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Abstract

We consider nonlinear elliptic systems, with mixed boundary condi-
tions, on a convex polyhedral domain Ω ⊂ R

N . These are nonlinear
divergence form generalizations of ∆u = f(· ,u), where f is outward point-
ing on the trapping region boundary. The motivation is that of applica-
tions to steady-state reaction/diffusion systems. Also included are reac-
tion/diffusion/convection systems which satisfy the Einstein relations, for
which the Cole-Hopf transformation is possible. For maximum generality,
the theory is not tied to any specific application. We are able to demon-
strate a trapping principle for the piecewise linear Galerkin approxima-
tion, defined via a lumped integration hypothesis on integrals involving f ,
by use of variational inequalities. Results of this type have previously been
obtained for parabolic systems by Estep, Larson, and Williams, and for
nonlinear elliptic equations by Karátson and Korotov. Recent minimum
and maximum principles have been obtained by Jüngel and Unterreiter
for nonlinear elliptic equations. We make use of special properties of the
element stiffness matrices, induced by a geometric constraint upon the
simplicial decomposition. This constraint is known as the non-obtuseness
condition. It states that the inward normals, associated with an arbi-
trary pair of an element’s faces, determine an angle with nonpositive co-
sine. Drăgănescu, Dupont, and Scott have constructed an example for
which the discrete maximum principle fails if this condition is omitted.
We also assume vertex communication in each element in the form of an
irreducibility hypothesis on the off-diagonal elements of the stiffness ma-
trix. There is a companion convergence result, which yields an existence
theorem for the solution. This entails a consistency hypothesis for in-
terpolation on the boundary, and depends on the Tabata construction of
simple function approximation, based on barycentric regions.
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1 Introduction.

Invariant regions, or their generalizations described as trapping regions, have
played a significant role in the theory of nonlinear reaction/diffusion systems
(see [23] for earlier analytical results; for more recent analytical results, see
[13, 3, 4]). Companion results for Galerkin approximations have appeared since
the 1970s; however, results for systems, particularly steady systems, are less
frequent (see the memoir by D. Estep, M. Larson, and R. Williams [7, Theorem
5.13] for the non-steady case; the non-obtuseness condition is employed by these
authors, who also use the maximum principles to improve ‘a posteriori’ error
estimates). For elliptic equations, an important early result was derived by P.
Ciarlet and P. Raviart in [5]; see also [16]. There has been substantial recent
progress; A. Jüngel and A. Unterreiter extend the scope of [16] in [14], where
minimum and maximum principles are derived for non-monotone reaction terms.
J. Karátson and S. Korotov [15, Theorems 8, 11] demonstrate the central role
of the non-obtuseness condition for quasi-linear elliptic equations. The possible
failure of the discrete maximum principle in the obtuse case has been described
recently by A. Drăgănescu, T. Dupont, and R. Scott [6] in two dimensions by
use of discrete Green’s functions. This clearly indicates that the non-obtuseness
condition is not simply an artifice of proof. It is not a strict necessary condition,
however, as was first observed in [21].

In this paper, for a convex polyhedral spatial domain Ω ⊂ RN , we derive
trapping region results for piecewise linear Galerkin approximations defined for
nonlinear steady reaction/diffusion systems with mixed boundary conditions.
The vector fields are outward pointing on the trapping region boundary, but
are not assumed monotone. For the simplicial decompositions, we require the
non-obtuseness condition, rather than the acuteness condition. It states that
the inward normals, associated with an arbitrary pair of an element’s faces,
determine an angle with nonpositive cosine (see the following section for elab-
oration). The interpretation of this condition for the element stiffness matrix
is that all off-diagonal elements are nonpositive; strict negativity (acuteness) is
not required. This is significant, particularly in three dimensions, since non-
obtuseness can be preserved under local and global mesh refinement, as has
been demonstrated by S. Korotov and M. Kř́ıžek [17] via the ‘3D yellow refine-
ment’. Since mixed boundary conditions are permitted in the present paper,
such mesh refinement is of practical necessity in the neighborhood of portions
of the boundary where the character of the boundary condition switches, and
gradient singularities may develop. The situation is simpler in two dimensions
where the ‘2D red refinement’ may be used to preserve acuteness and/or non-
obtuseness. The geometry of individual simplicial elements also enters through
the irreducibility hypothesis on the stiffness matrix; see Lemma 2.1 to follow
for its use. Irreducibility has the geometric interpretation of the existence of a
chain of pairs of inward normals, with each pair defining an angle with strictly
negative cosine; the chain originates and terminates at a pair of arbitrary dis-
tinct faces in the element. When interpreted algebraically, the irreducibility
hypothesis has been employed by R. Varga in the study of relaxation meth-
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ods, particularly for p-cyclic iteration matrices [26]. It is closely connected to
M-matrices. The latter have also been employed in the study of maximum prin-
ciples (see [25], where Delaunay triangulations are used). This strongly suggests
the connection between analytical stability and iterative convergence. The ir-
reducibility hypothesis is automatically satisfied for meshes in one dimension.
The actual nonlinear algebraic system for the nodal coefficients appears as (10)
below. The formulation includes a lumped integration rule motivated by M.
Tabata’s studies [24].

Analytical proofs are transferred below to the algebraic systems for the nodal
coefficients, via the use of variational inequalities. This mirrors the correspond-
ing analytical technique in [13], where the invariant region is enforced through
the variational inequality, then the constraints are seen to be non-binding via
the outward pointing vector field, which is an abstract statement of the exis-
tence of lower and upper solutions. In the finite-dimensional case, there is less
flexibility in the choice of test functions; thus, one can derive the nodal equa-
tions from the variational inequalities, via the use of a consistent quadrature
formula for the evaluation of the integrals involving the vector field. The use of
the quadrature formula is required to utilize the outward pointing vector field.
The fundamental Theorem 2.1 of this paper is used to deduce Theorem 3.1:
the existence of an analytical solution of the PDE system within the trapping
region via convergence. Such convergence requires additional regularity of the
vector field. Note that the paper contains no uniqueness results. For clarity,
we number the assumptions consecutively as they appear in the paper: H1, H2,
etc. They are found in the introduction as well as in sections two and three.
We discuss at the conclusion of the paper general types of systems to which the
theory applies. These include reaction/diffusion/convection systems for which
the Einstein relations are valid. The author has studied these in the context of
semiconductor modeling [12].

For a convex polyhedral domain Ω ⊂ RN , consider the nonlinear steady-
state system of order m, for u = (u1, . . . , um)t,

∇· pk(~x,u)∇uk = fk(~x,u), k = 1, . . . ,m. (1)

The divergence structure defined by p = (p1, . . . , pm), and that of the vector field
f = (f1, . . . , fm)t, are significant. We begin here the tabulation of the properties
to be satisfied as well as the statement of the system boundary conditions.

System Properties: Hypotheses

H1. Carathéodory Mapping (Property CM) Given a slab,

Q =

m
∏

j=1

[aj , bj ], aj < bj , j = 1, . . . ,m,

in Rm and the Cartesian product, D = Ω×Q, g is said to be a Carathéodory
mapping (CM) on D if each component g = gj satisfies:

• g(· , z) is measurable in its first argument for each fixed z ∈ Q.
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• g(~x, · ) is continuous in its second argument for almost every ~x ∈ Ω
(a. e. ).

The vector functions p, f are assumed to satisfy property (CM).

H2. f Outward Pointing on the Boundary of Q (Property OP).

For each u ∈ Q, if uj = aj , j = 1, . . . ,m, then fj(· , u1, . . . , um) ≤ 0, a. e. in Ω;

for each u ∈ Q, if uj = bj , j = 1, . . . ,m, then fj(· , u1, . . . , um) ≥ 0, a. e. in Ω.

H3. L2 Local Boundedness of f (Property B) There is a constant C such
that, if u is a real measurable function on Ω with range in Q, a. e. , then
‖f(· ,u)‖2 ≤ C.

H4. Divergence Structure (Property DS) . It is assumed further that

p : D 7→ Q∗, Q∗ =
m
∏

j=1

[a∗j , b
∗
j ], 0 < a∗j , j = 1, . . . ,m.

We describe now the system boundary conditions.

Mixed System Boundary Conditions.

i. Dirichlet Boundary. There is a (nonempty, relatively open) boundary com-
ponent ΣD such that the restriction of u to ΣD agrees in the trace sense
with a smooth function û ∈ C1(Ω̄), with range in Q:

Γ(u − û)|ΣD
= 0. (2)

Here, Γ denotes the trace operator (see [19] for basic properties).

ii. Neumann Boundary. The normal derivative of u vanishes in a weak sense
on the complement ΣN of ΣD with respect to ∂Ω. This is a natural bound-
ary condition subsumed in the weak formulation below. It is expressed:

∂u

∂ν
= 0, on ΣN . (3)

Relation (3) has the interpretation in terms of an abstract Green’s theorem
(cf. [22, p. 165]), and reduces, when u is smooth and when the standard Green’s
formula applies with positive multipliers pk, to the classical characterization
that components have zero directional derivatives along the outward boundary
normal vector ~ν at non-corner points of ΣN . We recall two useful results.

Lemma 1.1. If g satisfies hypothesis H1, and v is a measurable function defined

on Ω, with range in Q, then the composition g(· ,v(· )) is measurable on Ω.

(see [11] for underlying concepts)
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Lemma 1.2. For a Carathéodory mapping h, if h maps a subset of (Lq(Ω))m

into (Lp(Ω))m, for 1 ≤ p, q < ∞, via the composition H(v) = h(· ,v), then H
defines a continuous mapping from (Lq)

m to (Lp)
m.

This was shown by Krasnosel’skii [18, Theorem 2.1, p. 22]. We apply this
result to p and to f in the following sections. Assumption H3, as well as the
mapping hypothesis of the preceding Lemma 1.2, are known to hold under the
so-called Nemytskii conditions (see [22, p. 48]).

Introduce the notation,

Y0 := {v ∈ H1(Ω) : Γv|ΣD
= 0},

which is assumed to have a dense, zero-trace subspace of infinitely differentiable
functions. Then u is a weak solution of (1, 2, 3) if u satisfies (2) together with
the relations,

∫

Ω

pk(~x,u(~x))∇uk· ∇v dx +

∫

Ω

fk(~x,u(~x))v dx = 0, k = 1, . . . ,m, ∀v ∈ Y0.

(4)
The two principal results of this paper appear in the following two sections:

a trapping principle for the Galerkin approximation with quadrature (Theorem
2.1) and a convergence/existence theorem for these approximations (Theorem
3.1). Additional hypotheses will be required: in §2 for the N -dimensional sim-
plicial finite element approximations, and in §3 for the convergence results.

2 Piecewise Linear Galerkin Approximations

We will verify a trapping principle for piecewise linear Galerkin approximations
of any weak solution of (1,2,3). Our approach is non-standard, in that we use
a variational inequality as a passage from the function space containing the
Galerkin approximations to the appropriate system of equations for the nodal
coefficients in Euclidean space. We clarify this as our presentation develops.

Given that Ω is a convex polyhedral domain in RN , we suppose that a
simplicial decomposition S of elements S is specified, so that each simplex S is
the convex hull of its nodes, and Ω̄ is the union of such elements. We refer to
each S ∈ S as an N -dimensional simplicial finite element. To describe this more
fully, we introduce some terminology, which retains the framework of [16]. Let
S ∈ S be such that

a) ~vi is an arbitrary vertex of S and Fi ⊂ ∂S is the oppositeN−1 dimensional
boundary face not containing ~vi;

b) eij is the edge connecting vertices ~vi and ~vj ;

c) γij is the angle between the inward normal vectors to the faces Fi and Fj ;

d) φl is the piecewise linear nodal basis function which is 1 at vertex ~vl;
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e) Let a ≥ a0 > 0 be a bounded, strictly positive, measurable function on Ω,
and define

αij ≡

∫

S

a(~x)∇φi(~x)· ∇φj(~x) dx

to be the ijth entry of the element stiffness matrix;

f) aij is the ijth element of the assembled (summed over elements S) stiffness
matrix A:

aij =

∫

Ω

a(~x)∇φi(~x)· ∇φj(~x) dx.

It is shown in [16, Lemma A.1] that, in any N -dimensional simplicial finite
element S, cos γij has the same sign as αij , independently of the function a.
Therefore, whenever a is identified with the various components of p in the
PDE divergence operator structure, the statements concerning non-obtuseness
and irreducibility in hypothesis H5 below are unchanged. These properties are
now defined. They are fundamentally geometric properties, imposed on each S
in the simplicial decomposition S.

Geometric Properties of the Decomposition

H5. Non-Obtuseness and Irreducibility (Property N) The simplicial de-
composition S will be said to satisfy property (N) if:

• (non-obtuseness) For each N -dimensional simplicial finite element S,
and ~vj a vertex in S, then

αij ≤ 0, if ~vi is on eij ⊂ S, ~vi 6= ~vj .

• (irreducibility) If αij = 0, there is a chain of distinct indices i1 =
i, . . . , i` = j such that αikik+1

< 0 for each successive pair ik, ik+1 in
the chain.

It was pointed out in [5] that the relevant off-diagonal elements in the as-
sembled matrix A = (ajk) are bounded uniformly smaller than zero if all angles
between the outward normal vectors to any two faces of each simplicial element
in the mesh are bounded uniformly above by π

2 − δ. This provides a sufficient
(acute) condition. For our purposes here, we require only property (N) itself as
expressed in H5. It was shown in [16, Lemma A.1] that the sum of the stiffness
matrix entries in any row is zero:

αii +
∑

j 6=i

αij = 0. (5)

Let d0 denote the cardinality of the set of nodes defined by the simplicial
decomposition, and which occur in Ω̄. We denote by Σ those nodes which
intersect ΣD , and we write d for the cardinality of the set of nodes in Ω̄\ΣD.
We assume that d < d0. Since by definition, for z ∈ Rd0 ,

∫

Ω

a(~x)|
d0
∑

j=1

zj∇φj |
2 dx = (Az, z)Rd0 , (6)
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it follows that the quadratic form,

(Az, z)Rd0 ,

is nonnegative definite. We have the following additional result.

Lemma 2.1. Suppose the simplicial decomposition satisfies hypothesis H5.

If (Az, z) = 0, then z = c = {c, · · · , c}, for a constant c.

Proof. Define v =
∑d0

j=1 zjφj , and consider a fixed simplex S. Define an ar-
bitrary local ordering of the vertices belonging to S, indexed by i = 1, . . . , i0,
and label the corresponding subset of the coordinates of z as t1, . . . , ti0 . The
restriction of v to S has the representation,

v(~x) =

i0
∑

i=1

tiφi(~x), ~x ∈ S.

The following critical ‘double sum’ identity was proved in [16, Corollary A.1]:

∫

S

a(~x)|∇v|2 dx =
∑

i<k

−αik[ti − tk]2.

The hypothesis H5 implies that the vertex evaluations ti are equal within each
S; this is facilitated by the construction of a chain of indices based upon the
irreducibility hypothesis. Thus, v is constant on each S. The continuity of v
implies the constants have a common value c. In particular, each component of
z is equal to c.

2.1 Galerkin System

In order to formulate the Galerkin system, we allow for approximate formu-
lations within the vector field integrals. These approximations are defined in
terms of a local operator. Local here is interpreted with respect to the union,

Gi = ∪{S ∈ S : ~vi ∈ S},

of those simplices containing a given vertex ~vi. Note that Gi is simply the
support of the nodal basis function φi contained in Ω̄. We also identify the
function a(~x) in the preceding discussion with the individual components of p.

H6. Local Operator Approximation (Property LOA) Fix the simplicial

decomposition S, and let F = {
∑d0

j=1 zjφj , z ∈ Rd0} represent the finite
element space. For each vertex ~vi, there is prescribed an approximation
operator Ji such that Ji is continuous from F|Gi

to L2(Gi), with support
in Gi. Furthermore, the following consistency relation is required to hold:
If Ki denotes the support of Jiφi, and φ ∈ F|Gi

has range in Qk, then
Jiφ|Ki

has range in Qk, ∀k. These operators are used in (9) below.
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For the purposes of the variational inequality derived in the following section, no
specific structure is imposed on these operators. Indeed, they may be selected to
act as the identity in each Gi, which retrieves the standard definition. However,
an important special case, considered in [24], is to define

Jiφ = φ(~vi)χ|Ei
,

where Ei is the barycentric region, associated with the vertex ~vi. It is a subset
of Gi, defined via barycentric coordinates of those simplices containing ~vi. Con-
cisely: ~x ∈ Ei if the barycentric coordinate λi of ~x dominates all coordinates λj ,
for ~vj ∈ Gi. A critical property of such regions is that

∫

Ω
φi dx = meas (Ei).

We will not require the precise definition in this paper, and refer to [24] for
amplification. The operator Ji is continuous, in the sense defined.

Now, for k = 1, . . . ,m, introduce the notation, (y1k, . . . , ydk)t, for the first d
components of yk, and, for the remaining d0 − d components, specify interpola-
tion boundary values through the requirement that,

yjk = ûk(~vj), for ~vj ∈ Σ.

If uh = (u1h, . . . , umh)t is prescribed via

ukh(~x) =

d0
∑

j=1

yjkφj(~x), k = 1, . . . ,m, (7)

then Pk are the d× d0 matrices given by, for k = 1, . . . ,m,

pijk =

∫

Ω

pk(~x,uh(~x))∇φi(~x)· ∇φj(~x) dx, i = 1, . . . , d, j = 1, . . . , d0, (8)

and gk are defined by, for k = 1, . . . ,m,

gik =

∫

Ω

fk(~x, Jiuh(~x))Jiφi(~x) dx, i = 1, . . . , d. (9)

It is understood that Ji acts on each component of uh. The system of equations
defining the Galerkin method is given by

Pk(y1, . . . ,ym)yk + gk(y1, . . . ,ym) = 0, k = 1, . . . ,m. (10)

2.2 The Finite Dimensional Variational Inequality

We require some notation. For fixed k = 1, . . . ,m, define d copies of [ak, bk] by

[ak, bk]d := Qd
k,

and, an admissible set in Rd0 by

Kk = {v ∈ Rd0 : (v1, . . . , vd)
t ∈ Qd

k, and, for d < j ≤ d0, vj = ûk(~vj), for ~vj ∈ Σ}.
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We shall employ the coupled variational inequalities: Find yk ∈ Kk, k =
1, . . . ,m, satisfying

(Pk(y1, . . . ,ym)yk ,Tr(vk−yk))Rd+(gk(y1, . . . ,ym),Tr(vk−yk))Rd ≥ 0, ∀vk ∈ Kk.
(11)

Here, the inner product in Rd is the usual one. Also, we have used the notation
Tr to denote truncation of the final d0−d components from the indicated vector.

Proposition 2.1. Assume the system hypotheses H1,H3,H4 of the introduction

as well as hypotheses H5 and H6 of section two. The variational inequality (11)
has a solution (yk , k = 1, . . . ,m).

Proof. The proof is divided into three parts. We shall require the d0×d0 matrix
extension P̂k of Pk defined by (8) with the range of i extended to i = 1, . . . , d0.
Also, for fixed w = (w1, . . . ,wm), we define the auxiliary bilinear functional,
for u,v ∈ Rd0 ,

Aw,k(uk,vk) = (P̂k(w)uk,vk)Rd0 +

d0
∑

j=d+1

ujkvjk .

By Lemma 2.1, we conclude that this functional is positive definite in its action
on Rd0 . Indeed, the final term, identified with summation of product interpolant
evaluations on Σ, is included so that the conclusion c = 0 may be drawn. Here,
c is given by the lemma whenever Aw,k(vk ,vk) = 0.

The remaining structure of the argument is as follows.

The map T from
∏

k Kk to
∏

k Kk. We select a vector w = (wk) ∈
∏

k Kk,
and construct the quadratic functional, for vk ∈ Kk, k = 1, . . . ,m,

Rw(v,v) =

m
∑

k=1

{Aw,k(vk ,vk) + 2(gk(w1, . . . ,wm),Tr(vk))Rd}. (12)

By standard theory, there is a unique minimizer y in the closed convex set
∏

k Kk. This is characterized, via one-sided partial derivatives, by the coupled
set of variational inequalities, ∀vk ∈ Kk, k = 1, . . . ,m,

(Pk(w1, . . . ,wm)yk ,Tr(vk −yk))Rd +(gk(w1, . . . ,wm),Tr(vk −yk))Rd ≥ 0.
(13)

The reduction from P̂k to Pk is possible since vk −yk has vanishing components
with indices d+ 1, . . . , d0. Set y = Tw.

A fixed point for T The map T is continuous, hence has a fixed point y =
(yk) in

∏

k Kk by the Brouwer fixed point theorem [9].

The continuity is established as follows. Let y∗ = Tw∗,y∗∗ = Tw∗∗. We
establish local continuity at w∗, and thus allow w∗∗ to vary. In the process,
we will use the fact (see Lemma 2.1) that P̂k(w∗) is positive definite on the
subspace of Rd0 consisting of vectors vk with the last d0 − d components zero.
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Denote by α∗
k the smallest positive eigenvalue on this subspace. Now consider

the variational inequalities ∗ and ∗∗ used to define y∗ and y∗∗ from (13) and
make the respective choices in these inequalities for vk ∈ Kk,

vk = y∗∗
k , vk = y∗

k.

After subsequent multiplication of each inequality by −1, followed by their sum,
and addition and subtraction of the term,

(Pk(w∗)y∗∗
k ,Tr(y∗∗

k − y∗
k))Rd ,

we obtain the inequality:

0 < α∗
k‖Tr(y∗∗

k − y∗
k)‖2

Rd ≤ |((Pk(w∗) − Pk(w∗∗))y∗∗
k ,Tr(y∗∗

k − y∗
k))Rd |

+|(g(w∗) − g(w∗∗),Tr(y∗∗
k − y∗

k))Rd |.

The analysis is facilitated by an application of Cauchy’s inequality to each r.h.s.
term, followed by the use of the Frobenius matrix norm, which is denoted ‖· ‖F .
Moreover, y∗∗ varies within a bounded set. When the inequality,

ab ≤ Ca2 +
b2

4C
,

with C sufficiently large, is applied, this leads to

‖Tr(y∗
k − y∗∗

k )‖2
Rd ≤ C ′{‖g(w∗) − g(w∗∗)‖2

Rd + ‖Pk(w∗) − Pk(w∗∗)‖2
F }.

Lemma 1.2 now implies the continuous dependence of the map Pk, and this
lemma and the continuity of the operators Ji imply the continuous dependence
of g. We thus infer the continuity of T .

2.3 The Equivalence

Hypothesis H6 is not sufficiently robust to utilize the vector field property (OP)
of hypothesis H2, so as to guarantee that solutions of the variational inequal-
ity (11) necessarily satisfy the finite element Galerkin system equation (10).
To guarantee this, we need an explicit nodal approximation, defined by piece-
wise constants, as introduced rigorously by Tabata [24]. When implemented in
integral expressions, it leads to lumped integration formulas.

H7. Nodal Approximation (Property NA) We explicitly define, for v ∈
F|Ei

, and Ei the barycentric region associated with the vertex ~vi:

Jiv(~x) = v(~vi)χEi
(~x), ~x ∈ Ω. (14)

Theorem 2.1. Suppose the hypotheses H1,H2,H3,H4 of the introduction are

satisfied, together with hypotheses H5,H7 of section two. Then the variational

inequality (11) has a solution in
∏

k Kk, and any such solution satisfies the

Galerkin system (10).
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Proof. We begin with the result of Proposition 2.1. We observe that property
(NA) of hypothesis H7 implies property (LOA) of hypothesis H6, so that the
proposition may be applied. We plan to show that the dot products (Rd inner
products) of arbitrary vectors ψ with the left hand sides (k = 1, . . . ,m) of (10)
are zero. The technique is an adaptation of that successfully used at the level of
the elliptic system ([13]). The details are given for the first equation (k = 1). We
shall thus proceed from the first inequality in (11). For notational convenience,
we set y1 = y, p1 = p, pij1 = pij . Now let ε = α− a1 = b1 − β > 0 be such that
the interval [α, β] contains all components yj except those for which yj = a1, or
yj = b1. Given ψ ∈ Rd, with components normalized not to exceed unity, we
select vectors v = v± in (11) as follows: For i = 1, . . . , d, set

vi = v±i = (yi ± εψi − a1)
+ + a1 + (b1 − yi ∓ εψi)

−.

Here we employ a somewhat nonstandard notation for the negative part: t− = t,
if t < 0, t− = 0, otherwise. By considering the three possible cases (posi-
tive/positive, positive/negative, negative/positive) for the two terms for which
the positive and negative parts are taken, one sees that (v1, . . . , vd)

t ∈ Qd
1. The

verification has two parts (see (17,18) to follow), related to the sign of the dot
products. For the first of these, we choose v = v+, and introduce index sets A
and B,

A = {i : 1 ≤ i ≤ d : yi = a1, ψi ≤ 0}, B = {i : 1 ≤ i ≤ d : yi = b1, ψi ≥ 0}.

The identities:
v+i − yi = 0, i ∈ (A ∪ B),

v+i − yi = εψi, i 6∈ (A ∪ B),

permit the rewriting of (11) as

∑

i6∈A∪B

d0
∑

j=1

pijyjψi +
∑

i6∈A∪B

giψi ≥ 0. (15)

For a given element S we use the notation,

πS
ij =

∫

S

p(~x,u(~x))∇φi(~x)∇φj(~x) dx.

Recall that, by property (N) of hypothesis H5, πS
ij ≤ 0 i 6= j, and by (5),

πS
ii +

∑

j 6=i π
S
ij = 0. We wish to show that

∑

i∈A∪B

d0
∑

j=1

pijyjψi ≥ 0,
∑

i∈A∪B

giψi ≥ 0. (16)

We estimate:

∑

i∈A∪B

d0
∑

j=1

pijyjψi =
∑

i∈A

∑

S:~vi∈S



πS
ii +

∑

j:i6=j

πS
ij



 a1ψi−
∑

i∈A

∑

S:~vi∈S

∑

j:i6=j

πS
ij(a1−yj)ψi

11



+
∑

i∈B

∑

S:~vi∈S



πS
ii +

∑

j:i6=j

πS
ij



 b1ψi −
∑

i∈B

∑

S:~vi∈S

∑

j:i6=j

πS
ij(b1 − yj)ψi ≥ 0.

Also, by the hypotheses H2 and H7, and the definition of gi via (9), we have
giψi ≥ 0 whenever i ∈ A, i ∈ B. Hence,

∑

i∈A∪B giψi ≥ 0. It follows from (15)
and (16) that

d0
∑

j=1

d
∑

i=1

pijyjψi +
d

∑

i=1

giψi ≥ 0. (17)

The companion inequality,

d0
∑

j=1

d
∑

i=1

pijyjψi +
d

∑

i=1

giψi ≤ 0, (18)

follows from the selection of v− and the redefinition of A,B to reflect a reversal
of the sign of ψi. Indeed, the new identities become

v−i − yi = 0, i ∈ (A ∪ B),

v−i − yi = −εψi, i 6∈ (A ∪ B),

leading to
∑

i6∈A∪B

d0
∑

j=1

pijyjψi +
∑

i6∈A∪B

giψi ≤ 0.

The cases i ∈ A∪B lead to a similar nonpositive sum, and then, finally, to (18).
It follows that (10) holds.

2.4 Graded Mass Approximations

Theorem 2.1 was proven under the explicit assumption H7, which is imple-
mented in the definition (9). This is a general interpretation of a lumped mass
approximation, but nonetheless allows for variation in ~x ∈ Ei. Notice that,
at this level, one has not introduced considerations of computability or con-
vergence. For the former, one might wish to restrict the mass approximation
further by defining:

g′ik =

∫

Ω

Ji(fk(~x,uh(~x)))Jiφi(~x) dx, i = 1, . . . , d. (19)

Notice that the primed quantities are readily computable, since, locally,

Ji(fk(~x,uh(~x))) = fk(~vi,uh(~vi))χEi
.

However, increased assumptions on f are required to analyze this more spe-
cialized approximation. In the following section dealing with convergence, we
will be required to make further assumptions on f . The result will be that the
graded definitions (9) and (19) are in some sense indistinguishable when these
assumptions are made.

12



3 Convergence and Existence

The framework introduced in [5] and [24] identifies the interpolant as a key
component of the convergence analysis, requiring certain regularity of the ap-
proximation class. Specifically, W 1,p(Ω) regularity is required for p > N . Very
general theorems for this case are to be found in [2, Section 4.4]. For a simplicial
decomposition S, such that h is the maximal diameter of simplices in S, and
for v ∈ C(Ω̄), we employ the notation v 7→ Ihv for the interpolant:

Ihv =
∑

~vi∈Ω̄

v(~vi)φi.

Closely associated with the interpolant is a simple function approximation, gen-
erated by assembling linear combinations of the characteristic functions χEi

of
the barycentric regions Ei introduced earlier. Specifically, for v ∈ C(Ω̄), we
define the mapping v 7→ v̄ via

v̄ =
∑

~vi∈Ω̄

v(~vi)χEi
.

The usefulness of these simple function approximations was developed in [24].
We have retained the notation v̄ of that reference. The following lemma requires
the notion of a quasi-uniform family {S} of simplicial decompositions, which we
concisely define [2]: there exists ρ > 0 such that, for each S and each S ∈ S,
the diameter of the largest ball contained in S has ρh as a lower bound, where
h varies with S. Standard seminorm notation is employed in the lemma: for
1 ≤ p <∞,

|v|1,p =





∑

|α|=1

‖Dαv‖p
p





1/p

.

Lemma 3.1. For a quasi-uniform family {S} of simplicial decompositions, the

interpolation sequence and the simple function sequence converge to v for v ∈
W 1,p(Ω), p > N, as h→ 0. More precisely, the following estimates hold:

‖v − Ihv‖p ≤ Ch|v|1,p, (20)

‖v − Ihv‖p ≤ Ch|v|1,p, (21)

where C in each inequality is a positive constant not depending on h or v.

A proof of inequality (20) may be found in [2, Theorem 4.4.20] and in [5].
For (21), cf. [24, Lemma 5.1]. We make no ‘a priori’ assumptions regarding
solution regularity; the weak solution derived in this section has components
in H1(Ω). It will be necessary to mollify, however, in order to avoid regular-
ity assumptions. Although mollification (convolution) requires functions to be
defined on a superset of Ω̄, the Calderón extension theorem (see [1, Theorem
4.32]) permits this for Sobolev class functions, via a linear continuous extension
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operator to the Sobolev space defined on RN . For Lebesgue class functions, the
trivial extension by zero is adequate. In the remaining part of this section, we
will tacitly make use of these extensions. When explicit notation is required,
we designate ṽ as the extension to RN of v defined on Ω. As a preliminary, we
define the formal convolution:

g1 ∗ g2(~x) =

∫

RN

g1(~x− ~y)g2(~y) dy.

For rigorous mollification results, we appeal to [20, Theorem 2.16]. We state a
condensed version of it here.

Lemma 3.2. Suppose j ∈ L1(R
N ) with

∫

j = 1. For ε > 0, set jε = ε−N(· /ε)
and define the mollification, for g ∈ Lp(R

N ), 1 ≤ p <∞:

gε(~x) = jε ∗ g(~x).

Then gε converges strongly to g in Lp as ε → 0. Moreover, if j ∈ C∞
0 (RN ),

then gε is in C∞(RN ). If g is in the Sobolev space H1(RN ), then Dαgε, for

|α| = 1, is expressed by applying Dα to either member of the convolution. It

follows from this property that gε converges strongly to g in H1(RN ) as ε→ 0.

We will assume the use of standard exponential mollifiers in C∞
0 (RN ). In

the application of Lemma 3.1, it is necessary to evaluate the Sobolev p-seminorm
of v for p > N . In the proof of Theorem 3.1 to follow, we will be required to
consider the case ṽ = jε ∗ ũ, where u ∈ H1(Ω), and where derivatives in the
seminorm are applied to jε. The cases N = 1, 2 are elementary. For N > 2, we
need a version of Young’s inequality.

Lemma 3.3. Suppose g1 ∈ Lq(R
N ), g2 ∈ Lr(R

N), with

2 >
1

q
+

1

r
> 1.

Then g1 ∗ g2 ∈ Lp′(RN ), where

1

p′
=

1

q
+

1

r
− 1.

Furthermore, the Lp′ norm is bounded by

‖g1 ∗ g2‖p′ ≤ ‖g1‖q‖g2‖r. (22)

It follows that, if g1 ∈ C∞
0 (RN) and g2 ∈ H1(RN ), for N > 2, then the choices

1

q
=
N + 2

2N
+

1

N + δ
,

1

r
=
N − 2

2N
,

are admissible, and lead to p′ = N + δ in Young’s inequality (22). Here, δ > 0
is arbitrary.

14



Proof. Young’s inequality (22) is a duality restatement of [20, Theorem 4.2,
p. 98]. If g2 ∈ H1(RN), then the Sobolev embedding theorem [1, Theorem 5.4,
Case A, p. 97] yields g2 ∈ Lr(R

N ), and permits the application of Young’s
inequality as stated.

We continue with the consistency hypothesis, required for boundary-value
trace consistency.

Consistency Hypothesis

H8. Linear Boundary-Value Interpolation (Property LBI) There are two
parts.

• The function û is gradient stable on the family S under interpolation:

‖∇ûIh
‖2 ≤ C‖∇û‖2,

where C does not depend on h.

• If h̄ = supS∈S diam(S ∩ ΣD), and Ih̄û denotes the interpolant of û
on the nodes of Ω̄, then:

ΓIh̄û → Γû, h̄→ 0, in L2(ΣD).

It is understood that the diameters are computed w.r.t. N − 1 dimensional
measure in the definition of h̄ in property (LBI). For a thorough study of the
underlying ideas involved in these hypotheses, the reader may consult [2].

The convergence arguments to follow also depend on regularity properties
for f as well as a local intersection property associated with the simplicial de-
compositions. We state the specific properties for f .

Vector Field Regularity

H9. Mean Value and Composition Property (MVC) There are two parts.
It is assumed that there exists a positive constant C, such that, for each
k = 1, . . . ,m, we have:

• The pointwise bound,

|fk(~x,v)−fk(~y,w)| ≤ C(‖~x−~y‖RN +‖v−w‖Rm), ∀(~x,v), (~y,w) ∈ D.

• For any 1 ≤ p < ∞, if v ∈ (W 1,p(Ω))m, with range in Q, the com-
position fk(· ,v) is in W 1,p(Ω), and the following semi-norm bound
holds:

|fk(· ,v)|1,p ≤ C(1 + |v|1,p).

A sufficient condition for both parts of this property is the continuity and
bounded differentiability of fk in the joint variables (~x,u) (see [8, p. 86] for
a statement of the multidimensional mean value theorem; the second part is
implied by standard chain rule theorems for the differential map).

The final property assumed in this paper relates to the ‘economy’ of the
barycentric cover.
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H10. Simplex Intersection Property (SI) There is an integer κ0 such that,
for any simplicial decomposition S, and any S ∈ S,

S ∩ E 6= ∅,

can occur at most κ0 times for E a barycentric region defined by S.

3.1 Strong Convergence to a Trapping Region Solution of

a Galerkin Subsequence

The convergence result depends upon an auxiliary lemma, which we postpone
to the conclusion of the proof of Theorem 3.1.

Theorem 3.1. Suppose the hypotheses of Theorem 2.1 hold for a quasi-uniform

family {S} of simplicial decompositions, and, additionally, assume the hypothe-

ses H8,H9,H10. Then a weak solution u of (1) exists, satisfying the Dirichlet

boundary condition (2) on ΣD and the weak form of the Neumann boundary

conditions (3). It may be characterized as the limit of a subsequence of {uhn
},

associated with {Shn
}, for which hn → 0. This subsequence is weakly convergent

in (H1(Ω))m and strongly convergent in (L2(Ω))m.

Proof. Given v in a smooth dense subset of (Y0)
m, and a sequence Shn

such
that hn → 0, let uhn

be corresponding Galerkin solutions, assembled from (10)
and (7) via Theorem 2.1. Set vn = Ihn

v. For notational simplicity, we write
the components of vn as vkn and the components of uhn

as ukn. The idea is to
take a rigorous limit in the relations, for k = 1, . . . ,m,
∫

Ω

pk(~x,uhn
(~x))∇ukn(~x)· ∇vkn(~x) dx+

∫

Ω

∑

i

fk(· ,uhn
(~vi))vkn(~vi)χEi

dx = 0.

(23)
Note that (23) is an analytical restatement of (10) when (14) is employed. The
limiting relation will be identified with (4). The argument proceeds via weak
compactness, as applied to the Galerkin approximations uhn

. To obtain the
preliminary estimate, we note that (23) holds more generally under the replace-
ment vn 7→ wn, where the latter is any piecewise linear trial function vanishing
on the nodes of ΣD; we make the choice

wn = uhn
− Ihn

û.

We thus obtain, for k = 1, . . . ,m:
∫

Ω

pk(~x,uhn
(~x))∇ukn(~x)· ∇(ukn(~x) − Ihn

ûk(~x)) dx

+

∫

Ω

∑

i

fk(· ,uhn
(~vi))(ukn − Ihn

ûk)(~vi)χEi
dx = 0. (24)

{Ihn
û} is assumed gradient stable, hence is a bounded sequence in (H1)m.

An L2 gradient estimate for uhn
is then obtained from (24) by making use of

16



the L2 boundedness of the functions appearing in the second integrals and the
L∞, strictly positive, boundedness of the pk multipliers. This is deduced from
hypotheses H3, H4, and H10, as well as the uniform pointwise boundedness
properties of uhn

and Ihn
ûk. We conclude that the Galerkin approximations

lie in a fixed ball in (H1)m. By weak compactness, we infer the existence
of an H1−weakly convergent subsequence, which by the Rellich theorem, is
strongly L2 convergent to a limit u. For simplicity, we relabel the convergent
subsequence as uhn

. The first term in (23) involves a triple product in L2: two
strongly convergent sequences (one L∞-bounded), and one weakly convergent
sequence. By Lemma 3.4 to follow, we draw the conclusion that the first term in
(23) converges to the corresponding term in (4). To conclude that the boundary
condition (2) holds, we note that the trace mapping Γ is continuous, and even
compact, from H1(Ω) into L2(ΣD) ([19]). We now invoke hypothesis H8 to
conclude that the limit u coincides with Γû on ΣD. This yields (2).

The convergence analysis of the second term in (23) is simplified by the
replacement of the integrand by a function with the same limit:

fk(· ,uhn
)vkn. (25)

The simplex by simplex estimation of the difference of the two integrands em-
ploys hypotheses H9 and H10. Indeed, for S ∈ S, one has

∫

S

∣

∣

∣

∣

∣

∑

i

fk(· ,uhn
(~vi))vkn(~vi)χEi

− fk(· ,uhn
)vkn

∣

∣

∣

∣

∣

dx ≤ chnmeas (S)‖v‖L∞
,

where c = Cκ0. The constants C and κ0 are defined in H9 and H10, respectively.
Subsequent integration over Ω shows that the difference tends to zero as hn → 0.

Once this reduction has been achieved, the limit for the replacement function
(25) uses a telescoping representation in terms of differences. The estimates are
facilitated by notational simplification: vk 7→ v, vkn 7→ vIhn

. We have:

fk(· ,u)v − fk(· ,uhn
)vIhn

=

4
∑

i=1

Ti,

where

T1 := fk(· ,u)v − fk(· ,uε)v

T2 := fk(· ,uε)v − fk(· ,uε)vIhn

T3 := fk(· ,uε)vIhn
− fk(· , (uε)Ihn

)vIhn

T4 := fk(· , (uε)Ihn
)vIhn

− fk(· ,uhn
)vIhn

.

The order of analysis is: selection of ε, followed by selection of h. Suppose that
η > 0 is specified. Choose ε1 > 0 such that ‖T1‖L1

< η/4 for ε ≤ ε1. This
is possible via Lemma 3.2, the pointwise boundedness of v, and the general
strong convergence of composition. We next estimate ‖T4‖L1

. We will obtain
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an estimate via the representation of Ω̄ as the union of elements S of S. On each
simplex S of a given S, by hypothesis H10, there are at most κ0 barycentric
regions E intersecting S, so that all other characteristic functions vanish in the
representation of T4 on S. This yields, via the first inequality of hypothesis H9
and the triangle inequality:

∫

S

|T4| dx ≤ Cκ0

∫

S

{‖uε(~vi) − uε(~x)‖Rm + ‖uε(~x) − u(~x)‖Rm

+‖u(~x) − uhn
(~x)‖Rm + ‖uhn

(~x) − uhn
(~vi)‖Rm}|vIhn

| dx

=

∫

S

(T 1
4 + T 2

4 + T 3
4 + T 4

4 ) dx.

Here, ~vi is understood as a typical vertex in S; the cardinality has already
been incorporated in the multiplier κ0. The L1 estimation of T 2

4 on Ω parallels
the estimation of T1. Thus, there exists ε2 > 0 such that ‖T 2

4 ‖L1(Ω) < η/16
for ε ≤ ε2. The restrictions on ε are now completed by the requirement that
ε = min(ε1, ε2). The estimations, ‖T 1

4 ‖L1(Ω) < η/16 and ‖T 3
4 ‖L1(Ω) < η/16 for

hn < h′1, follow routinely from the uniform continuity of uε on Ω̄ and the strong
convergence of uhn

, respectively. The estimation of ‖T 4
4 ‖L1

is more subtle. It
makes use of a Poincaré-type inequality as applied to the difference represented
by T 4

4 on S (see the remark at the conclusion of the proof). Such an inequality
expresses the L2 norm of T 4

4 on S as bounded by hn times the L2 gradient norm
of T 4

4 on S. This allows for an estimate over Ω proportional to hn, and permits
the choice of h′2: ‖T 4

4 ‖L1(Ω) < η/16 if hn < h′2.
Similarly,

‖T2‖L1
≤

∫

Ω

|fk(· ,uε)||v − vIhn
| dx.

For p > N , and 1/q = 1 − 1/p, Hölder’s inequality can be applied with the
first inequality in Lemma 3.1. Note that v has been selected in a smooth dense
subspace of Y0, permitting the application of Lemma 3.1 as applied to v. The
multiplier term involving fk is in L2, hence Lq (the case N = 1 is immediate).
Thus, h′3 exists such that hn < h′3 implies that this term is bounded above by
η/4.

To obtain the bound for ‖T3‖L1
, we apply the second inequality of Lemma

3.1 to the indicated product. Hölder’s inequality permits the Lp estimation of
T3, and by the indicated lemma this estimate is proportional to the product
of hn and the Sobolev p-seminorm of fk(· ,uε)vIhn

. Two types of terms arise
via the product rule of differentiation. They may be analyzed separately via
the triangle inequality. Terms involving Dα applied to vIhn

are resolved by the
gradient p-stability for interpolants of smooth (say, W 2,p) functions ([5]). Thus,
if the Schwarz inequality is applied to the resulting p-th power integrand, one is
utilizing the gradient 2p-stability for vIhn

and ordinary 2p stability for fk(· ,uε).
Terms involvingDα applied to fk(· ,uε) are resolved by application of the second
part of hypothesis H9. Here, we use the ‘a priori’ uniform boundedness of
vIhn

, not the Schwarz inequality in the estimation. The Sobolev p-seminorm
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of uε is estimated, via an application of derivatives to the mollifier used in the
convolution. This is direct for N = 1, 2. For N > 2, lemma 3.3 is applied to
the differentiated convolution, with p′ and p identified. Thus, by choosing hn

sufficiently small, say, hn < h′4, one may ensure that ‖T3‖L1
< η/4. Since η is

arbitrary, we have established (4) for a smooth dense subset of Y0, hence for all
v ∈ Y0.

Remark 3.1. The Poincaré inequality for a simplex S of diameter h uses the

so-called star-shaped property of S with respect to any vertex. Thus, if one

fixes a vertex ~v and selects a member ψ of F which vanishes at ~v, one writes the

standard proof as follows. Fix ~x on the face opposite ~v and let ~y = (1−s)~v+s~x be

an arbitrary point on the line segment connecting ~v and ~x. Here, 0 ≤ s ≤ 1. We

have, by the fundamental theorem of calculus for absolutely continuous functions

and the chain rule:

|ψ(~y)|2 =

∣

∣

∣

∣

∫ s

0

∇ψ((1 − σ)~v + σ~x)· (~x − ~v) dσ

∣

∣

∣

∣

2

≤ h2

∫ 1

0

|∇ψ((1 − s)~v + s~x))|2 ds.

Integration over S, via the iterated Fubini theorem as applied to rays from ~v and

the opposite face, in that order, gives the result:
∫

S

|ψ(~y|2 dy ≤ h2

∫

S

|∇ψ(~y)|2 dy.

Lemma 3.4. Suppose sequences fn, gn, qn in L2(Ω) satisfy the following condi-

tions:

fn ⇀ f, weakly; gn → g, strongly; qn → q, strongly, ‖qn‖∞ ≤ c.

Then
∫

Ω

fngnqn dx →

∫

Ω

fgq dx, as n→ ∞.

Proof. It suffices to show that

fnqn ⇀ fq, weakly in L2(Ω), as n→ ∞. (26)

This, coupled with the strong convergence of {gn}, implies the conclusion of the
lemma. To establish (26), one notes that the hypotheses imply:

lim
n→∞

(v, fnqn)2 = (v, fq)2, ∀v ∈ C∞
0 (Ω).

This actually holds more generally for bounded measurable functions v. Now
suppose v ∈ L2(Ω) and ε > 0. By the denseness of C∞

0 (Ω) in L2(Ω), there
exists a function vε ∈ C∞

0 (Ω) such that ‖v − vε‖2 < ε. For some C a positive
constant independent of n, we have

|(v, fnqn)2 − (vε, fnqn)2| ≤ ‖v − vε‖2‖fn‖2‖qn‖∞ ≤ Cε,
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|(v, fq)2 − (vε, fq)2| ≤ ‖v − vε‖2‖f‖2‖q‖∞ ≤ Cε.

Finally, for vε as selected, there exists N0 such that n ≥ N0 implies

|(vε, fnqn)2 − (vε, fq)2| ≤ Cε.

These inequalities imply

lim
n→∞

|(v, fnqn)2 − (v, fq)2| ≤ 3Cε,

so that
lim

n→∞
|(v, fnqn)2 − (v, fq)2| = 0.

This establishes (26) and concludes the proof.

3.2 Further Applicability

Although the theory is directly applicable to mixed boundary problems for
steady reaction/diffusion systems, the theory also applies to certain steady reac-
tion/diffusion/convection systems in transport theory, in which: (i) the Einstein
relations hold, relating diffusion and mobility, and, (ii) the drift is potential
driven. In this case, a change to logarithmic variables via the Hopf-Cole trans-
formation reduces the system to the self-adjoint form considered in this paper.
The reader may consult [12] for elaboration.

We now discuss the role of variational inequalities. We confine the discussion
to a brief comment, since the development is outside the scope of the paper. If
one eliminates the nodal approximation as introduced in H7, and selects for the
operators Ji the local identity operators, then the piecewise linear approximation
has coefficients which satisfy the (system) variational inequality (10). If ‘a priori’
bounds can be derived in H1, as in Theorem 3.1, then a subsequence of these
approximations converges strongly to a solution of an analytical variational
inequality by a straightforward convergence analysis utilizing Lemma 3.4 and
the strong convergence of composition with f . One requires only hypotheses
H1–H5 and H8 in this case. However, the analytical variational inequality is
seen to be equivalent to the system (4), via arguments utilizing hypothesis H2
(see [13] for illustration).

Finally, no statements regarding uniqueness are made in this article.
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[17] S. Korotov and M. Kř́ıžek. Acute type refinements of tetrahedral parti-
tions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001), pp. 724–733.

[18] M. Krasnosel’skii. Topological Methods in the Theory of Non-Linear

Integral Equations. Pergamon Press, 1964.

[19] A. Kufner, O. John, and S. Fucik. Function Spaces. Nordhoff, 1977.

[20] E. Lieb and M. Loss. Analysis, second ed. Graduate Studies in Math.
14, Amer. Math. Soc., 2001.

[21] V. Ruas Santos. On the strong maximum principle for some piecewise
linear finite element approximate problems of non-positive type. J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 29 (1982), pp. 473–491.

[22] R. Showalter. Monotone Operators in Banach Space and Nonlinear Par-

tial Differential Equations. Mathematical Surveys and Monographs 41,
American Mathematical Society, Providence, 1997.

[23] J. Smoller. Shock Waves and Reaction-Diffusion Equations. Grundlehren
der Mathematischen Wissenschaften 258, Springer, 1983.

[24] M. Tabata. Uniform convergence of the upwind finite element approxi-
mation for semilinear parabolic problems. J. Math. Kyoto Univ. 18 (1978),
no. 2, pp. 327–351.

[25] R. Vanselow. Relations between FEM and FVM applied to the Poisson
equation. Computing 57 (1996), pp. 93–104.

[26] R.S. Varga. Matrix Iterative Analysis, expanded edition. Springer series
in Computational Math. vol. 27, Springer-Verlag, 2000.

22


