
1
Existence and the Singular Relaxation Limit for

the Inviscid Hydrodynamic Energy Model
Gui-Qiang Chen

Northwestern University

Joseph W. Jerome

Northwestern University

Bo Zhang

Stanford University

Abstract
It is well known to particle physicists that scattering dominated trans-

port processes lead to drift-diffusion regimes. In this paper, we give a
mathematical study of this result, beginning with the full hydrodynamic
model, and identifying scaled drift-diffusion as the zero relaxation limit.
In order to provide a more complete background of drift-diffusion, we de-
scribe steady-state parameter regions in the introduction. This material is
not essential for the paper.

1 Introduction
In this chapter, we shall study a hydrodynamic model for charged carrier trans-
port, and its singular relaxation drift-diffusion limit. Although the emphasis of
the chapter will be on the theory of the hydrodynamic model and its limit, and
although the theory will proceed for the evolution system, we shall present in the
introduction an idealized steady-state drift-diffusion model, so that the reader
unfamiliar with this area can gain some appreciation for the rich and diverse
behavior possible even in this special case. After presenting this model, we shall
then discuss, in the remaining part of the introduction, the context in which
the principal results of the paper are derived. Before proceeding to the steady-
state model, we shall describe the setting of charge transport in the principal
application areas of semiconductors and ionic channels.

It is helpful to view semiclassical semiconductor modeling as an hierarchical
structure, in which the Boltzmann transport equation forms the summit, and
the drift-diffusion model the base; intermediate are systems derived from mo-
ments of the Boltzmann transport equation. The hydrodynamic model is an
example, and it offers the promise of simulation detail, as well as feasibility. It
does have the drawback of requiring adequate closure assumptions and accurate
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representations for the average collision mechanisms. In addition, the model has
hyperbolic as well as parabolic components for the moment equations, in the
transient case, and thus issues of shock capturing mechanisms arise. On the
other hand, the drift-diffusion model has only parabolic components, exclusive
of the Poisson equation, which must be adjoined to any model in the hierar-
chy. An interesting derivation of the drift-diffusion model from the Boltzmann
transport equation, making use of the diffusion approximation, is carried out in
[10]. This model is by far the best understood of the models. It was introduced
by Van Roosbroeck in 1950 [28] as a conservation system for electron and hole
carriers, with the ambient electric field determined from the Poisson equation.
This model is closely related to the older (by sixty years) ionic transport model
of Nernst and Planck, which is described in detail in [24]. It is of interest that the
current-voltage curves in biological membrane channels are derived from mech-
anisms closely related to those described here, with similar systems of equations
involved in the modeling. The reader is invited to consult [23] for scientific detail.

1.1 Idealized Drift–Diffusion
Physically, this is a case of constant temperature in which friction, caused by
collisions, dominates. We select the case of vanishing permanent charge and
simple boundary conditions. It describes:

• Electrons and holes in a pure crystalline lattice; or,
• Positive and negative ions in a vacuum environment,

together with equilibrium boundary conditions. The steady system is defined
by continuity equations for

(1) Electric potential φ; charge flux: −(dielectric) × φ′;
(2) Negative carrier (electron/anion) concentration n;

Charge:− ē, Current: Jn = ēDn( n′︸︷︷︸
diffusion

−nφ′︸ ︷︷ ︸
drift

);

(3) Positive carrier (hole/cation) concentration p;

Charge: ē, Current: Jp = ēDp(p′ + pφ′).

The equations (with vanishing permanent charge) are given by:

ε2φ
′′ − n+ p = 0, (1.1)

Jn = const., (1.2)
Jp = const., (1.3)

in (0, 1), with boundary conditions,

p(0) = pL > 0, n(0) = nL > 0, (1.4)
p(1) = pR > 0, n(1) = nR > 0, (1.5)

φ(0) = φ0, φ(1) = φ1. (1.6)
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Without loss of generality, take φ1 = 0. Above, Dn and Dp denote diffusion
coefficients. We highlight here the following definitions:

• Potential difference: V = φ0,
• Physical current: I = Jn + Jp,
• Negative of (mass) flux: J = Jn − Jp.
• ε is the quotient of two lengths, intrinsic and extrinsic.

A notation in terms of dimensionless ratios is given by:

ρL =
pL
nL

, ρR =
pR
nR

. (1.7)

System (1.1)–(1.6) has simple boundary values if ρL = ρR = 1. In this case,
denote the common values by cL, cR, respectively.

There are four modes for simple boundary conditions as is demonstrated in
[22]:

Case 1. cL ≤ cR, V ≥ 0.

(1) IV ≥ 0, J ≥ 0; (2) φx ≤ 0; (3) n ≥ p; (4) nx, px ≥ 0.

Case 2. cL ≤ cR, V ≤ 0.

(1) IV ≥ 0, J ≥ 0; (2) φx ≥ 0; (3) n ≤ p; (4) nx, px ≥ 0.

Case 3. cL ≥ cR, V ≤ 0.

(1) IV ≥ 0, J ≤ 0; (2) φx ≥ 0; (3) n ≥ p; (4) nx, px ≤ 0.

Case 4. cL ≥ cR, V ≥ 0.

(1) IV ≥ 0, J ≤ 0; (2) φx ≤ 0; (3) n ≤ p; (4) nx, px ≤ 0.

Fig. 1 illustrates a typical case. In all cases, the solution is unique, as demon-
strated in [22].

1.2 The Hydrodynamic Model
This model may alternately be defined from a microscopic starting point, the
semiclassical Boltzmann equation, in which moments are computed with respect
to group velocity, and the system closed at three equations with constitutive
relations among the averaged quantities, or it can be derived from a macroscopic
starting point, in which the system then becomes a conservation law system for
a charged fluid, incorporating particle number, momentum, and energy balance
equations. Both forms of derivation are carried out in the book [14] Chap. 2.
The result is the following system, with a copy for each charge species:
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Fig. 1. The electric potential profile and concentration profiles for the simple
boundary condition, Case 1. Dimensionless concentration and potential units
employed. Reproduced from [2].

 ∂tρ+∇· (ρv) = Cρ,
∂tp+ v(∇· p) + (p ·∇)v = − ē

m̄ρF −∇(ρkbT/m̄) + Cp,
∂tE +∇· (v E) = − ē

m̄ρv·F −∇· (vρkbT/m̄) +∇· (κ∇T ) + CE .
(1.8)

Here, ρ denotes particle mass density, related to concentration n and effective
mass m̄ via ρ = m̄n, p denotes particle momentum density, related to velocity
v through p = ρv, and E the mechanical energy density. F denotes the elec-
tric field, T the carrier temperature, κ the heat conductivity, kb Boltzmann’s
constant, and Cρ, Cp, and CE denote relaxation expressions. The systems are
coupled through the Poisson electrostatic equation as well. The momentum re-
laxation time τp is given via

p

τp
:= −Cp.

The energy relaxation time τw is given via

−W −W0

τw
:= CW .

Here, W0 denotes the rest energy, 3
2nkbT̄ , where T̄ is the lattice temperature.

Note that the relaxation time reciprocals appearing here have the units of fre-
quencies, and suggest time scales over which collisions are likely to occur in
influencing momentum or energy. The forms for the relaxation times used in [1]
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on the basis of higher order moments, are:

τp = cp/T,

τw = cw
T

T + T̄
+

1
2
τp.

Here, cp and cw are physical constants. The hydrodynamic model was first
derived by Bløtekjær [3] for semiconductor devices. It can describe multiple
species of charge carriers (e.g., upper and lower valley electrons and holes) by
adding extra copies of (1.8). This model also governs an important biological
process in which ions move into biological cells through pores in proteins that are
holes in dielectrics [5]. The model (1.8) plays an important role in simulating
the behavior of charged carriers in submicron semiconductor devices; some of
its computational and physical aspects have been discussed in [11, 25, 16]. The
existence of solutions and the convergence of Newton’s method to the steady-
state subsonic electron flow have been proved in [13]. Also, an electron shock
wave in the case of steady-state for (1.8) for submicron semiconductor devices
was first simulated in [12].

1.3 Regimes Defined by Damping

We identify three essential regimes defined by the hydrodynamic model:

(1) The full hydrodynamic regime;
(2) A regime in which inertial effects are negligible over the momentum relax-

ation time scale;
(3) A regime, contained within the preceding, in which temperature variation

is negligible, so that heat flux is insignificant. This corresponds to the
drift-diffusion regime. It is characterized as friction dominated.

In the first regime, friction is not dominant. In the second, resistance to momen-
tum transitions is significant over the relaxation time scale. In the third regime,
additional resistance to heat flow (temperature gradients) is significant. Regime
two may be defined via a critical limit of the hydrodynamic model, as we now
explain. The first and third equations in (1.8) remain as in the hydrodynamic
model. However, the momentum equation is rewritten, and the limit,

τp → 0,

is taken to obtain a constitutive relation for the current, given by:

J =
ēD

m̄

[
T

T̄
∇ρ+ ρ∇

(
T

T̄
− ē

kbT̄
φ

)]
. (1.9)

Here, D is the diffusion coefficient and φ is the electrostatic potential. This is
the interpretation of the inertial approximation. The third regime follows from
the second when isothermal conditions prevail.

These are strictly heuristic considerations. It is the purpose of this paper to
derive the third regime in a completely rigorous fashion, as a scaled limit of the
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one carrier model as τp and τw tend to zero in a controlled manner. In fact, the
fundamental inequality relating τp and τw, and required by the theory developed
below, is satisfied by the representations given above.

We close the introduction by exhibiting the results of a series of simulations
carried out by decreasing τw via increasing a parameter, the saturation velocity,
vs, which is related to cw in an inverse square fashion. The application is to
the biological regime, that of ionic channels. The tendency of regime (1) toward
regime (3) is evident in these pictures.

Fig. 2. The solid curve gives the temperature for vs = 5 × 10−6, the dotted
curve is for vs = 10−5, the short-dashed curve is for vs = 2 × 10−5, and
the long-dashed cureve is for vs = 5 × 10−5. The decrease of temperature
coincides with efficient damping of energy exchange. The figure is taken from
[5]. The units of vs are µm/ps.

2 Energy Method for a Scalar Equation with Damping
In this section, through a scalar model with damping, we present an efficient
method, the so-called energy method, for determining the global existence, unique-
ness, and asymptotic behavior of classical smooth solutions for nonlinear partial
differential equations with certain dissipation. Such a method has been success-
fully applied to problems of classical smooth solutions for nonlinear wave equa-
tions in [17], nonlinear hyperbolic Volterra integrodifferential equations in [9],
nonlinear thermoelasticity in [27], as well as for the compressible Navier-Stokes
equations in [21] and [6] (see also the references cited in [17, 9, 27, 21, 6]).

Consider the following scalar model with damping:

ut + f(u)x + u = 0, (2.1)



Relaxation Limit of the Hydrodynamic Model 7

Fig. 3. The IV curves are calculated for different values of vs and compared to
the drift-diffusion (PNP) case. The figure is taken from [5].

with Cauchy data
u|t=0 = u0(x). (2.2)

The local existence and uniqueness of the smooth solution u(x, t) for the
Cauchy problem (2.1)–(2.2) can be found in [19]. It can be obtained by using
the standard Contraction Mapping Theorem of Banach (see Section 3.1 for such
an application for the inviscid hydrodynamic energy model). In this section,
we present the energy method, through the scalar model (2.1), in order to mo-
tivate the more general approach involved in establishing the global existence,
uniqueness, and asymptotic behavior of classical smooth solutions to systems of
conservation laws to follow in the next section. It is particularly intended for
readers not familiar with the techniques of this subject.

Theorem 1 Assume that initial data u0(x) ∈ H2(R). Then there exists a
unique global smooth solution of the problem (2.1)–(2.2) satisfying

u(x, t)→ 0, uniformly when t→∞.

Proof It suffices to obtain the energy estimates for the local solution u(x, t).
Now we derive such estimates in considerable detail, as an illustration for the
following Sections 3 and 4, for the smooth solution u(x, t) ∈ H2((−∞,∞) ×
[0, t0)). In the course of these estimates, we make certain assumptions on f , not
always made explicit. We first assume a priori that

‖u‖C1(R×[0,t0)) ≤ ε, (2.3)

for sufficiently small ε. Then we prove that there exists ε0 = ε0(ε, f) such that,
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when
‖u0‖H2 ≤ ε0,

the a priori assumption (2.3) is indeed achieved.
Multiplying (2.1) by u, one has(

u2

2

)
t

+ u2 +
(∫ u

0
vf ′(v)dv

)
x

= 0.

Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2(x, t)dx + 2
∫ t

0

∫ ∞
−∞

u2(x, s)dxds =
∫ ∞
−∞

u2
0(x)dx. (2.4)

Differentiating (2.1) with respect to x and then multiplying by ux, one has(
u2
x

2

)
t

+ u2
x +

1
2
f ′′(u)u3

x = −1
2

(f ′(u)u2
x)x.

Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2
x(x, t)dx + 2

∫ t

0

∫ ∞
−∞

u2
x(x, s)dxds

≤
∫ ∞
−∞

u2
0x(x)dx + C

∫ t

0

∫ ∞
−∞
|ux|3(x, s)dxds. (2.5)

Differentiating (2.1) with respect to t and then multiplying by ut, one has(
u2
t

2

)
t

+ u2
t +

1
2
f ′′(u)uxu2

t = −1
2

(f ′(u)u2
t )x.

Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2
t (x, t)dx + 2

∫ t

0

∫ ∞
−∞

u2
t (x, s)dxds

≤
∫ ∞
−∞

u2
0t(x)dx + C

∫ t

0

∫ ∞
−∞

(|ux|u2
t )(x, s)dxds

≤ C
∫ ∞
−∞

(u2
0 + u2

0x)(x)dx + C

∫ t

0

∫ ∞
−∞

(|ux|u2
t )(x, s)dxds. (2.6)

Here we have have used the notation u0t(x) = ut(x, 0), and estimated this
quantity by (2.1). Differentiating (2.1) with respect to xx and then multiplying
by uxx, one has(

u2
xx

2

)
t

+ u2
xx + 2f ′′(u)uxu2

xx + f ′′′(u)u3
xuxx = −1

2
(f ′(u)u2

xx)x.
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Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2
xx(x, t)dx + 2

∫ t

0

∫ ∞
−∞

u2
xx(x, s)dxds

≤
∫ ∞
−∞

u2
0xx(x)dx + C

∫ t

0

∫ ∞
−∞

(|uxu2
xx|+ |u3

xuxx|)(x, s)dxds

≤ C
∫ ∞
−∞

u2
0xx(x)dx + C

∫ t

0

∫ ∞
−∞

(|uxu2
xx|+ u6

x)(x, s)dxds, (2.7)

where we used the inequality,

ab ≤ δa2 + b2/(4δ). (2.8)

The left hand side of (2.7) is understood to be the expression two lines above;
for compactness, we absorbed the estimation term δu2

xx, and did not rewrite this
left hand side. We employ this technique throughout the proof.

Differentiating (2.1) with respect to xt and then multiplying by uxt, one has(
u2
xt

2

)
t

+u2
xt+

3
2
f ′′(u)uxu2

xt+f ′′(u)utuxxuxt+f ′′′(u)u2
xutuxt = −1

2
(f ′(u)u2

xt)x.

Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2
xt(x, t)dx + 2

∫ t

0

∫ ∞
−∞

u2
xt(x, s)dxds

≤
∫ ∞
−∞

u2
0xt(x)dx + C

∫ t

0

∫ ∞
−∞

(|uxu2
xt|+ |utuxxuxt|+ |u2

xutuxt|)(x, s)dxds

≤ C
∫ ∞
−∞

(u2
0x + u4

0x + u2
0xx)(x)dx

+C
∫ t

0

∫ ∞
−∞

(|uxu2
xt|+ u2

tu
2
xx + u4

xu
2
t )(x, s)dxds, (2.9)

where we used the inequality (2.8) and (2.1), and the notation, u0xt = uxt(x, 0).
Similarly, differentiating (2.1) with respect to tt and then multiplying by uxt,

one has(
u2
tt

2

)
t

+u2
tt+

1
2
f ′′(u)uxu2

tt+ 2f ′′(u)utuxtutt+ f ′′′(u)uxu2
tutt = −1

2
(f ′(u)u2

tt)x.

Integrating over R× [0, t), t ≤ t0 leads to∫ ∞
−∞

u2
tt(x, t)dx + 2

∫ t

0

∫ ∞
−∞

u2
tt(x, s)dxds

≤
∫ ∞
−∞

u2
0tt(x)dx + C

∫ t

0

∫ ∞
−∞

(|uxu2
tt|+ |utuxtutt|+ |uxu2

tutt|)(x, s)dxds
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≤ C
∫ ∞
−∞

(u2
0xx + u4

0x + u4
0 + u2

0x + u2
0)(x)dx

+C
∫ t

0

∫ ∞
−∞

(|uxu2
tt|+ u2

tu
2
xt + u2

xu
4
t )(x, s)dxds, (2.10)

where we used the inequality (2.8) and (2.1), and the notation, u0tt = utt(x, 0).
Adding (2.4)–(2.7) and (2.8)–(2.10), one has∫ ∞

−∞
(u2 + u2

x + u2
t + u2

xx + u2
xt + u2

tt)(x, t)dx

+2
∫ t

0

∫ ∞
−∞

(u2 + u2
x + u2

t + u2
xx + u2

xt + u2
tt)(x, s)dxds

≤ C
∫ ∞
−∞

(u2
0 + u4

0 + u2
0x + u4

0x + u2
0xx)(x)dx

+C
∫ t

0

∫ ∞
−∞

[u2
xu

2
t (u

2
t + u2

x) + u6
x + |ux|(u2

x + u2
t + u2

xx + u2
xt + u2

tt)

+u2
t (u

2
xx + u2

xt)](x, s)dxds

≤ C‖u0‖2H2(R) + Cε

∫ t

0

∫ ∞
−∞

(u2
x + u2

t + u2
xx + u2

xt + u2
tt)dxds. (2.11)

For sufficiently small ε > 0, one has from (2.11) that

[N(t)]2 =
∫ ∞
−∞

(u2 + u2
x + u2

t + u2
xx + u2

xt + u2
tt)(x, t)dx

+ 2
∫ t

0

∫ ∞
−∞

(u2 + u2
x + u2

t + u2
xx + u2

xt + u2
tt)(x, s)dxds

≤ C‖u0‖2H2(R). (2.12)

Notice that C does not depend upon ε if the latter is sufficiently small. From
the local existence and uniqueness theorem, there exists an interval [0, t0) such
that (2.1) has a unique smooth solution. It follows from the Sobolev inequality
that

‖u‖C1(R×[0,t0)) ≤ Γ sup
0≤t≤t0

N(t),

where Γ is a positive constant. Choose ε0 such that

e0 ≤
ε

Γ
√
C
.

Then the estimate (2.12) implies

N(t) ≤ ε/Γ,

as we assume a priori, which implies (2.3). By a technique developed fully in
the next sections, we can apply the above arguments again, and continue the
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local solution to the global solution in [0, ∞) by use of the estimate (2.12).
Alternatively, if one wishes to use only the information already derived, one can
assume that continuation has been carried out maximally, and then use the C1

estimates to continue locally from classical conservation law principles. This
contradiction ensures the global continuation.

Therefore, we have proved the existence of the global smooth solution u
satisfying

u ∈ L2([0,∞);H2(R)); ‖u‖C(R)(t)→ 0, when t→∞.

This completes the proof. 2

3 Global Smooth Solutions of the Inviscid Hydrodynamic
Energy Model

In this section, we consider the inviscid hydrodynamic energy model, rewritten
from (1.8) as:

ρt + (ρv)x = 0, (3.1)

(mρv)t + (mρv2 + ρT )x = eρφx −
mρv

τp
, (3.2)

Et + (vE + vρT )x − (κTx)x = eρvφx −
E − 3

2ρT

τw
, (3.3)

φxx = e(ρ− d(x)), (3.4)

where ρ(x, t) > 0, v(x, t), T (x, t), φ(x, t), κ > 0, d(x, t) ≥ d0 > 0, e > 0, T , and m
respectively denote electron density, velocity, temperature in energy units (the
Boltzmann constant kb has been set to 1), electrostatic potential in charge units
per length (the dielectric has been set to 1), thermal conductivity, doping pro-
file (background ion density), electron charge, ambient device temperature, and
effective electron mass, and

E =
3
2
ρT +

1
2
mρv2,

is the energy density for parabolic energy bands. The collision terms have been
treated classically through momentum and energy relaxation times τp > 0 and
τw > 0 (see the discussion in Section 1.2).

The existence of a global classical solution of the system (3.1)–(3.4) with
additional viscosity was proved in [30]. However, for the Cauchy problem of
(3.1)–(3.4), with large smooth initial data, it is proved in [29] that the solution
generally develops a singularity, shock waves, and hence no global classical solu-
tion exists. The next question is whether there exists a global classical solution of
(3.1)–(3.4), provided that the initial data are small, although the system (3.1)–
(3.4) does not have the viscosity term as in [30]. In this section, we address this
problem with the aid of the energy method as shown in Section 2, and prove that



12 Gui-Qiang Chen

there exists a global smooth solution of the inviscid system (3.1)–(3.4), provided
that the initial data are small.

Consider the following initial-boundary value problem with impermeable in-
sulated boundaries for (3.1)–(3.4):

(ρ, v, T )(x, 0) = (ρ0(x), τpv0(x), T + τw(T0(x) − T )), 0 ≤ x ≤ 1,
(v, Tx, φ)(i, t) = (0, 0, 0), i = 0, 1, t ≥ 0, (3.5)

Such an initial condition is natural for the drift-diffusion limit (see Section 4).
For the existence problem, this initial condition can be relaxed by modifying our
energy estimates. Note that the boundary conditions for φ are those of electric
neutrality.

In this section we use the energy method to prove the global existence,
uniqueness, and asymptotic decay of classical smooth solutions for the prob-
lem (3.1)–(3.5) without the viscosity terms. This indicates that the relaxation
term prevents the development of shock waves for smooth initial data with small
oscillation.

We remark that, in the hydrodynamic equations (3.1)–(3.4), we can assume
m = e = 1 without loss of generality. Otherwise we can rescale

(T, T , φ)→ (T/m, T/m, eφ/m),

in the first three equations and the resultant constant in the fourth equation will
not add any analytical difficulty, and hence can be assumed to equal one in our
analysis.

Using the Lagrangian coordinate (y, t) as used in [6]: y =
∫ x

0 ρ(ξ, t)dξ, we
obtain the full hydrodynamic model in Lagrangian coordinates:

(1/ρ)t − vy = 0, (3.6)
vt + (ρT )y = ρφy − v/τp, (3.7)

Tt −
2
3

(κρTy)y +
2
3
ρTvy =

2τw − τp
3τpτw

v2 − T − T
τw

, (3.8)

(ρφy)y = 1− d̃/ρ, (3.9)

with the same initial-boundary conditions:

(ρ, v, T )(y, 0) = (ρ0(x(y, 0)), τpv0(x(y, 0)), T + τw(T0(x(y, 0))− T )),
(v, Ty, φ)(i, t) = (0, 0, 0), i = 0, 1, t ≥ 0, (3.10)

where d̃(y, t) = d(x(y, t)).
Let

1/ρ− 1 = wy, v = wt, θ = T − T . (3.11)

Then, the system (3.6)–(3.9) is transformed into the following form:

wtt − θ+T
(1+wy)2wyy + 1

1+wy
θy + wt

τp
=
∫ 1

0

∫ y
η ((1− d̃)− d̃wy)dξdη, (3.12)
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θt − 2κ
3(1+wy)θyy + 2κθy

3(1+wy)2wyy + 2(θ+T )
3(1+wy)wyt + θ

τw
− (2τw−τp)w2

t

3τpτw

= 0, (3.13)

with the following initial-boundary conditions:

(w,wt, θ)(y, 0)

= (
∫ y

0

1− ρ0(x(ξ, 0))
ρ0(x(ξ, 0))

dξ, τpv0(x(y, 0)), T + τw(T0(x(y, 0))− T )), (3.14)

(w, θy)(i, t) = (0, 0), i = 0, 1, t ≥ 0. (3.15)

In the following context, we use the following notations for simplicity:

∂ = ∂1 = (∂t, ∂y), ∂2 = (∂2
tt, ∂

2
yt, ∂

2
yy), ∂3 = (∂3

ttt, ∂
3
ytt, ∂

3
yyt, ∂

3
yyy),

D = D1 = (∂0, ∂1), D2 = (∂0, ∂1, ∂2), D3 = (∂0, ∂1, ∂2, ∂3),
|∂0u|2 = |u|2, |∂1u|2 = |∂tu|2 + |∂yu|2, |∂2u|2 = |∂ttu|2 + |∂tyu|2 + |∂yyu|2,
|∂3u|2 = |∂tttu|2 + |∂ttyu|2 + |∂tyyu|2 + |∂yyyu|2,

|Dmu|2 =
m∑
j=0

|∂ju|2, m = 1, 2, 3,

and C > 0 is a universal constant and C(N) > 0 is a universal constant depend-
ing only on N .

3.1 Local Solutions

To establish the local existence for the problem (3.1)–(3.5), we apply Banach’s
contraction mapping theorem. For this purpose, we first consider the following
linear problem:

wtt − a1(y, t)wyy + a3(y, t)θy + wt/τp = f, (3.16)
θt − a2(y, t)θyy + a4(y, t)wyy + a5(y, t)wyt + a6(y, t)wt + θ/τw = 0,

(3.17)
(w,wt, θ)(y, 0) = (w0, w1, θ0)(y), (w, θy)(i, t) = (0, 0), i = 0, 1.(3.18)

Lemma 1 For t0 > 0 and 1 ≤ j ≤ 6, let

a1, a2 > 0, aj(y, t) ∈ C1([0, 1]× [0, t0]), ∂2aj(y, t) ∈ L∞([0, t0];L2(0, 1)).

Assume that the initial data satisfy

(w0y , w1)(y) ∈ H2(0, 1), θ0(y) ∈ H3(0, 1); (w0, w1, θ0y)(i) = (0, 0, 0), i = 0, 1.

Then, (3.16)–(3.18) has a unique smooth solution (w, θ) satisfying:

w(y, t) ∈ C2([0, 1]× [0, t0]), (θ, ∂θy)(y, t) ∈ C1([0, 1]× [0, t0]),
θtt(y, t) ∈ L∞([0, t0];C[0, 1]), (D3w,D2θ, ∂2θy)(y, t) ∈ L∞([0, t0];L2(0, 1)).
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Lemma 1 can be proved by applying the method of Faedo-Galerkin-Lions.
For details, see Section 8.2 of Chapter 3 in [18] . One could also use Rothe’s
method of horizontal lines.

To establish the local existence of the initial-boundary problem (3.12)–(3.15),
we modify the system (3.12)–(3.13) to avoid possible singular coefficients. Let
a(wy) be a smooth function so that a(wy) = 1

1+wy
for |wy | ≤ 1

2 and 2
3 ≤ a(wy) ≤

2 for |wy | < ∞. We also assume that θ + T ≥ T
2 . This will cause no difficulty

since we will have an a posteriori estimate with small |wy(y, t)| for small t0 > 0.

Theorem 2 Assume that initial data satisfy

(ρ0(y)− 1, v0(y)) ∈ H2(0, 1), θ0(y) ∈ H3(0, 1); (v0, θ0y)(i) = (0, 0), i = 0, 1.

Then, the problem (3.12)–(3.15) has a unique smooth solution (w, θ) satisfying

w(y, t) ∈ C2([0, 1]× [0, t∗)), (θ, ∂θy)(y, t) ∈ C1([0, 1]× [0, t∗)),
(D3w,D2θ)(y, t) ∈ L∞([0, t∗);L2(0, 1)), (∂2θy)(y, t) ∈ L2([0, t∗);L2(0, 1)),

defined on a maximal interval of existence [0, t∗). If t∗ <∞, then∫ 1

0
|(D3w,D2θ)|2dy +

∫ t

0

∫ 1

0
|∂2θy|2dyds→∞, t→ t∗. (3.19)

Proof Step 1. For positive constants t0 and N with

N2 ≥ 2{‖(w0, θ)‖2H3(0,1) + ‖w0t‖2H2(0,1)},

we define

X(N, t0) =


‖(U,Θ)‖X(N,t) ≤ N,

(U,Θ)(y, t) : (U,Ut,Θ)(y, 0) = (w0, τpv0, T + τw(T0 − T ))(y),
(U,Θy)(i, t) = (0, 0) , 0 ≤ t ≤ t0, i = 0, 1,


where

‖(U,Θ)‖2X(N,t) = sup
0≤t≤t0

∫ 1

0
|(D3U,D2Θ)|2dy +

∫ t

0

∫ 1

0
|∂2Θy|2dyds.

Let (U,Θ) ∈ X(N, t0). Consider the following linear system (3.16)–(3.17)
with initial-boundary data,

(w,wt, θ)(y, 0) = (w0, τpv0, T + τw(T0 − T ))(y), 0 ≤ y ≤ 1, (3.20)
(w, θy)(i, t) = (0, 0), 0 ≤ t ≤ t0, i = 0, 1, (3.21)

where

a1(y, t) = (Θ + T )a(Uy), a2(y, t) = 2κa(Uy)/3, a3(y, t) = a(Uy),

a4(y, t) =
2κΘy

3
a2(Uy), a5(y, t) =

2(Θ + T )
3

a(Uy), a6(y, t) =
(τp − 2τw)Ut

3τpτw
.

(3.22)

All coefficients of (3.22) in the equations (3.16)–(3.17) satisfy the conditions
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of Lemma 1. Thus, for every (U,Θ) ∈ X(N, t0), the problem (3.16)–(3.17) and
(3.20)–(3.21) has a unique solution (w, θ) ∈ X(M, t0) for certain M ≥ N > 0.
Now we define a map F by solving (3.16)–(3.17) and (3.20)–(3.21), i.e., (w, θ) =
F (U,Θ).

Step 2. To show that there exists t̃ ≤ t0 such that F maps X(N, t̃) into itself,
we need a priori estimates. Since (w, θ) ∈ X(M, t0),M ≥ N > 0, it suffices to
prove that there exists t̃ ≤ t0 such that (w, θ) ∈ X(N, t̃).

Multiply (3.16) and (3.17) by wt and θ, respectively. Differentiate (3.16),
(3.17) with respect to t and multiply by wtt, θt, respectively. Differentiate (3.16),
(3.17) with respect to y and multiply by wyt, θy, respectively. Then we differen-
tiate (3.16), (3.17) with respect to tt and multiply by wttt, θtt, respectively. Also
we take second derivatives of (3.16) and (3.17) with respect to yt and multiply
by wytt, θyt, respectively; and take derivatives of (3.16) and (3.17) with respect
to yy and y, and multiply by a1wyyt + f , θyyy, respectively. Finally we take
derivatives of (3.16) with respect to yy and multiply by (a1wyyt + f)t. We then
use integration by parts and the elementary inequality: αβ ≤ 1

2 (α2 + β2), to
obtain the following energy inequality:

1
2

∫ 1

0

[
w2
t + a1|D2wy |2 + |D2wt|2 + |D2θ|2

]
dy

+
∫ t

0

∫ 1

0

[
1
τp
|D2wt|2 +

1
τw
|D2θ|2 + a2|D2θy|2

]
dyds

≤ I(0) + C

∫ t

0

∫ 1

0

[
|D(Dw, θ)|(

6∑
j=1

|∂2aj |+ |∂a4|)|D2(Dw, θ, θy)|+ |D2f ·D2wt|

+(
∑
j 6=4

(|aj |+ |∂aj |) + |a4|)|D2(Dw, θ, θy)|2
]
dyds, (3.23)

where I(0) is the value of the first line above, in (3.23), evaluated at t = 0.
Since (U,Θ) ∈ X(N, t0) and (w, θ) ∈ X(M, t0), it follows from Sobolev’s

inequality that

‖(D2U,DΘ)‖C([0,1]×[0,t0)) ≤ CN, ‖(D2w,Dθ)‖C([0,1]×[0,t0)) ≤ CM.

Then,∫ t

0

∫ 1

0
|a1y|(w2

t + w2
y)dyds =

∫ t

0

∫ 1

0
|Θya(Uy) + (Θ + T )a′(Uy)Uyy|(w2

t + w2
y)dyds

≤ C(N)
∫ t

0

∫ 1

0
(w2

t + w2
y)dyds ≤ C(N)M2t.

Every term on the right hand side of (3.20) involving a4, aj, ∂aj , j 6= 4, can be
handled in a similar way.

To estimate the other terms we use a slightly different technique. For exam-
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ple, consider ∫ t

0

∫ 1

0
|a5tt|θtt||wyy|dyds,

where

a5tt =
2κ
3

Θytta
2 + 4Θytaa

′Uyt + 2Θy(a′)2U2
yt + 2Θyaa

′′U2
yt + 2Θyaa

′Uytt.

Since (U,Θ) ∈ X(N, t0) and (w, θ) ∈ X(M, t0), we have∫ t

0

∫ 1

0
|a5ttθttwyy|dyds

≤ C(N)
(∫ t

0

∫ 1

0
|θttwyy|2dyds

)1/2

‖D3(U,Θ)‖L2([0,1]×[0,t0])

≤ C(N)NM
(∫ t

0

∫ 1

0
w2
ttdyds

)1/2

≤
√
tC(N)MN.

Similarly, we can estimate the terms involving the second derivatives of aj .
Then, it follows from (3.23) that∫ 1

0
(|D3w|2 + |D2θ|2)dy +

∫ t

0

∫ 1

0
(|D2wt|2 + |D2θ|2 + |D2θy|2)dyds

≤ I(0) +M2C(N)(t+
√
t) ≤ N2

2
+M2C(N)(t +

√
t). (3.24)

Now choose t̃ sufficiently small so that M2C(N)(t +
√
t) ≤ N2

2 . We then have
(w, θ) ∈ X(N, t̃).

Step 3. Now we show F is a contraction map in X(N, t̃) for sufficiently small
t̃ ≤ 1.

Let (U,Θ), (Û , Θ̂) ∈ X(N, t0). Then (w, θ) = F (U,Θ), (ŵ, θ̂) = F (Û , Θ̂),
and (w − ŵ, θ − θ̂) satisfies

(w − ŵ)tt − a1(w − ŵ)yy + a3(θ − θ̂)y +
1
τp

(w − ŵ)

= (f − f̂) + (a1 − â1)ŵyy − (a3 − â3)θ̂y,

(θ − θ̂)t − a2(θ − θ̂)yy + a4(w − ŵ)yy + a5(w − ŵ)yt + a6(w − ŵ)t +
1
τw

(θ − θ̂)

= (a2 − â2)θ̂yy − (a4 − â4)ŵyy − (a5 − â5)ŵyt − (a6 − â6)ŵt.

In a manner similar to deriving the energy estimates required for (3.24), and
with the aid of Gronwall’s inequality, we can obtain

‖(w − ŵ, θ − θ̂)‖X(N,t̃) ≤ t̃C(N)‖(U − Û ,Θ− Θ̂)‖X(N,t̃).
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Choose t̃ ≤ 1 sufficiently small such that 0 < t̃C(N) < 1. Thus

F : X(N, t̃)→ X(N, t̃)

is a contraction mapping on X(N, t̃) for sufficiently small t̃ > 0.
The final step is to apply Banach’s Contraction Mapping Theorem. We see

that F has a unique fixed point in X(N, t̃). That is, (3.14)–(3.15) has a unique
smooth solution (w, θ) on 0 ≤ t ≤ t̃. Let [0, t∗) denote the maximal interval of
existence of this solution. If t∗ <∞ and (3.19) is not satisfied, then

sup
0≤t≤t∗

∫ 1

0
(|D3w|2 + |D2θ|2)dy +

∫ t

0

∫ 1

0
|∂2θy|2dyds <∞.

This inequality and use of the second equation in (3.16) imply that (w, θ)(y, t∗)
satisfies the conditions for initial data in Theorem 2. Hence, the local existence
can be continued to the interval [0, t∗ + ε) for some ε > 0. This contradicts the
fact that [0, t∗) is the maximal interval of existence. This completes the proof of
Theorem 3.1. 2

3.2 A Priori Estimates via the Energy Method

In this section we use the energy method to make the a priori estimates for
establishing the global existence of smooth solutions for the full hydrodynamic
model (3.1)–(3.4). To achieve this, we derive the a priori estimates for the
solution of (3.12)–(3.15), which is equivalent to (3.1)–(3.5).

Theorem 3 Assume that

0 < δ ≤ ρ0(x) ≤M, (v0, θ0x)(i) = (0, 0), i = 0, 1,
|2τw − τp| ≤M

√
τwτp.

Then, given sufficiently small ε > 0, there exists ε0(ε) > 0 such that, when

‖(ρ0 − 1, v0, d− 1)‖H2(0,1) + ‖T0 − 1‖H3(0,1) + τp ≤ ε0,

we have, for any time interval (0, t0) on which the solution exists,

‖(D2w,D2wy, Dθ,Dθy, τpwttt, τpθtt‖L2(0,1)(t) + ‖(θy, ∂θyy)‖L2((0,1)×(0,t0))

+
1
τp
‖(Dwt, ∂wyy, Dθ,Dθy)‖L2((0,1)×(0,t0))

+τp‖(∂2
ywy, wttt, Dyθtt)‖L2((0,1)×(0,t0)) ≤ ε. (3.25)

Proof We start with the following equations from (3.12)–(3.13):

wtt − a(wy)2(θ + T )wyy + a(wy)θy + wt
τp

+ w −
∫ 1

0 wdy = f, (3.26)

θt − αa(wy)θyy + αa(wy)2θywyy + βa(wy)(θ + T )wyt + θ
τw

+ b
w2
t√

τpτw
= 0,

(3.27)
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with the initial-boundary conditions (3.14)–(3.15), where

f(y, t) =
∫ 1

0

∫ y

η

(1− d̃)(1 + wy)dξdη, (3.28)

and

a(wy) =
1

1 + wy
, b = −2τw − τp

3√τpτw
, α = 2κ/3, β = 2/3.

Then, from the assumptions of Theorem 3,

|b| ≤ C.

We first assume that, for sufficiently small ε,

‖(w,wy , θ)‖C1([0,1]×[0,t0)) ≤ ε ≤
1
2

min(1, T ), (3.29)

which implies
T/2 ≤ T ≤ 3T/2,

and
1/2 ≤ wy + 1 ≤ 3/2 ⇐⇒ 2/3 ≤ ρ(x, t) ≤ 2.

Then we prove that there exists an ε0 > 0, independent of t0, such that, when

‖(ρ0 − 1, v0, d− 1)‖H2(0,1) + ‖T0 − 1‖H3(0,1) + τp ≤ ε0,

the estimates (3.29) can be achieved. With this apriori argument, a(wy) is a C∞

function of one variable wy such that |wy | ≤ ε < 1/2 and 2/3 ≤ a(wy) ≤ 2.
We have from (3.26) and (3.14)–(3.15) that

((θ + T )a2wyy + f +
∫ 1

0
wdy)(i, t) = 0, i = 0, 1. (3.30)

We now derive the energy estimates. We first perform the following calcula-
tions: (3.26)× (τpK2w), (3.26)× (K2wt), (3.26)× (−τpwyy), (3.26)t × (K2wtt),
(3.26)y×(K2wyt), (3.26)tt×(τ2

pwttt), (3.26)yt×wytt, (3.26)yy×(τ((θ+T )a2wyy+
f +

∫ 1
0 wdy)), (3.26)yy × (K((θ + T )a2wyy + f +

∫ 1
0 wdy)t), (3.27) × (K2θ),

(3.27)×θt, (3.27)y×θy, (3.27)tt× (τ2
wθtt), (3.27)yt×θyt, and (3.27)y×θyyy; then

integrate over [0, 1] × [0, t], where K = K(γ, k) ≥ 1 is determined later. Then
we integrate by parts with the aid of the boundary conditions (3.15) and (3.30),
followed by use of some elementary inequalities such as

ab ≤ δa2 +
b2

4δ
, |w| =

∣∣∣∣∫ 1

0
wydy

∣∣∣∣ ≤ (∫ 1

0
w2
ydy

)1/2

. (3.31)

Finally, we add and re-group all the resulting inequalities from previous calcu-
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lations and estimates together, and use τp ≤ 1/2 to obtain:∫ 1

0
[K2|(D2w, θ)|2 +K(((θ + T )a2wyy + f)2

y + (wyy +
f +

∫ 1
0 wdy

(θ + T )a2
)2
t )

+|D(wyt, θ, θy)|2 + τ2
p (w2

ttt + θ2
tt)](y, t)dy

+
∫ t

0

∫ 1

0
[K2(τpw2

y + θ2
y +

1
τp
|(Dwt, wytt, θ)|2) +

1
τp

(Kw2
yyt + |∂(θ, θy)|2)

+τp(w2
yy + θ2

tt + |∂wtt|2 + ((θ + T )a2wyy + f)2
y) + |∂θyy|2 + τpθ

2
ytt]dyds

≤ C
∫ 1

0
{K2|(D2w, θ)|2 +K[((θ + T )a2wyy + f)2

y + (wyy +
f

(θ + T )a2
)2
t

+(|θt|+ |wyt)(|wyy|+ |f |+
∫ 1

0
|w|dy) ×

×(|wyyt|+ |ft|+
∫ 1

0
|wt|dy + (|f |+

∫ 1

0
|w|dy)(|θt|+ |wyt|))]

+|D(wyt, θ, θy)|2 + τ2
wθ

2
tt + |Dtf |2 + τ2

pw
2
ttt + w2

yy(θ2
t + w2

yt)}(y, 0)dy

+C
∫ 1

0
[τ2
pK

2w2
t +Kw2

yt((θ + T )a2wyy + f +
∫ 1

0
wdy)2

y + w2

+τ2
p (w2

yt + w2
yyt) + f2

t + w2
ytw

2
yy + τp|wyytf |

+τ2
p (θ2

tw
2
yy + θ2

ytw
2
yy + θ2

yw
2
yyt + w2

ytθ
2
yw

2
yy)]dy

+C
∫ t

0

∫ 1

0
{K2[τp(|(D2wt, D

2θy, θyt)|2 + τp|∂yf |2 + (w2 + w2
y + w2

yt)w
2
yy)

+w2
y|wyt|+ w4

t + τpw
4
yy + θ2

y|(w,Dwy , ∂3
yw)|2

+(|θt|+ |wyt|)w2
yt + |θ|(|wywyt|+ |wyywyyt|)]

+K[
1
τp

(
w2
t + f2

t + τpf
2
tt + w2

yy(w2
yt + θ2

t ) + (f +
∫ 1

0
wdy)2(w2

yt + θ2
t )
)

+τpw2
yt(f

2
t +

∫ 1

0
w2
t dy) + |wyy|(|ft|+

∫ 1

0
|wt|dy)

+(|wyt|+ |θt|)(w2
yyt + w2

ytw
2
yy + f2

t +
∫ 1

0
|wt|2dy + w2

yt + θ2
t )

+|(θ + T )a2wyy + f +
∫ 1

0
wdy|(τp(w2

ytt + w4
yt + θ2

tt + θ2
tw

2
yt)

+
1
τp

(w2
yyt + w2

ytw
2
yy + f2

t + w2
t + (f +

∫ 1

0
wdy)2(w2

yt + θ2
t ))]

+τpw2 + τpw
2
yt + |Dwyt|2 + τpθ

2
yyy + τ2

pw
2
ttt + τ3

p f
2
tt

+τ3
p (w2

yy|Dwtt|2 + w2
yt(w

4
y + w2

yyw
2
yt + w2

ytt)) + τpw
2
yyt|Dwy|2

+τ2
p (w4

tt + w2
tw

2
ttt) + w2

yt(w
2
yy + w2

tt) + w2
tw

2
ytt
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+θ2
y[τ

3
p (w2

ytt + w4
yt + θ2

yw
2
ttt) + w2

yt + w2
yyt + w2

yyy + w4
yy + w2

ytw
2
yy]

+θ2
t [τ

3
p (w2

yyt + w2
ytt + w2

yyw
2
yt + w4

yt) + w2
yt] + τ3

p |θt|w2
ytt

+w2
yy[τ3

p (θ2
tt + θ2

ytt) + τp(θ2
yt + θ2

yy + θ2
yyt + θ2

yyy)]

+w2
yt[τ

3(θ2
yt + θ2

yyt + w2
ytθyy) + θ2

yy] + τ3
wθ

2
yyw

2
ytt

+(|wyt|+ |θt|)w2
yyt + τ2

w|θttt|(|θywyyt|+ |θytwyy|+ |wytwyyθy|)
+|wyywyyt|(|θ|+ τp|θt|) + |wyyt|(|wyy |w2

yt + |ftt|+ |wyyθtt|)

+τ2
p |wyt|w2

ytt + (|wyy|+ τp|wyyt|)(|ft|+
∫ 1

0
|wt|dy)

+
1
τp

(w2
yt|Dwy|2 + w2

t |(Dwt, wyyt)|2)}dyds. (3.32)

Using the elementary inequalities (3.31) and the a priori assumption (3.29),
taking K ≥ K0(C, T ) and τp ≤ τ0(C, T ,K) for sufficiently large K0 ≥ 1 and
small τ0 ≤ 1/2, and making tedious calculations, we have from (3.32):

E1(t) +
∫ t

0
G1(s)ds ≤ CK2(‖(ρ0 − 1, v0, d1)‖2H2(0,1) + ‖T0 − 1‖2H3(0,1))

+εCK2(E1(t) +
∫ t

0
G1(s)ds), (3.33)

where

E1(t) =
∫ 1

0
[K2|(D2w, θ)|2 +K|Dwyy|2 + |D(wyt, θ, θy)|2 + τ2

p (w2
ttt + θ2

tt)]dy,

G1(t) =
∫ 1

0
[K2(τpw2

y + θ2
y +

1
τp
|(Dwt, wytt, θ)|2) + τp(w2

yy + θ2
tt + |(∂twtt, wyyy)|2)

+
1
τp

(Kw2
yyt + |∂(θ, θy)|2) + |∂θyy|2 + τpθ

2
ytt]dyds. (3.34)

In the process of these calculations, we used the following identities:

d̃t = −wtdx, d̃y = dx/ρ, d̃tt = −w2
t dxx − wttdx,

and the following inequalities:

|fy| ≤ |1− d̃|+ |(d̃− 1)wy|, |fyt| ≤ |wyt(d̃− 1)|+ |(wy + 1)wtdx|,

|ft| ≤
∫ 1

0
|fyt|dy +

∫ 1

0
|wyt|dy

∫ 1

0
|fy|dy +

∫ 1

0
|wy + 1|dy

∫ 1

0
|fyt|dy,

|ftt| ≤ (2 +
∫ 1

0
|wy|dy)

∫ 1

0
(|wy + 1|(w2

t |d̃xx|+ |wttd̃x|) + 2|wytwtd̃x|

+|d̃− 1||wytt|)dη +
∫ 1

0
|wytt|

∫ 1

0
|fy|dy + 2

∫ 1

0
|wyt|

∫ 1

0
|fyt|dy.
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Then, if ε is sufficiently small, we have

E(t) +
∫ t

0
G(s)ds ≤ C(‖(ρ0 − 1, v0, d− 1)‖2H2(0,1) + ‖T0 − 1‖2H3(0,1)), (3.35)

where

E(t) =
∫ 1

0

(
|D2(w,wy)|2 + |D(θ, θy)|2 + τ2

p (w2
ttt + θ2

tt)
)
dy,

G(t) =
∫ 1

0

(
1
τp

(|(Dwt, ∂wyy)|2 + |D(θ, θy)|2)

+τp|(∂2
ywy , wttt)|2 + |(θy, ∂θyy)|+ τp|∂yθtt|2

)
dy. (3.36)

By the Sobolev inequality we obtain

‖D(Dw, θ)‖C([0,1]×[0,t0)) ≤ Γ sup
0≤t≤t0

√
E(t),

where Γ is a positive constant. Hence if

‖(ρ0 − 1, v0, d0 − 1)‖H2(0,1) + ‖θ0‖H3(0,1) ≤
ε

Γ
√
C
, (3.37)

we have

‖D(Dw, θ)‖C([0,1]×[0,t0)) ≤ Γ
√
C(‖(ρ0 − 1, v0, d0 − 1)‖H2(0,1) + ‖θ0‖H3(0,1)) ≤ ε

and the assumption for the function a(wy) is satisfied. This completes the proof
of Theorem 3. 2

3.3 Global Existence, Uniqueness, and Asymptotic Decay

Theorem 4 Assume that

0 < δ ≤ ρ0(x) ≤M, (v0, θ0x)(i) = (0, 0), i = 0, 1, |2τw − τp| ≤M
√
τwτp.

Also, assume that the following norms,

‖(ρ0 − 1, v0, d− 1)‖H2(0,1), ‖θ0‖H3(0,1),

and both relaxation times are sufficiently small. Then, (3.1)–(3.4) has a unique
global smooth solution (ρ, v, T, φ)(x, t) satisfying

‖(ρ− 1, ρx, ρt, v, vx, vt, T − T , Tx, Tt)‖C[0,1](t)→ 0 when t→∞.

Proof We now use the continuation argument to prove the global existence.
From the local existence and uniqueness theorem, there exists an interval [0, t0)
such that (3.1)–(3.4) has a unique smooth solution. Then, Theorem 3 indicates
that

E(t0) ≤ ε/Γ.
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At this point, we can apply the local existence and uniqueness theorem in pre-
vious sections to continue the solution to an interval [t0, t1], t0 < t1. We can
continue this process onto [0,∞) unless the sequence {tn} converges to a finite
number t∗ < ∞ as n → ∞. For such a t∗ we must have a maximal interval
of existence [0, t∗); i.e., (3.19) holds. This contradicts a priori estimate (3.35).
Thus there can be no such t∗ <∞ and

‖(wy, θ)‖C([0,1]×[0,∞)) ≤ ε

holds. Then we have shown the existence of unique global smooth solution
satisfying

(D3w,D2θ) ∈ L2([0,∞);L2(0, 1));
(D2w,Dθ)(y, t)→ 0 uniformly as t→∞.

By (3.11), we obtain

‖(ρ− 1, ρx, ρt, v, vx, vt, T − T , Tx, Tt)‖C[0,1](t)→ 0 when t→∞.

This completes the proof of Theorem 4. 2

4 Singular Relaxation Limit to Drift-Diffusion Equations

In this section we study the singular limit of (3.1)–(3.4) when the relaxation
times τw and τp tend to zero with 0 ≤ 2τw − τp ≤ M

√
τpτw. We first scale the

variables (ρ, v, T, φ), and then show that the limit functions satisfy the drift-
diffusion system as τp, τw → 0.

Let

ρτ (x, s) = ρ

(
x,

s

τp

)
, vτ (x, s) =

1
τp
v

(
x,

s

τp

)
,

θτ (x, s) =
1
τw

(
T

(
x,

s

τw

)
− T

)
,

φτ (x, s) = φ

(
x,

s

τp

)
, dτ (x, s) = d

(
x,

s

τp

)
.

Then (3.1)–(3.4) is transformed as follows.

ρτs + (ρτvτ )x = 0, (4.1)

τ2
p v

τ
s + τ2

p v
τvτx +

1
ρτ

((τwθτ + T )ρτ )x + vτ = φτx, (4.2)

τ2
wθ

τ
s −

2κτw
3ρτ

θτxx + τpτwv
τθτx +

2τp
3

(τwθτ + T )vτx −
τp(2τw − τp)

3τw
(vτ )2 + θτ = 0,

(4.3)
φτxx = ρτ − dτ , (4.4)
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with the following initial-boundary data:

(ρτ , vτ , θτ ) = (ρ0(x), v0(x), T0(x)− T ),
(vτ , θτx, φ

τ )(i, s) = 0, i = 0, 1, s ≥ 0.

We assume that initial data (ρ0(x), v0(x), T0(x) − T ) are independent of τp and
τw.
Theorem 5 Assume that the conditions of Theorem 2 hold. Let (ρ, v, T, φ) be
the solution of (3.1)–(3.4) constructed in Theorem 4. Then there exists N(x, s)
such that

(ρτ , φτx)→ (N,
∫ 1

0

∫ x

η

(N(ξ, s)− d(ξ))dξdη), a.e. as τp, τw → 0.

The limit function N satisfies the drift-diffusion equation,

Ns +
(
N

∫ 1

0

∫ x

η

(N(ξ, s)− d(ξ))dξdη −Nx
)
x

= 0,

in the sense of distributions.
Proof To show the convergence of subsequence {ρτ , vτ , θτ}, we need some
estimates which are independent of τp and τw.

Notice that the scaling sequence (ρτ , vτ , θτ , φτ ) satisfies (4.1)–(4.4). Then the
relations of the scaling sequence and the function (w, θ), satisfying (3.26)–(3.27),
are as follows, where we use τ for both τp and τw:

ρτ (x, s) =
1

wy(y(x, sτ ), sτ ) + 1
, vτ (x, s) =

1
τ
wt
(
y
(
x,
s

τ

)
,
s

τ

)
,

θτ (x, s) =
1
τ
θ
(
y
(
x,
s

τ

)
,
s

τ

)
,

ρτx(x, s) = −(ρτ )3wyy
(
y
(
x,
s

τ

)
,
s

τ

)
, vτx(x, s) =

1
τ
ρτwyt

(
y
(
x,
s

τ

)
,
s

τ

)
,

ρτxx(x, s) = −(ρτ )4wyyy
(
y
(
x,
s

τ

)
,
s

τ

)
+ 3(ρτ )5

(
wyy

(
y
(
x,
s

τ

)
,
s

τ

))2
,

φτ (x, s)x =
∫ 1

0
(wy + 1)

(∫ y(x, sτ )

η

(
1− (wy + 1)d̃

)(
ξ,
s

τ

)
dξ

)
dη,

φτ (x, s)xx = ρτ (x, s)− d(x),

φτ (x, s)xs = −(ρτ − d)vτ (x, s) +
∫ 1

0

wyt
τ

(∫ y

η

(
1− (wy + 1)d̃

)(
η,
s

τ

)
dη

)
dy

−
∫ 1

0
(wy + 1)

(∫ y

η

1
τ

(
wytd̃− d̃x(wy + 1)wt

)(
ξ,
s

τ

)
dξ

)
dη.

Therefore,

‖(ρτ , φτ , φτx)‖L∞+
∫ ∞

0

∫ 1

0
[(vτ )2+(θτ )2+(ρτs)2+(ρτx)2+(φτxx)2+(φτxs)

2]dyds ≤ C,
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where C > 0 is independent of τ .
Thus, there exists N(x, s) such that

(ρτ , φτx)→ (N,Φx) a.e. as τ → 0,

where Φx(x, s) =
∫ 1

0

∫ x
η (N(ξ, s)− d(ξ))dξdη.

From (3.1)–(3.2),∫ ∫
(ρτψs + ρτvτψx)dxds = 0,

τp

∫ ∫
(ρτvτψxs + τpρ

τ (vτ )2ψxx)dxds +
∫ ∫

ρτ (τwθτ + T )ψxxdxds

=
∫ ∫

(ρτvτ − ρτφτx)ψxdxds,

for all ψ ∈ C∞0 (R × R+). That is, for any test function ψ(x, t) ∈ C∞0 ((0, 1) ×
(0,∞)), the relation,∫ ∫

(ρτψs + ρτφτxψx + Tρτψxx)dxds

= −
∫ ∫

(τ2
pρ

τvτψxs + (τpρτ (vτ )2 + τwρ
τθτ )ψxx)dxds,

holds. Let τp, τw → 0. Since

‖ρτ‖L∞((0,1)×(0,∞)) + ‖(vτ , θτ )‖L2((0,1)×(0,∞)) ≤ C,

where C is independent of τp, τw, and t, then∫ ∫
(Nψs +NΦxψx + TNψxx)dxds = 0.

This completes the proof of Theorem 5. 2
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