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Abstract
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linear hyperbolic systems. The time interval is invariant under the inviscid limit to
the Euler/Poisson-Nernst-Planck system.

Key words: Navier-Stokes Systems, Poisson-Nernst Planck Systems, Electrodiffusion in
a Moving Electrolyte, Semigroups of Operators, Resolvent Stability
AMS(MOS) Subject Classification: Primary: 35K50, 35K90, 35Q30; Secondary:
47N60, 76D05, 82D15

∗Department of Mathematics, Northwestern University, Evanston, Il 60208

1



1 Introduction

Modeling of electrodiffusion in electrolytes is a problem of major scientific interest [18]. At
the present time, it finds application in biology (ion channels), chemistry (electro-osmosis),
and pharmacology (transdermal iontophoresis). We shall study such a model in this paper,
where self-consistent charge transport is represented by the Poisson-Nernst-Planck system,
and the fluid motions by a Navier-Stokes system with forcing terms.

1.1 The Fluid/Transport System

The usual Poisson-Nernst-Planck model on a domain in Rm may be written for M carriers
with concentration ni, current density ~Ji, (signed) charge ei, i = 1, · · · ,M , permanent
charge d = d(x), and dielectric ε, as follows:

ei∂ni

∂t
+∇· ~Ji = 0, (1.1)

~E = −∇φ, (1.2)

∇· (ε∇φ) = −
∑

eini − d (Poisson equation). (1.3)

In the case of two carriers (anion and cation carriers), that is, for M = 2, n1 = n, e1 = −e,
and n2 = p, e2 = e, the classical drift-diffusion theory gives the following constitutive
current relations:

~Jn = eDn∇n− eµnn∇φ, (1.4)

~Jp = −eDp∇p− eµpp∇φ. (1.5)

Note that the displacement current is omitted from the current densities, and that the
drift terms (called conduction current terms),

−eµnn∇φ, −eµpp∇φ,

are proportional to the respective drift velocities.
The use of the Einstein relations is common. These link the mobility coefficients µn, µp,

the diffusion coefficients Dn, Dp, and the ambient temperature, T0:

Dn = (kT0/e)µn, (1.6)

Dp = (kT0/e)µp. (1.7)

In the velocity extended version on Rm,m ≥ 2, the convection terms,

−e~vn, e~vp,

are added to ~Jn, ~Jp, respectively, where ~v is the velocity of the electrolyte. Thus, the
current densities are given by

~Jn = eDn∇n− eµnn∇φ− e~vn, (1.8)

~Jp = −eDp∇p− eµpp∇φ + e~vp. (1.9)
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The velocity of the electrolyte is determined by the Navier-Stokes equations:

ρ(~vt + ~v·∇~v)− η∆~v = −∇Pf − e(p− n)∇φ, (1.10)

∇·~v = 0, (1.11)

where ρ is the (mass) density of the electrolyte, Pf denotes fluid pressure, and η is the
dynamic viscosity. These equations have been introduced by Rubinstein [18]. Note that d
has been neglected in the electric ‘volume force’ term. We shall make use of the kinematic
viscosity, ν = η/ρ, in the statement of the mathematical model.

1.2 The Mathematical Model

It has been traditional since the observations of Leray in 1933–34, to consider a reduced
Navier-Stokes system, in tandem with the projection P onto divergence free distributions.
The idea, discussed fully by Temam in [19, Chapter 1, §1,2], is to solve the equation of the
pressure free part of the system, projected onto divergence free functions; it follows by the
DeRham property that the reduced system is the gradient of a function (pressure). This
reduction is also discussed in [7, pp. 34-35]. It is also required for well-posedness of the
problem that the concentrations n and p be nonnegative. This is easily handled within
the present framework as follows. One requires that

n0 ≥ α0 > 0, p0 ≥ β0 > 0, (1.12)

where n(· , 0) = n0, p(· , 0) = p0. Since the solution regularity so obtained implies that
the vector solution is uniformly continuous on [0, T ]× Rm, we may select T ′ ≤ T so that
n ≥ 0, p ≥ 0, i. , e. , the physical solution can be taken as an appropriate restriction of
the solution of the mathematical model developed here. We make this precise in Theorem
4.2. The presence of the convection terms in the current densities makes an ‘a posteriori’
nonnegativity analysis, similar to that for self-consistent drift-diffusion (see [8]), problem-
atical.

Define the m + 2-vector u by

u =


 ~v

en
ep


 . (1.13)

The initial condition for the Cauchy problem on Rm is given by,

u(· , 0) = u0,

for a given function,
u0 ∈ Hs(Rm; Rm+2),

The function spaces are defined in §3.1. We require a block system format. Thus, if
u1 denotes the first m components of u, and u2 denotes the remaining 2 components, we
rewrite the system as

du

dt
+ Au =

d

dt

[
u1

u2

]
+

[
A11 A12

0 A22

] [
u1

u2

]
=

[
F1

F2

]
= F. (1.14)
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We have permitted an external forcing term F. The nonlinear dependence of A is given
by the operator representations:

A11(u1) = −νI∆ + Pu1·∇,

A12(u2) = P[ ρ−1(−φx1 , . . . ,−φxm)T ρ−1(φx1 , . . . , φxm)T ],

A22(u1,u2) = −diag(Dn, Dp) ∆ + diag(µn∆φ,−µp∆φ)

+
m∑

i=1

diag(ui + µnφxi
, ui − µpφxi

)(∂/∂xi).

(1.15)

In the above system, the function φ has been used implicitly in its dependence upon
n, p. We make this explicit:

φ = Φ(u2), where − ε∇2φ = u2· (−1, 1)T + d. (1.16)

The assumptions on the smoothing map Φ are specified later. It is most convenient to
rewrite the entire system in operator/vector format.

If we define the diagonal matrix D by

D = diag (ν, . . . , ν,Dn, Dp), (1.17)

and the matrices ai and b by

ai(u) = diag (u1, ui + µnφxi
, ui − µpφxi

), i = 1, . . . ,m,

b(u) = b(u2) =

[
0 ρ−1(−φx1 , . . . ,−φxm)T ρ−1(φx1 , . . . , φxm)T

0 (µn∆φ, 0)T (0,−µp∆φ)T

]
,

then the system may be written,

ut −D∆u + PE(u)u = F(t,u), (1.18)

where A(u) = −D∆ + PE(u), and

E(u) =

[
m∑

i=1

ai(u)
∂

∂xi

+ b(u)

]
,P =

[
P 0
0 I2

]
, (1.19)

with I2 the identity matrix of order two. Finally, the following assumption on F is made
for consistency: PF = F. Our existence result for the Cauchy problem for (1.18) is pre-
sented in Corollary 4.1 and uniqueness in Proposition 4.2. In the following sections we
shall develop the necessary theory, which is based upon Kato’s semigroup ideas for evo-
lution systems. The principal competing theory for local existence is the classical theory,
due to Lax and Majda [17]. The latter theory, based upon symmetrization, mollification,
and linearization, is very powerful when applicable, and is accompanied by a continuation
principle, the breakdown of which is associated with shock formation or blowup. However,
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the classical theory is not as sharp as the semigroup theory in relation to the precise con-
dition available for local existence. This condition, derived by the author in the use of the
method of horizontal lines in conjunction with the semigroup theory (see (3.16) to follow)
relates: (1) the norm of the initial datum; (2) the terminal time T ; and, (3) the radius of
the admissible ball gauging the size of the solution. This local existence inequality follows
precisely from the semidiscrete method, and is also not evident from Kato’s approach via
the construction of evolution operators. Another important advantage of the semigroup
approach is the incorporation of damping or frictional forces in an advantageous manner.
This is especially significant when relaxation models are employed. Although the present
paper does not make specific use of relaxation, future work will. Finally, the semigroup
theory permits the natural passage to the inviscid limit (see Proposition 4.3).

2 A Semigroup Framework

2.1 Basic Facts

Definition 2.1. Let U be a closed linear operator with domain and range dense in a
Banach space X. Denote by R(λ, U) the resolvent (λI − U)−1 for λ in the resolvent set
ρ(U). For M > 0 and ω ∈ R denote by G(X,M,ω) the set of all operators A = −U such
that

‖[R(λ, U)]r‖ ≤ M(λ− ω)−r, r ≥ 1, λ > ω.

Finally,
G(X) = ∪ω,MG(X,M,ω).

We recall a result which gives characterizing conditions for A ∈ G(X, 1, 0) [2, p. 143].

Proposition 2.1. Suppose X is a real Hilbert space and A is a closed, densely-defined
operator on X. Then A ∈ G(X, 1, ω) if and only if

(Af, f) ≥ −ω(f, f),

and
λ ∈ ρ(A), ∀λ < −ω.

Another useful result is a perturbation result, which requires the notion of relatively
bounded perturbation. We first state the definition. Throughout the remainder of §2.1,
X is a Banach space.

Definition 2.2. Let T and A be closed linear operators on X with D(T ) ⊂ D(A). Then
A is relatively bounded with respect to T , or simply T -bounded, if there exist nonnegative
constants a, b such that

‖Au‖ ≤ a‖u‖+ b‖Tu‖, ∀u ∈ D(T ).

Moreover, the greatest lower bound of all admissible b is called the T -bound of A.
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Sufficient conditions for a perturbed operator to remain in G(X, 1, ω) are given by the
following proposition [14, Problems 2.8-2.9, p. 502].

Proposition 2.2. If T ∈ G(X, 1, ω), A ∈ G(X, 1, ω′) and A is relatively bounded with
respect to T , with T -bound < 1/2 (< 1 if X is a Hilbert space ), then

T + A ∈ G(X, 1, ω + ω′).

Next, we quote a result for perturbation by bounded linear operators [14, Theorem
2.1, p. 497], [2, Theorem 5.1, p. 179].

Proposition 2.3. Let A be in G(X,M,ω), and let B be bounded on X. Then

A + B ∈ G(X,M,ω + M‖B‖).
Finally, we describe the dynamic induced by the embedding of a smooth subspace Y .

Proposition 2.4. Suppose Y is a Banach space densely and continuously embedded in X
and S : Y 7→ X is an isomorphism. We write ‖v‖Y = ‖Sv‖X . Suppose A ∈ G(X,M,ω)
such that

A1 = SAS−1 = A + B, (2.1)

where B is a bounded linear operator on X and

D(A1) = {v : AS−1v ∈ Y }.
Then the semigroup generated by −A, restricted to Y , is the semigroup generated by the
restriction of −A to {v ∈ Y ∩ D(A) : Av ∈ Y }. In fact, Se−tAS−1 = e−tA1 holds. It
follows that A1 ∈ G(X,M,ω + M‖B‖) so that A ∈ G(Y,M, ω1), with ω1 = ω + M‖B‖.
Proof. This result follows from [7, Propositions 6.2.3 and 6.2.4], which are based on Kato’s
work [12, 13, 15]. The key idea is the equivalence of A1 ∈ G(X,M,ω + M‖B‖) with
A ∈ G(Y,M, ω + M‖B‖). Note that Proposition 2.3 implies the former.

2.2 The General Initial-Value Problem

We are interested in solving an initial value problem, in a reflexive Banach space X,

du

dt
+ A(t, u)u = F (t, u), u(0) = u0,

where A(t, u) ∈ G(X,M,ω) for u restricted to a subset of a ‘smooth’ reflexive Banach
space Y , densely and continuously embedded in X. We require the function F (t, u) to
be in Y , and we seek a solution u(t) ∈ Y, 0 ≤ t ≤ T . The derivative, du/dt, is required
to belong to an intermediate space, V . The mapping (t, u) 7→ A(t, u) is required to be
continuous into B[Y,X] and (t, u) 7→ F (t, u) is required to be strongly continuous into X.
We also require that A(t, u) and F (t, u) satisfy a (uniform in t) Lipschitz condition:

‖A(t, u)− A(t, v)‖Y,X ≤ CA‖u− v‖X , ‖F (t, u)− F (t, v)‖X ≤ CF‖u− v‖X .
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In addition, we shall require a similarity relation connecting A to A1 as in (2.1).
If ∆t is given as the ratio T/N , then the method of horizontal lines yields a semidiscrete

set of implicit equations,

A(tk, u
N
k )uN

k + (1/∆t)uN
k = (1/∆t)uN

k−1 + F (tk, u
N
k ), k = 1, . . . , N. (2.2)

If we set µ2 = 1/∆t = N/T , then the uN
k can be characterized formally as fixed points of

the mapping

Qv = QN
k v = −R(µ2 − 1,−A(tk, v))v + µ2R(µ2 − 1,−A(tk, v))uN

k−1

+R(µ2 − 1,−A(tk, v))F (tk, v). (2.3)

By repeated back substitution, one obtains the following useful formula for uN
k−1:

uN
k−1 =

k−1∏
j=1

µ2R(µ2,−A(tj, u
N
j ))u0 +

k−1∑
j=1

(µ2)k−1−j

k−1∏
i=j

R(µ2,−A(ti, u
N
i ))F (tj, u

N
j ). (2.4)

Pivotal to the entire study is the demonstration of the existence of fixed points for this
map within an appropriately smooth ball. The concept of stability proves useful.

2.3 Stable Families of Generators and Invariant Action of Q

We recall a notion due originally to Kato [10, 11] (see also [7, Definition 6.2.1]).

Definition 2.3. Let X be a Banach space, and suppose that a family A(t) ∈ G(X) of
linear operators is given on 0 ≤ t ≤ T . The family {A(t)} is said to be stable if there are
constants M and ω such that

‖
k∏

j=1

[A(tj) + λ]−1‖ ≤ M(λ− ω)−k, λ > ω, (2.5)

for any non-decreasing family {tj}k
j=1. Moreover,

∏
is time-ordered from right to left.

Stability is automatically satisfied if A(t) ∈ G(X, 1, ω). Also, stability is equivalent to
the apparently stronger property [7, Proposition 6.2.1]:

Proposition 2.5. The family {A(t)} is stable if and only if

‖
k∏

j=1

[A(tj) + λj]
−1‖ ≤ M

k∏
j=1

(λj − ω)−1, λj > ω. (2.6)

The conclusion of Proposition 2.5 holds, even if the stability criterion (2.5) is weakened
so that it is assumed to hold only for λ sufficiently large, say, λ ≥ λ0. In this case, λ0 is
even permitted to depend on the integer k in the product (2.5). This is due to the circle
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of equivalences involved in the proof of [7, Proposition 6.2.1]. We shall only require the
kind of stability defined in Proposition 2.6 to follow.

It also follows that, if Y is a smooth space as in the previous proposition, and (2.1)
holds, then A(t) is stable on Y with stability constants M,ω1, as is seen by an application
of (2.11) to follow. We shall require stability on X and Y .

For ω and ω1 introduced above, we define: ω̄ = max(ω, ω1). M ≥ 1 will have the
meaning of the previous definition. Suppose that δ and ρ are fixed positive constants, and
that

σ = 2(1 + δ)Me(1+1/ρ)(1+ω̄)T , (2.7)

where T is a fixed terminal time. We define

W̄ = {u ∈ Y : ‖u‖Y ≤ σ‖u0‖Y }, W̄0 = {u ∈ Y : ‖u‖Y ≤ σ‖u0‖Y , ‖u‖X ≤ σ‖u0‖X}.
Proposition 2.6. Suppose that ∆t = T/N is given, and a partition tj = j∆t, j =
0, . . . , N , is specified. Suppose that a family {A(t, u)} is given as in §2.2, and that
uN

1 , . . . , uN
k−1,∈ W̄0 are solutions of (2.2). Suppose that A(tj), j = 1, . . . , k, is stable on

X and Y in the sense of satisfying (2.6), for any (consecutive) subset of {tj}, where
A(tj) = A(tj, u

N
j ), j = 1, . . . , k − 1, and A(tk) = A(tk, u), for arbitrary fixed u ∈ W̄ . Sup-

pose f(t) = e(1+1/ρ)ω̄t and that F (t, u) has X-norm and Y -norm not exceeding ‖u0‖Xf(t)
and ‖u0‖Y f(t), respectively, for each 0 ≤ t ≤ T and u ∈ W̄ . If the integer N satisfies:

N

T
> [2(1 + δ−1)M + (ρ + 1)(ω̄ + 1)], (2.8)

then the mappings Q = QN
k of (2.3) are mappings of W̄0 into itself.

Proof. The proof significantly generalizes that of [6, Theorem 3.1]. Thus, for fixed N , we
assume inductively that (2.2) has a solution uN

` for ` < k, where 1 ≤ k ≤ N . We can
estimate ‖Qv‖X . From (2.3), we have, by use of the strong stability property (2.6),

‖Qv‖X ≤ M

µ2 − ω − 1
σ‖u0‖X +

Mµ2

µ2 − ω − 1

(
µ2

µ2 − ω

)k−1

‖u0‖X

+
M

µ2 − ω − 1

k−1∑
j=1

(
µ2

µ2 − ω

)k−j

‖F (tj, u
N
j )‖X +

M

µ2 − ω − 1
‖F (tk, v)‖X . (2.9)

For the first and fourth terms, we estimate, by the choice of N ,

M

µ2 − ω − 1
≤ δ

2(1 + δ)
.

An observation required for the estimate of the second term is given by

µ2

µ2 − ω − 1
≤ (1 + 1/ρ) (2.10)
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if µ2 ≥ (1 + ρ)(ω + 1). When this is combined with the standard inequality,

(1 + s)N ≤ esN , s =
ω + 1

µ2 − ω − 1
,

we arrive at a chain of inequalities for the second term. By the choice of N and σ,

µ2

µ2 − ω − 1

(
µ2

µ2 − ω

)k−1

≤
(

µ2

µ2 − ω − 1

)N

≤ e(1+1/ρ)(1+ω)T ≤ σ

2M(1 + δ)
.

The third term is more complicated. For notational simplicity, we set

α = (1 + 1/ρ)(1 + ω̄), β = (1 + 1/ρ)ω̄.

We have the estimate, since µ2 = 1/∆t,

k−1∑
j=1

(
µ2

µ2 − ω

)k−j

‖F (tj, u
N
j )‖X ≤ µ2‖u0‖X

k−1∑
j=1

eα(k−j)(T/N)eβj(T/N)∆t

≤ µ2‖u0‖XeαT

k−1∑
j=1

e(β−α)j(T/N)∆t ≤ µ2‖u0‖XeαT

∫ T

0

e−(α−β)tdt

≤ µ2‖u0‖XeαT (1/(α− β)) ≤ µ2 σ‖u0‖X

2M(1 + δ)(α− β)
.

We must still account for the leading factor,

M

µ2 − ω − 1
,

in the third term. We estimate:(
µ2M

µ2 − ω − 1

)(
σ‖u0‖X

2M(1 + δ)(α− β)

)
≤ σ‖u0‖X

2(1 + δ)
.

Here we have used the fact that

µ2

µ2 − ω − 1
≤ α− β = 1 + 1/ρ,

which is implied by (2.10). If we apply each of the four estimates, together with the
observation that f(tk) ≤ σ, we have the estimate that ‖Qv‖X ≤ σ‖u0‖X .

The estimate for ‖Qv‖Y is similar. We outline the approach. By (2.1), and the domain
characterization of A1, we conclude that

R(λ,−A1(t, u)) = SR(λ,−A(t, u))S−1. (2.11)
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Applying S to (2.3) and using (2.11) yield

SQv = −R(µ2 − 1,−A1(tk, v))Sv + µ2R(µ2 − 1,−A1(tk, v))SuN
k−1

+R(µ2 − 1,−A1(tk, v))SF (tk, v), (2.12)

where

SuN
k−1 =

k−1∏
j=1

µ2R(µ2,−A1(tj, u
N
j ))Su0 +

k−1∑
j=1

(µ2)k−1−j

k−1∏
i=j

R(µ2,−A1(ti, u
N
i ))SF (tj, u

N
j ).

(2.13)
In particular, we obtain the estimate,

‖SQv‖X ≤ M

µ2 − ω1 − 1
σ‖Su0‖X +

Mµ2

µ2 − ω1 − 1

(
µ2

µ2 − ω1

)k−1

‖Su0‖X

+
M

µ2 − ω1 − 1

k−1∑
j=1

(
µ2

µ2 − ω1

)k−j

‖SF (tj, u
N
j )‖X +

M

µ2 − ω1 − 1
‖SF (tk, v)‖X , (2.14)

so that, by the same arguments as above,

‖SQv‖X ≤ σ‖SQu0‖X .

2.4 Lipschitz Continuity of Q

We shall next establish Lipschitz continuity of Q. This will close the induction, and give
the existence of uN

k , for ∆t sufficiently small.

Proposition 2.7. Under the assumptions of Proposition 2.6, the mappings Q = QN
k of

(2.3) are Lipschitz continuous mappings in the topology of X with Lipschitz constant,

CQ =
M

µ2 − 1− ω̄
[1 + CA(1 + M(1 + 1/ρ))σ‖u0‖X + CF ] . (2.15)

Here, CA and CF are the Lipschitz constants cited earlier in §2.2. If N is sufficently large,
then CQ < 1 and Q has a unique fixed point in W̄0.

Proof. The critical representation is the identity,

R(λ,−A(t, w))−R(λ,−A(t, v)) = R(λ,−A(t, w))[A(t, v)− A(t, w)]R(λ,−A(t, v)).

We obtain:

‖R(λ,−A(t, w))−R(λ,−A(t, v))‖X ≤ ‖R(λ,−A(t, w))‖XCA‖v − w‖X‖R(λ,−A(t, v))‖Y

≤ C1
‖v − w‖X

(λ− ω)(λ− ω1)
,
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where C1 = M2CA. This leads to the estimate, for λ = µ2 − 1,

‖Qv−Qw‖ ≤ 1

µ2 − 1− ω

[
M +

C1σ‖u0‖X

µ2 − 1− ω1

+
C1σ‖u0‖X µ2

µ2 − 1− ω1

+ MCF +
C1σ‖u0‖X

µ2 − 1− ω1

]
‖v−w‖X .

Here, we have used the inductive assumption that ‖uN
k−1‖X ≤ σ‖u0‖X . By using the

estimates of the proof of Proposition 2.6, we obtain

‖Qv−Qw‖ ≤ 1

µ2 − 1− ω

[
M +

MCAσδ‖u0‖X

(1 + δ)
+ M2CA(1 + 1/ρ)σ‖u0‖X + MCF

]
‖v−w‖X .

This yields the estimate (2.15) of the proposition. Since Y is assumed reflexive, W̄0 is
a complete metric subspace of X, and the final statement follows from the contraction
mapping theorem.

3 System Properties for the Semidiscrete Problem

We are now prepared to apply the general theory of §2 to the model of §1.2. We begin by
describing the function spaces and the isomorphism S.

3.1 The Function Spaces and the Isomorphism

We introduce the classical Bessel potential space Hs(Rm; Rk) [1]. It can be characterized,
via the isometric Fourier transform F , as the linear space of functions v with norm,

‖v‖2
Hs =

∫
Rm

(1 + |x|2)s|Fv(x)|2 dx.

It follows from the definition that the diagonal operator S = I(I − ∆)s/2 induces an
isometry of Hs(Rm; Rk) onto L2(R

m; Rk).
We may now define:

X = X1 ⊗X2, X1 = PL2(R
m; Rm), X2 = L2(R

m; R2),

Y = Y1 ⊗ Y2, Y1 = PHs(Rm; Rm), Y2 = Hs(Rm; R2).

3.2 The Block Resolvent

We shall proceed in stages, via a systematic study of the resolvent. We first write the
representation of the block resolvent. Since

λI + A =

[
λI + A11 A12

0 λI + A22

]
, (3.1)

we have by a standard invertibility result for the block resolvent of §1.2:

R(λ,−A) =

[
R(λ,−A11) −R(λ,−A11)A12R(λ,−A22)

0 R(λ,−A22)

]
. (3.2)
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3.3 Resolvent Estimates on X1 and X2

We have seen, via the interpretation of (3.2), that critical roles are played by R(λ,−A11(w1))
and R(λ,−A22(w1,w2)). Thus, we shall examine the Navier-Stokes operator separately
from the charge transport operator.

Lemma 3.1. Suppose w ∈ Hs(Rm; Rm), s > m/2, with ∇·w = 0. Then A11(w) ∈
G(PL2(R

m; Rm), 1, 0). Furthermore, D(A11(w)) = P H2(Rm; Rm).

Proof. The proof follows [12, p. 55]. Thus, −ν∆I ∈ G(PL2(R
m; Rm), 1, 0) if we take the

domain as given in the statement of the lemma. In this case, it coincides with the Friedrichs
extension of the operator defined on PC∞

0 (Rm; Rm). The perturbing term, Pw·∇, of A11

is dissipative on PC∞
0 (Rm; Rm). We may take the closure, which is thus a member of

G(PL2(R
m; Rm), 1, 0). This operator is relatively bounded with respect to ν∆I, with

relative bound zero, since w is essentially bounded. It follows from Proposition 2.2 that
A11(w) ∈ G(PL2(R

m; Rm), 1, 0) with D = P H2(Rm; Rm).

Prior to the statement of the next lemma, we formally state the smoothing assumption
regarding the mapping Φ of (1.16).

Remark 3.1. It is assumed that the affine mapping Φ depends smoothly upon u2 in the
following sense: Given u2 ∈ Hτ (Rm; R2), 0 ≤ τ ≤ s, the solution φ of (1.16) is in
Hτ+2(Rm), and the norm of φ in this space is affinely dominated by the Hτ norm of u2,
with constants independent of τ and u2.

Lemma 3.2. Suppose w ∈ Hs(Rm; Rm+2), s > m/2+1. Then A22(w) ∈ G(L2(R
m; R2), 1, ω),

where ω depends affinely upon ‖w‖Hs. Furthermore, D(A22) = H2(Rm; R2).

Proof. The proof follows the logical structure of the preceding proof.

−diag(Dn, Dp)∆ ∈ G(L2(R
m; R2), 1, 0), (3.3)

and coincides with the Friedrichs extension of the restriction operator defined on C∞
0 (Rm; R2).

The perturbing operator,

m∑
i=1

diag(wi + µnφxi
, wi − µpφxi

)
∂

∂xi

+ diag(µn∆φ,−µp∆φ), (3.4)

is in G(X, 1, ω) by the Friedrichs theory (see [4], [12, p. 51], [7, Lemma 6.4.3]) and ω can
be estimated by 1/2 the sum of the C-norms of

∇diag(wi + µnφxi
, wi − µpφxi

), diag(µn∆φ,−µp∆φ),

thus, by an affine function of the Hs norm of w, where we have not required the full
smoothing of Φ. The remainder of the proof follows as before.

Although it is possible in principle to derive an estimate on X from the two preceding
lemmas, we shall not do this. This is due to the fact that it is products of terms of the form
(3.2) which must be estimated (asymptotic stability), and this is effectively done through
estimating subblock products.
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3.4 Resolvent Estimates on Y1 and Y2

We now investigate the similarity relation (2.1), as applied to A11 and A22. We first state
the relevant result of Kato [12] which governs the estimates. It will be applied, not to A,
but separately to A11 and A22.

Lemma 3.3. For a function v ∈ Hs(Rm; Rk), a projection P, and an operator of the
form,

A(t,v) = −D∆ + P

[
m∑

i=1

ai(t,v)
∂

∂xi

+ b(t,v)

]
, (3.5)

we have

SA(t,v)S−1 = A(t,v) + P

[
m∑

j=1

[S, aj]Λ
1−s

(
∂

∂xj

)
Λ−1 + [S, b]Λ1−sΛ−1

]
,

where Λ = (I −∆)1/2, [· , · ] denotes the commutator, and S = IkΛ
s; here Ik is the identity

matrix of order k. We have assumed that P commutes with S. In particular, in the
notation of Proposition 2.4, we have

B = P

[
m∑

j=1

[S, aj]Λ
1−s

(
∂

∂xj

)
Λ−1 + [S, b]Λ1−sΛ−1

]
.

B is a bounded operator on L2(R
m; Rk) with bound:

‖B‖ ≤ C

(
m∑

j=1

‖grad aj‖Hs−1 + ‖grad b‖Hs−1

)
.

Proof. Note that Λs commutes with the Laplacian. The estimate depends upon the fol-
lowing fundamental result of Kato [12, Lemma A2]. For s > m/2 + 1:

If f is a multiplier, defining an operator mf , then ‖[Λs,mf ]Λ
1−s‖L2,L2 ≤ c‖gradf‖Hs−1 ,

(3.6)
where c is a positive constant. In particular, for some c > 0,

‖[S, aj]Λ
1−s‖L2,L2 ≤ c‖grad aj‖Hs−1 ,

‖[S, b]Λ1−s‖L2,L2 ≤ c‖grad b‖Hs−1 ,

hold. Since
(

∂
∂xj

)
Λ−1 and Λ−1 are bounded on L2(R

m; Rk), it follows that B is bounded.

This completes the generic estimate.

Lemma 3.4. The operator A11 of Lemma 3.1 satisfies A11(w1) ∈ G(Y1, 1, β1), where

β1 = C‖w1‖Hs .

Here, C is a constant which is defined by the Sobolev embedding theorem.
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Proof. The result is immediate upon an application of Lemma 3.3.

Lemma 3.5. The operator A22 of Lemma 3.2 satisfies A22(w) ∈ G(Y2, 1, β2), where β2 is
an affine function of ‖w‖Hs .

Proof. The result is immediate upon an application of Lemma 3.3 and use of Remark
3.1.

Corollary 3.1. For the system (1.14), we have

SA(w)S−1 = A(w) + B(w),

where each of the blocks Bij(w) is a bounded operator, and B21 = 0.

3.5 The Stability of A(tj) on X and Y

We denote by r the undetermined radius in Y of the ball W̄ on which Q acts. Let
∆t = T/N be specified, and let wj, j = 1, . . . , N , be fixed in W̄ . For tj = j∆t, we shall
use the notation A(tj) for A(wj). In the light of Propositions 2.6 and 2.7, we will eventually
interpret A(tk) as A(w) for w fixed in Y , while A(tj), for j < k, will be identified with
A(uN

j ). We shall actually verify stability in the sense of (2.5), where repetitions of the
{tj} are permitted. By the arguments of [7, Proposition 6.2.1], this implies stability in the
sense of (2.6).

The verification of stability is subtle. It does not suffice for our purposes to proceed
via the norm of the block resolvent. Rather, we must first form the operator product
as a block matrix, and then apply a norm estimate. This is critical. Thus, we use the
representation (3.2). The following algebraic result ensues.

Lemma 3.6.

k∏
j=1

[A(tj) + λ]−1 =

[ ∏k
j=1 R(λ,−A11(tj)) −∑k

j=1 Aleft
j A12(tj)A

right
j

0
∏k

j=1 R(λ,−A22(tj))

]
. (3.7)

where

Aleft
j =

∏
i=j,...,k

R(λ,−A11(ti)), A
right
j =

∏
i=1,...,j

R(λ,−A22(ti)). (3.8)

Proof. One uses induction on k, together with the convention that products are (increas-
ingly) time-ordered from right to left.

Proposition 3.1. The family A(tj) is stable on X in the sense of Proposition 2.6. The
stability constants MX , ωX are given by (3.11) below.

Proof. We estimate the operator X norm of a k-product according to (2.5). The adjust-
ments for repetitions of, and consecutive subsets of, {tj}, are elementary. Since X is the
tensor product, X = X1⊗X2, the operator X norm is bounded from above, as in ordinary
matrix theory, by the Euclidean block operator norm. Upon forming the Euclidean norm
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of the iterated block resolvent, we obtain, after an application of a form of the triangle
inequality:

‖
k∏

j=1

[A(tj) + λ]−1‖ ≤ 1

λk
+ C(c1 + c2r)

k∑
j=1

1

λk−j+1(λ− ω)j
+

1

(λ− ω)k
. (3.9)

In this inequality, C is an ordinary Sobolev embedding constant, and c1 + c2r is an affine
function of the radius r of the ball in Y2 from which u2 is selected; this results from the
Hs−1 estimation of the gradient of φ, which serves as a multiplier. ω is defined in Lemma
3.2. It remains to estimate the sum,

k∑
j=1

1

λk−j+1(λ− ω)j
.

We first write,
k∑

j=1

1

λk−j+1(λ− ω)j
=

1

λk

k∑
j=1

λj

(λ− ω)j

(
1

λ

)
.

We use an idea similar to that used in estimating the third term in the proof of Proposition
2.6. This will also entail use of (2.10). First, for any prescribed ρ > 0, we define N0 to be
the smallest integer satisfying

N0 ≥ T (1 + ρ)ω. (3.10)

We shall select ρ = ρ0 later in the proof. For N ≥ N0, k ≤ N , and λ ≥ N/T , we have

k∑
j=1

(
λ

λ− ω

)j (
1

λ

)
≤

N∑
j=1

(
λ

λ− ω

)j (
1

λ

)
≤

N∑
j=1

e(1+1/ρ)ωj∆t∆t,

where ∆t = T/N . This serves as a lower Riemann sum for

∫ T+∆t

1

e(1+1/ρ)ωt dt,

and has an upper bound of e(1+1/ρ)ωT e1/ρ

(1+1/ρ)ω
. We select ρ = ρ0 such that

e1/ρ

(1 + 1/ρ)
= 2.

We conclude that A(tj) is stable on X with stability constants,

MX = 3 max

(
1, C(c1 + c2r)

2e(1+1/ρ0)ωT

ω

)
, ωX = ω. (3.11)
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Proposition 3.2. The family A(tj) is stable on Y in the sense of Proposition 2.6. The
stability constants MY , ωY are given by (3.14) below.

Proof. We shall consider k-products as before. The relation (2.11) permits us to estimate,

k∏
j=1

[A1(tj) + λ]−1 = S

[ ∏k
j=1 R(λ,−A11(tj)) −∑k

j=1 Aleft
j A12(tj)A

right
j

0
∏k

j=1 R(λ,−A22(tj))

]
S−1. (3.12)

Here, S is the block matrix,

S =

[
ImΛs 0

0 I2Λ
s

]
=

[
Sm 0
0 S2

]

When (3.12) is consolidated via multiplication by S and S−1, the block representation is
written as:[

Sm

∏k
j=1 R(λ,−A11(tj))S

−1
m −∑k

j=1 SmAleft
j S−1

m SmA12(tj)S
−1
2 S2A

right
j S−1

2

0 S2

∏k
j=1 R(λ,−A22(tj))S

−1
2

]
,

where we have used subscripts to designate the order of the matrix operator. Now Lemmas
3.4 and 3.5 provide the estimates for the first and fourth blocks, and also for the estimation
of

SmAleft
j S−1

m , S2A
right
j S−1

2 .

The estimation of
SmA12(tj)S

−1
2

is a direct consequence of Kato’s commutator estimates, described in Lemma 3.3 (see
especially (3.6)), and leads to

‖SmA12(tj)S
−1
2 ‖L2,L2 ≤ c‖φ‖Hs+1 .

By hypothesis, the latter is bounded by an affine function of ‖u2‖Hs−1 . Altogether, we
may proceed as in the proof of the previous proposition with the following replacement:

‖
k∏

j=1

[A1(tj) + λ]−1‖ ≤ 1

(λ− β1)k
+ C(c1 + c2r)

k∑
j=1

1

(λ− β1)k−j+1(λ− β2)j
+

1

(λ− β2)k
.

(3.13)
As in Proposition 3.1 we obtain the stability constants,

MY = 3 max

(
1, C(c1 + c2r)

2e(1+1/ρ0)ωY T

ωY

)
, ωY = max(β1, β2). (3.14)

The integer N0 may be defined by,

N0 ≥ T (1 + ρ0)ωY . (3.15)
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3.6 The Lipschitz Properties of E(u)

Recall the definition of E given in (1.18, 1.19). The Lipschitz continuity of E is standard,
but we shall quote and prove the result for completeness (see [6, Lemma 2.3] and [5,
p. 283]).

Lemma 3.7. The mapping w 7→ E(w) ∈ B(Hs, Hτ ) is Lipschitz continuous in the norm
topology for 0 ≤ τ ≤ s− 1:

‖E(w)− E(w′)‖Hs,Hτ ≤ C‖w −w′‖Hτ , w,w′ ∈ W̄ .

The constant C is proportional to the radius r of W̄ .

Proof. We first note the inequalities,

‖aj(w)− aj(w
′)‖Hτ ≤ c1‖w −w′‖Hτ ,

‖b(w)− b(w′)‖Hτ ≤ c2‖w −w′‖Hτ .

These inequalities use the definitions of the matrices aj, j = 1, . . . ,m, b, as well as the
assumed properties of the mapping Φ. Because of the linear dependence of the elements
in aj, j = 1, . . . , N , and b, the constants c1, c2 do not depend upon w,w′. Now, since Hs−1

functions are multipliers on Hτ , we have:

‖E(w)v − E(w′)v‖Hs,Hτ ≤ c(
m∑

j=1

‖aj(w)− aj(w
′)‖Hτ‖ ∂v

∂xj

‖Hs−1+

‖b(w)− b(w′)‖Hτ‖v‖Hs−1) ≤ C ′‖w −w′‖Hτ‖v‖Hs .

This gives the statement of the lemma.

Remark 3.2. Since the forcing function F has been included as an enhancement of the
original model, we have some freedom in the hypotheses regarding it. We shall however
attempt a minimal set of hypotheses. These are:

1. The growth hypothesis of Proposition 2.6.

2. An estimate for F (t,u) somewhat analogous to that given in Lemma 3.7. Specifically,
we assume the following. The mapping (t,w) 7→ F(t,w) is Lipschitz continuous in
the topology of Hτ for 0 ≤ τ ≤ s:

‖F(t,w)− F(t′,w′)‖Hτ ≤ C[|t− t′|+ ‖w −w′‖Hτ ], w,w′ ∈ W̄ .

Item two is implied by a Lipschitz assumption on F [5, p. 283]):

F ∈ Lip([0, T ]; C [s]+2(Rm; Rm+2)),

where [s] is the largest integer in s; if s is an integer, we may replace [s] + 2 by [s] + 1.
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3.7 Consolidation of the Semigroup Estimates

We begin by examining functional behavior necessary to correlate the size of the initial
datum and the radius r of the ball in which solutions may occur for the semidiscrete map.
There is an interplay between the size of the initial datum and the terminal time T .

We shall interpret the constants σ,M, ρ, ω̄ and T of (2.7) in the light of §3.5, so that
we may apply Propositions 2.6 and 2.7. For consistency of notation, we define

M = max(MX ,MY ), ω̄ = max(ωX , ωY ),

where MX ,MY , ωX , ωY have the meaning of §3.5. Initially, we shall determine the depen-
dence of M and ω̄ on the radius r of the ball in Y . Since ω, β1, and β2, as discussed in
§3.3 and §3.4, are affine functions of r, we may write,

ω̄ = a + br,

for positive constants a, b. M is a more complicated expression. If we use (3.11) and (3.14)
as a starting point, we may write

M(r, T ) =
(c + dr)e(1+1/ρ0)ω̄(r)T

ω̄(r)
,

for appropriate constants, c, d.

Local Assumption on ‖u0‖ and T

We require:

‖u0‖Y <
r

2M(r, T )
e−(1+ω̄(r))T := H(r, T ). (3.16)

(3.16) is the general inequality which must be satisfied by ‖u0‖Y , T , and the radius r of
the admissible ball in Y . However, we consider in detail two important special cases.

1. T is given

If we write,

H(r, T ) =
1

2
e−(1+αω̄(r))Th(r), h(r) =

r(a + br)

c + dr
,

where α = 2+1/ρ0, then we may maximize H(· , T ) as a function of r. We find that
r is determined by

h′(r)
h(r)

= αbT. (3.17)

By direct computation,

h′(r)
h(r)

=
c(a + br) + br(c + dr)

r(a + br)(c + dr)
.

18



The latter function is strictly decreasing on (0,∞), and satisfies

h′(r)
h(r)

→∞, r → 0+;
h′(r)
h(r)

→ 0, r →∞. (3.18)

It follows that (3.17) has a unique solution, r(T ). In this case, (3.16) reduces to:
‖u0‖Y < H(r(T ), T ).

2. ‖u0‖ is given

Since h(r) is a strictly increasing mapping of (0,∞) onto itself, there is a unique r0

such that

‖u0‖Y =
1

2
h(r0) = H(r0, 0).

It follows that, for each r > r0, there is a T0 = T0(r) such that

‖u0‖Y < H(r, T ), for T < T0, r fixed.

This gives an admissible range of r and T which satisfy (3.16).

3.8 The Major Fixed Point Theorem

We now define numbers δ and ρ which allow us to connect (3.16) with the theoretical
analysis of Propositions 2.6 and 2.7. Set γ = 1 + ω̄, and select ρ satisfying

2M(r, T )‖u0‖Y e(1+1/ρ)γ(r)T < r,

which is possible by (3.16). Define:

δ = re−(1+1/ρ)γ(r)T /(2M‖u0‖Y )− 1.

It is immediate that
2(1 + δ)Me(1+1/ρ)γ(r)T‖u0‖Y = r.

We further define:
σ = 2(1 + δ)M(r, T )e(1+1/ρ)γ(r)T .

These definitions then describe the framework investigated in Propositions 2.6 and 2.7. In
particular,

σ‖u0‖Y = r.

We then have the following.

Theorem 3.1. If (3.16) holds, and N is sufficiently large, then the mapping Q, with
Lipschitz constant CQ given by (2.15), is a strict contraction on W̄0. In this case, Q has
a unique fixed point, denoted uN

k . The implicit relation (1.16) is satisfied.
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4 Analysis on the Space-Time Domain

We begin by defining the relevant sequences which make use of the semidiscrete solutions.

Definition 4.1. For N0 given according to Theorem 3.1, and N ≥ N0, define the piecewise
linear and step function sequences as follows. For ∆t = T/N , tk = k∆t, and 0 ≤ t ≤ T ,
set

θN
k (t) =

{
1, tk−1 ≤ t < tk, k = 1, . . . , N,
0, otherwise.

Then for x ∈ Rm, define:

uN
PL(x, t) = uN

k (x) +
t− tk
∆t

(uN
k (x)− uN

k−1(x)), tk−1 ≤ t < tk, k = 1, . . . , N, (4.1)

uN
S (x, t) =

N∑
k=1

uN
k (x)θN

k (t), (4.2)

FN
S (x, t) =

N∑
k=1

F(tk,u
N
k (x))θN

k (t), (4.3)

aN
j (x, t) = aj(u

N
S (x, t)), (4.4)

bN(x, t) = b(uN
S (x, t)). (4.5)

We also require function space notation:

Y = W 1
∞((0, T ); Hs−2(Rm; Rm+2)) ∩ L∞((0, T ); Y ).

Lemma 4.1. The sequence {uN
S } is bounded in norm in L∞((0, T ); Y ). The sequence

{uN
PL} is bounded in norm in Y.

Proof. The boundedness of both sequences in L∞((0, T ); Y ) reflects the construction of
the sequences via the fixed points of the mapping Q. To establish the boundedness of

∂uN
PL/∂t =

uN
k − uN

k−1

∆t

in L∞((0, T ); Hs−2(Rm)), we directly take the norm in the equation (2.2). For the term,
A(uN

k )uN
k , we use the Y bound for uN

k , together with the uniform estimate on A(uN
k ) from

Hs(Rm; Rm+2) to Hs−2(Rm; Rm+2), which can be deduced from Lemma 3.7. For the term,
F(tk,u

N
k ), we use the estimate, ‖F(tk,u

N
k )‖Y ≤ σ‖u0‖Y , which is also satisfied by uN

k .

Remark 4.1. By the Aubin lemma ([7, p. 197]),

Y ↪→compactly L2,loc(D).

Here, we have used the notation ‘loc’ to indicate convergence on bounded subsets of D =
(0, T )×Rm.
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This fact will be used in the following proposition.

Proposition 4.1. There are subsequences, denoted u
Nj

PL, u
Nj

S , and a function u ∈ Y,
satisfying the constraint (1.16), such that:

1.
u

Nj

PL ⇀ u weakly in L2((0, T ); Y ),

2.
u

Nj

PL ⇀∗ u weak-* in W 1
∞((0, T ); Hs−2(Rm)) ∩ L∞((0, T ); Y ),

3.
u

Nj

PL → u in L2,loc(D).

4.

u
Nj

S ⇀ u weakly in L2((0, T ); Y ),

5.
u

Nj

S → u in L2,loc(D).

6.
a

Nj

j → a(· ,u) in L2,loc(D).

7.
bNj → b(· ,u) in L2,loc(D).

Proof. The Aubin lemma shows that the limits in (1) and (2), which exist by weak com-
pactness, coincide and lead to (3). In this connection, recall that a compact mapping
(injection) maps weakly convergent sequences onto strongly convergent sequences. That
the limit in (4) may be taken to be u follows from (1) and Lemma 4.1; in particular, from
the uniform Hs−2 bound for

uN
k − uN

k−1

∆t

(see [7, Lemma 5.2.6]). This bound also implies that the limits in (3) and (5) coincide.
The limits in (6) and (7), and the constraint (1.16), follow from the definitions and the
assumed properties of the mapping Φ.

4.1 The Weak Solution

It is now standard (see [6, pp. 201–202]) that the function u satisfies a weak solution
formulation. We shall summarize the key facts in this more general situation.. The weak
solution is an important transition because it utilizes the convergence properties we have
described in the preceding proposition. We have the following.
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Theorem 4.1. The function u is a weak solution of the Cauchy problem. In particular, if
ψ ∈ C∞([0, T ]; PC∞

0 (Rm, Rm)⊗ C∞
0 (Rm, R2)), and T ′ ≤ T , then, for DT ′ = Rm × (0, T ′),∫

DT ′
{uψt − A(· ,u)uψ + F(· ,u)ψ} dxdt +

∫
Rm×{0}

u0ψ dx−
∫

Rm×{T ′}
uψ dx = 0. (4.6)

Proof. Define ψN
k = 1/∆t

∫ tk
tk−1

ψ(x, t) dt, k = 1, . . . , N , and ψN =
∑N

k=1 ψN
k θN

k . We dot

multiply (2.2) by ψN
k , sum on k, k = 1, . . . , N , and integrate over Rm to obtain:

N−1∑
k=1

(
uN

k ,
ψN

k − ψN
k+1

∆t

)
L2

∆t + (uN
N , ψN

N )L2 − (u0, ψ
N
1 )L2

+
N∑

k=1

(
A(uN

k )uN
k , ψN

k

)
L2

∆t =
N∑

k=1

(F(tk,u
N
k ), ψN

k )L2∆t.

If one rewrites this expression, it becomes, with ζN =
∑N−1

k=1 (ψN
k − ψN

k+1)θ
N
k /∆t,∫ (N−1)∆t

0

(uN
S , ζN)L2 dt + (uN

N , ψN
N )L2 − (u0, ψ

N
1 )L2

+

∫ T

0

(A(uN
S )uN

S − FN
S , ψN)L2 dt = 0.

By [7, Lemma 5.2.5], it follows that

ψN → ψ in L2(D), ζN → −∂ψ

∂t
in L2(D).

We now allow N = Nj → ∞. The terms involving A and F are analyzed by Lemma 3.7

and Remark 3.2. Further,
∫ T

(Nj−1)∆t
(u

Nj

S , ζNj)L2 dt → 0, by the pointwise boundedness of

the integrated sequences. In order to analyze (u0, ψ
Nj

1 )L2 , we use the mean value theorem

of integral calculus to deduce that ψ
Nj

1 (x) = ψ(x, t(x)), for some 0 < t(x) < ∆t. Uniform
continuity then leads to

(u0, ψ
Nj

1 )L2 →
∫

Rm×{0}
u0ψ dx.

One may then use the fundamental theorem of calculus in reflexive Banach spaces [16]

to deduce that (u
Nj

Nj
, ψ

Nj

Nj
)L2 →

∫
Rm×{T} uψ dx. To see this, one argues as follows. The

intermediate representation,

(u
Nj

Nj
, ψ)L2 − (u0, ψ)L2 =

∫ T

0

[(u
Nj

PL, ψ)L2 ]t dt,

and its limit are used to deduce that (u
Nj

Nj
, ψ)L2 →

∫
Rm×{T} uψ dx. Use of the uniform

convergence of the ψ-averages and the triangle inequality completes the argument. We
thus have the limit rendered by (4.6) for T = T ′. The general case is similar.
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4.2 Existence and Uniqueness of Strong Solutions

Before stating the result on strong solutions extending (4.6), we require a technical esti-
mation lemma, to be used in the regularity argument for solutions.

Lemma 4.2. The estimate,

‖uN
k ‖2

Hs ≤ ‖u0‖2
Hs + C

(
k∑

j=1

‖uN
j ‖2

Hs +
k∑

j=1

‖F (tNk ,uN
j )‖2

Hs

)
∆t, (4.7)

holds for some constant C independent of N . If

αN(t) =

{
N∑

k=1

‖uN
k ‖2

HsθN
k (t)

}
, α(t) = sup

N
{αN(t)},

and

FN(t) =

{
N∑

k=1

‖F(tk,u
N
k )‖2

HsθN
k (t)

}
, F (t) = sup

N
{FN(t)},

then α ∈ L1, F ∈ L1, and it follows that

‖u(t)‖2
Hs ≤ ‖u0‖2

Hs + C

(∫ t

0

(α(τ) + F (τ)) dτ

)
. (4.8)

Proof. We begin with (2.2), indexed by j, and take the Hs-inner product with uN
j , for

j = 1, . . . , k. Upon addition, and use of the cancellation induced by the inequality,

(uN
j ,uN

j−1)Hs ≥ −1

2
(‖uN

j ‖2
Hs + ‖uN

j−1‖2
Hs),

we obtain:

1

2
‖uN

k ‖2
Hs+

k∑
j=1

(A(uN
j )uN

j ,uN
j )Hs∆t ≤ 1

2
‖u0‖2

Hs+
1

2

(
k∑

j=1

‖uN
j ‖2

Hs +
k∑

j=1

‖F (tNk ,uN
j )‖2

Hs

)
∆t.

(4.9)
We now use the uniform semigroup generation property on the smooth space, as applied
to each of the operators A11, A12, A22, to deduce that (see Proposition 2.1)

k∑
j=1

(A(uN
j )uN

j ,uN
j )Hs∆t ≥ −c

k∑
j=1

‖uN
j ‖2

Hs∆t,

for some c > 0. If the negative of the right hand side of this inequality is added to both
sides of (4.9), we obtain (4.7), for some constant C. In order to obtain (4.8), we rewrite
(4.7) and use the definitions to obtain the inequality,

αN(t) ≤ ‖u0‖2
Hs + C

(∫ t+∆t

0

α(τ) dτ +

∫ t+∆t

0

F (τ) dτ

)
. (4.10)
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If Σ ⊂ (0, T ) is any set of positive measure, then, by item 2 of Proposition 4.1, we conclude:

u
Nj

S ⇀∗ u weak-* in L∞(Σ; Y ).

We have used uniqueness of limits (see [7, Proposition 5.2.6]) and standard subsequen-
tial arguments. By using the lower semicontinuity of the norm with respect to weak-*
convergence [20, Theorem 9, p. 125], we have the inequality,∫

Σ

‖u(t)‖2
Hs ≤ lim inf

N

∫
Σ

αN(t) dt ≤ C

∫
Σ

(∫ t

0

(α(τ) + F (τ) dτ

)
dt + ‖u0‖2

Hs .

Since Σ is an arbitrary measurable subset of (0, T ), we have the pointwise inequality
(4.8).

Corollary 4.1. The solution u of (4.6) and (1.16) is a strong solution. Specifically,

ut ∈ C([0, T ]; Hs−2(Rm)), (4.11)

and the equation (1.18) holds in the strong sense described by (4.11). Moreover,

u ∈ C([0, T ]; Hs(Rm)). (4.12)

Proof. The regularity (4.11) follows from item 2 of Proposition 4.1 and the fundamental
theorem of calculus in reflexive Banach spaces. This also validates an integration by parts,
and hence the strong form of the evolution equation. Note that each of the terms in (1.18)
is in the class (4.11) (see Remark 3.2 and Lemma 3.7). The regularity (4.12) is more subtle
and can be deduced from

u ∈ L∞((0, T ); Hs(Rm)),

established in Proposition 4.1, in a manner similar to that employed in [17, pp. 44–46],
where it is noted that right continuity at zero suffices to establish the continuity on [0, T ].
The technique to establish right continuity at zero relies on establishing an estimate of the
form,

‖u(t)‖2
Hs ≤ ‖u(0)‖2

Hs +

∫ t

0

f(τ) dτ,

where f is an L1 function. This is precisely what was done in Lemma 4.2; we identify f
with α + F . We may now proceed as in [17]. This concludes the proof.

Proposition 4.2. The strong solution of (1.18) described by Corollary 4.1 is unique.

Proof. If u1 and u2 are solutions, then one obtains in the standard way,

1

2

d

dt
‖u1 − u2‖2

L2
− (D∆(u1 − u2),u1 − u2)L2 = −(PE(u1)(u1 − u2),u1 − u2)L2

−(P(E(u1)− E(u2))u2,u1 − u2)L2 + (F(u1)− F(u2),u1 − u2)L2 .

Here, we have used the notation of (1.18) and F(u) = F(t,u). Noting that both terms on
the left hand side of this equation are nonnegative, we have, via Lemma 3.7, the inequality,

‖u1 − u2‖2
L2

(t) ≤ C

∫ t

0

‖u1 − u2‖2
L2

(τ) dτ,

for 0 ≤ t ≤ T . Here, C is a positive constant depending only on the smooth norms of
u1,u2. Use of the Gronwall inequality concludes the proof.
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4.3 Stability Under the Inviscid Limit

An important feature of the semigroup-based theory which we have presented in this paper
is its ability to permit the passage to the case of the incompressible charged inviscid fluid;
i. e. , the passage under the limit ν → 0. A result of this type was obtained for the case
of the Euler system in [6], where the core of the theory presented in this paper was first
developed. It was noted in [6], and will be repeated here, that Kato developed his theory
to cover (among other applications) both the Navier-Stokes and the Euler system. The
case distinctions are discussed in [12, p. 55] for the semigroup generation on PL2. We shall
only sketch the modifications. In fact, there is only one essential modification: the domain
of −A11 is larger, with regularity index decreased by one. The rigorous argument appears
in the proof of Lemma 3.1. However, this has no impact upon the invariance results and
fixed point arguments for Q, nor upon the arguments in the space-time domain. The
following result is a natural consequence of our arguments. It is a generalization of [6,
Lemma 5.1].

Proposition 4.3. There is a strong solution, in the regularity classes defined by (4.11),
(4.12), of the Euler/Poisson-Nernst-Planck system (1.18)/ (1.16), where D is defined by
(1.17), with ν = 0. Moreover, the solution interval is stable under the inviscid limit ν → 0.
More precisely, if u1,u2, are solutions of (1.18) for values ν1 ≥ ν2 ≥ 0, then there is a
constant C such that

‖u1 − u2‖C([0,T ];L2(Rm)) ≤ C(ν1 − ν2).

The terminal time T is independent of ν.

Proof. A generalization of the identity of the previous proposition yields:

1

2

d

dt
‖u1 − u2‖2

L2
− (D1∆(u1 − u2),u1 − u2)L2 = ((D1 −D2)∆u2,u1 − u2)L2−

(PE(u1)(u1−u2),u1−u2)L2−(P(E(u1)−E(u2))u2,u1−u2)L2+(F(u1)−F(u2),u1−u2)L2 .

The use of the regularity classes and previous estimates yields the inequality, for 0 ≤ t ≤ T ,

‖u1 − u2‖2
L2

(t) ≤ C{(ν1 − ν2) +

∫ t

0

‖u1 − u2‖2
L2

(τ) dτ},

for some constant C. Use of the Gronwall inequality concludes the proof.

4.4 Summation

We can now complete the analysis of the well-posedness of the model by proving the
nonnegativity of n, p.

Theorem 4.2. If n0, p0 are given satisfying (1.12), and u is the unique solution on [0, T ]
satisfying Corollary 4.1 and Proposition 4.2, then there is a maximum subinterval [0, T ′]
of [0, T ] such that n ≥ 0, p ≥ 0 on this subinterval.
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Proof. The proof is immediate because of the regularity class (4.11) and the Sobolev
embedding theorem, which together guarantee that u(x, t) is bounded and uniformly con-
tinuous as a function of x, t. Thus, given a unique strong solution u of (1.18) on [0, T ],
one defines:

T ′ = max{t′ : um+1(· , t) ≥ 0, 0 ≤ t ≤ t′, um+2(· , t) ≥ 0, 0 ≤ t ≤ t′}

Remark 4.2. As noted in the introduction, the use of the fully implicit method of hori-
zontal lines has allowed for the formulation of a precise condition (see (3.16)) for the local
assumption. By using semigroup methods, rather than parabolic methods, we are able to
pass to the inviscid Euler limit. An abstract semidiscrete method for the general Cauchy
problem has been carried out in [3]. The first use of semidiscrete methods, however, in the
context of the Kato semigroup framework appears to be [6] (see also [7, Section 7.5]).
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