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Abstract

We discuss time dependent quantum systems on bounded domains
from the perspective of nonlinear, time-dependent potentials. The time
dependence of the Kohn-Sham potentials distinguishes this study from
that of the so-called nonlinear Schrodinger equation, much studied in the
mathematical community. We are interested in establishing a framework
for potentials including the external potential, the Hartree potential and
the exchange correlation potential as occur in time dependent density
functional theory (TDDFT). As in previous work, we make use of the
time-ordered evolution operator. A departure from the previous work is
the use of weak solutions for the nonlinear model; this necessitates a new
framework for the evolution operator based upon dual spaces. We are
able to obtain unique global solutions. The author thanks Eric Polizzi
for discussions leading to the incorporation of a version of the exchange
correlation potential in the model.
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1 Introduction

This article continues the analysis of a general version of time dependent closed
quantum mechanical systems, begun in [1]. The emphasis in this work was a
rigorous study of discretization and well-posedness based upon the evolution
operator; this is consistent with the applications’ literature [2, 3, 4, 5, 6, 7].
Here, we extend the analysis to a broader class of nonlinear potentials and a
broader class of solutions than considered in our previous work. In particular,
we incorporate the exchange correlation potential, in addition to the Hartree
potential considered in [1]. The systems which we study are confined to bounded
domains with homogeneous Dirichlet boundary values. We now summarize the
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plan of the article. In the remainder of the introduction, we define the ad-
missible nonlinear quantum systems, via the specification of the Hamiltonian
operator. In the second section, we establish the framework for the evolution
operator defined with respect to appropriate dual spaces. In section three, we
give the details of the global existence and uniqueness theorem, achieved via
the contraction mapping theorem.

1.1 Time dependent quantum systems

Classical density functional theory (DFT) transfers inter-electron effects to the
exchange-correlation potential, expressed as a functional of the electron density
p [8, 9]. This theory, and its time-dependent counterpart, TDDFT, proposed
in [10], are capable of representing a many-electron system in terms of non-
interacting effective particles. We allow for a realization ® of this term below.
The aggregate potential is the effective potential Vog. This leads to the Hamil-
tonian H and its associated Kohn-Sham orbitals. For any usefulness in the
applied community, the effective potential must be permitted to include a term
(perhaps interpreted as an excitation term) with explicit dependence on time;
in addition, the exchange correlation has a time history. This excludes the
use of convolution semigroups, except as an approximation tool. The evolution
operator is required.

1.2 Initial value problem for Schrodinger systems

We follow the notation and format of [11]. If we denote by H the Hamiltonian

operator of the system, then the state W(t) of the system obeys the nonlinear

Schrédinger equation,

o (t)
ot

Here, ¥ = {41, ...,¥n} and the charge density p is defined by [7, Eq. (2.37)]

ih = HU(t). (1)

N

p(X, t) - ‘\P(Xa t)|2 - Z W)k(xv t)|2'

k=1

For mathematical well-posedness, an initial condition,
¥(0) = W, (2)

consisting of N orbitals, and boundary conditions must be adjoined. We will
assume in this article that the particles are confined to a bounded region 2 C
R3 and that homogeneous Dirichlet boundary conditions hold for the evolving
quantum state within a closed system. In general, ¥ denotes a finite vector
function of space and time. In the mathematical arguments below, we will
consider the classical case of Euclidean dimension d = 3. In the final section,
we will comment on the cases d =1, 2.



1.3 Specification of the Hamiltonian operator

If, as discussed earlier, the electron charge density is defined by p = |¥|2, we
study potentials which are of the form,

Verr(x,t,p) = V(x,t) + W p + @(x,1,p),

where, for W (x) = 1/|x|, the convolution W x p denotes the Hartree potential,
and where ® represents a time history of p:

t
D(x,t,p) = Po(x,0,p) +/ d(x,s,p) ds.
0

As explained in [7, Sec. 6.5], ®¢ is determined by the initial state of the Kohn-
Sham system and the initial state of the interacting reference system with the
same density and divergence of the charge-current.

We make the following assumptions.

e The integrand ¢ is assumed nonnegative and bounded in its arguments.

e ® is assumed continuous in ¢ into H' and bounded in ¢ into W13. The
continuity into H' is consistent with the zero-force law as defined in [7,
Eq. (6.9)]:

/ p(x, ) VO(x,t,p) = 0.
Q

e Furthermore, the following smoothing condition is assumed, expressed in
a (uniform) Lipschitz norm condition:

12(t, [01[*) = @(t, [Po| )]s < O 01 — Ca |, VE € [0, 7).

e The so-called external potential V is assumed to be continuously differen-
tiable on the closure of the space-time domain and to be nonnegative.

Remark 1.1 We do not explicitly incorporate the ionic potential.

The Hamiltonian operator then assumes the standard form,

] W s W s
- - - (b .
H va + Ver 3 V+V(x,t)+ Wxp+ O(t,p) (3)

Although it is generally understood in the physics community that the exchange-
correlation potential must include a time-history of the system, most mathe-
matical models have avoided this, and have employed the so-called adiabatic
approximation, which suppresses time history. In our inclusion of this, we have
selected a term with generic properties which appear to be consistent with those
derived in [12] and [7, Sec.6.3], rather than a term represented by a formula.
The type of weak solution derived in this article is now specified.



1.4 The weak solution

We require the solution to be continuous from the time interval into Hi. The
time derivative is required to be continuous from the time interval into H~!.
Finally, the spatially dependent test functions are arbitrary in the space H}.
We formalize this.

Definition 1.1 For J = [0,T], the vector-valued function ¥ = U(x,t) is a weak
solution of (1, 2, 3) if

Ve C(J; HY Q) NCH T, H(Q)),

if U satisfies the initial condition (2) for Vo € H}, and if V't € J the following
integral relation holds for p = |W¥|?:

X - 2 - _
(P G0y = [ {500 TC00 + Vo, )P, 0600

2m

Here, ¢ € HE(Q) is arbitrary and Veg is a function of p.

The analytical part of this article will establish the existence of a unique global
weak solution via the evolution operators. This solution is valid for the vector-
valued function ¥ as defined. The function spaces correspondingly contain N
function components. The hypothesis on the time history may appear stringent.
However, the full strength of the hypothesis is required to verify the similarity
hypothesis on the Hamiltonian (cf. Proposition 2.2); this is needed to establish
invariance of the evolution operators on H}. The theory as developed here
considers a natural pairing (H !, H}) connected by isomorphism. The evolution
operators are constructed on H~! and are shown to be stable on H}. At the
conclusion of the article, we raise as a question for further study whether already
demonstrated pairings, specifically the (L2, H?) pairing discussed in [1], can
imply the (H~!, H}) pairing.

2 The Evolution Operator on Dual Spaces

We employ here the theory originally derived by Kato and Dorroh [13, 14, 15]
and described in [16]. The theory requires stable Cy-semigroup generation on
a frame space X, leading to time interval norm operator continuity from a
smooth space Y to X and semigroup invariance on the smooth space. There is
an alternative approach discussed in [17, Theorems X.70, X.71], based on the
derivative of certain residual quantities, which is not employed here.

2.1 Semigroup generation on the dual space

In order to obtain a semigroup generation result which is contractive for all
time ¢, we treat H ! as a reflexive Banach space, as discussed in [18]. This will
serve as the frame space X on which the evolution operators will be derived.



The reader will recall that the natural tool in the case of Hilbert space for
semigroup generation via skew-adjoint generators is the theorem of Stone on
unitary group generation. We will need a replacement of this theorem which
yields contractive semigroups on the reflexive Banach space H ! via the family
of generators (—i/h)H. This is the Lumer-Phillips theorem. We quote a version
of it here (cf. [19], [20, Cor. 3.20, p.86]) applicable to reflexive Banach spaces.

Theorem 2.1 (Lumer-Phillips: reflexive Banach spaces) If Z is a reflexive
Banach space, and G : D(G) C Z — Z s a linear operator, then G is the

generator of a contraction semigroup if and only if the following two conditions
hold:

e (G is dissipative.
o G — )\l is surjective for some \g > 0.

For readers unfamiliar with these terms, we give brief definitions. For the dissi-
pative property, it is convenient to use the characterization given in [20, Prop.
3.23].

Definition 2.1 A Cy-semigroup {T(t)} is contractive on a Banach space Z if
1T <1 forallt € [0,T]. The operator G is dissipative if

Re (Gf,j(f)) <0,

for all f € D(G), where j(f) is an element in the duality set for f. If Z is
reflexive, this is the unique element j(f) = € Z* satisfying

U(f) = (f.0) =117 = )™

Definition 2.2 Suppose the Hamiltonian is represented as previously, with p =
|ul? and u € C(J, HY). We define the family A(t) = +H(t, p) to be the operators
with domain D(A) C H=' independent of t as follows.

D(4) = H,
(AWNw) = (i/h) / Veal t.p) o+ V- Vuldx. (4)

Proposition 2.1 The family A(t) satisfies the conditions of the Lumer-Phillips
theorem, with the identification: G = —A(t). It follows that —A(t) generates
a family of contraction semigroups on H™1. The family is also stable on H™1.
This means:

k
ITTIAG) + A 7H < A8, fora >0, ()
j=1

for any finite family {tj}le, with 0 < ¢y < -+ < &, < T. Moreover, [] is
time-ordered: [A(te) + N™' is to the left of [A(t;) + N7 if £ > j.



Proof: We begin by observing that A(t) is well-defined. This means that the
range of A(t) is in H~! for each . This is clear, since the term Vg is actually
bounded on the space-time domain. We now establish the dissipative property.
By use of the bidual mapping to represent the second dual of HJ, we may
conveniently define j(f) € H='" = H} via complex conjugation of f: j(f) = f.
This definition, coupled with the fact that Vig is real-valued, implies that

Re (A(t)f,j(f)) = 0.

We claim that the range of A(t) + M is, in fact, equal to H~! for all positive
A. We observe that the Hamiltonian is closed; in fact, the operator %V2 is
self-adjoint and hence closed [21] when H ™! is given the equivalent topology of
a real Hilbert space, since the property of being closed is preserved under the
equivalent topology of H~'. Moreover, the operator defined by the potential
multiplier is uniformly bounded on a dense set of continuous linear functionals,
those that are defined by L? functions [18], so that the Hamiltonian, and hence
the operator A(t), is closed. Thus, it suffices to show that the range of A(t)+ AT
is dense in H~!. Suppose this is not the case for a specific \; there is a nonzero
continuous linear functional on H ' which has a zero evaluation on the range.
This is a consequence of the Hahn-Banach theorem [22]. We demonstrate now
that any continuous linear functional on H !, which vanishes on the range of
A(t) + AI, must be zero. We again make use of the bidual mapping. Consider
v € H} such that
(A()f + Af,v) =0,

for all f € D(A(t)). By selecting f to be the complex conjugate of v, and
subsequently taking the real part, one has

/\/ [v|? dx = 0,
Q

which implies that v = 0. One concludes that the range is dense for all positive A.
This establishes the existence of contractive semigroups by the Lumer-Phillips
theorem. The stability follows from the equivalence of resolvent estimates with
the contractive property. [

Remark 2.1 Before proceeding to the similarity transformation which permits
the conclusion that the semigroup is invariant on D(A), we comment on the
real Hilbert space approach outlined in [21] for isometric groups. One can carry
this out by using a Hilbert space norm on H—! which is dependent on a specific
A(t). We have preferred the standard dual space characterization, because of the
nature of our approach to the time-dependent Hamiltonian.

2.2 Characterization of the smooth space H; and the iso-
morphism S

We define H¢ to coincide with D(A) as defined in (4). In addition, the standard
(complex) inner product and norm are adopted on H} C H!. There is a well-
known isomorphism which relates H~* and H{ considered as distinct Banach



spaces. This isomorphism plays an essential role in the theory of the evolution
operators. In order to conform to the traditional notation, we define S as follows:
given v € H} and ¢ € HE, define f = S(v) as the continuous linear functional

h2
f(©) 2/ {v(—i— VU-VC] dx.
Q 2m
Standard methods show that S is an isomorphism.

2.3 Continuity of A(t) into B[H}, H'| and semigroup in-
variance on H;

We are in the process of verifying the conditions which are sufficient for the
existence of the evolution operator. These are listed in detail in [16, Ch. 6]
or in summary form in the appendix of [1]. Once again, we suppose that
u € C(J;HY), and p = |ul?, which defines the Hamiltonian. We make the
preliminary observation that A(t) : J — B[H}, H71] is continuous in ¢. It is
routine, based upon our earlier arguments, to show that A(t) is well-defined in
B[H}, H~']. Continuity involves an analysis of terms of the form, for fixed p(t):

/Q[‘/eff(' a2 p) - Vveff(' » Sy P)]UCdX, (6)

where ¢ € H{ is a ‘test function’ and v is the operator target of the potential.
The hypotheses allow the application of the Holder inequality to each component
term of (3). We summarize. For the external potential, one has continuity from
the time interval into the space of bounded measurable functions; this is implied
by the regularity assumed for V. For the Hartree potential, one has, by Young’s
inequality,

Fort,s € J, HW * (|u( 7t)‘2 - |u( ) S)|2)||L3/2

< Wl gsrzlllul- O = ful-, )]l

Factorization of the difference of squares, together with Sobolev’s inequality,
now yields continuity in ¢ in the L3/2 norm, permitting the application of the
Holder inequality to this term as represented in (6). The assumptions made on
® directly ensure that ® defines a continuous mapping into B[H}, H~1].

We now discuss the property of semigroup invariance on the smooth space.

Proposition 2.2 The semigroups of Proposition 2.1 remain stable on Hg. In
particular, the evolution operator U(t,s) exists for this case for fized p. More-
over, (10) to follow holds rigorously.

Proof: We are using the theory of Kato as presented in [16], and we make use
of S and S~! introduced above. It will be useful in the proof to make the
observation that

H(t)y=S -1+ V.



The proof entails the verification of the similarity relation,
SA(t)S™! = A(t) + B(t),

for a family B(t), which can be extended as bounded linear operators on H -1
As previously, A(t) = +H(t). The domain of the operator A;(t) = SA(t)S™ " is
H}. Specifically, as noted in [16, Prop. 6.2.4],

D(Ay)={feH ':57"feHy,AS™'f € Hy},

which here is H}. We make a reduction prior to the analysis. It is equivalent
to verify that R R
SH(t)S™' = H(t) + B(t),

where B(t) represents a bounded operator on (all of) H~1. This relation retains
its structure under multiplication by 7. The bound obtained will hold uniformly
in ¢t € [0,7]. By use of the definitions we explicitly obtain the representation
for B(t). Note that

B(t) = SH(t)S™" — H(t) = [S, H(t)]S™,

where [S, H(t)] is the commutator of S and H. By taking cancellation into
consideration, and writing u = S~1/, we have, for the extension of B(t) from
the domain H{ of A(t) to H1:

(B(t)4,¢) = / {;uvnﬁ:-vg] dx, V¢ € Hp. (7)

Q
The estimation of the external potential is immediate from the hypotheses. The
derivative of ® can be estimated by the hypotheses: boundedness from the time
interval into W13 allows one to apply the Holder and Sobolev inequalities with
an L? gradient for the potential term. This bound is uniform in ¢. In particular,
it is really the derivative of the Hartree potential which requires close examina-
tion. We claim that it is an L? function in 2, with a norm bound independent
of t. This is sufficient to show that this term defines a bounded linear operator,
with bound uniform in ¢, as required. Thus, we differentiate the convolution,
to obtain W, * p. The standard rules for differentiating W yield that W, has
a singularity near the origin of order 1/|z|%. The application of spherical co-
ordinate integration on a bounded domain yields that this is an L' function;
by Holder’s inequality, we conclude that the differentiated convolution inherits
the L3 property of p. Finally, there is a measure theory requirement, which is
satisfied for the current application, for the perturbation B(t), as discussed in
[16, Prop. 7.1.4] and the discussion preceding it. Because of the technical na-
ture of the requirement, we simply cite the reference, where complete details are
given. In particular, the representation (10) holds rigorously. This completes
the proof. [J

We have cataloged the properties of the evolution operator in [1]. They can
be found in the reference [16].



2.4 The general initial value problem
The evolution operator permits the solution of the linear Cauchy problem,

du
5 TAGu®) = F(), (8)

u(0) = uo, (9)

on an interval [0, T], with values in the Banach space H~!. The solution is given
by

w(t) = Ut 0)uo + /0 "U(ts) Fs) ds, (10)

under assumptions on ug, F. In what follows, we apply this to the case FF =0
and uy € H}. The interpretation of (10) is that of the existence of a weak
solution u(t) € H}, Vt € J.

3 Unique Global Weak Solution

We begin with the definition of a key mapping.

Definition 3.1 For J = [0,T],T arbitrary, define K : C(J; H}) — C(J; H}):
Ku(-,t) =U"(t,0)%,.

U = U" has been defined and established in Proposition 2.2, where p = |u|?.

Remark 3.1 We will require estimates of [[U"(t,s)|[ -1 and [[U"(¢,s)| gz - The
use of contraction semigroups implies that on H~' the evolution operators are
bounded by one in norm. On H{, the operators U%(t,s) have norm which is
bounded from above by a constant C with dependency, C(T, ||lullc(s,m1)) (see
[16, Cor. 6.5.6]). A bound for |[u| in C(J;H}) is given by Lemma 3.1 to
follow.

Theorem 3.1 There is a closed ball B(0,r) C C(J, H}) on which K is invari-
ant. For t sufficiently small, K defines a strict contraction. The contraction
constant is independent of the restricted time interval, so that the unique fixed
point can be continued globally in time. In particular, for any interval [0,T],
the system has a unique solution which coincides with this fixed point.

Proof: We use Lemma 3.1 to follow, based on a conservation principle, to obtain
the invariant closed ball B(0,r). By the construction, this ball is invariant over
[0,T]. In order to estimate the Lipschitz constant of K, the following identity
is pivotal [16, Eq. (7.1.3)]:

UbWy(t) — U Wy (t) = —/0 Ul(t,s)[A%(s) — AY(s)]U%(s,0)Tg ds.  (11)



The Hi-norm of the evolution operators can be bounded by a constant which
depends only on the terminal time 7" and the bound discussed in Lemma 3.1.
Thus, the essential term is:

Verr(1]*) = Verr (161l o1, 118 -

The estimate for the external potential and the correlation potential have been
built into the hypotheses. The estimate for the Hartree potential has already
been carried out above in the proof of Proposition 2.2. The time integral repre-
sentation in (11) for the mapping yields the result for ¢ sufficiently small. The
continuation is possible because the Lipschitz constant depends only upon T
O

We now discuss the conservation principle for this system. In fact, we will
establish the following:

e If the conservation functional £ is defined for 0 < ¢t < T by,

h? 1 1
ty= [ |-——|VU*+ (- %)+ D) | [U?| dridzad
60 = [ | VUP + (G006 1WP) + 50+ @) 10| dordradin
then the following identity holds:

E)=E&(0) + %/0 /Q[(aV/aT‘)(X,T) + o(x, 7, p)]|¥|? daydaodasdr, (12)

where p = |¥|2, and

K2 1 1
5(0):/ [|V\p0|2+ ((W*|\p0|2)+(v+<1>0)> \1/0|2} dzydzodrs.
o [4m 4 2

The functional £(t) is related to the physical energy E(t) of the system, defined
by

as follows:

We first observe that (12) is sufficient to imply that the functions {¥} are
bounded in C(J; H}); indeed, L? gradient bounds for ¥ are obtained from &£(t).
These bounds depend only on ¥q, V, ®, and the time derivative of V. Note that
U has H~! norm less than or equal to that of ¥y. Also, solutions of this system
have invariant L? norms (see [23] for the standard argument).

Lemma 3.1 The value of £ at any time t is given by (12). In fact, this implies
that the C(J; H}) morm has an invariant bound for any solution of the system.

Proof: Tt remains to verify (12); in fact, we establish its derivative:

_dE 1

0= = _=
dt 2

/Q[(aV/at)(x, t) + o(x,t, p)]|¥|? doydaadrs. (13)

10



We use the system as described in Definition 1.1 together with the relation
between £(t) and E(t) above in order to prove the following relation, which is
equivalent to (13):

€

& = Re(H®Y@),(0¥()/01) +%<(3ﬁ(t)/3t)‘1’(t), W(t))

=0

@), (W + [ ().

This makes transparent the cancellation of the Hartree term. However, an
immediate difficulty is that U/t is in H~!. We require a substitute for the
following formal operation: multiply the system by dW/0t, integrate over 2,
and take the (vanishing) real part. This is a standard technique and yields
(13) formally. For the general result, we use the extrapolation method for
the Laplacian, as described in [21, Ch. 2]; this method extends this self-adjoint
operator domain to H~!. The remaining part of the Hamiltonian range is
designed to be in H}, so that the application of ¥ /0t is justified. We may
thus conclude that dual operations, formally equivalent to the operations on
functions just described, lead to (13). This concludes the proof. O

Remark 3.2 As demonstrated in [1], the discretization of the evolution opera-
tor provides an effective numerical procedure for solving the the time dependent
density functional system. This depends, of course, upon the algorithms intro-
duced in [11].

4 Summary and Future Work

4.1 Summary

Time dependent density functional theory with Kohn-Sham potentials has emerged
as a significant modeling tool at quantum scales. This is substantiated by the
references in this article. TDDFT is to be distinguished from the nonlinear
Schrédinger equation, much studied in the mathematical community, by the
presence of explicit time dependent potentials. The latter would appear to re-
quire the evolution operator rather than convolution semigroups. In this article,
as well as the previous one [1], we have relied on the theory introduced by Kato
in the 1970s in order to accomplish this. In the current article, we establish, via
the linear theory and a continuation based on the contraction mapping prin-
ciple, the existence of a unique weak solution of the TDDFT closed system
on a bounded domain with homogeneous Dirichlet boundary conditions. It is
well fitted to applications such as energy profiles of occupied orbitals in Carbon
nanotubes [1]. Although the ground space for the evolution operator is typi-
cally L?, as in [1], it is H~! in the present work. This has required additional
theory not needed in earlier construction of the evolution operator. We will
comment further on this point in the following section. We have not employed

11



explicit formulas for the exchange-correlation potential term, but have used in-
stead an operational definition, consistent with the literature [7], including a
mildly smoothing hypothesis. In addition, we have bypassed the so-called local
adiabatic assumption, which is somewhat controversial. The analysis has been
assisted by a conservation principle based upon a weighted difference between
the usual energy and the Hartree component.

An interesting question is whether the contraction mapping principle used
in this article for the existence of a unique fixed point carries over to the earlier
article [1], which employs the Leray-Schauder theorem for existence, and does
not establish uniqueness. The answer is negative, even for the case considered
there, where the exchange-correlation potential is not included. Indeed, one
would define the (contraction) fixed point mapping on C ([0, T]; H?(Q)NH(Q)),
in order to use (11); however, the conservation principle is not adequate to define
the closed ball on which the contraction mapping principle can be applied. On
the other hand, one can obtain uniqueness from the results of this article, since
a weak solution is a classical solution if one has the linear evolution theory for
the pair (L%, H> N H}).

4.2 Perspectives for future work

Directions for future work include: (1) explicit inclusion of the ionic poten-
tial; (2) a relaxing of the positivity of the external potential; (3) extension of
the theory to non-closed systems; (4) less stringent regularity of the exchange-
correlation term.

In addition to these, we cite two additional problem areas.

e The first relates to the system in Euclidean dimensions d = 1,2, where
the singularity of the Hartree potential presents special consideration. We
suggest a shielding of the singularity by so-called soft Coulomb potentials
[24, above Eq. (16)]. We believe that the theory will cover this case. In
one dimension, the unshielded singularity very likely requires the Hilbert
transform, and a separate study.

e If the evolution operators have been verified for the (L2, H2N H) isomor-
phism pairing, is there an extrapolation method which extends the family
to the (H~!, H}) pairing? If such a result were true, then part or all of
the second section could possibly be eliminated. We used a specialized
form of this result in the proof of the conservation principle by using the
result of [21] on the extrapolation of m-dissipative operators, which al-
lows there the concomitant extrapolation of convolution semigroups. We
propose this as a question for future study.

12



A Comments

The smoothing condition on ® stated at the bottom of page three can be weak-
ened. The weakened version is:

@t [W1[*) = (t, [ Vo)Wl zrr < ClIWs = Col |9y, VE € [0, T].

Here, t is arbitrary in Hi. A parallel inequality is satisfied by the Hartree
potential.

For simplicity, we have assumed that the leading part, ®(-,0,p), is con-
served, up to a positive constant multiple. This holds for convolutions and
other important examples.

Acknowledgment. The author thanks the reviewer for several substan-
tive remarks and suggestions which improved the manuscript significantly.
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