map

In section 2..3, we have defined a consolidated map-
ping T : K — K, with the properties:

(1) Components act invariantly on the closed convex
subsets of L2, defined pointwise by the bounds
given in Lemma 3..1 and Lemma 3..2.

(#7) Composition mapping T acts invariantly on K.
The following is quoted from [30].

Theorem 3..1 Under the hypotheses expressed in the
bounds of inequalities (16) and the Continuous Selec-
tion hypothesis 3..1, the fixed point map defined as the
result of steps A,B,C above has a fixed point in K.
Moreover, a solution triple ¢, n and p to the BVP (1)
exists in H(2) N L>(Q).

Remark 3..1 This strategy of a generalized Gummel
method was extensively device-tested via the simula-
tions of [30], where one, two, and three dimensional
examples were studied. The numerical experiments in-
clude a careful study of 6 — 0, which was verified an-
alytically in [2].

4. Model for a Solar Cell

We cite the following drift-diffusion model as a tem-
plate [17]. It is the most advanced macroscopic model
we have identified in the literature. The densities of
electrons n, holes p and excitons x, and the electro-
static potential ¢ evolve according to:

on

E = D(V(bv JI) - R(?’L,p)
—év (1416 — KTt V),

op

5 - D(V(bv JI) - R(?’L,p)

1
—EV- [—apppV ¢ — kT 1, Vpl,

0 1
8_:;: =G - D(V(bv JI) + ZR(nup) - RI(‘T)

+%v- [T p, V),
V- (eV¢) = —q(p —n). (22)

The quantities D and G are exciton dissociation and
generation rates, resp. The former is expressed by
Onsager’s theory [45], whereas photo-generation is
tracked by experimentally measured flux expansions
[38]. Recombination is expressed via the Langevin
form of R(n,p) [12] and R/(z) expresses relaxation of
excitons. The first three equations are standard conti-
nuity equations for the carriers, whereas the Gauss law
for the electric force is expressed in the final equation.
The constants ¢, k,T,e denote charge modulus, the
Boltzmann constant, the ambient temperature, and
the permittivity. For the ith carrier, p; is the mobility.



The model must be able to predict concentrations
and fluxes of carriers, and their response to changes of
morphology. The cell as designed currently has a sig-
nificant number of donor/acceptor interfaces, and the
particular phenomena at these interfaces represent a
critical factor in the device performance. Thus far, no
definitive mathematical results exist for this model.

5. Electrodiffusion: Influence of Electrolytes

We consider the nonlinearly coupled Poisson-Nernst-
Planck/Navier-Stokes (PNP/NS) system of PDEs,
suitably coupled with generation/reaction zero-order
terms. The basic system was introduced by Rubin-
stein in [95]. This discussion is based upon the recent
article [65]. In the consolidated model, self-consistent
charge transport is represented by the Poisson-Nernst-
Planck system, and the fluid motion by a Navier-
Stokes system with forcing terms. This model is capa-
ble of describing electro-chemical and fluid-mechanical
transport throughout the fluid environment. This al-
ready engages a range of spatial and temporal scales.
Chemical reactions in cellular metabolism can be stud-
ied by coupling this system to generation/reaction
zero order terms, denoted by R,, R, below. We for-
mulate the initial/mixed-boundary value problem in
Q Cc R™. Existence of weak solutions, based upon
Rothe’s method, was demonstrated in [65]. A local
smooth theory based upon these equations was de-
rived earlier for the Cauchy problem in [62]. For fluid-
structure systems which are modeled linearly, there are
results; see [1] for a fluid/elasticity model analyzed via
semigroup methods. In addition, the results of [84] ex-
tend semigroup methods to the Navier-Stokes system.

5..1 The Fluid/Transport System

We begin by formulating the constitutive relations for
the ionic current densities. They extend the usual rela-
tions, given in PNP theory, by the inclusion of velocity
convection terms. If ¥ is the velocity of the electrolyte,
and the ionic concentrations are denoted by n,p, re-
spectively, the current densities are:

Jn = eD,Vn—eu,nVeé— ein, (23)
J, = —eDpVp — euppVo + etp. (24)

3

S|

1

Here, fn, Jp are the anion and cation current densities,
with corresponding (constant) diffusion and mobility
coefficients, D,,, Dy, ftn, lip, respectively. The charge
modulus is given by e, and ¢ is the electric poten-
tial. The Poisson equation, given shortly, describes
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the coupling. The enhanced PNP system is then given
by, with ¢ the dielectric constant of the medium:

1 -
i EV' Jn = —Rp,
odp 1o -
E + gv p = —Rp,
E = —ng,
V-(eVg) = e(n—p-—d). (25)

In the above, the ‘fixed’ charge concentration is de-
noted by d; though not mobile, it is an input which
may change in time. The Einstein relations are em-
ployed as usual. For convenience, R,,, R, are assumed
bounded and continuous in their arguments ¥, n, p.

The velocity of the electrolyte is determined by the
Navier-Stokes equations:

p(U; + T VT) — nAT = —VP; —e(p —n)Vo,
V-7 =0, (26)

where p is the constant (mass) density of the elec-
trolyte, Py denotes fluid pressure, and 7 is the constant
dynamic viscosity. Note that d has been neglected in
the electric ‘volume force’ term. We shall make use of
the kinematic viscosity, v« = 1/p, in the statement of
the mathematical model. Note that the signs of R,,, R,
are those adopted in semiconductor physics, but the
explicit forms are not essential for this discussion.

5..2 Algorithm and Modeling Sum-
mary

In this concluding section, we briefly discuss the main
relevant issues concerning the numerical treatment
of the PNP/NS system, and its application in the
modeling of several realistic problems arising in Bio-
Engineering.

5..2.1 Numerical Approximation

A staggered algorithm is adopted for the successive
solution of the PNP and NS subsystems, in the same
fashion as in the treatment of fluid-structure interac-
tion problems. For each time level t;, a PNP system
with a given velocity field v(*) is solved using the Gum-
mel Map discussed earlier. This provides in output
the updated concentrations n*t1) p(+1) and electric
field E(*+1) . Then, the NS system is solved using a
fixed point iteration based on Oseen sub-problems [91].
This provides in output the updated velocity v(++1)

and pressure P;kﬂ). The process is repeated until
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self-consistency is achieved for the solution at the con-
sidered time level. The numerical discretization of
the linearized sub-problems is carried out using (sta-
bilized) dual-mixed hybridized finite element formula-
tions [16, 18]. This ensures the same computational ac-
curacy for scalar and vector/tensor—valued unknowns,
local conservation and self-equilibrium, and nonnega-
tivity of concentrations. In the case of the continuity
equations in the linearized PNP system, exponential
fitting is included in the scheme to deal with the pres-
ence of highly dominating advective terms. In the case
of the momentum balance equation in the linearized
NS system, a Discontinuous Galerkin upwind treat-
ment is introduced for stabilization.

5..2.2 Applications

Contemporary applications in Bio-Engineering are
characterized by sophisticated interacting systems, as
in Lab-On-Chip technology, where electrochemical and
fluid—mechanical transport of substances, chemical re-
actions and electrical transduction of biological signals
simultaneously occur, at strongly varying spatial and
temporal scales. Significant examples of such systems,
for which the PNP /NS model provides an appropriate
description in most relevant situations, are:

e Bio-chips for neuronal cell monitoring. The basic
configuration of such bio-hybrid devices consists
of a cell in an electrolyte solution, that is grown
onto the surface of an electronic substrate with
the aim of transducing an ionic current signal
into an electric output current. Bio-chips en-
compass significant spatial and temporal scales.
For example, the ion channels in the cell mem-
brane are nanometers in length, and the current
is gauged on the nanosecond scale. The chan-
nel gating is on the millisecond scale. The cell
is of micron dimensions, and the communication
between cell and transistor is affected by gating.
We refer to [39] for a thorough description of the
system and to [85] for further details on the char-
acterization of the neuronal/transistor interface.
For simulations related to such models, we refer
to [78-80].

e Bio-reactors for cell growth in tissue engineer-
ing. The basic configuration of such devices is
a three-layer structure including two fluid lay-
ers and, in between, a porous scaffolded bio-
compatible matrix where cells are grown upon
hydrodynamical perfusion of a nutrient culture

medium. Again, the device encompasses signif-
icant spatial and temporal scales, the scaffold
being of centimeter dimensions, and the single
pore being of micron dimensions, while a typical
culture period is of the order of weeks. We refer
to [28,92] for a detailed description of the bio-
reactor architecture and of the analysis of the
role of shear stress and perfusion rate on the ef-
fectiveness of the culture procedure. A recent
example of mathematical modeling and numeri-
cal simulation of bio-reactors can also be found
in [26].

e Microfluidic chambers in Lab-On-Chip tech-
nology.  These devices are frequently used
in micro-electro-mechanical systems (MEMS)
in the chemical and bio-medical industry, or
in electro-kinetic transport processes such as
electro-osmosis and electro-phoresis. A mathe-
matical model similar to the one discussed in this
article, together with extensive numerical inves-
tigation, is presented in [25,50].
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