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Abstract

The detailed three dimensional architecture of biological tissue and
electrodiffusion effects of ions have been largely neglected in model-
ing studies of cellular electrical activity. Here, we develop a model
of cellular electrical activity that takes into account both of these
effects. We derive the system of partial differential equations that
govern cellular electrical activity and discuss its biological signifi-
cance. This is followed by a brief discussion of numerical simula-
tions and a mathematical analysis of the system of equations.

1 Introduction

Electrophysiology, because of its importance in many physiological processes

and its quantitative nature, has been a favorite subject in mathematical physi-

ology. Traditional models of cellular electrical activity are based on the famous

work of Hodgkin and Huxley [5], and may be collectively termed cable models

[8, 9]. These models are based upon an ohmic current continuity relation on a
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branched one dimensional electrical cable. There are three major assumptions

that go into the derivation of cable models [9]:

• The geometry of a cell is well-captured by a one dimensional tree rep-

resentation. Geometrical details that are lost in making this simplified

description have negligible effect on electrophysiology.

• Ionic concentrations are effectively constant in space and time within

each cell separately and in the extracellular space.

• The extracellular space can be reduced to a single isopotential electrical

compartment.

Such assumptions are justified in many instances, for example in the isolated

neuronal axon, where the cable model has been extremely successful in ex-

plaining the physiology and in making quantitative predictions – a triumph

counted among the greatest successes of mathematics in biology. But there

are many cases in which any or all of the above assumptions are probably vio-

lated. Neuroscience textbooks [7] will show pictures of cells of complex shape

packed together embedded in a tortuous extracellular space. Such pictures are

indicative of the important functional role geometry, ionic concentration pro-

files and extra-neuronal space (extracellular space and glia) may play in the

workings of the nervous system. In this paper, we formulate a mathematical

model that incorporates such effects.

We will begin by a detailed derivation of the model equations and a discus-

sion of their biological significance. This will be followed by a brief discussion

of the numerical method currently used and simulation results. The final sec-

tion presents a mathematical analysis of the model.

We mention a recent effort that shares with our model some of the above

objectives [6]. In comparison to our model, it takes a closer look at what

happens near the membrane but takes a simpler approach with regard to

neuroanatomy.

2 Drift-Diffusion and Electroneutrality

We begin with equations that hold away from the cell membranes, i.e., in the

cell interior and in the interior of the extracellular space. We assume that
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the unknowns and the parameters change continuously within each of these

regions, but we allow for jumps in these quantities as cell membranes are

crossed.

Let there be N ion species, where the subscript i denotes each species. Let

ci(x, t) and φ(x, t) denote the ion concentrations and the electrostatic potential

respectively. These quantities are related by the drift-diffusion equations:

∂ci

∂t
= −∇ · fi (ion conservation) (1)

fi = −Di

(

∇ci +
qzici

kBT
∇φ

)

(drift-diffusion flux) (2)

Here, fi denotes the flux of the i-th ion. fi is expressed as a sum of two terms,

the diffusion term and the drift term. Di is the diffusion coefficient of the i-th

ion, qzi is the amount of charge on the i-th ion, where q is the elementary

charge, i.e., the charge on a proton. qDi/(kBT ) is the mobility of the ion

species (Einstein relation) where kB is the Boltzmann constant, and T the

absolute temperature.

Moreover, the electrostatic potential satisfies the Poisson equation:

∆φ = −
1

ε

(

ρ0 +

N
∑

i=1

qzici

)

(Poisson equation) (3)

where ρ0 is the fixed background charge density (if any), and ε is the dielectric

constant of the electrolyte solution. Note that we are applying these equations

only in the electrolyte solution, not within the membrane itself. We shall

discuss the treatment of the membrane in the following section. It is interesting

to note that these equations are also used in semiconductor physics, where they

are known as the van Roosbroeck equations [12].

Let L0 be a typical length scale, and let c0 be a typical concentration. By

writing the equations in non-dimensional variables, we are led to consider the

dimensionless parameter εkBT

q2c0L2
0

=
r2
d

L2
0
, where rd is the Debye length rd ≡

√

εkBT
q2c0

.

When this parameter is small, we have the limit of electroneutrality, which

holds away from the cell membranes. This is indeed the case in physiological

systems, where rd ≈ 1nm and L0 is typically on the order of microns or more.

This limit can be obtained formally by letting ε → 0 in the Poisson equation.
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This implies

ρ0 +
N
∑

i=1

qzici = 0. (4)

It should be noted that this does not imply ∆φ = 0, since (3) reduces to

∆φ = 0/0 in the limit considered, and thus we have to look to the other

equations to find the limiting behavior of the electrostatic potential. Therefore,

the equations to be satisfied away from the membrane are the drift-diffusion

equations (1), (2) and the electroneutrality condition (4).

We may obtain the relation satisfied by φ by considering current continuity.

Let j(x, t) be the total electrical current density (current per unit area) at the

position x at time t. Multiply the flux densities fi by qzi to obtain the current

density for each ion, and add to obtain the total current density.

j(x, t) = −(a(x, t)∇φ + ∇b(x, t)) (5)

a(x, t) =

N
∑

i=1

(qzi)
2Di

kBT
ci(x, t) (6)

b(x, t) =
N
∑

i=1

qziDici(x, t) (7)

By current continuity, ∇ · j = 0, we have the following elliptic equation for φ.

∇ · (a(x)∇φ + ∇b(x, t)) = 0 (8)

Thus, φ satisfies an elliptic constraint (since a(x, t) > 0) instead of the Poisson

equation in the limit rd/L → 0.

We point out that (8) may also be derived by differentiating the elec-

troneutrality condition (4) with respect to t and using (1) and (2). We may

understand (8) as imposing an elliptic constraint on φ so that electroneutrality

is maintained. This procedure of obtaining an equation for φ from an algebraic

relation is employed in index reduction for differential algebraic systems [11].
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3 Electrical Boundary Condition

We shall treat the transmembrane currents and their associated quantities (as

defined in section 6 to be continuous quantities with respect to the spatial

coordinate within the membrane. In our model, we are not resolving the

individual membrane protein molecules such as ion channels that give rise

to transmembrane currents. All relations that refer to membrane variables

should thus be understood as the result of homogenization with respect to the

membrane coordinate.

Near the membrane, there is an accumulation of electric charge, whose

thickness is on the order of the Debye length rd. In deriving the electroneu-

trality condition, we let rd/L → 0. In agreement with this limit, we consider

this electric charge to form a layer of zero thickness concentrated on both sides

of the membrane surface.

Let us consider a point x on the membrane. The membrane separates two

regions of space which we call Ω(k) and Ω(l). We label quantities in Ω(k) and

Ω(l) by the superscripts k and l respectively.

Electric current j that hits the membrane will contribute to the change in

surface charge σ or will pass through the membrane as transmembrane current

j. This statement of charge conservation on the Ω(k) face of the membrane

can be expressed as:

∂σ(k)

∂t
(x, t) + j(kl)(x, t) = j(k)(x, t) · n(kl)(x) (9)

Here, σ(k) is the surface charge per unit area on face k of the membrane, j (kl) is

the transmembrane current per unit area from Ω(k) to Ω(l), and j(lk) = −j(kl).

The functional form of this quantity will be discussed in section 6. n(kl) is

the unit normal pointing from Ω(k) to Ω(l), and thus n(lk) = −n(kl). The same

relation holds with k and l interchanged on the side of the membrane facing

Ω(l):
∂σ(l)

∂t
(x, t) + j(lk)(x, t) = j(l)(x, t) · n(lk)(x) (10)

We make two assumptions about the surface charge σ.

• Each patch of the membrane is electroneutral, i.e., σ(k)(x, t)+σ(l)(x, t) =

0. This means that any charge accumulation on one side of the membrane
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is instantaneously counterbalanced by charge on the other side.

• The membrane and its surface charge layers together behave like a ca-

pacitor. That is to say, the surface charge is linearly proportional to the

transmembrane potential difference.

We may combine the above two assumptions to deduce:

σ(k)(x, t) = −σ(l)(x, t) = Cmφ(kl)(x, t), φ(kl)(x, t) ≡ φ(k)(x, t) − φ(l)(x, t)

where Cm is the capacitance per unit area of the membrane. Thus we arrive

at the electrical boundary conditions

Cm
∂φ(kl)

∂t
(x, t) + j(kl)(x, t) = j(k)(x, t) · n(kl)(x). (11)

The same boundary condition but with k and l interchanged holds on the Ω(l)

face of the membrane.

We may add (9) and (10) and use the first assumption to obtain a relation

satisfied by j.

j(k)(x, t) · n(kl)(x) + j(l)(x, t) · n(lk)(x) = 0

This says that any current that comes onto the membrane from one side is

exactly counterbalanced by current coming off the membrane from the other

side, i.e., that there is no charge accumulation at the membrane.

4 Boundary Conditions for Each Ionic Species

Let us consider the flux of the i-th ion fi at the membrane. The i-th ion

contributes a current per unit area of qzifi ·n. Let σ
(k)
i (x, t) be the contribution

of the i-th species of ion to the surface charge per unit area on the side of the

membrane facing Ω(k), and let j
(kl)
i (x, t) be the contribution of the i-th species

of ion to the transmembrane current per unit area flowing from Ω(k) into Ω(l).

By considering ion conservation at the membrane we find:

∂σ
(k)
i

∂t
(x, t) + j

(kl)
i (x, t) = qzif

(k)
i (x, t) · n(kl)(x) (12)
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Note that,

N
∑

i=1

σ
(k)
i (x, t) = σ(k)(x, t) = Cmφ(kl)(x, t)

N
∑

i=1

j
(kl)
i (x, t) = j(kl)(x, t)

and we may sum (12) over i to obtain (9).

To make (12) useful, we need an expression for σ
(k)
i in terms of the ionic

concentrations and the electrostatic potential. Through an approximate anal-

ysis of the space charge layer, it can be shown that

σ
(k)
i (x, t) = λ

(k)
i (x, t)σ(k)(x, t) (13)

where,

λ
(k)
i (x, t) =

z2
i c

(k)
i (x, t)

∑N

i′=1 z2
i′c

(k)
i′ (x, t)

(14)

We now turn to the derivation of the above expression.

5 Space Charge Layer

The purpose of this section is to take a closer look at the surface charge layer.

The physical reality is that these “surface charge layers” are not confined to

the membrane surface, but are spread out over a thin layer near the mem-

brane. Thus, they are better called “space charge layers” and that is the

terminology we shall use in this section. We note that the space charge layers

considered here are located near the membrane surface within the intracellular

or extracellular spaces and do not straddle the cell membrane.

5.1 Derivation of expression for σi

We make three approximations in our analysis of the space charge layer.

• The space charge layer may be treated as one dimensional, and thus all

quantities are only a function of the distance from the membrane.
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• Within the space charge layer all quantities are nearly in thermodynamic

equilibrium, despite any fluxes that may occur through the space charge

layer.

• Within the space charge layer, the deviations of ion concentrations and

electrostatic potential from their bulk values are small.

The first approximation can be taken because of our homogenization of the

membrane quantities. Homogenization with respect to the spatial coordinate

within the membrane coordinate smears out the steep gradients (parallel to

the membrane) in concentration and electrostatic potential that may exist near

the mouth of transmembrane current sources such as ion channels. Once we

accept this first approximation, the second approximation is justified by the

fact that the space charge layer is thin. The validity of the third approximation

will be discussed later.

Let x denote the distance coordinate normal to the membrane surface.

Then, according to the first two approximations we have just stated, (2) and

(3) become:

0 = −Di

(

∂ci

∂x
+

qzici

kBT

∂φ

∂x

)

(15)

−
∂2φ

∂x2
=

1

ε

(

ρ0 +

N
∑

i=1

qzici

)

(16)

which hold on 0 < x < ∞ with ci(∞) and φ(∞) given. Here, x = 0 is the

intracellular or extracellular face of the membrane, and x = ∞ corresponds

to the bulk solution where ci and φ values in the space charge layer are to

be matched with the bulk values. Since we assume that the background fixed

charge density ρ0 varies on the scale of the cellular size L, its variation within

the thickness of the space charge layer is negligible, of order O(rd/L). Thus,

we will treat ρ0 as being constant within the space charge layer. It is important

to note that these values at x = ∞ satisfy electroneutrality, i.e.,

ρ0 +

N
∑

i=1

qzici(∞) = 0 (17)
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If the boundary conditions are functions of time, the above equations hold

at each time t and since time plays no dynamical role in them, we drop the

argument t for now.

Equation (15) can be integrated easily to obtain,

ci(x) = ci(∞) exp

(

−
qzi

kBT
(φ(x) − φ(∞))

)

.

This equation can be substituted into (16) to yield,

−
∂2φ

∂x2
=

1

ε

(

ρ0 +
N
∑

i=1

qzici(∞) exp

(

−
qzi

kBT
(φ(x) − φ(∞))

)

)

. (18)

Here we use our third approximation to linearize the above Poisson-Boltzmann

equation. We suppose

∣

∣

∣

∣

qzi

kBT
(φ(x) − φ(∞))

∣

∣

∣

∣

� 1. (19)

Then, taking into account the electroneutrality condition at x = ∞ (we have

electroneutrality in the bulk),

ci(x) = ci(∞)

(

1 −
qzi

kBT
(φ(x) − φ(∞))

)

(20)

∂2

∂x2
(φ(x) − φ(∞)) = γ2(φ(x) − φ(∞))

where,

γ2 =

N
∑

i=1

(qzi)
2ci(∞)

εkBT
. (21)

Letting γ be the positive square root of γ2, we find the unique bounded solu-

tion,

φ(x) − φ(∞) = (φ(0) − φ(∞)) exp(−γx)

and hence according to (20),

ci(x) − ci(∞) = −ci(∞)
qzi

kBT
(φ(0) − φ(∞)) exp(−γx).
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Using this equation, we may compute σi as

σi =

∫ ∞

0

qzi(ci(x) − ci(∞))dx = −ci(∞)
(qzi)

2

kBTγ
(φ(0) − φ(∞)).

Using the above and noting that
∑N

i=1 σi = σ, we immediately obtain:

σi =
z2

i ci(∞)
∑N

i′=1 z2
i′ci′(∞)

σ

which is exactly expression (14), what we set out to find.

In summary, we have shown that the i-th species of ion makes a con-

tribution to the membrane surface charge in proportion to its nearby bulk

concentration weighted by the square of the ionic charge. Note that ions of

either sign contribute charge with the same sign as that of the total surface

charge, even though the sign may be opposite to that of their own charge! This

is because the surface charge layer may involve a deficit rather than an excess

of any particular ion, and a deficit of negative charge, for example makes a

positive contribution to the surface charge.

5.2 Validity of the linear approximation to the Poisson-

Boltzmann equation for the space charge layer

We now consider the validity of the third approximation. We take the Poisson-

Boltzmann equation (18) as our starting point:

−
∂2φ

∂x2
=

1

ε

(

ρ0 +
N
∑

i=1

qzici(∞) exp

(

−
qzi

kBT
φ(x)

)

)

. (22)

We have taken φ(∞) = 0, since the electrostatic potential is only determined

up to an arbitrary constant. We will also assume in the following that φ(0) > 0.

By the end of the discussion, it will be clear that the φ(0) < 0 case can be

handled in an identical way. We note that

ρ0 +

N
∑

i=1

qzici(∞) = 0. (23)
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Our goal is to derive a condition that guarantees the relation

∣

∣

∣

∣

qzi

kBT
φ(x)

∣

∣

∣

∣

� 1

to hold. We note that the above expression concerns the deviation of the

electrostatic potential within the space charge layer, and not the potential

jump across the cell membrane. Since zi takes integer values not too different

from 1 in absolute value, we shall be content to establish the condition:

∣

∣

∣

∣

q

kBT
φ(x)

∣

∣

∣

∣

� 1. (24)

Consider the function f(φ),

f(φ) = −

(

ρ0 +
N
∑

i=1

qzici(∞) exp

(

−
qzi

kBT
φ

)

)

.

Note that (22) can be written as ∂2φ

∂x2 = 1
ε
f(φ). We see that,

∂f

∂φ
=

(

N
∑

i=1

(qzi)
2ci(∞)

kBT
exp

(

−
qzi

kBT
φ

)

)

> 0.

Therefore, f(φ) is monotone increasing in φ. From (23), we see that f(0) = 0.

Therefore, f(φ) > 0 if φ > 0 and f(φ) < 0 if φ < 0.

Suppose that φ(x) > φ(0) for some values of x. Since φ(∞) = 0, φ(x) must

attain a positive local maximum at some interior point x0. Since φ(x0) > 0,

f(φ(x0)) > 0. But this is impossible since f(φ(x0)) > 0 implies that ∂2φ

∂x2 (x0) >

0. Next, suppose that φ(x) is negative for some values of x. Since φ(∞) = 0,

φ(x) must attain a negative local minimum at some interior point x1. Since

φ(x1) < 0, f(φ(x1)) < 0. This is again impossible since this implies ∂2φ

∂x2 (x1) <

0. This argument may be considered a simple application of the maximum

principle for elliptic partial differential equations.

From the above we conclude that 0 ≤ φ(x) < φ(0). From φ ≥ 0, we see

that ∂2φ

∂x2 ≥ 0 for all x, and thus, ∂φ

∂x
is non-decreasing. Since φ(∞) = 0, this
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implies that ∂φ

∂x
(∞) = 0. The two conclusions we have reached so far are:

0 ≤ φ(x) < φ(0) (25)

∂φ

∂x
(∞) = 0. (26)

From (25) we see that (24) will be true for all x if

∣

∣

∣

∣

q

kBT
φ(0)

∣

∣

∣

∣

� 1. (27)

We next integrate (22) from x = 0 to x = ∞.

−
∂φ

∂x
(∞) +

∂φ

∂x
(0) =

1

ε

∫ ∞

0

(

ρ0 +

N
∑

i=1

qzici(∞) exp

(

−
qzi

kBT
φ

)

)

dx.

Noting that the integral on the right hand side is the total charge in the space

charge layer σ and using (26), we find,

∂φ

∂x
(0) =

σ

ε
. (28)

We may find another relation by multiplying (22) by ∂φ

∂x
and again integrating

from x = 0 to x = ∞. Using (26) and (28) one finds,

1

2
σ2 = ε

(

kBT
N
∑

i=1

ci(∞)

(

exp

(

−
qziφ(0)

kBT

)

− 1

)

− ρ0φ(0)

)

≡ εF (φ(0)). (29)

We estimate F (φ) from below. We note first that

F (0) = 0,
∂F

∂φ
(0) = f(0) = 0. (30)
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We examine the second derivative of F with respect to φ. For φ > 0,

∂2F

∂φ2
=

∂f

∂φ

=
N
∑

i=1

(qzi)
2ci(∞)

kBT
exp

(

−
qzi

kBT
φ

)

>
∑

zi<0

(qzi)
2ci(∞)

kBT
exp

(

−
qzi

kBT
φ

)

>
∑

zi<0

(qzi)
2ci(∞)

kBT
.

Since zi is at least equal to 1 in absolute value,

∂2F

∂φ2
>

q2C−

kBT
, C− ≡

∑

zi<0

ci(∞).

Using (30) and the above, for φ(0) > 0 we conclude that,

F (φ(0)) >
q2C−

2kBT
φ(0)2.

Therefore, by (29), we find:

σ2 > ε
q2C−

kBT
φ(0)2.

We may take C−, the total concentration of anions, to be the typical concen-

tration. In this case, the Debye length rd =
√

εkBT

q2C−
. Therefore,

(

σ

qC−rd

)2

>

(

q

kBT
φ(0)

)2

.

Taking the square root of the above, we see that

|σ|

qC−rd

>
q

kBT
|φ(0)|.

Thus, condition (27) should hold if |σ|
qC−rd

� 1. For φ(0) < 0, an identical
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argument shows that
|σ|

qC+rd

>
q

kBT
|φ(0)|

where C+ is the total concentration of cations at the bulk, and rd is computed

using C+ as the typical concentration. Hence, we conclude |σ|
qC+rd

� 1 is suffi-

cient for condition (27). Since C− and C+ are of the same order of magnitude,

we finally conclude that the following condition is sufficient for the validity of

the linear approximation:
|σ|

qc0rd

� 1 (31)

where c0 is the typical concentration in the bulk solution.

This means that the linear approximation is valid when the amount of

surface charge is small in comparison to the absolute total charge concentration

in a layer of width rd. We may calculate this ratio in physiological systems since

we can estimate σ with the values of the capacitance and the transmembrane

potential, and qc0rd by using typical values of ionic concentrations and the

Debye length. It turns out that this ratio is on the order of 10−2 and this

justifies the linear approximation.

6 Transmembrane Ionic Currents

We have yet to specify ji, the transmembrane currents. Biophysically, these

are currents that flow through ion channels, transporters, or pumps that are

located within the cell membrane [1, 4, 7]. We use the formalism of Hodgkin

and Huxley for ion channel currents [5, 8, 9], generalized to allow for nonlinear

instantaneous current-voltage relations and ion concentration effects.

j
(kl)
i (x, t) = J

(kl)
i

(

x, s(kl)(x, t), φ(kl)(x, t), c(k)(x, t), c(l)(x, t)
)

(32)

Here, J
(kl)
i is a function characteristic of the channels (possibly of more than

one type) that carry the i-th species of ion across the membrane separating

Ω(k) from Ω(l). The explicit dependence of J
(kl)
i on x reflects the possible

inhomogeneity of the membrane: the density of channels may vary from one

location to another. The other arguments of J
(kl)
i are as follows:

First, there is a vector of gating variables s(kl)(x, t) = (s
(kl)
1 , · · · , s

(kl)
G ) where
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G is the total number of gating variables in all of the channel types that arise

in our system. (Only some of these influence the channels that conduct ions of

species i.) The individual components s
(kl)
g of s(kl) are dimensionless variables

as introduced by Hodgkin and Huxley [5] that take values in the interval [0, 1]

and satisfy ordinary differential equations of the form,

∂s
(kl)
g

∂t
(x, t) = αg

(

φ(kl)(x, t)
) (

1 − s(kl)
g (x, t)

)

− βg

(

φ(kl)(x, t)
)

s(kl)
g (x, t) (33)

for g = 1, · · · , G where αg and βg are positive, empirically defined functions

of the transmembrane potential.

The next argument of J
(kl)
i is again the transmembrane potential φ(kl).

Holding the other arguments fixed in J
(kl)
i , and letting only φ(kl) vary, we get

the instantaneous current-voltage relationship for current carried by the i-th

ion from Ω(k) to Ω(l) at point x at time t.

The last two arguments of J
(kl)
i are the vectors of ion concentrations on

the two sides of the membrane: c(k) = (c
(k)
1 , · · · , c

(k)
N ) and similarly for c(l).

By including the whole vector of ion concentrations, we allow for the possi-

bility that the current carried by the i-th species of ion is influenced by the

concentrations of other ionic species on the two sides of the membrane.

As an example of the foregoing, consider the Na+ channel current in the

Hodgkin Huxley model, which has the following form.

JNa = gNa(x)m(x, t)3h(x, t)
(

(φint(x, t) − φext(x, t)) −
kBT

q
log

(

cext
Na (x, t)

cint
Na(x, t)

))

(34)

In this equation, the regions k and l are identified as the intracellular and

extracellular spaces, denoted by the superscript int and ext. m and h are the

gating variables, and gNa is the ion channel density. Keeping m, h, gNa, c
int
Na, c

ext
Na

fixed, we happen to have a linear instantaneous current voltage relationship,

but this may not be so in general. The gating variables m and h satisfy a first

order ordinary differential equation of the form (33). Functions α and β are

determined experimentally.

Note that the above formalism is more general than the words that we have

used to describe them. The “ions” that we have described do not need to be
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charged (one can have zi = 0 for some i) and they can include neurotransmit-

ters (whether charged or not) that have been released at synapses. We may

have ligand-gated channels, by introducing gating variables whose evolution is

governed by the local concentration of chemical species. The only restriction

is that the binding of ligands to these channels does not significantly alter the

unbound concentrations of these chemicals. Other ion carrying mechanisms

such as transporters and pumps may also be easily incorporated using the

above formalism or a slight generalization thereof.

A subtle and important question that remains is precisely where to evaluate

the electrostatic potential and the various ion concentrations on the two sides

of the membrane. As we have seen in the foregoing sections, there is a thin

space charge layer near each face of the membrane in which the electrostatic

potential and the ion concentrations may deviate somewhat from those in the

bulk solution, away form the membranes. Several of the arguments of the

functions J
(kl)
i that define the transmembrane currents involve the boundary

values of the electrostatic potential or the ion concentrations. Do these literally

refer to the values right on the face of the membrane, or do they refer to the

values in the bulk solution, near the membrane but outside the space charge

layer?

From a mathematical standpoint, the answer is clear. We are trying to

solve a set of partial differential equations (1), (2), and (4) that are satisfied

away from the membrane under certain boundary conditions with expressions

involving c
(k)
i , c

(l)
i and φ(kl). Thus, the boundary conditions will not be useful

unless these quantities are evaluated away from the membrane, i.e., near the

membrane but within the bulk solution.

When J
(kl)
i is measured experimentally, the controlled values of voltage and

ion concentrations are always those of the bulk solution. The space charge

layers are, of course, present during these measurements, but they are ex-

perimentally inaccessible, on account of their thinness. This means that the

experimentally determined functions J
(kl)
i can be used directly in the equations

without corrections.
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7 Summary of the Model

We can now write down the equations to be solved together with their bound-

ary conditions. Let Γ(kl) denote the membrane separating Ω(k) and Ω(l). In

Ω(k) and Ω(l),

0 =
∂ci

∂t
+ ∇ · fi (35)

fi = −Di

(

∇ci +
qzici

kBT
∇φ

)

(36)

0 = ρ0 +
n
∑

i=1

qzici (37)

The boundary conditions at the face of Γ(kl) facing Ω(k) are,

∂σ
(k)
i

∂t
= qzif

(k)
i · n(kl) − j

(kl)
i (38)

N
∑

i=1

σ
(k)
i = σ(k) = Cmφ(kl), σ

(k)
i =

z2
i c

(k)
i

∑N

i′=1 z2
i′c

(k)
i′

σ(k) (39)

j
(kl)
i = J

(kl)
i

(

x, s(kl), φ(kl), c(k), c(l)
)

(40)

∂s
(kl)
g

∂t
= αg(φ

(kl))(1 − s(kl)
g ) − βg(φ

(kl))s(kl)
g (41)

The boundary conditions on the Ω(l) face are the same as above with k and l

interchanged.

One easy extension of the above model is to include chemical reactions

(including the important example of the binding and unbinding of ions to

buffers). We may add reaction terms on the left hand side of (35). Since

no chemical reaction destroys or creates charge, reaction terms will always be

consistent with the electroneutrality condition (37) as long as we keep track

of all chemical species in the reaction. Addition of reaction terms may prove

especially important with respect to calcium, a physiologically important ion

that is heavily buffered in biological cells.
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8 Numerical Simulation

We briefly discuss the numerical challenges and the numerical methods that

we currently use to solve the above system of equations, followed by a brief

account of our simulation results. Further details on the methods and results

will be presented in a future publication.

8.1 Numerical method

Let us begin with the time marching scheme. We have encountered two major

difficulties in developing an efficient algorithm for time evolution. The first of

these is the electroneutrality condition. Small deviations from electroneutrality

seem to make simple-minded numerical schemes unstable. The second is that

the equations are ‘stiff’, i.e., that they involve at least two very different time

scales. The reason for this stiffness of our model can be understood in the

following way. Starting from our governing equations, one can derive the

cable model of Hodgkin and Huxley under simplifying assumptions. This

cable model, which is in some sense contained within our model since it can

be derived from it, involves a constant with the units of a diffusion coefficient

associated with the spread of electrical potential. This electrical ‘diffusion’

constant is several orders of magnitude greater than any of the ionic diffusion

constants of the model from which it is derived. Indeed, we find that the

ratio of the electrical diffusion coefficient to the ionic diffusion coefficients is

about 104 ∼ 107. To overcome the numerical difficulties associated with the

stiffness of the model, we are led to the use of the backward Euler method.

The resulting nonlinear equations are solved iteratively, by a method that is

in part the subject of the mathematical analysis presented in the final section

of this paper.

We perform spatial discretization with the finite volume method. The

equations of the model can all be written in divergence form, which makes a

finite volume discretization physically intuitive. The electroneutrality condi-

tion can be expressed easily as a condition that the electric current that flows

into each computational voxel sums to zero.
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8.2 Simulation results

We present two simulations based on the above numerical method. Each

involves a different implementation, one for cylindrically symmetric membrane

geometries, and the other for arbitrary two dimensional membrane geometries.

Using code for cylindrically symmetric geometries, we have shown the pos-

sibility of unusual modes of communication between neurons (and cardiomy-

ocytes), distinct from the extensively studied chemical transmission with neu-

rotransmitters or electrical transmission through gap junctions [1, 7]. When

two neurons are closely apposed, with a high density of channels in the mem-

branes facing the interneuronal cleft, two other kinds of communication are

shown to be possible. One (the faster of the two) arises from the large electri-

cal current (recall the high density of ionic channels facing the interneuronal

cleft) that flows in the narrow and hence highly resistive gap between the

cells. This results in a substantial voltage drop within the interneuronal cleft,

which in turn has a substantial effect on the potential difference across the

two membranes facing that cleft. The second (slower) kind of communication

arises from ion accumulation within the interneuronal cleft, which may signifi-

cantly change the equilibrium potentials for the different ionic currents across

the membranes facing the gap. These effects can launch action potentials that

propagate away from the gap. In Figure 1, we show a case in which an action

potential indeed travels across a narrow gap and gets reflected, primarily due

to the second mechanism. Although these mechanisms have been previously

discussed on a conceptual level and have even been modeled by systems of or-

dinary differential equations that lump the gap into a single compartment [10],

they have never been demonstrated in the context of a spatially distributed

model such as ours. The importance of the spatially distributed approach

reveals itself, for example, in the nonuniform radial distribution of potential

within the gap (see Figure 1), which has the effect of lowering the threshold

for transmission to occur.

With the code for arbitrary two dimensional geometries, we have shown

the theoretical possibility of a ‘surface wave’. Consider a large circular bio-

logical cell, and suppose there is some excitatory input at a location on the

membrane. An action potential is initiated at this location, and propagates

through the circular cell. As the action potential propagates, the change in
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Figure 1: The above shows radial cross sections of two cylindrical cells sep-
arated by a narrow gap. Plotted in each figure is the electrostatic potential.
The cell membrane is located half way in the radial direction and the region
closer to the viewer is the intracellular side. A wave of excitation approaches
the gap from the cell on the left(1a) and is transmitted across the narrow gap
to the the cell on the right(1b). This wave propagates back into the cell on
the left(1c) and eventually leaves the simulation domain(1d). Note the radial
gradient of the electrostatic potential in the narrow gap.
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Figure 2: This figure shows a surface wave of excitation in a circular cell. An
action potential was initiated at a location on the membrane (2a) and has
propagated half way to the middle of the cell (2b). Note that this figure plots
the change in electrostatic potential from the initial values.

electrostatic potential is seen to be much larger near the membrane than away

from the membrane near the center of the cell. We see that the action poten-

tial propagates along the membrane as a ‘surface wave’. This situation could

not have been modeled with a traditional approach using the one dimensional

cable model. This simulation is shown in Figure 2.

9 Analysis of the Model

In this final section, we present a mathematical analysis of the model. We

believe that the present and future mathematical analyses will not only yield

valuable theoretical insight, but will also lead to a better understanding of

our current numerical algorithm and guide us to more efficient and stable

numerical methods, which should prove all the more important in the context

of a fully three dimensional simulation of the model.

The system described above, with electroneutrality enforced by the elliptic

equation for the potential, admits of an analysis defined by Rothe’s method

of horizontal lines. The first part of this program involves the well-posedness

of the time semidiscretization, which involves operator composition of several
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steps; (i) determination of the potential, coupled across regions Ω(k) and Ω(l);

(ii) determination of the boundary variables associated with flux representa-

tions; and (iii) determination of the concentrations in each region. Rothe’s

method has the advantage of organizing the problem effectively, while decou-

pling the principal subsystems as described.

9.1 Notation and initial/boundary conditions

Ω will denote the entire region of tissue which is subdivided. If the potential

differences across cell membranes and all species’ concentrations are known at

any time, then the bulk membrane current can be determined on cell mem-

branes, which permits the determination of the rate of change of transmem-

brane potential differences, if the transmembrane ionic current is known. The

initial value problem assumes then that the potential differences φ(0,kl) across

cells, and the concentrations c
(0,k)
i are given at time t = 0, together with the

gating variables s(0,kl) defined on the membrane Γ(kl). It is required that the

initial data satisfy

∑

j

z2
j Djc

(0,k)
j ≥ αk > 0, on Ω(k),

so that the electrostatic problem is uniformly elliptic. This is preserved by

the evolution. It is also assumed that appropriate boundary conditions are

imposed on ∂Ω.

9.2 Decoupled composition map

Suppose that the ‘solution map’ has been defined at time t = tn−1. We discuss

the first step of the composition map at the discrete time t = tn as follows.

Thus, we consider the elliptic equation which preserves the electroneutrality

as the system evolves.

• On Ω(k) (similarly for Ω(l), coupled across the common boundary), solve

the Robin boundary value problem for φ(n,k) with equation given by (8).

The flux is coupled on each Γ(kl) to the adjacent region Ω(l) and is defined
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by the semidiscretization of (11). We have:

−

N
∑

i=1

qziDi

(

∂c
(n−1,k)
i

∂n(kl)
+

qzi

kBT

∂φ(n,k)

∂n(kl)
c
(n−1,k)
i

)

= C
φ(n,kl) − φ(n−1,kl)

∆t
+
∑

i

ji(φ
(n,kl), c

(n−1,k)
i , c

(n−1,l)
i , s(n−1,k)

g ).

Here, we have used the notation ∆t = tn − tn−1 as well as

φ(n,kl) = trace φ(n,k) − trace φ(n,l),

where the trace is taken on each boundary surface element Γ(kl).

9.3 Weak formulation of the electrostatic problem

The electrostatic problem has a nonstandard formulation involving coupling

with respect to a common boundary. We give the weak formulation for φ(n,k).

For simplicity, we treat here the case of two regions and write the solution

unknowns as

φ(1) = φ(n,1), φ(2) = φ(n,2),

and the Hilbert function spaces as H(k) = W (1,2)(Ω(k)). The weak formulation

is facilitated by the definitions,

ak(φ
(k), v) :=

∫

Ω(k)

a(n−1,k)∇φ(k)· ∇v dx, v ∈ H(k),

where a(n−1,k) is given by (6) with ci = c
(n−1,k)
i , and φ(k) ∈ H(k) is to be

determined for k = 1, 2,

bk(v) :=

∫

Ω(k)

a(n−1,k)∇b(n−1,k)· ∇v dx,

gk(φ
(k), φ(k′), γv) :=

∫

Γ(kk′)

{

Cm
φ(kk′) − φ(n−1,kk′)

∆t
+

N
∑

i=1

ji(φ
(kk′), . . . )

}

γv dσ,

where b(n−1,k) is given by (7) with ci = c
(n−1,k)
i , k′ = 2 if k = 1 and k′ = 1

if k = 2. Here, γ is the continuous trace operator. The weak form of the
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electrostatic system is:

ak(φ
(k), v) + bk(v) + gk(φ

(k), φ(k′), γv) = 0, ∀v ∈ H(k), k = 1, 2. (42)

9.3.1 Approach via trapping regions

This technique takes advantage of standard approaches to elliptic theory, which

allows use of built-in computational tools. It makes use of the isotone property

of the ‘back and forth’ map V , to be developed presently, but requires the

context of a trapping region. We formulate its existence here as a postulate.

The advantage at the numerical level, such as piecewise linear finite elements,

is that the discretizations are confined to the function space trapping region

associated with, alternately, the cell and its exterior. An alternative viewpoint

is also possible: the cell and its exterior are viewed as a single spatial domain,

with the membrane serving as an ‘interior’ charge constraint surface, across

which conservation of charge must hold. This will be explored in future work.

We now posit the existence of the trapping region.

Assumption. There exists a trapping region for the system. Thus, there are

functions u(k) ≤ ū(k) in Hk, such that, for

Kk′ := [u(k′), ū(k′)],

one has ∀v ∈ H(k), γv ≥ 0,

ak(ū
(k), v) + bk(v) + gk(ū

(k), w, γv) ≥ 0, ∀w ∈ Kk′,

ak(u
(k), v) + bk(v) + gk(u

(k), w, γv) ≤ 0, ∀w ∈ Kk′.

9.3.2 The isotone map

We shall introduce some notation. Set

〈Fk(u, w), v〉 := bk(v) + gk ◦ γ(u, w, v).

The proof of the existence of a solution of the system (42) proceeds by defining

a fixed point mapping V defined on the interval K1 with range in K1.
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1. Given w ∈ K1, an intermediate mapping, T : K1 7→ K2, Tw = u, is

introduced, where u ∈ K2 is the solution of the equation and integration

constraint,

a2(u, v) + 〈F2(u, w), v〉 = 0, ∀v ∈ H2,

∫

Ω(2)

u dx =

∫

Ω(1)

w dx. (43)

2. V w is then defined as UTw, where U : K2 7→ K1, Uu = u1, and where

u1 ∈ K1 is the solution of the equation and integration constraint,

a1(u1, v) + 〈F1(u1, u), v〉 = 0, ∀v ∈ H1,

∫

Ω(1)

u1 dx =

∫

Ω(2)

u dx. (44)

Lemma 9.1. Let w ∈ K1 be given. There is a unique solution u = Tw of the

equation (43) subject to the condition that the integrals of u, w are equal. In

addition, T is isotone from K1 to K2. Similarly, let u ∈ K2 be given. There

is a unique solution u1 = Uu of the equation (44) subject to the condition that

the integrals of u1, u are equal. In addition, U is isotone from K2 to K1.

The mapping V is then isotone on K1. We comment briefly on the val-

idation of the lemma, which will be detailed in a future publication. The

decoupling leads to gradient formulations, which are well understood. The

integration constraint imposes uniqueness of solutions, and is compatible with

the isotone properties of T and U ; these depend on the monotone structure

of gk. The functionals are increasing in the trace of the principal variable and

decreasing in the trace of the coupled variable. If K1 were a complete lat-

tice, then we would automatically conclude the existence of a fixed point of V

by Tarski’s theorem. Closed subintervals of Lebesgue spaces are complete,in

this sense, but subintervals of Sobolev spaces are not. One needs a theory

of ordered spaces, specifically [2, Proposition 1.1.1], which imposes a form of

continuity on V . We will accept this, and obtain a fixed point: V u1 = u1. One

argues analogously to [3] to demonstrate these assertions.

Not only does V have a (unique) fixed point, but iterations starting with

the lower bound are increasing, and iterations starting with the upper bound

are decreasing. With proper continuity, these sequences converge to a fixed

point. This may prove useful for computation.
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