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1. Introduction
In previous work [2], the authors introduced a con-

ceptual domain decomposition approach, combining drift-
diffusion, kinetic, and high-field regimes. The high-field
model had been introduced in [4]. The approach was
implemented in preliminary form in [3]. In this paper,
we continue the program begun in [2]. We again define
a global calibrator, a linear approximation to the Boltz-
mann transport equation, and solve this in one space and
one velocity dimension.

Second, we implement a global domain decomposi-
tion method, by systematic sampling of separation points
between drift-diffusion and high field regimes. The in-
terdomain boundary conditions are implemented through
the stencil overlap of the algorithms in both regions.

2. Models Employed
Kinetic Model

The one-dimensional kinetic model can be written as
follows:
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is a Maxwellian, with
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kb
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The concentration n(x, t) is obtained by

n(x, t) =
∫ ∞
−∞

f(x, u, t)du. (4)

Also, the electric field E(x, t) is obtained by solving the

coupled potential equation,

E(x, t) = −φx, (εφx)x = e(n− nd), (5)

with the boundary conditions

φ(0, t) = 0, φ(0.8, t) = vbias, (6)

and the relaxation parameter τ is computed by

τ =
mµ

e
. (7)

µ is the mobility. In this paper we use a variable µ de-
pending on the electric field E, used in drift-diffusion sim-
ulations to model saturation (see [5]):

µ(E) = 2µ0/
[
1 +

√
1 + 4(µ0|E|/vd)2

]
, (8)

where

µ0 = 4.0 µm2/(V ps), vd = 2.0 µm/ps. (9)

vd here is taken to be the maximum of the velocity in the
kinetic run with vbias = 1.0 and µ = 4.
The Drift-Diffusion (DD) Model

The drift-diffusion (DD) model is well documented
(see, for example, [5]). It is given by:

nt + Jx = 0, (10)

where
J = Jhyp + Jvis,

and
Jhyp = −µnE,

Jvis = −τ(nθ)x.



The High-Field (HF) Model
The model can be written as follows:

nt + Jx = 0, (11)

where
J = Jhyp + Jvis,

and
Jhyp = −µnE + τµ

(e
ε

)
n(−µnE + ω),

Jvis = −τ [n(θ + 2µ2E2)]x + τµE(µnE)x.

For our current one dimensional case, ω is taken to be a
constant:

ω = (µnE)|x=0.

It is developed in [4] by asymptotic expansion meth-
ods (Chapman-Enskog) for the kinetic formulation of the
problem (1)–(5), under strong forcing scaling assump-
tions.

Other augmented drift-diffusion models are found in
[7,8].

3. Simulation Description
The device we consider for this paper is the one di-

mensional GaAs n+-n-n+ structure of length 0.8µm. The
device used is as follows: x ∈ [0, 0.8]; the doping is defined
by nd(x) = 106/µm3 in 0 ≤ x ≤ 0.175 and in 0.625 ≤ x ≤
0.8, and by nd(x) = 2 × 103/µm3 in 0.225 ≤ x ≤ 0.575,
with a smooth intermediate transition. This is exactly
the device used in Baranger and Wilkins [1], except for a
smooth transition of width 0.05µm at the junctions.

More specific conditions for various models are listed
below.

(I) For the kinetic model (1):
(a) The velocity space is artificially cut at

−a ≤ u ≤ a (12)

where we monitor to ensure that f(x, u, t) is always very
small at the boundary u = ±a for the final steady state
results. We learned that it is more than enough in all our
runs to use a = 3.5. Larger values of a are also used to
verify that the results do not change in the pictures.

(b) We use a uniform grid both in x and in u, with
160 × 150 points. A more refined mesh is also used to
verify that the results do not change in the pictures.

(c) At x = 0, take

f(0, u, t) = nd(0)M(u) (13)

if u ≥ 0, and no boundary condition (extrapolation of the
numerical solution from inside the domain to the bound-
ary) if u < 0. Also take φ(0, t) = 0.

(d) At x = 0.8, take

f(0.8, u, t) = nd(0.8)M(u) (14)

if u ≤ 0, and no boundary condition (extrapolation of the
numerical solution from inside the domain to the bound-
ary) if u > 0. Also take φ(0, t) = vbias.

(e) At u = −a and u = a, take no boundary condition
(extrapolation of the numerical solution from inside the
domain to the boundary).

(II) For the elementary domain decomposition, we
apply the low field drift-diffusion (DD) model (10) in [0,A]
and [B,0.8], and the high-field (HF) model (11) in (A,B).
We experiment with the separation locations A, B with
a systematic sampling. For each fixed pair (A,B), we
perform the following:

(a) We use a uniform grid in x with 160 points.
(b) At x = 0 and x = 0.8, take the boundary condi-

tions
n(0, t) = nd(0), φ(0, t) = 0,

n(0.8, t) = nd(0.8), φ(0.8, t) = vbias.

(c) At the interfaces x = A and x = B, there are
no explicit interface boundary conditions. The coupling
of the drift-diffusion model and the high field model is
through the ghost points used in the computation:

(i) When a grid point is inside [0,A] or [B,0.8], the
solution n is updated by the drift-diffusion model (10)
using a fifth order conservative WENO scheme (see [6]).
Since this scheme has a 7-point stencil, when computing
the updates near the interfaces A or B, the stencil actually
goes into the region (A,B), hence the information in that
high field region is used.

(ii) Similarly, the high field model (11) is used to
update the solution if the grid point is inside (A,B).
Again, the 7-point stencil of the numerical scheme implies
that information inside the drift-diffusion region [0,A] and
[B,0.8] is used when the grid point is near the interfaces
A and B.

Simulations are performed for vbias from 0V to 2V,
and results are shown for selected cases to save space.
Other parameters: m = 0.065 × 0.9109 (10−30Kg), e =
0.1602 (10−18C), kb = 0.138046×10−4 (10−18J/Kelvin),
ε = 13.2× 8.85418 (10−18F/µm).

4. Simulation Results
In all the numerical simulations, we perform a long

time integration until a steady state is reached. We per-
form a preliminary domain decomposition in the channel
region alone, to motivate the elementary domain decom-
position to follow. This highlights the effectiveness of the
high field model in the channel region. Thus, in Figure
1, we plot the comparison among the mid-region simula-
tions of DD and HF, and the global kinetic simulation,
for the concentration n, at vbias = 1V. We perform the
mid-region simulation for HF and DD with the bound-
ary conditions provided by the kinetic simulation using
µ = µ(E) given by (8). We can see that the high-field
model has a much better agreement with the kinetic sim-
ulations.

We perform the elementary domain decomposition by
applying the low field drift diffusion model in [0,A] and
[B,0.8], and the high field model in (A,B). Given the con-
centration n at the time level k, for points within [0,A]



and [B,0.8], the update to the next time level is via the low
field drift diffusion model. For points within (A,B), the
update to the next time level is via the high field model.
Interface coupling is implicit through the 7-point stencil
of WENO schemes used for both models, as explained
before.

For vbias = 1V and vbias = 1.8V , we perform a sys-
tematic sampling to find a good pair (A,B). The results
are shown in Figures 2 to 4 for vbias = 1V , A = 0.27
and B = 0.55, and in Figures 5 to 7 for vbias = 1.8V ,
A = 0.25 and B = 0.55.
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Figure 1: The global kinetic simulation (solid line), the mid-
region HF simulation (circles), and the mid-region DD simu-
lation (plus signs). µ = µ(E) for all simulations. The global
kinetic simulation provides the boundary conditions for the
mid-region HF and DD simulations. The concentration n in
µm−3.
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Figure 2: The concentration n. µ = µ(E). vbias = 1V .
Comparison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.27]
and [0.55,0.8], and high field model in (0.27,0.55) (dash-dotted
line).
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Figure 3: The electric field E. µ = µ(E). vbias = 1V .
Comparison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.27]
and [0.55,0.8], and high field model in (0.27,0.55) (dash-dotted
line).
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Figure 4: The potential φ. µ = µ(E). vbias = 1V . Com-
parison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.27]
and [0.55,0.8], and high field model in (0.27,0.55) (dash-dotted
line).
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Figure 5: The concentration n. µ = µ(E). vbias = 1.8V .
Comparison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.25]
and [0.55,0.8], and high field model in (0.25,0.55) (dash-dotted
line).
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Figure 6: The electric field E. µ = µ(E). vbias = 1.8V .
Comparison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.25]
and [0.55,0.8], and high field model in (0.25,0.55) (dash-dotted
line).
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Figure 7: The potential φ. µ = µ(E). vbias = 1.8V . Com-
parison among the kinetic result (solid line), the low field
drift-diffusion model (dashed line), and the elementary do-
main decomposition with low field drift-diffusion in [0,0.25]
and [0.55,0.8], and high field model in (0.25,0.55) (dash-dotted
line).


