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1 Introduction

In this paper, we consider the hydrodynamic model of charge transport of semiconductors

in an electromagnetic field. The hydrodynamic model treats the propagation of electrons

in a semiconductor device as the flow of a compressible charged fluid. Coupling to elec-

trostatic fields has been well studied, involving equations for the conservation of density,

momentum and energy, coupled to Poisson’s equation for the electrostatic potential. See

[5, 20, 21, 9, 19, 12, 8, 14] and the references therein for issues of underlying physical

derivation, simulation, and mathematical analysis of this system. The third reference dis-

cusses the important topic of the thermodynamic limit and the Onsager relations. These

references cover both the steady-state and dynamic cases. The final two cited references

deal with weak and smooth solutions, respectively, for the evolution system. The case of

electrostatic coupling has also been investigated in the context of current flow in cellular

ion channels, and possible implications for temperature variation (see [6] for a comprehen-

sive such simulation study). The dynamic version is of potential usefulness in this case

for the study of bio-effects, when intrinsically generated fields are augmented by external

pulsing.

When semiconductor devices are operated under high frequency conditions (includ-

ing technologies such as microwave devices, electro-optics, spintronics, and semiconductor

lasers), magnetic fields are generated by moving charges inside the device, and the charge

transport interacts with the propagating electromagnetic waves. In this case, the electro-

magnetic field satisfies Maxwell’s equations, which are coupled to the transport system.

Therefore, the hydrodynamic model for high-frequency charge transport in semiconduc-

tors consists of the conservation laws, coupled to Maxwell’s equations for the electric and

magnetic fields.

2



This system assumes the following (nonconservative) form ([2, 3, 19]):

∂n
∂t

+ v· ∇n+ n∇·v = 0,
∂v
∂t

+ (v · ∇)v + k
m
∇T + kT

mn
∇n = − q

m
F− v

τp
,

∂T
∂t
− κ0

n
∇· (n∇T ) + v· ∇T + 2

3
T ∇·v = −2m|v|2

3k

(
1

2τw
− 1

τp

)
− T −T∗

τw
,

εEt −∇×H + J = 0,

µHt +∇× E = 0,

−ε∇ · E = q
m
n−D(~x), ∇ ·B = 0,

B = µH, J = − q
m
nv, ~x ∈ R3, t > 0,

(1.1)

where n is the electron mass density, v ∈ R3 is the electron velocity, T is the electron

temperature, E ∈ R3 is the electric field, H ∈ R3 is the magnetic field, J ∈ R3 is the

current density, B ∈ R3 is the magnetic induction, F = E+v×B and −qF is the Lorentz

force, D is the doping profile, q is the electronic charge, m is the effective electron mass, k

is Boltzmann’s constant, τp is the momentum relaxation time, τw is the energy relaxation

time, µ is the permeability of the medium and ε is the permittivity of the medium.

Note the presence of heat conduction in the system. The Hydrodynamic-Maxwell

equations are more intricate than the Euler-Poisson equations, because of the complicated

coupling of the Lorentz force. There have been numerical simulations ([2, 3]), but the only

rigorous study appears to be that made by Chen, Wang and the author in [7], where a

global weak solution is proved in one spatial dimension. In this paper, we demonstrate

local classical solutions of the Cauchy problem on R3 by use of an adaptation of Kato’s

theory of evolution operators. The method is stable under the singular limit of vanishing

heat flux. Such results are not typically deduced from smooth theories. In the process, we

provide a symmetrized formulation which is important for applications. An issue relevant

for computation is that the so-called Gauss equation in the Maxwell system is satisfied for

all time if it is incorporated into the initial condition. The zero divergence of the magnetic

induction must be maintained for all time, but this condition is simpler (see [22]). We

have relegated the more routine elements of the proofs to the appendices so as to minimize

any redundancy with respect to other published work by the author. The key result is

Theorem 5.1. The traditional Friedrichs inequalities, or generalized energy estimates,

are employed on the ground space for the semidiscrete solutions; they are extended to

the smooth space by Kato’s commutator estimate. We are thus able to extend classical
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methods quite generally. The stability of (quasi-numerical) time semidiscretization also

follows from this approach.

2 System Reformulation and Functional Framework

We shall consider the Cauchy problem on Euclidean space of dimension 3. Define the

vector u by

u =


n
v
T
E
B

 . (2.1)

It is conceptually simpler, in formulating the matrix version of the Hydrodynamic-Maxwell

system, to use a block matrix approach. Thus, we write

u =


n
v
T
E
B

 =

[
y
z

]
. (2.2)

For mathematical simplification, we shall choose units in which the following numerical

relationships hold:

q/m = 1, k/m = 1, εµ = 1.

The system (1.1) as defined above has matrix multipliers of ∂y
∂xj
, j = 1, 2, 3, given by the

matrices (where δij = 1 if i = j, and 0 otherwise):

C̃j =


vj nδ1j nδ2j nδ3j 0
T
n
δ1j vj 0 0 1δ1j

T
n
δ2j 0 vj 0 1δ2j

T
n
δ3j 0 0 vj 1δ3j

0 2T
3
δ1j

2T
3
δ2j

2T
3
δ3j vj

 . (2.3)

The matrix multipliers of ∂z
∂xj
, j = 1, 2, 3, are given by the matrices Dj:

Dj =

[
0 Gj

Gt
j 0

]
, (2.4)
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where

G1 =

 0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

 0 −1 0
1 0 0
0 0 0

 . (2.5)

Here, and throughout, 0 denotes an appropriate (possibly non-square) zero matrix, possi-

bly a row or column vector.

2.1 The Symmetrizer

The symmetrizer of C̃j is then given by:

C0 =

 T
n

0 0
0 nI3 0
0 0 3n

2T

 , (2.6)

where I3 is the identity matrix of order 3. C0 is symmetrizing in the following sense:

Cj = C0C̃j =


T vj
n

T δ1j T δ2j T δ3j 0
T δ1j nvj 0 0 nδ1j

T δ2j 0 nvj 0 nδ2j

T δ3j 0 0 nvj nδ3j

0 nδ1j nδ2j nδ3j
3nvj
2T

 (2.7)

is symmetric for each j = 1, 2, 3. We may then define the system symmetrizer via

a0 =

[
C0 0
0 I6

]
(2.8)

and the symmetric multipliers via

aj =

[
Cj 0
0 Dj

]
. (2.9)

We then obtain:

a0(u)ut + L(u)u +

[
3∑
j=1

aj(u)
∂u

∂xj
+ b(u)u

]
= 0, (2.10)

where

L(u) = −diag(0,0, γ0/T ,0)∇· (n∇), γ0 =
3

2
κ0, c =

(
1

2τw
− 1

τp

)
,

and

b =


0 0 0 0
F n

τp
I3 0 0

3(1−T∗T )

2τw
cnvT 0 0

0 −µnI3 0 0
0 0 0 0

 . (2.11)
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It remains to discuss the divergence conditions expressed in terms of E and H. The latter

condition is imposed by requiring B to belong to a divergence free space. We shall make

this specific shortly. In regard to E, it is enough to impose the appropriate condition on

the initial electric field; by taking the divergence of the equation involving Et, we infer

that

ε(∇·E)t = −∇·J = ∇· (nv),

and the latter is given, by the conservation of particle density equation, by

−nt = −(n−D(~x))t,

so that the equality of ε∇·E and −(n − D(~x)) at t = 0 implies equality for 0 ≤ t ≤ T .

The initial condition for the Cauchy problem is then given by,

u(· , 0) = u0, (2.12)

for a given function, u0 ∈ Hs(R3;R11), s > 7/2 (see (2.14) for positivity conditions). The

components corresponding to B are required to have zero L2 divergence in the sense of

distributions; the components corresponding to E must satisfy the divergence condition

described above. The spaces Hs are defined in §2.3 to follow. We could relax the condition

on s to s > 5/2 if the heat conductivity had a simpler structure (constant). The complete

Cauchy problem is defined by (2.10, 2.12). We shall pose it as a Cauchy problem in Hilbert

space. The major result is Theorem 5.1.

2.2 The Regularization of a0, aj, and L

Let ζ be a non-decreasing C∞ function satisfying:

ζ(s) =

{
0, s ≤ 0,
1, s ≥ 1.

(2.13)

An example of such a function is given in [17, p. 36]. Given the initial conditions, n0, T0,

and constant threshold values,

0 < n00 < inf n0, 0 < T00 < inf T0, (2.14)

define the regularizations by setting

ñ(n) =
n

2
(1 + ζ(n/n00)) , T̃ (T ) =

T
2

(1 + ζ(T /T00)) .

Then, ñ(n) = n, n ≥ n00, T̃ (T ) = T , T ≥ T00, and n00/2 and T00/2 are lower bounds.
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regularization of a0

Define the regularization a00 of a0 to be the diagonal matrix obtained by the replacements:

n 7→ ñ, v 7→ v, T 7→ T̃ .

regularization of L

Similarly, for the regularization L0 of L, we have: n 7→ ñ, v 7→ v, T 7→ T̃ .

regularization of aj and b

For the regularization aj0 of aj, the quotients in the first and final diagonal positions of

Cj are regularized, and for the regularization b0 of b, the elements involving division by T
are regularized. Specifically,

T vj
n
7→ T vj

ñ
,

3nvj
2T
7→ 3nvj

2T̃
,

3(1− T0T )

2τw
7→

3(1− T0T̃ )

2τw
, c
nv

T
7→ c

nv

T̃
.

We are interested in the Cauchy problem for the regularized system,

a00(u)ut − L0(u)u +

[
3∑
j=1

aj0(u)
∂u

∂xj
+ b0(u)u

]
= 0, (2.15)

2.3 A Framework for Analysis

We introduce the classical Bessel potential space Hs(R3;Rk) [1]. It can be characterized,

via the isometric Fourier transform F , as the linear space of functions v with norm,

‖v‖2
Hs =

∫
R3

(1 + |x|2)s|Fv(x)|2 dx.

It follows from the definition that the diagonal operator S = I(I − ∆)s/2 induces an

isometry of Hs(R3;Rk) onto L2(R3;Rk). Here, ∆ denotes the Laplacian.

We may now define:

X = PL2(R3;R11), Y = PHs(R3;R11).

We understand by P the orthogonal projection I8

⊗
P3, which leaves invariant the first

eight of the components of u, and projects the final three components, via P3, onto the

subspace of L2(R3;R3) consisting of functions with divergence free distributional deriva-

tives. Another type of space required for our analysis is the class of uniformly local spaces

[16], [11, p. 252]. We recall their definition here.
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Definition 2.1. For H a fixed Hilbert space (including the special case of Euclidean space),

let L2,u`(R
d;H) denote the set of all (equivalence classes of) H-valued strongly measurable

functions u such that

‖u‖ = sup
x∈Rd

(∫
|y−x|<1

|u(y)|2dy
)1/2

<∞.

This space is called a uniformly local L2 space. For each integer s ≥ 0, denote by Hs
u` the

set of u ∈ L2,u` such that the distribution derivatives Dαu of order |α| ≤ s are in L2,u`.

The norm in Hs
u` is given by

‖u‖Hs
u`

= sup
|α|≤s
‖Dαu‖L2,u`

.

Interpolation space theory may be used to extend the definition to non-integral s.

We state two essential properties of the uniformly local Hs spaces which will be used

in the course of our analysis.

inclusion relations

If s > 3/2 + k, k a nonnegative integer, and m ≥ 1 is an integer, then

Hs(R3;Rm) ⊂ Hs
u`(R

3;Rm) ⊂ Ck
b (R3;Rm),

where the inclusions are continuous. Here, the subscript b indicates that derivatives

through order k are bounded.

multiplier relations

If s > 3/2, then multiplication induces continuous bilinear maps:

Hτ+σ(R3;R1)×Hs−σ
u` (R3;Rm) 7→ Hτ (R3;Rm),

for 0 ≤ σ ≤ s, 0 ≤ τ ≤ s− σ.

The regularized matrix a00 contains entries obtained by taking reciprocals, which are

not, in general, Hs functions. We have introduced the uniformly local spaces precisely to

cover this situation. The regularized reciprocals of Hs functions are in Hs
u`, and hence are

(invariant) multipliers. This pertains as well to the regularizations of L and aj.
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3 The General Cauchy Problem

3.1 Preliminaries

We begin with the standard description of the class of operators related to the infinitesimal

generators of semigroups to be used in the sequel [4].

Definition 3.1. Let U be a closed linear operator with domain and range dense in a

Hilbert space X. Denote by R(λ, U) the resolvent (λI − U)−1 for λ in the resolvent set

ρ(U). For M > 0 and ω ∈ R denote by G(X,M,ω) the set of all operators A = −U such

that

‖[R(λ, U)]r‖ ≤M(λ− ω)−r, r ≥ 1, λ > ω.

Finally,

G(X) = ∪ω,MG(X,M,ω).

We now pass to the core result for the theory. There is a criterion due to Kato (see

[15], [11]), which permits one to deduce semigroup generation on a smooth space Y via

stability on X. More precisely, the criterion is directed more fundamentally at transferring

the property A ∈ G(X,M,ω) to A ∈ G(Y,M, ω1). It is particularly useful when M = 1.

We quote the relevant result. It follows from [11, Propositions 6.2.3 and 6.2.4], which are

based on [15].

Proposition 3.1. Suppose Y is a Hilbert space densely and continuously embedded in X

and S : Y 7→ X is an isomorphism. We write ‖v‖Y = ‖Sv‖X . Suppose A ∈ G(X,M,ω)

such that

A1 = SAS−1 = A+B, (3.1)

where B is a bounded linear operator on X and

D(A1) = {v : AS−1v ∈ Y }.

Then the semigroup generated by −A, restricted to Y , is the semigroup generated by the

restriction of −A to {v ∈ Y ∩D(A) : Av ∈ Y }. It follows that A1 ∈ G(X,M,ω+M‖B‖),

or, equivalently, A ∈ G(Y,M, ω1), with ω1 = ω +M‖B‖. In this case, Se−tAS−1 = e−tA1.

Note that use is made of the well-known fact that A ∈ G(X,M,ω) and B bounded on

X imply

A+B ∈ G(X,M,ω +M‖B‖).
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3.2 The Abstract Cauchy Problem

We are interested in solving an initial value problem, in a Hilbert space X,

A0(u)
du

dt
+ A(u)u = 0, u(0) = u0, (3.2)

where A(u) ∈ G(X,M,ω) for u restricted to a subset of a ‘smooth’ Hilbert space Y ,

densely and continuously embedded in X, and where A0 and A−1
0 are bounded on X for

u suitably restricted. We seek a solution u(t) ∈ Y, 0 ≤ t ≤ T . The derivative, du/dt, is

required to belong to an intermediate space, V . Certain Lipschitz continuity conditions,

to be described later, are also required. Among these, we require:

‖A−1
0 (v)A(u)− A−1

0 (v)A(w)‖Y,X ≤ C‖u− w‖X ,

uniformly in v, for u,w suitably restricted in norm.

3.3 The Implicit Semidiscretization in Time

If ∆t is given as the ratio T/N , then the method of horizontal lines, applied to (3.2), yields

a semidiscrete set of implicit equations, explicit in A0:

A(uNk )uNk + (1/∆t)A0(uNk−1)uNk = (1/∆t)A0(uNk−1)uNk−1, k = 1, . . . , N. (3.3)

If we set µ2 = 1/∆t = N/T , then the uNk can be characterized formally as fixed points of

the mapping

Qv = QN
k v = −R(µ2 − 1,−A−1

0 (uNk−1)A(v))v + µ2R(µ2 − 1,−A−1
0 (uNk−1)A(v))uNk−1. (3.4)

By repeated back substitution, one obtains the following useful formula for uNk−1:

uNk−1 =
k−1∏
j=1

µ2R(µ2,−Ã(uNj ))u0, (3.5)

where we have written,

Ã(uNj ) = A−1
0 (uNj−1)A(uNj ).

Pivotal to the entire study is the demonstration of the existence of fixed points for

this map within an appropriately smooth set. We are now able to introduce the type of

stability which is appropriate for this purpose.
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Definition 3.2. Let X be a Hilbert space, suppose that ∆t = T/N is given, and a partition

tj = j∆t, j = 0, . . . , N , is specified. Suppose that a family {Ã(u)} is given as above, and

that uN1 , . . . , u
N
k are obtained recursively via (3.3), where k ≤ N . The family is said to be

stable if there are constants M , ω, and c, independent of k and N , but depending on the

radius r of a ball in Y containing uN1 , . . . , u
N
k−1, such that

‖
k∏
j=1

[Ã(uNj ) + λj]
−1‖ ≤M

k∏
j=1

(λj − ω) exp (cT ) , λj > ω. (3.6)

In order to obtain smooth solutions, it is required that stability hold on X and Y , with

constants M , ω c, and M1, ω1, c1, respectively.

3.4 The Invariance and Lipschitz Continuity of Q

For ω and ω1 introduced through Definition 3.2 above, we define: ω̄ = max(ω, ω1). M̄ and

c̄ are defined similarly. Suppose that δ and ρ are fixed positive constants, and that

σ = (1 + δ)M̄e(1+1/ρ)(1+ω̄+c̄)T , (3.7)

where T is a fixed terminal time to be specified. We define

W̄0 = {u ∈ Y : ‖u‖Y ≤ σ‖u0‖Y , ‖u‖X ≤ σ‖u0‖X}.

This is the invariant set on which Q acts. A precise statement is now given.

Proposition 3.2. Suppose that a family {Ã(u)} and ∆t = T/N are given, and a partition

tj = j∆t, j = 0, . . . , N , is thereby specified. If uN1 , . . . , u
N
k−1 ∈ W̄0 are inductively defined

solutions of (3.3), suppose that the family {Ã(uNj )} is defined as in Definition 3.2 and is

stable on X and Y . If the integer N satisfies:

N

T
> [(1 + δ−1)M̄ + (ρ+ 1)(1 + ω̄ + c̄)], (3.8)

then the mappings Q = QN
k of (3.4) are mappings of W̄0 into itself.

The proof is deferred to Appendix A. We shall next describe the Lipschitz continuity

of Q. This will close the induction, and give the existence of uNk , for ∆t sufficiently small.
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Proposition 3.3. Under the assumptions of Proposition 3.2, the mappings Q = QN
k of

(3.4) are Lipschitz continuous mappings in the topology of X with Lipschitz constant

CQ =
M̄

µ2 − 1− ω̄
[
1 + C(1 + M̄(1 + 1/ρ))σ‖u0‖X

]
. (3.9)

Here, C is the Lipschitz constant cited earlier. If N is sufficiently large, then CQ < 1 and

Q has a unique fixed point in W̄0.

The proof is given in Appendix A. The reader will notice that W̄0 is viewed as a

complete metric subspace of X in this realization of the Banach contraction mapping

principle.

3.5 Technical Results Related to Stability of Norms

The use of the symmetrizer introduces a technical complication related to stability. This

is dealt with by use of a family of equivalent norms. The following result is recorded in a

form useful for later use. Its routine proof is omitted.

Lemma 3.1. Given uNi , i = 0, . . . , k − 1, with A(uNi ) ∈ G(X, 1, ω), we define a family of

norms, indexed by i:

‖f‖i = ‖A0(uNi−1)f‖X , i = 1, . . . , k, (3.10)

where A,A0 have been given previously. Suppose that there is a constant K,

‖A0(uNi )‖ ≤ K, ‖A−1
0 (uNi )‖ ≤ K, all i. (3.11)

Suppose also that

‖A0(uNi )A−1
0 (uNi−1)‖ ≤ (1 + C0∆t)2. all i. (3.12)

Then the norms as defined in (3.10) satisfy the stability condition with M = K2 and

C = 2C0.

As will be seen, the constants K and C0 depend upon the radius of the set on which

the mapping Q acts. We present an additional result which will be useful for deriving

stability on Y . Suppose we have the setup of the previous lemma, and suppose Y ⊂ X

are related by an isomorphism, S : Y 7→ X, and that S remains an isomorphism from Yi

to Xi, where

‖u‖Yi = ‖Su‖Xi , i = 1, . . . , k.
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Here, the subscript i denotes the equivalent norm of the lemma. We have the following.

Proposition 3.4. Suppose the conditions of the previous lemma hold, and suppose (3.1)

holds for each member of the family {Ã(· )} (the argument · represents any of the uNi ):

Ã1(· ) = SÃ(· )S−1 = Ã(· ) + B̃(· ), (3.13)

where ‖B̃(· )‖X is uniformly bounded. If Ã1(· ) ∈ G(Xi, 1, ω),∀i ∈ {1, . . . , k}, then {Ã(· )}
is stable, with M1 = 1, c1 = 2c0, ω1 = ω + ‖B(· )‖i, with respect to Yi, for each i ∈
{1, . . . , k}.

4 Generators for the Model and their Properties

The preceding theory has been described as an appropriate template for the Hydrodynamic-

Maxwell model. What makes this theory applicable to our model is that the differential

operators which we have defined in §2 are semigroup generators on X and Y . For the

reader’s convenience, we state these properties in Appendix B. The operator A is given

in (B.4). The techniques make essential use of the Friedrichs framework for generation

by A on X and the Kato framework, via commutator estimates, for generation on Y .

By employing the appendix in this way, we have minimized redundancy with respect to

reference [14]. Here, we proceed directly to the stability results. These and the Lipschitz

continuity are central to the application of the preceding theory.

4.1 Stability on X and Y

We suppose that we are in the inductive situation of Definition 3.2. We shall now deduce

stability for the regularized problem by formulating a natural criterion in terms of the

semidiscrete solutions.

Lemma 4.1. In the context of Definition 3.2, suppose that there is a constant c′, not

depending on k = 1, . . . , N , such that

‖uNi − uNi−1‖C ≤ c′∆t, i = 1, . . . , k − 1. (4.1)

Then the norms are stable. Here, the subscript C refers to the norm in the space of

uniformly continuous, bounded functions on R3.
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Proof. According to Lemma 3.1, we must examine

‖a00(uNi )a−1
00 (uNi−1)‖. (4.2)

The individual main-diagonal entries of the diagonal matrix, a00(uNi )a−1
00 (uNi−1), are either

unit entries or quotients, or a simple product of quotients. These basic quotients are of

the form,
ñ(n(t))

ñ(n(s))
,
T̃ (T (t))

T̃ (T (s))
,

or their reciprocals. We use a simple algebraic relation to estimate these quotients:∣∣∣∣αβ
∣∣∣∣ ≤ (1 + C|α− β|), (4.3)

where C ≥ 1/β. It will be enough to consider certain case distinctions. These are made

so that the term |α− β| is easily computable. For concreteness, we consider the quotient,

ñ(ni)

ñ(ni−1)
.

Its simple estimation is bounded above via (4.3) and the definitions of ñ, a00 by:

(1 + C1‖ni − ni−1‖C), 1 ≤ i ≤ N − 1,

for some constant C1. This makes use of the Sobolev embedding theorem and the smooth-

ness of the function ζ. A similar estimate is derivable for the reciprocal, and for the

expressions in T . We have derived an upper bound of at most

(1 + C0∆t)2,

for the individual entries of a00(uNi )a−1
00 (uNi−1), upon use of the hypothesis (4.1). This

completes the proof.

Proposition 4.1. Suppose r is the radius of the admissible W̄0 in Y on which Q acts.

Then (4.1) holds, with c′ a sixth degree polynomial of r. In the context of Definition 3.2 we

have stability on X and Y , if a fixed r is chosen independently of k. The constants have

values Mt = 1, ωt = Cr3 on any Xt, so that, on X, M is proportional to r2 and ω = Cr3.

On Y , we have M1 proportional to r2 and ω1 a quintic function of r. The stability constant

c is a constant multiple of c′ for both X and Y .
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Proof. The characterization of c′ as a sixth polynomial is a consequence of the detailed

analysis of Lemma 4.2 to follow: a direct estimate of the semidiscrete equation gives

a product of a quintic polynomial estimate with r, as an estimate for the differences

‖uNj − uNj−1‖C/∆t. The remaining statements follow from Lemma 3.1 and Lemma B.2.

Note that ‖B̃(t)‖X is a constant multiple of r5.

4.2 The Lipschitz Properties of Ã(u)

We make use of the definitions of E and A given in (B.1, B.4). We have reserved the

notation E for the first order operator part of A. Again, we define Ã = a−1
00 A. A precise

statement of the latter is given in the following lemma.

Lemma 4.2. The mapping w 7→ E(w) ∈ B(Hs, Hτ ) is Lipschitz continuous in the norm

topology for 0 ≤ τ ≤ s− 1 for s > 5/2:

‖E(w)− E(w′)‖Hs,Hτ ≤ C‖w −w′‖Hτ , w,w′ ∈ W̄ .

The constant C is proportional to a cubic function of the radius r of W̄0 ⊂ Y . Similarly,

if s > 7/2, the mapping w 7→ A(w) ∈ B(Hs, Hτ ) is Lipschitz continuous in the norm

topology for 0 ≤ τ ≤ s− 2:

‖A(w)− A(w′)‖Hs,Hτ ≤ C‖w −w′‖Hτ , w,w′ ∈ W̄ .

The dependence on C is cubic in r. Finally, for fixed v ∈ Hs, the mapping w 7→ Ãv(w) ∈
B(Hs, Hτ ) is Lipschitz continuous in the norm topology for 0 ≤ τ ≤ s−2. Here, Ãv(w) =

a−1
00 (v)A(w). In this case, the dependence is quintic in r.

Proof. We first note the inequalities,

‖aj0(w)− aj0(w′)‖Hτ ≤ c1‖w −w′‖Hτ ,

‖b0(w)− b0(w′)‖Hτ ≤ c2‖w −w′‖Hτ .

These inequalities use the definitions of the matrices aj0, j = 1, 2, 3, and thematrixb0. The

constants c1, c2 depend quadratically upon r. Now, since Hs−1 functions are multipliers

on Hτ , we have:

‖E(w)v − E(w′)v‖Hs,Hτ ≤ c(
d∑
j=1

‖aj0(w)− aj0(w′)‖Hτ‖ ∂v

∂xj
‖Hs−1+
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‖b0(w)− b0(w′)‖Hτ‖v‖Hs−1) ≤ C ′‖w −w′‖Hτ‖v‖Hs .

This gives the statement of the lemma regarding E. To obtain the statement regarding

A, we examine L0:

‖L0(w)v − L0(w′)v‖Hs,Hτ ≤ c{‖D0(w)−D0(w′)‖Hτ‖∇· (n∇T )‖Hs−2

+‖D0(w′)(∇(n− n′)· ∇T + (n− n′)∆T )‖Hτ}

≤ C ′‖w −w′‖Hτ ,

provided s > 7/2. Here, we have made use of the multiplier relations. The same obser-

vations concerning the cubic growth in r apply. Finally, in order to analyze Ã, we note

that the explicit operator a−1
00 is a multiplier on each Hτ space; the estimate contributes

an additional factor proportional to r2.

4.3 The Fixed Point Theorem for the Semidiscrete Euler-Maxwell
System

As in the discussion of §3, we define ω̄ to be the maximum of the constants ω and ω1,

derived from the classes G(X,M,ω) and G(Y,M, ω1). These functions have polynomial

dependence on r. We retain the notationM and c, which also have polynomial dependence.

Local Assumption on ‖u0‖ and T

If M(r) is the stability constant of Definition 3.2, and c = c(r) is given in this definition,

both analyzed in Proposition 4.1, we require:

‖u0‖Y <
r

M(r)
e−(1+ω̄(r)+c(r))T := H(r, T ). (4.4)

(4.4) is the general inequality which must be satisfied by ‖u0‖Y , T , and the radius r of the

admissible ball in Y . This is quite general: T may be given arbitrarily.

We now define numbers δ and ρ which allow us to connect (4.4) with the theoretical

analysis of Propositions 3.2 and 3.3. Set γ = 1 + ω̄ + c, and select ρ satisfying

M(r)‖u0‖Y e(1+1/ρ)γ(r)T < r,

which is possible by (4.4). Define:

δ = re−(1+1/ρ)γ(r)T/(M(r)‖u0‖Y )− 1.

16



It is immediate that

(1 + δ)M(r)e(1+1/ρ)γ(r)T‖u0‖Y = r.

We further define:

σ = (1 + δ)M(r)e(1+1/ρ)γ(r)T .

These definitions then describe the framework investigated in Propositions 3.2 and 3.3. In

particular,

σ‖u0‖Y = r.

We then have the following theorem, which follows in a direct manner from the framework

we have developed..

Theorem 4.1. If (4.4) holds, and N is sufficiently large, then the mapping Q, with Lip-

schitz constant CQ given by (3.9), is a strict contraction on W̄0. In this case, Q has a

unique fixed point, denoted uNk .

5 Well-Posedness Theorem and Summation

The details of the transition from the semidiscrete analysis to the evolution system are

presented in Appendix C. Combinatorial and compactness arguments lead first to a weak,

then a strong solution of the evolution system. The strong solution is unique, and stable

under the limit κ0 → 0. All of this is initially carried out for the regularized problem.

Here, we complete the analysis of the well-posedness of the model by removing the presence

of the regularization. We do require, however, the specification of threshold parameters.

More precisely, we assume that (2.14) is satisfied, which implicitly requires the uniform

boundedness of n0, T0 away from zero, and also sets lower bounds of half the threshold

values.

Theorem 5.1. If (2.14) is satisfied, and u is the unique solution on [0, T ] satisfying

Corollary C.1 and Proposition C.1, then there is a maximum subinterval [0, T ′] of [0, T ]

such that n ≥ n00, T ≥ T00 on this subinterval and such that the regularized problem is

identical to the given system.
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Proof. The proof is immediate because of the regularity class (C.13) and the Sobolev

embedding theorem, which together guarantee that u(x, t) is bounded and uniformly con-

tinuous as a function of x, t. Thus, given a unique strong solution u of (2.15) on [0, T ],

one defines:

T ′ = max{t′ : u1(· , t) ≥ n00, 0 ≤ t ≤ t′, ud+2(· , t) ≥ T00, 0 ≤ t ≤ t′}.

Remark 5.1. This is the first analysis of the Euler-Maxwell system in this complete gen-

erality. As noted in the introduction, the use of the fully implicit method of horizontal lines

has allowed for the formulation of a precise condition (see (4.4)) for the local assumption.

By using semigroup methods, we are able to pass to the limit of vanishing heat conduction.

The first use of these ideas in the context of the Kato semigroup framework is described

in [11, Section 7.5]. A weak solution study of the isentropic subsystem in one variable was

given in [7] for the two-carrier model with geometric terms. This alternative approach

permits shock formation. Finally, the reader who has followed the arguments of the paper

will realize that the case of temperature dependent relaxation terms is elementary, so long

as singularity formation is avoided. One can regularize such expressions as in (2.15), and

proceed much the way we did above.

Appendices

A The Properties of Q and the Fixed Point Theorem

For completeness, we give here the proofs of Propositions 3.2 and 3.3.

Proof of Proposition 3.2:

For fixed N , we assume inductively that (3.3) has a solution uN` for ` < k, where

1 ≤ k ≤ N . We can estimate ‖Qv‖X . From (3.4), we have, by use of the stability

property:

‖Qv‖X ≤
M

µ2 − ω − 1
σ‖u0‖X +

Mµ2

µ2 − ω − 1

(
µ2

µ2 − ω

)k−1

exp(cT )‖u0‖X . (A.1)

Here we have used (3.5). For the first term, we estimate, by the choice of N ,

M

µ2 − ω − 1
≤ δ

(1 + δ)
.
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An observation required for the estimate of the second term is given by

µ2

µ2 − ω − 1
≤ (1 + 1/ρ) (A.2)

if µ2 ≥ (1 + ρ)(ω + 1). When this is combined with the standard inequality,

(1 + s)N ≤ esN , s =
ω + 1

µ2 − ω − 1
,

we arrive at a chain of inequalities for the second term. By the choice of N and σ,

µ2

µ2 − ω − 1

(
µ2

µ2 − ω

)k−1

exp(cT ) ≤
(

µ2

µ2 − ω − 1

)N
exp(cT ) ≤ e(1+1/ρ)(1+ω+c)T

≤ σ

M(1 + δ)
.

If we apply each of the estimates, we have the estimate that ‖Qv‖X ≤ σ‖u0‖X .

The estimate for ‖Qv‖Y is similar and completes the proof.

Proof of Proposition 3.3:

The critical representation is the identity,

R(λ,−Ã(w))−R(λ,−Ã(v)) = R(λ,−Ã(w))[Ã(v)− Ã(w)]R(λ,−Ã(v)).

We obtain:

‖R(λ,−Ã(w))−R(λ,−Ã(v))‖X ≤ ‖R(λ,−Ã(w))‖XC‖v − w‖X‖R(λ,−Ã(v))‖Y

≤ C1
‖v − w‖X

(λ− ω)(λ− ω1)
,

where C1 = MM1C. This leads to the estimate, for λ = µ2 − 1,

‖Qv −Qw‖X ≤
1

µ2 − 1− ω

[
M +

C1σ‖u0‖X
µ2 − 1− ω1

+
C1σ‖u0‖X µ2

µ2 − 1− ω1

]
‖v − w‖X .

Here, we have used the inductive assumption that ‖uNk−1‖X ≤ σ‖u0‖X . By using the

estimates of the proof of Proposition 3.2, we obtain

‖Qv −Qw‖X ≤
1

µ2 − 1− ω

[
M +

MCσδ‖u0‖X
(1 + δ)

+MM1C(1 + 1/ρ)σ‖u0‖X
]
‖v − w‖X .

This yields the estimate (3.9) of the proposition. Since Y is assumed to be an embedded

Hilbert space, W̄0 is a complete metric subspace of X, and the final statement follows from

the contraction mapping theorem.
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B The Semigroup Generation Properties

In this appendix, we retain the meanings of X and Y as defined in §2.3 in order to analyze

the regularized Cauchy problem as defined in §2.2. We begin with semigroup generation

on the ground space X, and follow the classical approach of Friedrichs.

Lemma B.1. Let w ∈ Y, s > 5/2. Let

E(w) = P

[
3∑
j=1

aj0(w)
∂

∂xj
+ b0(w)

]
, (B.1)

where aj, b are defined in (2.9), (2.11) and aj0, b0 are the regularizations. Then the following

hold.

1. E = E(w) may be identified with the closed linear operator, defined by the formal

adjoint relation,

(u, E∗ψ)X = (v, ψ)X , ∀ψ ∈ PC∞0 (R3;R11),

where v = Eu, u ∈ D(E).

2. The relation,

(Eψ, ψ)X =

(
1

2

(
b0 + b∗0 −

3∑
j=1

∂aj0
∂xj

)
ψ, ψ

)
X

, (B.2)

holds. In particular, the energy inequality,

(Eu,u)X ≥ −ω0(u,u)X ,

holds for all u ∈ D(E), where

ω0 =
1

2

3∑
j=1

‖aj0‖C1 + ‖b0‖C . (B.3)

3. E ∈ G(X, 1, ω0).

Moreover, the sum,

A(w) = L0(w) + P

[
3∑
j=1

aj0(w)
∂

∂xj
+ b0(w)

]
, (B.4)

is in G(X, 1, ω). Here, ω is proportional to the cube of the radius r in Y of the ball from

which the coefficients of L0, aj0, b0 are taken.
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Proof. We give only a sketch, referring the reader to the proper references. Property (1)

is due to Friedrichs [10]. Property (2) is a direct calculation, and uses the Hermitian

symmetry of the matrices aj0. The energy inequality is an immediate consequence, and,

in turn, implies the generation property for −E, via the Hille-Yosida theorem. We now

discuss the complete spatial operator. This is straightforward after an initial observation.

One observes that the energy inequality holds for the augmented operator, on a pre-domain

of compact support functions. We illustrate this by examining the action of the nontrivial

part of L0(w). Let ψ ∈ C∞0 (R3;R), and consider the L2 inner product,

(−∇· (ñ∇ψ), ψ/T̃ )L2 ,

where n, T are components of w. After integration by parts and an application of the

product rule to ψ/T̃ , we obtain

(−∇· (ñ∇ψ), ψ/T̃ )L2 = ((ñ/T̃ )∇ψ,∇ψ)L2 − ((ñ/T̃ 2)∇ψ, ψ∇T̃ )L2 .

The second term on the right hand side is estimated via:

((ñ/T̃ 2)∇ψ, ψ∇T̃ )L2 ≥ −δ((ñ/T̃ )∇ψ,∇ψ)L2 − Cδ(ψ, ψ)L2 ,

where δ can be made arbitrarily small. Here, Cδ depends upon r as stated in the lemma.

One forms the sum, A(w), deduces its action on C∞0 (R3;R11) by the earlier part of the

lemma, and then takes the closure of this operator.

The transfer of these generation properties to Y is now discussed. We quote here the

fundamental commutator result of Kato [15, Appendix], as adapted to our present context.

Lemma B.2. For functions v,w ∈ PHs(R3;Rk), where k = 11 in this paper, and an

operator of the form,

Ã(v,w) = a−1
00 (w)

{
L0(v) + P

[
3∑
j=1

aj0(v)
∂

∂xi
+ b0(v)

]}
, (B.5)

we have

SÃ(v,w)S−1 = Ã(v,w)) +[
−[S, a−1

00 D0]Λ1−(s−1)(Λ−2∇· (ñ∇)) + P
3∑
j=1

[S, a−1
00 aj0]Λ1−s

(
∂

∂xj

)
Λ−1 + [S, a−1

00 b0]Λ1−sΛ−1

]
,
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where D0 = diag(0,0, 1/T̃ ,0), Λ = (I − ∆)1/2, [· , · ] denotes the commutator, and S =

IkΛ
s; here Ik is the identity matrix of order k. In particular, in the notation of Proposition

3.4, we have

B̃ =

[
−[S, a−1

00 D0]Λ1−(s−1)Λ−2(∇· (ñ∇)) + P
3∑
j=1

[S, a−1
00 aj0]Λ1−s

(
∂

∂xj

)
Λ−1 + [S, a−1

00 b0]Λ1−sΛ−1

]
.

If s > 7/2, then B is a bounded operator on L2(R3;Rk) with bound:

‖B̃‖ ≤ C

(
‖grad a−1

00 D0‖Hs−2 +
d∑
j=1

‖grad a−1
00 aj0‖Hs−1 + ‖grad a−1

00 b0‖Hs−1

)
.

Note that we have used the fact that Λ−2(∇· (ñ∇) can be extended to be a bounded

linear operator on L2(R3;Rk). This is where we need the increase (by one) of s.

C Analysis on the Space-Time Domain

This appendix is provided for readers unfamiliar with the details of the limiting procedure

associated with the semidiscrete method. For the most part, we do not give proofs here.

Amplification may be found in [14].

The idea is to define step function or piecewise linear sequences in time which make

use of the semidiscrete spatial solutions. Weak and local strong compactness allow one to

obtain a unique limit. This limit is first shown in the theory to be a weak solution, and

then a strong solution in certain regularity classes. The strong solution is not only unique;

it is invariant under κ0 → 0.

We begin by defining the relevant sequences which make use of the semidiscrete solu-

tions.

Definition C.1. For ∆t = T/N , tk = k∆t, and 0 ≤ t ≤ T , set

θNk (t) =

{
1, tk−1 ≤ t < tk, k = 1, . . . , N,
0, otherwise.
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Then for x ∈ R3, define:

uNPL(x, t) = uNk (x) +
t− tk

∆t
(uNk (x)− uNk−1(x)), tk−1 ≤ t < tk, k = 1, . . . , N, (C.1)

uNS (x, t) =
N∑
k=1

uNk (x)θNk (t), (C.2)

aNj0(x, t) = aj0(uNS (x, t)), (C.3)

bN0 (x, t) = b0(uNS (x, t)). (C.4)

We also require function space notation:

Y = W 1
∞((0, T );Hs−2(R3;R11)) ∩ L∞((0, T );Y ).

The following lemma relates the sequences and the function spaces via norm bound-

edness.

Lemma C.1. The sequence {uNS } is bounded in norm in L∞((0, T );Y ). The sequence

{uNPL} is bounded in norm in Y.

C.1 The Weak Solution

Compactness arguments applied to the preceding lemma are used to obtain a weak solu-

tion. We have the following.

Theorem C.1. There are subsequences, denoted u
Nj
PL, u

Nj
S , and a function u ∈ Y, such

that:

u
Nj
PL ⇀ u weakly in L2((0, T );Y ), (C.5)

u
Nj
PL ⇀

∗ u weak-* in W 1
∞((0, T );Hs−2(Rd)) ∩ L∞((0, T );Y ), (C.6)

u
Nj
PL → u in L2,loc(D), (C.7)

u
Nj
S ⇀ u weakly in L2((0, T );Y ), (C.8)

u
Nj
S → u in L2,loc(D), (C.9)

a
Nj
j0 → a(· ,u) in L2,loc(D), (C.10)

bNj → b(· ,u) in L2,loc(D). (C.11)
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The function u is a weak solution of the Cauchy problem: if ψ ∈ C∞([0, T ];C∞0 (Rd, Rd+2)),

and T ′ ≤ T , then, for DT ′ = Rd × (0, T ′),∫
DT ′

{uψt − A(· ,u)uψ} dxdt+

∫
Rd×{0}

u0ψ dx−
∫
Rd×{T ′}

uψ dx = 0. (C.12)

C.2 Existence and Uniqueness of Strong Solutions

Corollary C.1. The solution u of (C.12) is a strong solution. Specifically,

ut ∈ C([0, T ];Hs−2(Rd)), (C.13)

and the equation (2.10) holds in the strong sense described by (C.13). Moreover,

u ∈ C([0, T ];Hs(Rd)). (C.14)

Proof. The regularity (C.13) follows from (C.6) of Theorem C.1 and the fundamental

theorem of calculus in reflexive Banach spaces. This also validates an integration by

parts, and hence the strong form of the evolution equation. Note that each of the terms in

(2.10) (more precisely, in the regularized system (2.15)) is in the class (C.13) (see Lemma

4.2). The regularity (C.14) is more subtle and can be deduced from

u ∈ L∞((0, T );Hs(Rd)),

established in Theorem C.1, in a manner similar to that employed in [18, pp. 44–46], where

it is noted that right continuity at zero suffices to establish the continuity on [0, T ]. The

technique to establish right continuity at zero relies on establishing an estimate of the

form,

‖u(t)‖2
Hs ≤ ‖u(0)‖2

Hs +

∫ t

0

f(τ) dτ,

where f is an L1 function. One may now proceed as in [18].

The important property of uniqueness is noted.

Proposition C.1. The strong solution of (2.10) described by Corollary C.1 is unique.
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C.3 Stability Under the Limit of Vanishing Heat Flux

An important feature of the semigroup-based theory which we have presented in this

paper is its ability to permit the passage to the case of the strict gas dynamics limit for

the charged fluid; i. e. , the passage under the limit κ0 → 0. Results of this type were

obtained in [13] for incompressible charged fluids, where the relevant parameter is the

kinematic viscosity. It was noted in this reference that Kato developed his theory to cover

a range of applications. The only distinction required when κ0 = 0 is discussed in [15, p. 55]

for the semigroup generation on L2 (though the application is different, the procedure is

the same). In fact, there is only one modification: the domain of A 7→ E is larger, with

regularity index decreased by one. The rigorous argument appears in the proof of Lemma

B.1. However, this has no impact upon the invariance results and fixed point arguments

for Q, nor upon the arguments in the space-time domain.

The following result is a natural consequence of our arguments.

Proposition C.2. There is a strong solution, in the regularity classes defined by (C.13),

(C.14), of the regularized system (2.15), with κ0 = 0. Moreover, the solution interval is

stable under the inviscid limit κ0 → 0. More precisely, if u1,u2, are solutions of (2.15) for

values κ′0 ≥ κ′′0 ≥ 0, then there is a constant C such that

‖u1 − u2‖C([0,T ];L2(Rd)) ≤ C(κ′0 − κ′′0).

The terminal time T is independent of κ0.
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