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Abstract

Two-sided estimates are derived for the approximation of solutions
to the drift-diffusion steady-state semiconductor device system which are
identified with fixed points of Gummel’s solution map. The approxima-
tions are defined in terms of fixed points of numerical finite element dis-
cretization maps. By use of a calculus developed by Krasnosel’skii and his
coworkers, it is possible, both to locate approximations near fixed points
in an “a priori” manner, as well as fixed points near approximations in an
“a posteriori” manner. These results thus establish a nonlinear approx-
imation theory, in the energy norm, with rate keyed to what is possible
in a standard linear theory. This analysis provides a convergence theory
for typical computational approaches in current use for semiconductor
simulation.

1 Introduction

The drift-diffusion model of a steady-state semiconductor device is formed by
a system of three coupled partial differential equations (PDEs.) This system
of PDEs is solved by a solution vector of three function components. A fixed
point mapping T : x 7→ Tx can be defined by solving each of these PDEs for
its corresponding component and substituting these components in successive
PDEs in a Gauss–Seidel fashion. Fixed points of such a mapping T then coincide
with solutions to the drift diffusion model. Iteration with the mapping T defines
an algorithm for the solution of the drift-diffusion model in which the PDEs are
decoupled. The mapping T, termed Gummel’s map [5] in the literature, is
defined through solution for the potential u, for given electron and hole quasi-
Fermi levels v and w, as a fractional step, and subsequently through solution
for the electron and hole quasi-Fermi levels. This definition specifies the range
of the mapping T. For the slightly different mapping that operates in the space
of the Slotboom variables V = e−v, and W = ew, principal properties including
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fixed points and maximum principles, have been studied in increasing generality
in [21],[23] and [8]. For this alternative mapping, the Lipschitz constant LT has
been examined in detail in [15],[9],[17],[16]. Employing either quasi-Fermi levels,
or Slotboom variables, the appropriate formulation for device applications is
the mixed Dirichlet/Neumann boundary value problem, taken over the physical
device, Ḡ, assumed to be a polyhedral domain, with possible solution gradient
singularities at boundary transition points [15],[9].

A companion approximation map is induced by piecewise linear finite ele-
ments, if the convex minimization, inherent in defining the successive gradient
equations, is taken over finite dimensional affine subspaces. The fixed points of
the companion map are clearly candidates for approximation of the fixed points
of the solution map for the original system of PDEs. In this paper, we deduce
an approximation theory, described by two-sided estimates, for this discretiza-
tion procedure. Our theory is based upon an operator calculus developed by
Krasnosel’skii and his collaborators (cf. [20]) in which both the fixed points of
the solution map are approximated “a priori” by fixed points of the numerical
map, and also fixed points of the solution map are located in an “a posteriori”
manner near fixed points or approximate fixed points of the numerical map, so
that spurious solutions are not computed. The abstract results are stated as
Theorems 4.1 and 4.2 and the semiconductor application as Corollary 4.1. Later
in the Introduction, we shall elaborate more fully on these results.

This paper does not deal with the actual algorithms for computing the fixed
points of the numerical maps, i.e., for solving the system finite element equa-
tions. This issue, or more precisely. the closely related issue of solving the
discrete equations which arise by a finite element discretization of the potential
equation and a volume element method, based upon exponential fitting and
the box method, for the continuity equations, has been intensively studied (cf.
[2],[14]). The piecewise linear finite elements of this paper reduce to an approach
of this type for properly defined quadrature rules in the finite element equations
(cf. [25]). We can distinguish two widely used basic solution methods, either
at the operator level or for the discrete system. The oldest approach proceeds
by successive substitution, and is known as Gummel’s method [5], mentioned
above. The more recent algorithm consists of a damped Newton outer iteration,
while the Jacobian is formed by linearization of the system of PDEs itself. New-
ton’s equations are then solved either by a sparse direct method, or iteratively,
employing preconditioners based on splittings of the Jacobian. The numerical
approximations introduced in this paper are canonical ones. Therefore our ap-
proximation results are valid irrespective of the computational method which is
employed for the actual solution of the system. The approximation can equiv-
alently be viewed as defined directly by the weak formulation of the system of
differential equations, rather than the fixed point mapping T. Thus our results
apply equally to results obtained through the extensively used computational
scheme that is based upon direct application of Newton’s method to the dis-
cretized system of PDEs. Newton’s method for the finite element system will
proceed differently, however, if based upon a numerical fixed point map Tn,
rather than the discretized system of PDEs directly. In [19],[11],[10] analytical



JOSEPH W. JEROME AND THOMAS KERKHOVEN 3

and numerical evidence is provided which indicates that to some extent this
approach is superior. Thus, although the province of our paper is decidedly
a nonlinear approximation theory, we study in detail, in the process, the very
maps, including their differential properties, which may well lead to a more ef-
fective algorithmic strategy for solving the finite dimensional systems, in such a
way that grid independent constants may characterize convergence rates. Lin-
earization based upon the differential map requires smoothing to achieve this
(cf. [7]).

We briefly describe now the basis for the major results. Given a fixed point
x0 of a smooth mapping T, a numerical approximation map Tn, and a projector
map Pn, a theory is constructed to estimate ‖xn −Pnx0‖, where Tnxn = xn.
In fact, the authors of [20] characterize the map PnT as the ”Galerkin” approx-
imate map, and Tn as a ”perturbed Galerkin” map. Since x0 is a fixed point
of T, the estimates represent precisely the dispersion between these two meth-
ods. We should stress that the mapping PnT cannot actually be implemented
numerically. However, the convergence rate is readily estimated. Now, the “a
priori” estimates are derived by deducing a root of the map A = I − Tn, in a
ball centered at Pnx0, through construction of an equivalent contraction map:
The methodology involves derivative inversion and a mean value calculus. A
similar approach is employed for the a posteriori estimates. We shall single out
the essential hypotheses which emerge:

1. invertibility of I−T
′
;

2. uniform convergence of Tn to T and T
′

n to T
′

on bounded sets;

3. continuity of T
′
;

4. continuity (uniform in n) of T
′
n;

5. convergence of Pn to I uniformly on appropriate bounded subsets of com-
pactly embedded subspaces.

In our application of this theory, we shall work with energy norms and T will
be compact, so that (i) above reduces to an eigenvalue hypothesis. This is the
only ”nonverifiable” hypothesis made in the a priori theory, and guarantees that
solutions are isolated. The relation to the Babuška–Brezzi inf-sup condition was
described in [11]. Hypothesis (v) is related to a regularization hypothesis we
must make concerning the solution map for the mixed boundary value problem,
i.e., T and T

′
(z) are bounded maps into H1+θ, θ = θ(N) > 0, for Euclidean

dimension N . The usual results in the literature for the mixed boundary value
problem are stated in terms of Lp-gradient properties (cf. [22]). The applica-
tion of this theory to the current continuity equations is discussed in [15]. Our
assumption is consistent with these results, though not implied by them. It
turns out, however, since T is defined via decoupling, that the hypothesis is
directed toward single linear equations (albeit uniformly) and, at least for N=2,
asymptotic estimates already exist in the literature (cf. [26],[1]). The verifica-
tion of (ii)–(iv) is left largely to the appendix because of the heavily detailed
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calculations involved. The reader may consult Appendix D for a summary of
these properties and the chain of results used for their proof. For reasons of
space, we have given only the statements of the technical results employed in
Appendices A–C. Proofs can be found in the authors’ monograph [12].

We introduce the discretization in §3, along with a review of the discrete
maximum principles derived in [18]. The latter are essential to the interplay
between T and Tn. A convergence theory for Tn is also developed in §3,
and the major results are stated and derived in §4. Section 2 is devoted to a
statement of the continuous problem and a precise development of the map T.
Note that the current continuity equations are discretized in terms of piecewise
linear Slotboom variables. However, in the rest of the paper we make use of the
quasi-Fermi levels. For the reader’s convenience we have adopted a notational
device whereby mappings are indicated in boldface, whereas the images of the
mappings are in ordinary italics or upper case. These are the symbols associated
with the basic dependent variables of the system.

2 The model and the fixed point map

2.1 The system

The electrostatic potential and the quasi-Fermi levels are scaled by the thermal
voltage, UT = kBT/q, and the length by l =

√
UT /niq, where q denotes the size

of the electron charge, T is the temperature which is assumed to be constant, kB
is Boltzmann’s constant. The concentrations n and p of the electron and hole
carriers are scaled by the intrinsic concentration ni and represented in terms
of the quasi Fermi levels v and w and the dimensionless electrostatic potential
u through the relations n = eu−v, p = ew−u. Thus we obtain the following
steady-state system:

−∇· (ε∇u) + eu−v − ew−u = k1,

−∇· (Dne
u−v∇v)−R(u, v, w) = 0,

−∇· (Dpe
w−u∇w) +R(u, v, w) = 0,

where ε is the dielectric permittivity. Here, Einstein’s relations have been em-
ployed, the bounded function k1 denotes the net ion impurity concentration,
and R denotes a scaled recombination term. In order to expedite the com-
plicated technical analysis, we shall consider the case of vanishing generation-
recombination, constant diffusivity (and mobility). in the current continuity
equations, The system can then be written

−∇· (ε∇u) + eu−v − ew−u = k1, (2.1)
−∇· (eu∇e−v) = 0, (2.2)
−∇· (e−u∇ew) = 0, (2.3)

subject to mixed Dirichlet/homogeneous Neumann boundary conditions, taken
on the Dirichlet part, ΣD, of the device boundary, and on its complement, ΣN ,
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respectively. These are specified on ΣD by the traces of appropriate functions
ū, v̄, w̄, where ū, v̄, w̄ are in C2(Ḡ), and on ΣN weakly. The analysis to
follow admits spatially dependent, positive diffusion and mobility coefficients.
It remains to be determined what extentions beyond this are possible.

In [8] a map T0, operating on Slotboom variables is analyzed. The results
for T0, operating on Slotboom variables, imply that the map T, operating on
quasi-Fermi levels, is continuous from K0 ⊂

∏2
1 L2(G) into

∏2
1H

1(G) with
bounded range, and acts invariantly on

K0 ≡ {[v, w] : inf
ΣD

v̄ ≤ v ≤ sup
ΣD

v̄, inf
ΣD

w̄ ≤ w ≤ sup
ΣD

w̄} (2.4)

in such a way that fixed points of T define solutions of the system of boundary-
value problems. The map is defined by unfolding: given [v, w] ∈ K0, the element
u = U0(v, w) is obtained by solving the weak formulation of the boundary-
value problem described by (2.1). The Gauss–Seidel process continues: V0(u)
and W0(u) are the elements computed from the weak formulations of (2.2) and
(2.3), respectively, with u determined as above. Altogether,

T0[v, w] = [v0, w0]. (2.5)

The invariance, continuity, and compactness properties of T0, taken on K0 ⊂∏2
1 L2(G), are sufficient to deduce the existence of a fixed point [v0, w0] via the

Schauder theorem, and such defines a solution of the system: [u0, v0, w0].

2.2 The definition of T

The map T, required to apply the operator calculus of [20], must be defined on
an open set in function space. In this context the suitable space is

∏2
1H

1(G).
However, the proofs of a number of the results in the appendix require a pri-
ori bounds on the extrema of the functions u, v, and w, similar to the a priori
bounds, introduced in [8]. In the latter publication the assumption was intro-
duced that the original (V,W ) satisfies already the L∞ bounds specified in (2.4)
which the image (V0,W0) was shown to satisfy. These L∞ bounds on the orig-
inal (V,W ), incorporated into the definition of K0 for Slotboom variables, on
which T0 acts, were used to derive a priori L∞ bounds on the potential function
u.

Because the set K0 is not open, we modify the definition of T such that
the assumption that the original (v, w) lies in K0 can be removed. To achieve
this we compose a T-like map with a truncation operator Tr, which leaves
(v, w) unaffected within K0 (where the solution lies), but which restricts the
range to a set K (cf. (2.6)) which is only slightly larger than K0. By carefully
selecting K we achieve that the intermediate function u in the definition of T
satisfies a priori L∞ bounds which are only slightly wider than those for u in [8].
However, u satisfies these slightly wider bounds as the range of a map defined for
all (v, w) in an appropriate open subset of

∏2
1H

1, and not just on the set K0.
We introduce hi ∈ C∞0 (R), i = 1, 2, such that support hi = [αi, βi], αi > 0,
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and

h1(t) = t, inf
ΣD

v̄ ≤ t ≤ sup
ΣD

v̄,

h2(t) = t, inf
ΣD

w̄ ≤ t ≤ sup
ΣD

w̄.

Below we will define an open ball Ω, centered at zero, in
∏2

1H
1, on which

Tr[v, w] := [h1(v),h2(w)], [v, w] ∈ Ω.

Note that the range of Tr is contained in K ⊂
∏2

1 L∞, where

K = {[v, w] ∈
2∏
1

L∞ : α1 ≤ v ≤ β1, α2 ≤ w ≤ β2}. (2.6)

We consider the extension maps U of U0, V of V0, and W of W0 defined as
above, with elements in the domain of U now taken from K ⊃ K0. In terms
of these quantities, T may be defined by

T = [V ◦U ◦Tr,W ◦U ◦Tr]. (2.7)

For reasons related to the technical estimates of the paper, it is essential to
identify carefully the domains and ranges of the composition maps used to
define T. Since

|∇[h1(v)]|2 = |h′1(v)∇v|2 ≤ c|∇v|2

with a similar inequality for |∇[h2(w)]|2, it follows that the map Tr has range
contained in K ∩ {Cµ : µ ∈ Ω ⊂

∏2
1 H

1}, for some positive constant C. Thus,
the domain of U is K ∩ (C ∗ Ω). Employing the H1 norm defined below in
(2.10), the range of U is contained in a bounded set Γ in H1(G) ∩ L∞(G);
indeed this follows from results of [18] (the H1 bounds will be elaborated in
the next section) and, in particular, the following pointwise bounds (maximum
principles) hold:

γ ≤ U ≤ δ,

γ = min(γ
′
, inf

ΣD
ū), δ = max(δ

′
, sup

ΣD
ū),

γ
′

= sinh−1[(1/2) inf
G
k1(α1 − α2)/2] + (α1 + α2)/2, (2.8)

δ
′

= sinh−1[(1/2) sup
G
k1(β1 − β2)/2] + (β1 + β2)/2.

Finally, as part of the mapping T the joint domain of V and W is Γ, while
the range of these maps is contained in the intersection of K0 (not K), defined
in (2.4), with the domain Ω, which is now defined. Since, for U ∈ Γ (only the
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pointwise bounds are needed),∫
G

|∇v|2dx ≤ eα1−γ
∫
G

eU−v|∇v|2dx

= eα1−γ
∫
G

eU∇v·∇v̄dx (2.9)

≤ (1/2)[
∫
G

|∇v|2dx+ e2(δ+β1−γ−α1)
∫
G

|∇v̄|2dx],

it follows, for ‖· ‖2H1 given by

‖v‖2H1 = ‖∇v‖2L2
+ (
∫

ΣD
vdx)2, (2.10)

that
‖v‖2H1 < e2(δ+β1−γ−α1)‖v̄‖2H1 (Note:v |ΣD= v̄ |ΣD ),

with a similiar estimate for ‖w‖2H1 . Thus, we choose Ω to contain the open ball
centered at 0 of radius ρ = e(δ+max{βi}−γ−min{αi})‖[v̄, w̄]‖∏H1 . It is evident,

from the monotone dependence of γ
′

and δ
′

on αi, βi, that Ω contains the range
of T0 as well as that of T, and hence, that T is a proper extension of T0 |range T0 .
However, it is essential for our purposes that Ω also contain the range of Tn,
to be defined in the next section. (cf. (3.2)) This entails an estimation of wh
and wh. Slight adjustments of (2.10), as well as (3.7) and (3.8) to follow, yield
the result that the number ρ just defined need only be perturbed by a term of
order O(h). This gives us, finally, the radius of Ω.

2.3 Regularization properties of T

We now address the hypothesis (v) discussed in the introduction. It may be
reduced to the following single statement.

Assumption 1. The solution maps V, W are regularizing, i.e., they map Γ
boundedly into H1+θ(G) for some θ > 0, which depends only on the Euclidean
dimension N.

Remark 2.1. Note that, under Assumption 1, the mapping T is compact
from Ω into itself. This also holds for T

′
by results in the appendix.

We close this section by noting that the maximum principles (2.4) and (2.8)
are special cases of the (reduced) bounds

γ ≤ u ≤ δ (2.11)

from [18] where γ, δ have the meaning of (2.8), but

γ
′

= inf
x∈G

f−1(x, inf
y∈G

g(y)), δ
′

= sup
x∈G

f−1(x, sup
y∈G

g(y)), (2.12)

for the solution u of the gradient equation

−∇· [a(x)∇u(x)] + f(x, u(x)) = g(x). (2.13)

Here, a, g ∈ L∞, and f is increasing and locally Lipschitz in u for each x ∈ G,
with f−1(x, · ) the corresponding inverse.
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3 The discretized model and the numerical fixed
point map

3.1 The finite element maps

In this section we introduce the piecewise linear finite element method which
defines the numerical fixed point map. We also describe the associated approx-
imation properties. The finite element equations for the potential equation are
given by

〈ε(x)∇Uh,∇φi〉+ 〈eUh−v − ew−Uh , φi〉 − 〈k1, φi〉 = 0 fori = 1, · · · ,M, (3.1)

where Uh is a finite element function and the φi are appropriate test functions
comprising a nodal basis of the piecewise linear finite element subspace Sh.
According to the assumptions specified regarding ū, it follows that we may
select the piecewise linear interpolant ūI of ū so that Uh ∈ ūI + Sh, where the
members of Sh vanish on the Dirichlet boundary ΣD of the polyhedral domain
G. The functions of Sh are continuous and are linear in each simplex, S. As
usual, h = maxS{diam S}. In (3.1) all integrals can be computed in closed form
if piecewise linear approximations to v and w are selected. For reasons of strict
symmetry, the domain of Uh, viewed as a mapping, is chosen to be the same set
K ∩ (C ∗ Ω) as the domain of U described in §2. Prior to discussing the range
of Uh, and hence the joint domain of Vh and Wh, we characterize the latter
formally in terms of

〈eUh∇Vh,∇φi〉 = 0, for i = 1, · · · ,M,
〈e−Uh∇Wh,∇φi〉 = 0, for i = 1, · · · ,M,

and vh = − log(Vh), and wh = − log(Wh). Thus, the Slotboom variables V and
W are approximated by piecewise linear finite elements, rather than the quasi-
Fermi levels v and w themselves. As a result, standard linear finite element
approximation results are applicable. As before, φi ∈ Sh, and vh ∈ V̄I + Sh,
wh ∈ W̄I + Sh, where we have selected the interpolants for V̄ and W̄ . The
integrals here can be done in closed form as well; however, as noted in the intro-
duction, appropriate upwinding for the current continuity equations is achieved
by quadrature rules which are more suitable than exact evaluation.

The range of Uh is contained in Γ (as is the range of U), which serves as the
joint domain of Vh and Wh. Indeed, the fact that Uh satisfies the bounds (2.8)
is verified in the authors’ paper [18]. Certain mesh restrictions are required,
since the proof requires that the matrices corresponding to the Laplacean and
the current continuity equations be M-matrices. In order to state these discrete
maximum principles in a format applicable both to Uh, and also Vh and Wh,
we consider solutions of the gradient equation (2.13). On each element S we
have the following definition.

Definition 3.1. Let S be an N -dimensional simplicial finite element such
that

• V is the volume,
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• ~vi is a vertex,

• eij is the edge connecting vertices ~vi and ~vj ,

• Fk is the face opposite the vertex k, with measure |Fk|,

• hi is the normal distance of vi to Fi,

• γij is the angle between the inward normal vectors to the faces Fi and Fj ,

• φl is the piecewise linear nodal basis function which is 1 at vertex ~vl,

•
αij ≡

∫
S

a(x)∇φi·∇φjdx

is the ijth entry of the element stiffness matrix,

• 〈a(x)〉 ≡
∫
S
a(x)dx/V , the average of a(x) over the element S,

• aij is the ijth element of the assembled stiffness matrix.

Remark 3.1. It was shown in [18] that

αij ≡
∫
S

a(x)∇φi·∇φjdx = 〈a(x)〉 cos(γij)
1

hihj
V,

or

αij = 〈a(x)〉 cos(γij)
|Fi||Fj |
N2V

.

In [18] it was also shown that L∞ stability of Uh follows under the following
assumption.

Assumption 2.

• In N dimensions where N ≥ 2 we require that for every edge jk the
off-diagonal element ajk in the matrix satisfies

ajk =
∑

S adjacent jk

〈a(x)〉S cos(γ(S)
jk )

V (S)

hjhk
≤ − ρ

h2
max

∑
S adjacent jk

V (S),

with ρ > 0. In two dimensions the well-known requirement that for every
edge jk in the triangulation we have

1
2 [〈a(x)〉T1 cot(φ1) + 〈a(x)〉T2 cot(φ2)] ≥ ρ > 0,

where the Ti are the two triangles adjacent to edge jk and the φi are the
two angles opposite to the edge jk, is a slightly more restrictive version of
this condition. In higher dimensions we can impose the sufficient condition
that the angle between the vectors normal to any two faces of the same
polyhedron in the mesh has to be bounded uniformly from above by π/2−
δ.
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• For all a, b ∈ R, a < b : |f(x, u)− f(x, v)|/|u− v| ≤ D(b, a) if a ≤ u, v ≤ b,
where D(·, ·) is a Lipschitz constant which is a monotonically increasing
function of b and a monotonically decreasing function of a.

• The numbers hi satisfy hi ≥ h0h, where h0 does not depend on h.

Remark 3.2. In the application to this paper, the role of a is played for the
Poisson equation by ε(x), and for the current continuity equations by eu, e−u,
respectively. The first part of Assumption 2 above is satisfied uniformly in all
cases if 〈a〉 is replaced by the lower bounds expressed in terms of the maximum
principles. Under the first part of Assumption 2, it follows from the results
of [18] (in the form (2.12)) that Uh satisfies the pointwise estimates expressed
in the (partial) definition of Γ (cf. (2.8)) and that Vh and Wh have range in
K0. The function f(x, u) in the respective applications is eu−v(x)− ew(x)−u, for
Poisson’s equation, and f(x, u) ≡ 0 for the current continuity equations.

3.2 The numerical fixed point map

If a given finite element space Sh has dimension n, then we may define Tn, the
numerical fixed point map, by

Tn = [Vh ◦Uh ◦Tr,Wh ◦Uh ◦Tr]. (3.2)

The only unverified issues related to the definition of T are the H1 bounds as-
sociated with Γ, containing the range of Uh and U, and the related existence
question for the finite element solution. By viewing both the solution of the
Poisson equation and the finite element equation as resulting from convex min-
imization, one obtains H1 bounds common to both, and hence the completion
of the definition of Γ.

Thus, define the convex functional,

Φ(u) =
1
2

∫
G

ε|∇u|2 +
∫
G

H(·, u)−
∫
G

(k1 − f(·, 0))u, (3.3)

where

H(x, θ) =
∫ θ

0
[f(x, s)− f(x, 0)] ds ≥ 0, (3.4)

f(x, s) = es−v(x) − ew(x)−s (3.5)

for a given pair v, w. U and Uh minimize this functional over ū + H1
0,ΣD and ūI

+ Sh, respectively. Here, H1
0,ΣD is the completion of C∞0 (G ∪ΣD) in the norm

defined by (2.10) and Sh ⊂ H1
0,ΣD . In particular,

Φ(U) ≤ Φ(ū), Φ(Uh) ≤ Φ(ūI). (3.6)

H1 estimates, and hence a proper bound for the definition of Γ, are obtained
for u = U and u = Uh from

1
2

inf ε
∫
G

|∇u|2 ≤ Φ(u)−
∫
G

H(·, u) +
∫
G

(k1 − f(·, 0))u
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≤ max(Φ(ū),Φ(ūI)) +
1
2

∫
G

|k1 − f(·, 0)|2 +
1
2

∫
G

| u |2 .(3.7)

The second and third terms are estimated from the maximum principles, and
the assumption k1 ∈ L∞(G). Now Φ(ūI) ≤ Φ0, independent of h, a fact which
follows from (cf. [13, p. 85] and [24]):

‖∇(ūI)‖L∞ ≤ ‖∇(ū− ūI)‖L∞ + ‖∇ū‖L∞

≤ Ch2

mini=1,···,M hi
|ū|W2,∞ + ‖∇ū‖L∞ , (3.8)

and the third part of Assumption 2, whereby minhi ≥ h0h. It follows that
gradient estimates, and hence H1 estimates, are uniformly obtainable for the
continuous and discrete problems. This completes the discussion concerning the
defintion of Tn.

3.3 Linear and gradient approximation theory

Prior to describing the approximation properties of Tn, it is essential to dis-
cuss the linear approximation properties of the H1

0,ΣD projection Qh onto Sh.
For H1+θ(G) ∩ H1

0,ΣD (G) functions, with uniform norm bound in this space,
interpolation space theory (cf. [3]) gives a uniform hθ estimate, as measured in
H1, provided the approximation process is capable of yielding an O(h) esti-
mate for H2(G)

⋂
H1

0,ΣD . Although detailed results for the latter estimate are
not available in the literature, the general procedure is described adequately in
[24]: the piecewise linear interpolant of an extension/smoothing process gives
the requisite energy upper bound, but the smoothing should be done only in
the tangential variables on ΣD, so that the smoothed function also vanishes on
ΣD. This can be made precise by a decomposition of the polygonal boundary
of G, according to edges and internal boundaries of ΣD, with an accompanying
finite partition of unity for G (see [6, §4] for an illustration of how this can be
done). The partition of unity sets are then translated and rotated into canonical
position. The extension process uses a variant of the Calderón extension opera-
tor, applied to cylindrical translation/rotation domains and canonical variables,
for ΣN “cylindrical” cross sections. For ΣD cross sections, the extension is the
trivial zero extension. The entire extended function may be reassembled, via
the partition of unity. The smoothing can also be carried out in the canonical
variables if desired. The Fourier transform is applied only in the tangential
variables for ΣD cross sections to estimate the smoothing error, via Strang’s
argument. In estimating the piecewise linear interpolation error relative to the
smoothing, we note that interpolation is also specified on ΣN . It is assumed,
in the sense that the arguments require it, that the topology of ΣD and ΣN
allows for the mechanics sketched above for the extension. This completes the
O(h) estimate, and interpolation space theory now applies. Improved estimates,
based upon graded meshes as currently employed in the h− p theory, tend not
to be uniform over Sobolev classes, and do not appear to be applicable here.
We are not aware either, of maximum principles for p > 1.
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The next result is a generic result for gradient equations which will be used
to deduce the approximation properties of Uh.

Proposition 3.1 Suppose a(·, ·) is a continuous symmetic bilinear form on H1,
L2 coercive on H1

0,ΣD . For u ∈ H1, let F (u) denote the continuous linear
functional on H1

0,ΣD defined by

F (u)(v) =
∫
G

f(·, u)v (3.9)

for f increasing in its second argument and ∂f(·, s)/∂s ≤ C. Suppose that u
and uh satisfy the gradient relations

a(u, v) + F (u)(v) = 〈g, v〉 ∀v ∈ H1
0,ΣD , (3.10)

a(uh, vh) + F (uh)(vh) = 〈g, vh〉 ∀v ∈ Sh, (3.11)

where u ∈ ū + H1
0,ΣD , uh ∈ ūI + Sh, ū ∈ C2(Ḡ). Here, g ∈ L2 is prescribed.

Then there exist constants C1 and C2, independent of h, such that

a(u−uh, u−uh) ≤ C1 inf
vh∈Sh

a(u− ūI − vh, u− ūI − vh) +C2‖ū− ūI‖2H1 .

(3.12)

Proof. The first step is the reduction to the case ū 7→ ūI . By this is meant that
there is no loss of generality in assuming that the boundary function in (3.10)
may be taken to be ūI . Denoting the solutions of the corresponding gradient
equations with boundary data ū, ūI , respectively, by

uφ = φ+ ū, uψ = ψ + ūI , φ, ψ ∈ H1
0,ΣD , (3.13)

we obtain, upon subtraction and setting v = φ− ψ,

a(φ−ψ, φ−ψ)+[F (uφ)−F (uψ)](uφ−uψ) = −a(ū−ūI , φ−ψ)+[F (uφ)−F (uφ)](ū−ūI).

By the continuity and L2-coerciveness properties of a(·, ·) and the monotonicity
and derivative properties of f we deduce that

a(φ− ψ, φ− ψ) ≤ c‖ū− ūI‖2H1 (3.14)

for some constant c, which depends only on the bound for ∂f/∂s and the L2
coerciveness constant of a(·, ·).

The second step is the consideration of (3.10) and (3.11) with ū replaced by
ūI in (3.10). We shall show that (note that uψ above is here identified as u)

a(u− uh, u− uh) ≤ C1 inf
vh∈Sh

a(u− ūI − vh, u− ūI − vh), (3.15)

which, with (3.14), will yield (3.12). We begin with

1
2a(u− uh − vh, u− uh − vh) + F (u)(u− uh − vh)− F (uh)(u− uh − vh)

= 1
2a(u− uh, u− uh) + [F (u)− F (uh)](u− uh) + 1

2a(vh, vh)
− a(u− uh, vh)− [F (u)− F (uh)](vh)
≥ 1

2a(u− uh, u− uh),
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which follows from the weak relations (3.10, 3.11), the assumed monotonicity of
f , and the nonnegativity of a(vh, vh). It follows that, for arbitrary δ > 0,

a(u−uh, u−uh) ≤ a(u−uh−vh, u−uh−vh)+δC2‖u−uh‖2L2
+δ−1‖u−uh−vh‖2L2

when C bounds ∂f/∂s. Since u− uh vanishes on ΣD, we may choose δ so that
(L2 coerciveness of a(·, ·))

δC2‖u− uh‖2L2 ≤ 1
2a(u− uh, u− uh).

Since u− uh − vh vanishes on ΣD, it follows that

a(u− uh, u− uh) ≤ C1a(u− uh − vh, u− uh − vh)

for all vh ∈ Sh. The identification uh+vh 7→ vh+ ūI now yields (3.15). This
concludes the proof.

3.4 Convergence properties of Tn

On the basis of (3.12), we may assume that there exists an approximation order
for Uh, vh, and wh:

‖U − Uh‖H1 ≤ Chθ, ‖v − vh‖H1 ≤ Chθ, ‖w− wh‖H1 ≤ Chθ, (3.16)

for some constant C and 0 < θ ≤ 1. Here, θ is the regularizing index introduced
in Assumption 1 of §2. Note that the second term on the right-hand side of
(3.12) is of order h2, as remarked earlier.

We may now close this section with a description of the approximation prop-
erties of Tn.

Theorem 3.1 The estimate

‖(T−Tn)[ṽ, w̃]‖ ≤ Chθ (3.17)

holds for some constant C, uniformly over the domain Ω on which T and Tn

are defined. The approximation estimates (3.16) are assumed as described in
§3.3.

Proof. The proof is a routine application of the triangle inequality:

‖(V ◦U−Vh ◦Uh)[ṽ, w̃]‖ ≤ ‖(V −Vh)U‖+ ‖Vh(U − Uh)‖, (3.18)

with a similar inequality for the second component.
The estimation of the first of the terms on the right-hand side of (3.18)

is governed by (3.16). The estimation of the second term may proceed once
an appropriate Lipschitz constant LV is determined for V, since Vh is the
composition of a bounded projection with V. This is discussed at the beginning
of Appendix D. Thus, we have

‖VhU −VhUh‖ ≤ LV ‖U − Uh‖. (3.19)

An application of (3.16)–(3.19) concludes the proof.
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4 Existence and convergence of discretized so-
lutions

4.1 The abstract calculus

Let E be a Banach space and T a mapping from an open set Ω into E. We
assume the existence of a fixed point x0 for T:

Tx0 = x0. (4.1)

If {En} denotes a sequence of subspaces of E of dimension r(n) ≥ n, suppose
that Tn : Ωn 7→ En, Ωn := Ω ∩En, has a fixed point:

Tnxn = xn. (4.2)

Finally, let {Pn} be a family of linear projections onto En. We shall describe
here the framework of the calculus developed by Krasnosel’skii et al. [20] for
the convergence of the solutions of discretizations of fixed point equations (4.2)
to the solutions of the original fixed point equation (4.1). First, we demonstrate
that for sufficiently small meshwidth h, a solution xn to the discretized problem
(4.2) exists close to all solutions x0 to the original problem (4.1). Second,
we show that for sufficiently small meshwidth h, a solution x0 to the original
problem (4.1) exists close to all solutions xn to the discretized problem (4.2).

Our first convergence result follows through Theorem 19.1 in [20, Thm. 19.1],
as quoted below.

Theorem 4.1 Let the operators T and PnT be Fréchet-differentiable in Ω, and
Tn Fréchet-differentiable in Ωn. Assume that (4.1) has a solution x0 ∈ Ω and
the linear operator I−T′(x0) is continuously invertible in E. Let

‖Pn(x0)− x0‖ → 0,

‖PnTPnx0 −Tx0‖ → 0, ‖PnT′(Pnx0)−T′(x0)‖ → 0,

‖[Tn −PnT]Pnx0‖ → 0, ‖[T′n − (PnT)′](Pnx0)‖ → 0,

as n → ∞. Finally, assume that for any ε > 0 there exist nε and δε > 0 such
that

‖T′n(x)−T
′

n(Pnx0)‖ ≤ ε for (n ≥ nε; ‖x−Pnx0‖ ≤ δε, x ∈ Ωn). (4.3)

Then there exist n0 and δ0 > 0 such that, when n ≥ n0, equation (4.2) has a
unique solution xn in the ball ‖x− x0‖ ≤ δ0. Moreover,

‖xn − x0‖ ≤ ‖[I−Pn]x0‖+ ‖xn −Pnx0‖ → 0 as n→∞ (4.4)

and ‖xn −Pnx0‖ satisfies the following two-sided estimate (c1, c2 > 0):

c1‖PnTx0 −TnPnx0‖ ≤ ‖xn −Pnx0‖ ≤ c2‖PnTx0 −TnPnx0‖. (4.5)
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Note that in this theorem the actual rate of convergence depends only on the
terms in the two sided estimate (4.5). The additional convergence assumptions
need not hold with this same rate.

Next, we assert that for sufficiently fine meshwidth h a solution x∗ to (4.1)
exists close to the solution xn to the discretized problem (4.2). From [20] we
cite Theorem 19.2 as stated in the following theorem.

Theorem 4.2 Let the operators T,PnT, and Tn be Fréchet differentiable in
some neighborhood of the point x̃n ∈ Ωn, and I−T

′

n(x̃n) continuously invertible
in En,

‖[I−T
′

n(x̃n)]−1‖ = κn.

Let

γn ≡ (1 + κn‖PnT
′
(x̃n)‖)‖[T′ −PnT

′
](x̃n)‖+ κn‖[T

′

n −PnT
′
](x̃n)‖ < 1,

and for some δn and qn (δn > 0; 0 < qn < 1),

sup
‖x−x̃n‖≤δn

‖T′(x) −T
′
(x̃n)‖ ≤ qn

κ′n
,

‖x̃n −Tx̃n‖ ≤
δn(1− qn)

κ′n
,

where

κ
′

n =
1 + κn‖PnT

′
(x̃n)‖

1− γn
.

Then (4.1) has a unique solution x0 in the ball ‖x− x̃n‖ ≤ δn, and we have the
error estimate

αn
1 + qn

≤ ‖x̃n − x0‖ ≤
αn

1− qn
, (4.6)

where
αn ≡ ‖[1−T

′
(x̃n)]−1(x̃n −Tx̃n)‖ ≤ κ′n‖x̃n −Tx̃n‖.

Again the actual rate of convergence depends only on the terms in the two sided
estimate (4.6) while the additional convergence assumptions need not hold with
this same rate.

Also, x̃n = xn is not required.

4.2 The application to the semiconductor problem: Gen-
eral setting

We set E =
∏2

1H
1(G) and En = linear span {V̄I , Sh}⊗ linear span {W̄I , Sh}

with Pn the orthogonal projection onto En. The domain Ω of the map T has
been defined in tandem with the composition maps defining T in §2. Tn has
been defined in §3; for consistency with §4.1 we may wish to consider Tn as
restricted to Ωn, but this is unimportant. Fixed points of T were demonstrated
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to exist in [8]; parallel arguments yield fixed points of Tn as well, via an applica-
tion of Brouwer’s fixed point theorem applied to Ω̄∩En. The continuity of this
restriction map follows from the continuity of Uh, since Tr,Vh, and Wh are
seen to be continuous from elementary considerations. In turn, the continuity
of Uh follows the proof of the continuity of U (cf. Lemma 4.3 of [8]). We may
assume, then, the existence of fixed points of Tn.

An important approximation property of Pn on the union of the convex hull,
co RT, of the range of T, with H1+θ(G) ∩H1

0,ΣD (G), is

‖Pnτ − τ‖H1 ≤ chθ, ‖τ‖H1+θ ≤ 1. (4.7)

This is a consequence of Proposition 3.1 and the assumption embodied in (3.16).
Note that, in (4.7), τ is a member of the set, co RT ∪ (H1+θ ∩ H1

0,ΣD22
). The

reason Pn does not involve affine projection is for consistency with the abstract
calculus discussed in §4.1, where linear, not affine, subspaces are employed.

4.3 Verification of the a priori estimates

The following lemma affords a verification of the hypotheses of Theorem 4.1 for
the semiconductor application. The properties concerning T

′
and T

′
n will be

found in the appendix. It is assumed throughout that the Euclidean dimension
N satisfies N ≤ 3.

Lemma 4.1 For the mapping T and the piecewise linear finite element projec-
tion Pn

‖PnTPnx0 −Tx0‖ → 0, (4.8)
‖PnT′(Pnx0)−T′(x0)‖ → 0, (4.9)

‖[Tn −PnT]Pnx0‖ → 0, (4.10)
‖[T′n − (PnT)′](Pnx0)‖ → 0, (4.11)

while for any ε > 0 there exist nε and δε > 0 such that

‖T′n(x)−T
′

n(Pnx0)‖ ≤ ε for (n ≥ nε; ‖x−Pnx0‖ ≤ δε, x ∈ Ωn). (4.12)

Proof. By the triangle inequality,

‖PnTPnx0 −Tx0‖ ≤ ‖PnTPnx0 −PnTx0‖+ ‖PnTx0 −Tx0‖
= ‖PnT(Pnx0 − x0)‖+ ‖(Pn − I)Tx0‖

and both terms tend to zero, the first because Pnx0 → x0 and Pn and T
are continuous, the second because Pnx0 → x0. Thus, (4.8) follows. For the
derivative mapping T

′
(x) : f 7→ g we have

‖[PnT′(Pnx0)−T′(x0)]f‖ ≤ ‖[Pn − I]T′(Pnx0)f‖+ ‖[T′(Pnx0)−T
′
(x0)]f‖

≤ c ∗ hθ‖T′(Pnx0)f‖H1+θ + LT′ ‖[Pn − I]x0‖ ‖f‖.
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Here we have used (4.7) and the Lipschitz continuity and uniform boundedness
in x of the derivative mapping T

′
(x) (cf. Appendix D). Relation (4.9) follows

from the H1 convergence of Pn to I on co RT. To prove (4.10) we observe that

‖[Tn −PnT]Pnx0‖ ≤ ‖[Tn −T]Pnx0‖+ ‖[I−Pn]TPnx0‖

and the uniform approximation by Tn on bounded sets as well as the H1 con-
vergence of Pn to I on coRT imply that the right-hand side tends to zero. The
proof of (4.11) proceeds by the addition and subtraction of the term T

′
(Pnx0),

and the application of the triangle inequality. The uniform approximation by
T
′

n (cf. Appendix D) and the convergence of Pn to I on H1+θ ∩ H1
0,ΣD com-

pletes the proof. Note that (PnT)
′

= PnT
′

is used here. Inequality (4.12) is
a restatement of the uniform continuity of T

′

n in n (Appendix D). This
concludes the proof.

4.4 Verification of the a posteriori estimates

The following lemma addresses the hypotheses of Theorem 4.2 for the semicon-
ductor application. It is assumed throughout that the Euclidean dimension N
satisfies N ≤ 3.

Lemma 4.2 Let the operators T,PnT, and Tn be as defined before. Let I −
T
′

n(x̃n) be continuously invertible in En at the approximate solution x̃n to (4.2),
and let

‖[I−T
′

n(x̃n)]−1‖ = κn ≤ κ. (4.13)

Then for a sufficiently small meshwidth h

γn ≡ (1 + κn‖PnT
′
(x̃n)‖)‖[T′ −PnT

′
](x̃n)‖+ κn‖[Tn −PnT]

′
(x̃n)‖ < 1.

(4.14)
If ‖x̃n − xn‖ ≤ Chθ, where C does not depend on h, then there exist δn and
qn (δn > 0; 0 < qn < 1) such that

sup
‖x−x̃n‖≤δn

‖T′(x) −T
′
(x̃n)‖ ≤ qn

κ′n
, (4.15)

‖x̃n −Tx̃n‖ ≤
δn(1− qn)

κ′n
= chθ, (4.16)

where

κ
′

n =
1 + κn‖PnT

′
(x̃n)‖

1− γn
.

Proof. The bound on γn as stated in (4.14) is proven through

γn ≡ (1 + κn‖PnT
′
(x̃n)‖)‖[T′ −PnT

′
](x̃n)‖+ κn‖[Tn −PnT]

′
(x̃n)‖

≤ (1 + κn‖PnT
′
(x̃n)‖)Chθ‖T′(x̃n)‖H1,H1+θ + κn‖[Tn −PnT]

′
(x̃n)‖

≤ C ∗ hθ.
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Here the last inequality follows completely analogously to the bounds in Lemma
4.1 and C is a generic constant.

The existence of a finite δn and qn (δn > 0; 0 < qn < 1), such that (4.15)
and (4.16) hold follows because

sup
‖x−x̃n‖≤δn

‖T′(x)−T
′
(x̃n)‖ ≤ LT′‖x− x̃n‖ ≤ LT′ δn,

so that we can choose qn = LT′ δnκ
′

n. On the other hand, xn is a fixed point of
Tn and therefore

‖x̃n −Tx̃n‖ ≤ ‖x̃n − xn‖+ ‖Tnxn −Txn‖+ ‖Txn −Tx̃n‖
≤ (1 + LT)‖x̃n − xn‖+ ‖Tn −T‖‖xn‖
≤ C ∗ hθ.

This implies that (4.16) holds provided that

δn = C ∗ hθ ∗ κ
′

n

(1− qn)
.

The proof is concluded if we can show that the choices

qn = LT′κ
′

nδn, δn = Chθκ
′

n/(1− qn)

are compatible with the requirement qn < 1. Thus, set α = LT′κ
′

n, β = Chθκ
′

n.
We have

−αδ2
n + δn − β = 0

or
αδn = 1

2 (1±
√

1− 4αβ).

Provided β is sufficiently small so that αβ ≤ 1
4 , we may choose δn ≤ 1/(2α)

so that qn ≤ 1
2 . Note that, the bounds for κ

′
n and γn show that κ

′
n remains

bounded as h decreases so that the bound αβ ≤ 1
4 does not depend on h.

This concludes the proof.

4.5 Summary of results

The following corollary expresses a summary of the major results in conjunction
with the employed hypotheses.

Corollary 4.1 Assume the regularization hypothesis expressed in Assumption
1 of §2.3. Let x0 be a fixed point of T and suppose that T′(x0) does not possess
1 as an eigenvalue. Then there exist an index n0 and a neighborhood of x0
containing fixed points xn of Tn, n ≥ n0, satisfying

‖x0 − xn‖ ≤ Chθ. (4.17)
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Here C is a constant independent of n and h. Conversely, suppose {x̃n} is
a sequence of approximate fixed points of Tn satisfying ‖x̃n − xn‖ ≤ chθ and
(4.13). Then, under the regularity hypothesis, there exists a fixed point x0 of T
such that

‖x0 − x̃n‖ ≤ Chθ ∀n. (4.18)

Here C is a constant independent of n and h. In all cases N ≤ 3.

Proof. Estimates (4.17) and (4.18) follow from the conjunction of (4.4) with
(4.5), and from (4.6), respectively. The former two inequalities must be appro-
priately combined with the triangle inequality

‖PnTx0 −TnPnx0‖ ≤ ‖(Pn − I)Tx0‖+ ‖Tx0 −TPnx0‖+ ‖(T−Tn)Pnx0‖,

which yields order hθ convergence upon use of the Lipschitz continuity of T,
and the convergence properties of Pn and Tn. Inequality (4.6) must be supple-
mented by

αn
1− qn

≤ (
κ
′

n

1− qn
)‖x̃n −Tx̃n‖ ≤ δn.

The choice, δn = Chθκ
′

n/(1− qn) and the boundedness of κ
′

n and 1/(1− qn) are
discussed in the proof of Lemma 4.2. The hypotheses of the corollary absorb
those of Theorems 4.1 and 4.2 due to the compactness of T

′
(x0). This con-

cludes the proof. Remark 4.1. Estimates of order hθ follow from Corollary 4.1
for ‖v − vh‖ and ‖w − wh‖, if [v, w] and [vh, wh] are fixed points of T and Tn,
respectively. Estimates for ‖U − Uh‖ follow immediately from

‖U(v, w) − Uh‖ ≤ ‖U(v, w) −U(vh, wh)‖+ ‖U(vh, wh)− Uh‖,

the Lipschitz property of U, and (3.16), which provides the estimate for the
second term on the right-hand side.

Appendix. In Appendices A and B we shall discuss the continuity and
compactness properties of U,V,W and their Fréchet derivatives. In Appendix
C we shall discuss these for Uh(Vh and Wh are straightforward). Results such
as Lemma (B.2), are valid in terms of quasi-Fermi levels but not in terms of
Slotboom variables. This is the incentive to define the mapping T in the space
of pairs of quasi-Fermi levels, rather than in the space of pairs of Slotboom
variables. L∞ bounds will be implicit in the various results derived below. As
we have noted in the introduction, only the statements of the lemmas are given.
For the proofs, the reader may consult the monograph [12].

A The map U

We begin with a result which is a slight sharpening of Lemma 4.1 of [8]. It will
be used in the proof of Lemma A.2. The domain of U in both of these lemmas
is a bounded subset of

∏2
1 L∞.
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Lemma A.1 Let U : (v, w)→ u be defined through the solution of the boundary
value problem

〈∇u,∇φ〉+ 〈eu−v − ew−u − k1, φ〉 = 0.

Then U is continuous from L2 into L2. In fact, it is Lipschitz continuous into
H1.

Lemma A.2 Let U : (v, w) 7→ u be the mapping defined implicitly through the
solution of the boundary value problem

〈∇u,∇φ〉+ 〈eu−v − ew−u − k1, φ〉 = 0, (A.1)

where φ ∈ H1
0,ΣD , subject to suitable mixed boundary conditions in N dimen-

sions. Then the derivative D(v,w)U(v, w) : (σ, τ) 7→ µ is defined through the
solution of the boundary value problem

〈∇µ,∇φ〉+ 〈eu−v[µ− σ] + ew−u[µ− τ ], φ〉 = 0, (A.2)

where µ|ΣD ≡ 0, φ|ΣD ≡ 0, and for all (v, w) is a uniformly bounded lin-
ear mapping from L2 to H1

0,ΣD , and, in particular, compact from L2 into Lq,
q < [1/2 − 1/N ]−1 if N ≥ 3 and q < ∞ if N = 2. The mapping is also uni-
formly bounded from H1 to L∞ if N ≤ 3. Moreover, the mapping (v, w) 7→
D(v,w)U(v, w) is Lipschitz continuous from H1 to the mappings from L2 to
H1

0,ΣD if N ≤ 4.

This lemma is proven in the Appendix of [12].

B The mappings V and W

In [12] it is shown that the mappings V and W are continuous from H1 to itself
as stated below.

Lemma B.1 For i = 1, 2, and ui ∈ H1 satisfying the maximum principle (2.8),
and the boundary conditions, let vi be the solution to the weak formulation of
the mixed boundary value problem

∇ · (eui−vi∇vi) = 0, (B.1)

on G. Then∫
G

eu1−v1 |∇(v2 − v1)|2dx ≤
∫
G

eu1−v1 |∇(u2 − u1)|2dx, (B.2)

and therefore the mapping V from u to v defined through (B.1) is Lipschitz
continuous from H1 to itself on the range of U.

Remark. The derivative DV(u) : µ 7→ σ, is defined through solution of the
boundary value problem

〈eu−v[(µ− σ)∇v +∇σ],∇φ〉 = 0, (B.3)
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where µ ∈ H1, and σ ∈ H1
0,ΣD . Here, φ is a test function in H1

0,ΣD . For smooth
v, the standard existence theory (cf. [4, Chap. 8]) yields a solution σ for N ≤ 3.
The proof of the lemma to follow, in which H1 bounds for σ are determined in
terms of µ, allows limits of v and σ, and hence solutions for v ∈ H1 ∩ L∞ as
specified prior to Appendix A. Finally, the Moser iteration theory (cf. [4]) gives
a priori L∞ bounds on σ in terms of H1 ∩L∞ bounds on µ. This is required in
the proof of Lemma B.3.

Lemma B.2 Let u ∈ H1 ∩ L∞ be given and, for N ≤ 3, let v be the solution
to the weak formulation of the mixed boundary value problem

∇ · (eu−v∇v) = 0

on G. Then the derivative DV of the mapping V from u to v defined through
this equation is uniformly bounded from H1

0,ΣD to itself, and hence for each u,
is compact from H1

0,ΣD into L2.

Lemma B.3 The derivative DV as defined by equation (B.3), is a locally Lip-
schitz continuous mapping from H1 to the mappings from H1 ∩ L∞ to H1

0,ΣD
for Euclidean dimension N ≤ 3. A similar statement holds for W.

C The Mapping Uh

We begin with a continuity result for Uh.

Lemma C.1 The mapping Uh, defined in §3.1, is Lipschitz continuous on its
domain from L2 to H1.

Proof. The proof follows that of Lemma A.1.
We move now to the differentiability properties of Uh.

Lemma C.2 The derivative D(v,w)Uh(v, w) : (σ, τ) 7→ µ is defined through the
solution of the projection relation,

〈∇µ,∇φ〉 + 〈eUh−v[µ− σ] + ew−Uh [µ− τ ], φ〉 = 0, (C.1)

where µ and φ are in Sh. The mapping (v, w) 7→ D(v,w)Uh(v, w) is Lipschitz
continuous from H1 to the mappings from L2 to H1, for N ≤ 4 with Lipschitz
constant independent of h.

Proof. The proof follows that of Lemma A.2.

Lemma C.3 The solutions D(v,w)U(v, w)(σ, τ) := µ of (A.2) and
D(v,w)Uh(v, w)(σ, τ) := µh of (C.1) satisfy an estimate of the form

‖µ− µh‖ ≤ Chθ‖(σ, τ)‖, (C.2)

where C does not depend upon h, v, or w. The norm used here is the H1 norm.

This lemma is proven in [12].
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D Summary of results for T and Tn

The mappings Vh and Wh are the simple compositions,

Vh = log ◦t−1
V̄I
◦Qh ◦V ◦ tV̄ , Wh = log ◦t−1

W̄I
◦Qh ◦W ◦ tW̄ ,

where Qh is the projection of §3.3 and t denotes the (negative) translation by
the subscript variable. The properties of Qh,V, and W induce results for Vh

and Wh parallel to those for Uh as derived in Appendix C. The following results,
used in the proofs of Lemmas 4.1 and 4.2, are a direct consequence of Appendices
A–C and Assumption 1 of §2.3. N ≤ 3 is required for the statements.

• T
′
is Lipschitz continuous from Ω to the mappings from

∏2
1H

1 to
∏2

1H
1
0,ΣD

This follows from an application of the chain rule to (2.7) in conjunction
with Lemma A.2 and B.3.

• T
′

is uniformly bounded over Ω as a linear mapping from
∏2

1H
1 to∏2

1(H1+θ ∩H1
0,ΣD ).

This follows from Assumption 1 in conjunction with Lemma A.2 and B.2.

• T
′

n converges uniformly to T
′

This follows from Lemma C.3 and the corresponding result for Vh and Wh

applied to (3.2).

• T
′
n is continuous, uniformly in n and elements of its domain.

This follows from Lemma C.2 and the corresponding result for Vh and Wh.

• T
′
(z) is compact, for each z ∈ Ω, as a mapping from

∏2
1H

1 into
∏2

1H
1
0,ΣD .

This follows from the boundedness assertions of Lemma A.2 and B.2, the
regularization hypothesis inherent in Assumption 1 and the compact injection
of H1+θ into H1.
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