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Abstract. The RKDG method has been effectively used in modeling and simu-
lating semiconductor devices, where the underlying models are hydrodynamic in
nature. These include classical as well as quantum models. In this paper, we survey
and interpret some of these results. For classical transport, we review the sim-
ulation of a benchmark MESFET transistor by means of discontinuous Galerkin
methods of degree one. For quantum transport, we report the success in simulation
of the resonant tunneling diode. The principal features here are negative differential
resistance and hysteresis.

1 Introduction

The goal of this work is to survey the effectiveness of continuum (hydrody-
namic) models in one and two dimensions via discontinuous Galerkin meth-
ods, which were effectively used in [4] and in [5] for classical and quantum
models, respectively. We choose for the underlying classical application that
of charge transport in a MESFET transistor. This is a benchmark which has
been studied intensively, and thus its characteristics are reliably determined
(see [10,11,4,3]). For the quantum application, we select another benchmark,
the resonant tunneling diode. For this device, Gardner developed a quantum
hydrodynamic model in [8] (consult also for relevant references in the physics
and device literature). Important characteristics of the hydrodynamic model
include heat conduction, relaxation, and electrical forcing and heating terms.
In particular, carrier transport occurs in a self-consistent electric field. The
model is decidedly more complex than the standard gas dynamics model. The
quantum model (QHD) includes perturbation terms in the pressure tensor
and energy expression. These are characterized in the QHD model as third
order derivative perturbations of the concentrations.

2 The Classical Hydrodynamic Model

The hydrodynamic model may be described as in [2,4]. A derivation is pro-
vided in [9] and an existence theorem for the reduced, two-carrier model is



given in [3]. It may be characterized as a second-order perturbation of a
nonlinear hyperbolic system for n, the electron density, p, the momentum
density, and w, the energy density,

∂t n+∇· (nv) = 0, (1)
∂t p + v∇·p + p · ∇v +∇(knT ) = −enE + (∂t p)c , (2)
∂tw +∇· (vw) +∇· (vknT + q) = −env ·E + (∂tw)c , (3)

where k is Boltzmann’s constant and the velocity v, the temperature T , and
the heat flux q are given by

p = mnv, (4)
w = 3

2knT + 1
2mn|v|2, (5)

q = −∇· (κ∇T), (6)

where m is the effective electron mass. These equations are coupled with a
Poisson equation defining the electric field E:

E = −∇φ, (7)
∇· (ε∇φ) = −e (nd − n) , (8)

where ε is the dielectric constant, and nd is the doping density. The con-
stant e > 0 is the electronic charge and κ is the heat conduction coefficient.
The ‘collision’ terms are obtained by defining the momentum and energy
relaxation times, τp and τw, following [1] as

(∂t p)c = − p
τp
, τp = m

µn0

e

T0

T
, (9)

(∂tw)c = −
w − 3

2nT0

τw
, τw =

τp
2

+
3
2
µn0

ev2
s

kTT0

T + T0
, (10)

where T0 is the ambient temperature, µn0 = µn0(T0, nd) is the low field
electron mobility, and vs = vs(T0) is the saturation velocity. Finally, κ is
determined by the Wiedemann-Franz law

κ = κ0
µn0

e
k2nT

(
T

T0

)r
.

In this paper, we take r = −1. We have selected a MESFET because of its
acknowledged importance, particularly in microwave applications. It repre-
sents an application for which numerical methods are required to be robust
over a wide parameter regime, although in this paper we restrict attention
to ambient room temperature. We emphasize the importance of retention of
the convective term, p · ∇v, in (2), if a robust model is desired. This is the
term which permits shocks in the hydrodynamic model when present.



3 Numerical Method

3.1 General Description

To describe our numerical method, we first write the initial boundary value
problem for u = (n, px, py, w)t as follows:

∂t u +∇·F(u) = R(u), in (0, tf )×Ω, (11)

u(t = 0) = u0, on Ω, (12)

Bu = g, on (0, tf)× ∂Ω, (13)

where the flux F = (fx, fy) has the following components:

fx(u) = vxu + (0, nT, 0, vxnT )t, (14)

fy(u) = vyu + (0, 0, nT, vynT )t, (15)

the right-hand side R is given by

R(u) = ξE(u) + ξc(u) + ξheat (u), (16)

ξE(u) = (0,−e nEx,−e nEy,−e nv ·E)t , (17)

ξc(u) =
(
0, (∂tpx)c , (∂tpy)c , (∂tw)c

)t
, (18)

ξheat (u) = (0, 0, 0,∇· (κ∇T ))t , (19)

and B is a matrix-valued function.
An overview of the discretization of our equations is as follows. First, we

triangulate our domain Ω with triangulations Th made solely of rectangles R
such that the intersection of two distinct rectangles of the triangulation Th
is either an edge, a vertex, or void. Then, for each t ∈ (0, tf ], we take each of
the components of our approximate solution uh(t) in the space

Vh = {p ∈ L∞(Ω) : p|R is linear,∀R ∈ Th}. (20)

We define each of the components of u0h to be the L2-projection of the
corresponding component of u0 into Vh and discretize the equation (11) in
space by using the Discontinuous Galerkin (DG) method. Since the functions
of the space Vh are discontinuous, the mass matrix of the DG method is
block-diagonal. Thus, the resulting discrete equations can be rewritten as
the following ODE initial value problem:

duh
dt = Lh(uh,g) + Rh(uh), t ∈ (0, tf ], (21)

uh(t = 0) = u0h, (22)



where Lh is the approximation of −∇·F. The exact solution of the above
initial value problem gives an approximation which is formally second-order
accurate in space; see [6]. Accordingly, a second-order accurate in time Runge-
Kutta method must be used to discretize our ODE; see [6], [13], and [14].
Finally, a local projection ΛΠh is applied to the intermediate values of the
Runge-Kutta discretization in order to enforce nonlinear stability. We give a
short description of several components of the algorithm below but refer the
reader to the cited papers for more details.

3.2 The Discontinuous Galerkin method

The general definition of the DG method in the case of a scalar u can be
found in [6]. To define the method in our case, we simply have to apply the
procedure for the scalar case component by component.

Let us denote by u{k} the k-th component of the vector u. Consider the
equation for the k-th component of the system (11), multiply it by vh ∈ Vh,
integrate over each R ∈ Th, replace the exact solution u by its approximation
uh, and formally integrate by parts to obtain

d

dt

∫
R

u{k}h (t, x, y) vh(x, y)dx dy

+
∑
e∈∂R

∫
e

F{k}(uh(t, x, y)) · ne,R vh(x, y)dΓ (x, y)

−
∫
R

F{k}(uh(t, x, y)) · ∇vh(x, y)dx dy

=
∫
R

R{k}(uh(t, x, y)) vh(x, y)dx dy, ∀vh ∈ Vh, (23)

where ne,R is the outward unit normal to the edge e. Notice that F·n = fxnx+
fyny is a four-dimensional vector whose k-th component is F(k)·n = fx(k)nx+
fy(k)ny. Notice also that F(uh(t, x, y))·ne,R does not have a precise meaning,
since uh is discontinuous at (x, y) ∈ e ∈ ∂R. Thus, we replace F(uh(t, x, y)) ·
ne,R by a suitably chosen numerical flux he,R, which depends on the two
values of uh on the edge e. The choice of this numerical flux is crucial since it
is through the use of the numerical flux that the upwinding (or the artificial
viscosity) which renders the method stable (without destroying its high-order
accuracy) is introduced. In this paper, we choose the so-called local Lax-
Friedrichs flux. Finally, we replace the integrals above by quadrature rules
to obtain the discrete equations. In this way, we obtain a weak formulation
which defines the operators Lh and Rh.

3.3 The Local Projection ΛΠh

The local projection (limiter) is devised to prevent the appearance of spurious
oscillations in the approximate solution. The local averages are unchanged



to preserve the conservativity of the method, but the local variations in the
x-direction and in the y-direction must be controlled to avoid the unphysical
oscillations. One can alternatively take into account the local characteris-
tic directions along which information travels with different speeds. Taking
these characteristic directions into account results in a better control of the
oscillations and in a higher quality of the approximation.

3.4 The Right-Hand Side R(uh)

In this section we show how to evaluate the function R(uh) = ξE(uh) +
ξc(uh) + ξheat (uh) for a given uh.

To evaluate ξc(uh), we simply use the equations (9–10) and (4–5). To
evaluate ξE(uh), we need a numerical method to obtain an approximation
Eh to the electric field E. The equations defining the electric field are the
equations (7–8) and some boundary conditions we write as follows:

φ = φD, on ∂ΩD, (24)

E · n = 0, on ∂ΩN , (25)

where ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅. We discretize these equa-
tions with the lowest-order Raviart-Thomas mixed method which defines the
approximation (Eh, φh) ∈ Uh ×Wh as the solution of the following weak
formulation:

(∇·Eh, w) =
(e
ε
(nd − nh), w

)
,∀w ∈Wh, (26)

(Eh,v)− (φh,∇·v) = −〈φD,v · n〉∂ΩD ,∀v ∈ Uh, (27)

where nh is the approximate density given by the RKDG method, and

Uh =
{
v ∈H(∇· ;Ω) : v|R = (a1

R + a2
Rx, a

3
R + a4

Ry)},

aiR ∈ IR, ∀R ∈ Th; v · n|∂ΩN = 0, (28)

Wh =
{
w ∈ L2(Ω) : w|R is a constant, ∀R ∈ Th

}
. (29)

It can be shown that the above system has a unique solution in Uh ×
Wh whose approximation of the electric field is second-order accurate. We
use Lagrange multipliers, which render the matrix of the resulting method
a symmetric positive definite matrix. We invert it by using the conjugate
gradient method with incomplete Choleski factorization as preconditioner.
To evaluate ξheat (uh) we also use the Raviart-Thomas spaces; the procedure
is analogous.



We remark that the procedure used here for evaluating the second deriva-
tive terms in ξheat (uh) is efficient only for the second order schemes, due to
mass lumping. A more general approach which keeps the local property of
the discontinuous Galerkin method and works for arbitrarily high order of
accuracy is the local discontinuous Galerkin method in [7].

4 The Simulation of the MESFET

4.1 Basic MESFET Description

Next we describe a two dimensional MESFET of the size 0.6× 0.2µm2. The
source and the drain each occupies 0.1µm at the upper left and the upper
right, respectively, with a gate occupying 0.2µm at the upper middle (Fig. 1).
The doping is defined by nd = 3 × 105µm−3 in [0, 0.1] × [0.15, 0.2] and in
[0.5, 0.6] × [0.15, 0.2], and nd = 1 × 105µm−3 elsewhere. We apply, at the
drain, voltage biases varying up to vbias = 2V. This bias has been described
in [3] as a symmetry breaking parameter for the concentration and velocity,
with respect to the center of the gate. The gate is a Schottky contact, with
negative voltage bias up to vgate = −0.8V and very low concentration value
n = 3.8503× 10−8µm−3 (following Selberherr [12]). The lattice temperature
is taken as T0 = 300 K. The mathematical model for the MESFET is the
system (1–3), coupled to Poisson’s electrostatic equation (7–8).
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Fig. 1. Two dimensional MESFET. The geometry and the doping nd.



4.2 Characteristics

We display the concentration, n, in Fig. 2 below, as well as the tangential
velocity component, vx, in Fig. 3 below, obtained from the discontinuous
Galerkin method described above. Uniform rectangular meshes of 96 × 32
and 192× 64 were employed for the simulations in which the method is run
until the steady state is reached. The results shown are those obtained with
the 192× 64 mesh. The boundary conditions are determined as follows.

(i) At the source, gate, and drain: n = nd, vx = 0µm/ps.
(ii) At all other parts of the boundary: Homogeneous Neumann condi-

tions are imposed.

Fig. 2. Concentration n, per µ3. Domain slightly rotated clockwise from Fig. 1.
Axis units defined by (2) grid points per unit.

Notice the boundary layer for n at the drain, but not at the source. This
is reasonable since the drain is an outflow boundary and the source is an
inflow boundary. A rapid drop of n at the depletion region occurs near the
gate. The normal velocity component at the gate appears to be negligible,
while the horizontal component shows evidence of strong carrier movement
toward the source beneath the left gate area, and strong movement toward
the drain immediately to the left of the drain junction. Notice the cusps and
strong gradients in the components of the velocity.

5 The Quantum Hydrodynamic Model

The quantum hydrodynamic model used in this paper was derived by Gardner
in [8]. In this section, we shall review the basic characteristics of the model



Fig. 3. Horizontal Velocity Component vx, in µm/ps. See Fig. 2.

as it was described in [5]. An existence theorem for the reduced model was
obtained in [15]. The model is also discussed in [9].

The QHD model has exactly the same structure as the classical hydro-
dynamic model (electrogasdynamics), where we now permit a non-isotropic
stress tensor:

∂n
∂t + ∂

∂xi
(nvi) = 0, (30)

∂
∂t (mnvj) + ∂

∂xi
(vimnvj − Pij) = −n ∂V∂xj −

mnvj
τp

(31)

∂w
∂t + ∂

∂xi
(viw − vjPij + qi) = −nvi ∂V∂xi −

(w− 3
2nT0)
τw

(32)

in conjunction with Poisson’s equation, (7–8), where Pij is the stress tensor,
V = −eφ is the potential energy, T0 is the temperature of the semiconductor
lattice in energy units (k is set equal to 1), Spatial indices i, j equal 1, 2,
3, and repeated indices are summed over. T is the electron temperature in
energy units.

Quantum mechanical effects appear in the stress tensor and the energy
density. Gardner derived the stress tensor and the energy density based upon
the O(h̄2) momentum-shifted thermal equilibrium Wigner distribution func-
tion:

Pij = −nTδij +
h̄2n

12m
∂2

∂xi∂xj
log(n) +O(h̄4) (33)

w =
3
2
nT +

1
2
mnu2 − h̄2n

24m
∇2 log(n) +O(h̄4). (34)

In one dimension, the QHD model requires eight boundary conditions.
Well-posed boundary conditions for the resonant tunneling diode are n = nd,



∂n/∂x = 0, and ∂T/∂x = 0 at the left and right diode boundaries xL and
xR, with a bias ∆V across the device: V (xL) = T log(n/ni) and V (xR) =
T log(n/ni) + e∆V , where ni is the intrinsic electron concentration.

To exhibit hysteresis, we simulate a GaAs resonant tunneling diode with
double Al0.3Ga0.7As barriers (the barrier height B = 0.209 eV). The doping
density nd = 1018 cm−3 in the n+ source and drain, and nd = 5× 1015 cm−3

in the n channel. The channel is 250 Å long, the barriers are 50 Å wide,
and the well between the barriers is 50 Å wide. The device has 50 Å spacers
between the barriers and the contacts (source and drain) to enhance negative
differential resistance.

The current-voltage curve for the resonant tunneling diode is plotted in
Fig. 4 for ∆V increasing from 0 volts to 0.22 volts (upper curve) and de-
creasing from 0.22 volts to 0 volts (lower curve). Note that hysteresis occurs
predominantly in the region of negative differential resistance. The physical
mechanism for hysteresis is that electrons “see” a different potential energy
due to different accumulated electron charges in the diode when the applied
voltage is decreasing than when the applied voltage is increasing.

Fig. 4. Current-Voltage Curve.
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