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Abstract

Time dependent quantum systems have become indispensable in sci-
ence and nanotechnology. Disciplines including chemical physics and
electrical engineering have used approximate evolution operators to solve
these systems for targeted physical quantities. Here, we discuss the ap-
proximation of closed time dependent quantum systems on bounded do-
mains via evolution operators. The work builds upon the use of weak
solutions, which includes a framework for the evolution operator based
upon dual spaces. We are able to derive the corresponding Faedo-Galerkin
equation as well as its time discretization, yielding a fully discrete theory.
We obtain corresponding approximation estimates. These estimates make
no regularity assumptions on the weak solutions, other than their inher-
ent properties. Of necessity, the estimates are in the dual norm, which
is natural for weak solutions. This appears to be a novel aspect of this
approach.
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1 Introduction

This article continues the analysis of time dependent closed quantum mechan-
ical systems, begun in [1] and continued in [2] for the system derived for time
dependent density functional theory (cf. [3, 4, 5]). The emphasis in [1] was a
rigorous study of discretization and well-posedness for strong solutions, based
upon the evolution operator; this is consistent with the applications’ literature
[6, 7, 8, 9, 10]. In [2], we derived a global existence and uniqueness theorem,
achieved via the contraction mapping theorem, for weak solutions. What is
missing is a rigorous bridge to a space-time approximation theory, forming the
basis for the computations employed in [11]. This is the topic of the current
study. We derive a rigorous initial value problem for the Faedo-Galerkin approx-
imate method; also, the time discretization of this equation. It will be necessary
to discuss the evolution operator for the general system since estimation con-
stants should be independent of the Galerkin subspace selected. We shall not
attempt a survey of the Faedo-Galerkin method; the reader can consult [12] for
a powerful analytical application of the method to nonlinear partial differential
equations.

1.1 Time dependent quantum systems

In this article, we discuss linear systems. There is no loss of generality in this.
In both [1, 2], the nonlinear systems were analyzed via fixed point mappings
implemented by the linear evolution operator. Moreover, successive approxima-
tion, based on linear systems, was justified in [2]. Thus, we study the analog
of the linear evolution operator, based upon a Galerkin approximation of the
Hamiltonian. We review the Schrödinger system, which obeys the equation,

i~
∂Ψ(t)
∂t

= ĤΨ(t). (1)

Here, Ψ = {ψ1, . . . , ψN}. For mathematical well-posedness, an initial condition,

Ψ(0) = Ψ0, (2)

consisting of N orbitals, and boundary conditions must be adjoined. We will
assume in this article that the particles are confined to a bounded region Ω ⊂
Rd and that homogeneous Dirichlet boundary conditions hold for the evolving
quantum state within a closed system. In general, Ψ denotes a finite vector
function of space and time. In the mathematical arguments below, we will
consider the case of arbitrary Euclidean dimension d. The Hamiltonian operator
assumes the standard form, where Veff is the effective potential,

Ĥ(t) = − ~2

2m
∇2 + Veff(· , t). (3)

What separates this study, and the more general studies of [1], [2], from current
mathematical studies of the Schrödinger system (see the monograph [13], for
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example) is that the potential is time dependent. This necessitates the evolution
operator, and is particularly important in the case of time dependent density
functional theory.

1.2 The weak solution

We require the solution to be continuous from the time interval into H1
0 . The

time derivative is required to be continuous from the time interval into H−1.
Finally, the spatially dependent test functions are arbitrary in the space H1

0 .
We formalize this.

Definition 1.1. For J = [0, T ], the vector-valued function Ψ = Ψ(x, t) is a
weak solution of (1, 2, 3) if

Ψ ∈ C(J ;H1
0 (Ω)) ∩ C1(J ;H−1(Ω)),

if Ψ satisfies the initial condition (2) for Ψ0 ∈ H1
0 , and if ∀ t ∈ J the following

integral relation holds

i~〈∂Ψ(x, t)
∂t

, ζ(x)〉 =
∫

Ω

{
~2

2m
∇Ψ(x, t)· ∇ζ(x) + Veff(x, t)Ψ(x, t)ζ(x)

}
dx.

Here, ζ ∈ H1
0 (Ω) is arbitrary and Veff is a function which is nonnegative and

continuously differentiable on its space-time domain.

It follows as a special case of [2] that there is a unique weak solution of (1, 2,
3). The assumption on Veff can be weakened (cf. section 4).

1.3 Hilbert space framework

In [2], the L2 pivot space paradigm was employed, whereby the Sobolev spaces
may be characterized as dense and nested. H−1 was realized as a reflexive
Banach space. For the present study, it is more convenient to follow the idea used
in [14, p. 32], where H−1 is represented as a real Hilbert space. We summarize
the basic properties. Consider the dual space H−1(Ω,CN ) of continuous linear
functionals on H1

0 (Ω,CN ) and, for u ∈ H−1, consider the uniquely determined
element φu ∈ H1

0 satisfying

− ~2

2m
∆φu + φu = u (Sφu = u). (4)

Here, we have noted the isomorphism S : H1
0 7→ H−1. The vector space H−1 is

equipped with the scalar product,

(u, v)H−1 = (φu, φv)H1
0

= Re
[

~2

2m

∫
Ω

∇φu·∇φv dx+
∫

Ω

φuφ̄v dx

]
.
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Remark 1.1. In [2], the Lumer-Phillips theorem in reflexive Banach spaces
[15, 16] was employed to obtain contractive semigroups on H−1 generated by
−i
~ Ĥ(t). The required properties for the generators are the dissipative property

and the surjectivity of the generator, perturbed by a multiple of the identity. The
authors of [14] obtain an equivalent theory expressed in terms of m-dissipative
operators on real Hilbert spaces. This is the point of view we adopt here.

Proposition 1.1. The family −i~ Ĥ(t) generates a contractive, in fact, isometric
semigroup on the real Hilbert space H−1. We write T (t, s) = e−

i
~ Ĥ(s)t for the

semigroup.

Proof. We summarize the details. By adapting the straightforward proof of [14,
Prop. 2.6.14], we conclude that the negative Hamiltonian,

−Ĥ(t) = ∆− V (· , t), DomĤ = H1
0 ⊂ H−1,

is self-adjoint and nonpositive on H−1. By [14, Cor. 2.4.8], this operator is
m-dissipative; it follows that −i~ Ĥ(t) generates a contractive, in fact, isometric
semigroup on the real Hilbert space H−1 [14, Th. 3.2.3], written T (t, s) =
e−

i
~ Ĥ(s)t.

1.4 The evolution operator and the Cauchy problem

We briefly summarize the theory here since it is relevant to the Galerkin evolu-
tion operator. The solvability of the Cauchy problem is a direct consequence of
the existence of the time ordered evolution operator (see [17, 18, 19]; also, [20,
Ch. 6]). There are similar results in [21]. For the interested reader, the exact
statements are reproduced in the appendix of [1]. We state a summary version
here, applicable to the contractive semigroups associated with the Schrödinger
system.

Theorem 1.1. Let X and Y be Banach spaces such that Y is densely and
continuously embedded in X. Let {−A(t), 0 ≤ t ≤ T} generate contractive
semigroups on X, and assume the following.

1. If S is an isomorphism of Y onto X, then the family

A1(t) = SA(t)S−1

defines a collection of negative generators of strongly continuous semi-
groups on X.

2. The space Y ⊂ DA(t) and the mapping t 7→ A(t) is continuous from [0, T ]
to the normed space B[Y,X] of bounded linear operators from Y to X.

Under these conditions the evolution operators U(t, s) exist uniquely as bounded
linear operators on X, 0 ≤ s ≤ t ≤ T with the following properties.
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I The family {U(t, s)} is strongly continuous on X, jointly in (t, s), with:

U(s, s) = I, ‖U(t, s)‖X ≤ 1.

II The time ordering is expressed by:

U(t, r) = U(t, s)U(s, r).

III If D+
t denotes the right derivative in the strong sense, then

[D+
t U(t, s)g]t=s = −A(s)g, g ∈ Y, 0 ≤ s < T.

IV If d/ds denotes the two-sided derivative in the strong sense, then

(d/ds)U(t, s)g = U(t, s)A(s)g, g ∈ Y, 0 ≤ s ≤ t ≤ T.

This is understood as one-sided if s = t or s = 0.

Remark 1.2. The identifications X = H−1, Y = H1
0 , together with the isomor-

phism defined above in (4), allows one to obtain the evolution operator U(t, s) for
the Schrödinger system. Details were provided in [2] for the more complicated
version considered. For the reader’s convenience, we summarize the discussion
regarding the operators A1 at the conclusion of the introduction.

This leads to the solution of the Cauchy problem, our principal goal [20, Prop.
6.4.1].

Theorem 1.2 (Cauchy problem). The Cauchy problem, for A(t) = i
~Ĥ(t),

dΨ
dt

+A(t)Ψ(t) = 0, Ψ(0) = Ψ0, (5)

is solvable for Ψ0 ∈ H1
0 by the formula,

Ψ(· , t) = U(t, 0)Ψ0.

The verification of the second assumption of Theorem 1.1 is routine. The veri-
fication of the first assumption is a consequence of the following.

Proposition 1.2. For S defined earlier in (4), we have:

Ĥ(t) = (S − I + Veff). (6)

In particular, we have the similarity relation,

SA(t)S−1 = A(t) +B(t),

for a family B(t), which can be extended as bounded linear operators on H−1.
In particular, the assumption on A1(t) holds. A uniform bound for ‖U(t, s)‖ in
H1

0 is provided by Ce(t−s)β, where C is a constant depending on S, and β serves
as a uniform bound for ‖B(t)‖H−1 .

Proof. All of the statements except the final one are verified in [2]. The final
statement is proved in the monograph [20, Prop. 6.3.1; Eq. (6.3.20)].

Remark 1.3. See [2, Eq. (7)] for an estimate on β in terms of the gradient of
Veff .
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2 The Galerkin Operator

Let A ⊂ H1
0 (Ω) be given, with positive dimension m. A is a finite dimensional

Hilbert subspace of H1
0 . Define, for each fixed t ∈ [0, T ], and u(· , t) ∈ A, the

relation,

G(t, u)[v] =
∫

Ω

{
~2

2m
∇u(x, t)· ∇v(x) + Veff(x, t)u(x, t)v(x)

}
dx, ∀v ∈ A. (7)

Definition 2.1. Let W (t, s) = T (t, s)|A∗ , where T (t, s) has been introduced in
Proposition 1.1 We identify W with the semigroup generated by − i

~G(t).

The interpretation of W is that it acts only on those linear functionals which
are continuous on the dual of A. These linear functionals Λ are represented as
follows:

Λ(Pφ) = `(Pφ), ` ∈ H−1,

where P is the orthogonal projection in H1
0 onto A.

2.1 Cauchy problem for the Galerkin operator: Faedo-
Galerkin equation

This section deals with the Cauchy problem for the Galerkin operator. We have
the following theorem.

Theorem 2.1 (Approximate Cauchy problem). The approximate Cauchy prob-
lem, for A(t) = i

~G(t),

dΨG
dt

+A(t)ΨG(t) = 0, ΨG(0) = PΨ0, (8)

is solvable for by the formula,

ΨG(· , t) = UG(t, 0)PΨ0.

Here, UG(t, s) denotes the time-ordered evolution operator, which acts contrac-
tively on A∗, invariantly on A, and is strongly differentiable in both arguments.
We may interpret ΨG(t) as the Faedo-Galerkin approximation and (8) as the
Faedo-Galerkin equation.

Proof. By use of P , the projection in H1
0 onto A, then we may obtain the analog

of (4) as follows. Set
SG = SP,

so that the restriction of SG is an isomorphism from A to A∗. The arguments
for the Hamiltonian are thus also valid for G. This yields the evolution operator
UG(t, s) and the corresponding theory for the Cauchy problem.
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2.2 A calculus for Galerkin approximation

We begin with an operator result which allows the estimation involved in the
approximation.

Theorem 2.2 (Fundamental estimation theorem). We retain our earlier nota-
tion for the evolution operators. Then, for g ∈ H1

0 , we have

UG(t, r)g − U(t, r)g = − i
~

∫ t

r

UG(t, s)[G(s)− Ĥ(s)]U(s, r)g ds, (9)

where UG is understood to act on elements in H1
0 by first applying the orthogonal

projection P .

Proof. One differentiates the expression,

UG(t, s)U(s, r)g,

with respect to s, and then integrates from r to t. The result follows from the
differentiation formulas of Theorem 1.1.

We obtain then the norm estimate for Faedo-Galerkin approximation. Although
the estimate is in the dual norm, no regularity assumption is made, other than
the inherent property satisfied by the weak solution.

Corollary 2.1.

‖UG(t, r)Ψ0 − U(t, r)Ψ0‖H−1 ≤ C(t− r)τ(A)‖U‖∞,H1
0
,

where C is a constant depending only on physical parameters, and on the po-
tential, and τ(A) represents an order of best approximation in the H1

0 norm by
elements from A.

Proof. We begin by estimating ~ times the rhs of (9) (with g 7→ Ψ0) in the H−1

norm: ∥∥∥∥∫ t

r

UG(t, s)[G(s)− Ĥ(s)]U(s, r)Ψ0 ds

∥∥∥∥
H−1

≤

(t− r)‖[G(s)− Ĥ(s)]U(s, r)Ψ0‖H−1 ,

where we used the contractive property of UG(t, s) on the dual space. We rewrite
the expression within norms as

[G(s)− Ĥ(s)]U(s, r)Ψ0 = [(SG − S) + (Veff − I)(P − I)]U(s, r)Ψ0,

and apply the triangle inequality to estimate the H−1 norm. The first term is
estimated from above as

‖[SG − S]U(s, r)Ψ0‖H−1 = ‖(I − P )U(s, r)Ψ0‖H1
0
≤ τ(A)‖U‖∞,H1

0
‖Ψ0‖H1

0
.

The second term is estimated by a constant, depending on Veff , times the pre-
vious estimate. This completes the proof.
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3 Time Discretization

In this section, we discuss the time discretization induced by the rectangular
rule, which permits the approximation of the evolution operator by piecewise
semigroups locally in time. It will be advantageous to do this jointly for both
the Schrödinger and Faedo-Galerkin operators. The beginning of this section
has some overlap with material in [1]; however, it is presented (differently) from
the perspective of the current article.

3.1 Numerical evolution operator: Rectangular rule

We present a general result, not restricted to the quantum application. However,
for the quantum application, we take A(t) = i

~Ĥ(t) or A(t) = i
~G(t).

Definition 3.1 (Rectangular Rule). Given {A(t)} satisfying the hypotheses of
Theorem 1.1, define the approximation operators

An(t) = A(T [nt/T ]/n), 0 ≤ t ≤ T.

Here, [s] denotes the greatest integer less than or equal to s. If s ≤ t, and
s, t ∈ [tj−1, tj ], and An ≡ A on this interval, then

Un(t, s) = e−(t−s)A.

For other values of s, t, Un(t, s) is uniquely determined by the condition

Un(t, r) = Un(t, s)Un(s, r).

These operators may be characterized as numerical evolution operators.

Remark 3.1. The operators {Un(t, s)} satisfy the following properties.

1. Convergence of generator approximations as n→∞:

‖A(t)−An(t)‖Y,X → 0, uniformly, t ∈ [0, T ].

2. Invariance and uniform boundedness of evolution operators on Y :

Un(t, s)Y ⊂ Y, ‖Un(t, s)‖Y ≤ Ce(t−s)β , ∀t, s, n.

Here, C, β are defined in Proposition 1.2.

3. Differentiation:

(d/dt)Un(t, s)g = −An(t)Un(t, s)g, g ∈ Y, for t 6= jT

n
.

Theorem 3.1 (General result). Suppose a partition of the interval [0, T ] is
given:

0 = t0 < t1 < · · · < tn.
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If ∆t := maxj=1,2,...,n(tj − tj−1), the rectangular rule is globally convergent: for
t, r ∈ [0, T ], r < t,

‖U(t, r)g − Un(t, r)g‖X ≤ C‖g‖Y (t− r) sup
s∈[0,T ]

‖A(s)−An(s)‖Y,X .

Here, If t, r ∈ [tj−1, tj ], this global estimate implies the rate of convergence of
order o(∆t). The lengths of the subintervals can be chosen adaptively. Finally,
C is a uniform bound for ‖Un(t, s)‖∞,Y .

Proof. Consider the identity:

U(t, r)g − Un(t, r)g = −
∫ t

r

U(t, s)[A(s)−An(s)]Un(s, r)g ds, (10)

which follows from the differentiation of −U(t, s)Un(s, r)g with respect to s,
followed by its integration. The estimate is now immediate from the uniform
convergence of the generator sequence and the norm estimates satisfied by the
evolution operators.

3.2 Time discretization of the Faedo-Galerkin equation

The result of the preceding section can be applied to both of the evolution oper-
ators considered here. It is most natural, however, to apply the approximation
to UG(t, s) since this yields a space-time approximation operator.

Definition 3.2. Consider the operators G(t), defined in (7). We denote by
UG,n the operators described in Definition 3.1 and Remark 3.1. Y is interpreted
as A ⊂ H1

0 and X as the corresponding dual space. Moreover, on each of the
subintervals, tj−1 ≤ t < tj, we define ΨG,n(· , t) = UG,n(t, tj−1)ΨG,n(· , tj−1).

It is now possible to obtain the corresponding result formulated in Theorem 3.1.

Theorem 3.2 (Estimates for the rectangular rule). Suppose a partition of the
interval [0, T ] is given:

0 = t0 < t1 < · · · < tn.

If ∆t := maxj=1,2,...,n(tj − tj−1), then the approximation order of

‖ΨG(· , t)−ΨG,n(· , t)‖H−1

is o(∆t). The constants depend only on the Schrödinger system as formulated,
and not the Galerkin subspace selected for approximation.

Proof. Theorem 3.1 is applied on each subinterval of the partition. The result
follows since the generator convergence is uniform on [0, T ].
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3.3 Space-time discretization

It is possible now to obtain error estimates for space-time discretization based
on an arbitrary Galerkin method combined with the rectangular rule for time
discretization. We have the following.

Theorem 3.3 (Space-time approximation). Let Ψ(· , t) denote the unique weak
solution of the Schrödinger system as defined in Definition 1.1. Let A ⊂ H1

0 (Ω)
be given, with dimension m, as in Section 2, and suppose ∆t is given as in
Theorem 3.2. If ΨG,n denotes the approximation of Theorem 3.2, then the ap-
proximation order of

‖Ψ(· , t)−ΨG,n(· , t)‖H−1

is
O(τ(A)) + o(∆t).

The constants depend only on the Schrödinger system as formulated, and not
the Galerkin subspace selected for approximation.

Proof. The result follows directly from an application of the triangle inequality
to the estimates of Corollary 2.1 and Theorem 3.2.

4 Conclusions and Remarks

In this section, we summarize the results of the article, and indicate that these
results are more general than supposed.

4.1 Conclusions

In this article, we have utilized the unifying properties of the evolution opera-
tors, specifically those associated with the Hamiltonian, and the Galerkin and
time discretized approximate operators. These operators permit a Cauchy for-
mulation in all three cases. The properties of the evolution operators allow the
derivation of an approximation theory based on constants independent of the
Galerkin subspace and time discretization. Moreover, the estimates, obtained
in the dual norm, are independent of additional regularity assumptions, beyond
those inherent in the weak solution. The motivation for this special structure
lies in the application and computational literature. In terms of the latter, the
use of the FEAST algorithm for time prolongation of the (numerical) evolu-
tion operator advances the basis coefficients of the Galerkin approximation by
a spectral method [11, 1]. The theory developed here supports this.

4.2 Remarks

It is possible, as remarked in the introduction, to weaken the hypothesis on
the effective potential; this will depend on the particular application. One
requires a bounded potential (the Hamiltonian should be associated with a self-
adjoint operator) and one with the regularity to generate a member of the dual
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space, appropriately continuous in time. This extension is useful when successive
approximation is employed in the more general case of Kohn-Sham potentials.
It is possible to employ more sophisticated time discretization, as was demon-
strated in [1]. One would expect an analogous theory, with superior estimates.
The details are not appropriate here. Similar remarks apply to the spatial esti-
mates, if greater regularity is present.
One of the advantages of the use of the evolution operator, associated with
the Hamiltonian, is the theoretical use of the fixed point argument as applied
in [2]. Ultimately, the approximation theory is valid, since the solution of the
nonlinear problem is characterized via a linear problem, defined by the fixed
point equation.
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