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Abstract

Time dependent quantum systems are the subject of intense inquiry,
in mathematics, science, and engineering, particularly at the atomic and
molecular levels. In 1984, Runge and Gross introduced time dependent
density functional theory (TDDFT), a non-interacting electron model,
which predicts charge exactly. An exchange-correlation potential is in-
cluded in the Hamiltonian to enforce this property. We have previously
investigated such systems on bounded domains for Kohn-Sham potentials
by use of evolution operators and fixed point theorems. In this article,
motivated by usage in the physics community, we consider local density
approximations (LDA) for building the exchange-correlation potential, as
part of a set of quantum corrections. Existence and uniqueness of solu-
tions are established separately within a framework for general quantum
corrections, including time-history corrections and ionic Coulomb poten-
tials, in addition to LDA potentials. In summary, we are able to demon-
strate a unique weak solution, on an arbitrary time interval, for a general
class of quantum corrections, including those typically used in numerical
simulations of the model.
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1 Introduction

Time dependent density functional theory (TDDFT) was introduced by E. Runge
and E.XK.U. Gross in [1] as a non-interacting electron model which tracks elec-
tron charge exactly. An exposition of the subject may be found in [2]. When
Kohn-Sham potentials are used, the electronic Hamiltonian includes any (time
dependent) external potentials, ionic potentials, the Hartree potential, and the
compensating exchange-correlation potential to ensure the non-interacting and
charge exactness features of the model. By permitting time dependent po-
tentials, TDDFT extends the nonlinear Schrodinger equation, which has been
studied extensively [3, 4], principally with potentials not directly depending on
time. Some progress for time dependent linear Hamiltonians has been made [5].
In previous work [6, 7], we analyzed closed quantum systems on bounded do-
mains of R? via time-ordered evolution operators. The article [6] demonstrated
strong H? solutions, compatible with simulation, whereas the article [7] demon-
strated weak solutions; [7] also includes the exchange-correlation component of
the Hamiltonian potential, not included in [6], which is a nonlocal time-history
term, satisfying certain regularity hypotheses. TDDFT is a significant field for
applications, including computational nano-electronics and chemical physics [8].

An important early article in the time dependent case, directed toward
Hartree-Fock Hamiltonians, is [9]. This article included nuclear dynamics as
a coupled classical dynamical system, and defined an electronic Hamiltonian
in terms of a kinetic term, together with a Hartree potential, an ionic poten-
tial with mobile point masses, and an external, electric-field-induced potential.
The mathematical framework was defined on R? in terms of a Cauchy problem
with H? initial datum. A recent article directed toward TDDFT, in which a
quantum correction is of local density type, is [10]; this article couples quantum
mechanics and control theory. Neither of these articles allows for a time-history
exchange-correlation potential.

In this article, we introduce a class of quantum corrections, including the
local density approximation, but also ionic Coulomb potentials and time-history
potentials. As we demonstrate below, smoothing of such potentials provides a
model within the framework of [7]. By using compactness arguments suggested
in [4], we are able to obtain a solution of the originally posed model. Uniqueness
is also established. The use of evolution operators and smoothing as presented
here is consistent with techniques in the applied literature [8] and provides
direct support for successive approximation and other numerical procedures
[11, 12]. In this sense, the results of this article are more inclusive than an
existence/uniqueness analysis.

In the following subsections of the introduction, we summarize the basic
results of [7], as a starting point for the present article. In section two, we for-
mulate the new model, which incorporates the category of quantum corrections,
and we prove that its smoothed version lies within the scope of [7]. In section
three, we introduce the compactness arguments, and establish existence of a
weak solution as the limit of solutions of the smoothed model. Uniqueness is
established in section four. We conclude with some summary remarks.
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1.1 The model

In its original form, without ionic influence, TDDFT includes three components
for the electronic potential: an external potential, the Hartree potential, and a
general non-local term representing the exchange-correlation potential, which is
assumed to include a time-history part. If H denotes the Hamiltonian operator
of the system, then the state W(¢) of the system obeys the nonlinear Schrédinger
equation,

0 (t)
ot
Here, ¥ = {41,...,9%n} consists of N orbitals, and the charge density p is

defined by

ih = HU(1). (1)

N
p(x, 1) = [W(x, 1)]* =Y [ (x, 1)
k=1
An initial condition,
¥(0) = Wo, (2)

and boundary conditions are included. The particles are confined to a bounded
Lipschitz region  C R? and homogeneous Dirichlet boundary conditions hold
within a closed system. W denotes a finite vector function of space and time.
The effective potential V, is a real scalar function of the form,

Ve(x,t,p) = V(x,t) + Wk p+ @(x,1, p).

Here, W(x) = 1/|x| and the convolution W * p denotes the Hartree potential.
If p is extended as zero outside €, then, for x € Q,

W p(x) = . W(x—y)p(y) dy,

which depends only upon values W (z), ||z|| < diam(§2). We may redefine W
smoothly outside this set, so as to obtain a function of compact support for which
Young’s inequality applies. The exchange-correlation potential ® represents a
time-history of p:

t
Bx,t,p) = Bx,0.0) + [ 6(x.5,p) s
0
The Hamiltonian operator is given by,
N k2 9
H:—%V +V(x,t) + W p+ ®(x,1,p), (3)

and m designates the effective mass and % the normalized Planck’s constant. If
ionic influence is present, then (3) is adjusted, typically by Coulomb potentials.
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1.2 Definition of weak solution and function spaces

The solution ¥ is continuous from the time interval J, to be defined shortly, into
the finite energy Sobolev space of complex-valued vector functions which vanish
in a generalized sense on the boundary, denoted H(Q2): ¥ € C(J;Hg). The
time derivative is continuous from .J into the dual H=! of H}: W € C*(J; H1).
The spatially dependent test functions ¢ are arbitrary in Hi. The duality
bracket is denoted (f, (). Norms and inner products are discussed in Appendiz
A. We will make use of the equivalence of the standard Hg norm and the gradi-
ent seminorm, due to the Poincaré inequality, which holds for bounded domains
Q [13].

Definition 1.1. For J = [0,T], the vector-valued function ¥ = ¥(x,t) is a
weak solution of (1, 2, 8) if ¥ € C(J; HY(Q)) N CH(J; H1(Q)), if ¥ satisfies
the initial condition (2) for Wo € H (), and if VO <t < T:

_OU(t)

i) = /Q j—mW(x,t)-VC(w+%(x,t,p)\lf(x7t)6(x)dx- (4)

1.3 Hypotheses and theorem statement

We provide some discussion, relevant to the physical model, prior to the state-
ment of the hypotheses. Additional discussion will be provided following the
hypotheses. It is emphasized that the hypotheses of this subsection are those
required for the original theory of [7] to apply; this was accomplished with evo-
lution operators and the Banach fixed point mapping. Subsequent sections of
this article consider more general families of correction potentials.

The time-history potential ®(x,t,p) above has a structure, including the
time-integrated part, which is motivated by [14, Eqgs. (15), (17)]. This article
characterizes the action functionals A whose variational derivatives with respect
to p yield appropriate exchange-correlation potentials. The form of ® selected
above represents a general statement of these ideas. It is not unreasonable that
the mathematical hypotheses, to be stated shortly, should resemble the known
properties of the Hartree potential because of the restorative nature of exchange
and correlation. From a mathematical perspective, the model permits multiple
‘copies’ of @, allowing for quantum corrections. These are seen to be important
for applications. For example, in the quantum chemistry community [15], it is
appropriate to split ®: the exchange part is represented by a weighted density
approximation (WDA), while the correlation part is represented by a local den-
sity approximation (LDA). The nonlocal WDA form for ® is appropriate for
nonuniform mixtures [16]. The general form we have allowed for ® is intended
to anticipate applications of this type.

The following hypotheses are those for which the evolution operator theory
of [7] applies. The present article builds upon this established theory.

We assume the following hypotheses in order to apply the results of [7].
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e 1. The time-history potential ® is continuous in ¢ € J into Hg.

2. ® is bounded, uniformly in ¢ € J, from H{ into W13, More precisely,
by boundedness, we mean that the family {®(-,¢,-)} maps every
fixed ball in H} into a fixed ball in W3, uniformly in ¢.

e The derivative 0®/0t = ¢ is assumed measurable, and bounded in its
arguments.

e Furthermore, the following smoothing condition is assumed, expressed by
a (uniform) Lipschitz norm condition:

vt €[0,T],if [|[ W) g, j = 1,2, are bounded by r,
then
[0 1,191 2) — (-, | TPl < COIT: = Bl [l (5)

Here, 1) is arbitrary in H} and C(r) depends only on r.

o If ®(-,0,p) fails to be a nonnegative functional of p = |¥|?, we assume
that it satisfies, uniformly in ¢, for [|¥(¢)|r2 = ||Pol/r2, the constraint
that

12(-,0, %) ®[*[ 12 < C1[[ V|72 + Ca, W(t) € Hy, (6)

for nonnegative constants C; and Cs. It is required that Cs depend only
on ||Wo|lz2 and the problem data, and C; is sufficiently small:

(1 < % (7)

e The so-called external potential V is assumed to be continuously differen-
tiable on the closure of the space-time domain.

Remark 1.1. We comment here on the hypotheses.

1. The regularity assumed for ® in the first assumption is consistent with
certain requirements of TDDFT. One of these is the Zero Force Theorem
[2], which imposes a gradient condition on ®. We note that the Hartree
potential satisfies these conditions. In fact, any convolution of the form
® = F xp, where F € WY1, satisfies the conditions.

2. An inequality of the form (5) is satisfied by the Hartree potential [20,
Theorem 38.1], and by any convolution of the form ® = F x p, with F € L?
and VF € L'. It was used in [7] to construct the contraction mapping used
there for the evolution operator. For quantum corrections not satisfying
this condition, the smoothing is utilized in the following section in order
to place the smoothed systems within this framework.
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3. Hypotheses (6, 7) are relevant only when the associated potentials are nega-
tive. This is expected to occur for restoring potentials and certain Coulomb
potentials. In the following section, it will be necessary to smooth certain
components of the quantum correction potential. The smoothed Coulomb
potentials satisfy (6, 7) without qualification. However, for smoothed LDA
approzimations, there is a disparity in exponent bounds for a. A smaller
range is necessary for negative potentials (see (20) to follow for verifica-
tion in this case). Also, unsmoothed convolutions of the form ® = F x p,
with VF € L', satisfy the conditions if they have sufficiently small L™
bounds.

The following theorem was proved in [7], based upon the evolution operator as
presented in [17], and will provide a solution for the smoothed problem on J as
introduced in the following section.

Theorem 1.1. For any interval [0,T], the system (4) in Definition 1.1, with
Hamiltonian defined by (3), has a unique weak solution if the hypotheses of
section 1.3 hold.

2 Quantum Corrections and the Local Density
Approximation

In this section, we define a class of quantum correction potentials, including
the local density approximation to the exchange-correlation potential ®. These
correction potentials are of three types.

1. The local density approximation, discussed in Definition 2.1 to follow.
This potential is designated as (I)lda(p)'

2. A finite number of Coulomb ionic potentials, ¢;W (- —x;), subject to the
Born-Oppenheimer approximation. In particular, the ionic masses are
assumed to be point masses, at fixed locations x; € {2. The function W is
introduced in section 1.1. The constants c¢; may be positive or negative.
The aggregate of these Coulomb potentials is designated ®c¢(-).

3. A time-history potential of the structure of ®, introduced in section 1.1.
The presence of this potential allows for physical modeling flexibility, since
the exchange potential and the correlation potential are viewed separately
in TDDFT. We permit one of these to be approximated locally and the
other by a time-history among the modeling choices. We retain the no-
tation ®(-,t,p) for this component, assumed to satisfy the hypotheses
detailed in section 1.3. Also, it is assumed that ®(-,t, p,(-,t)) converges
in L2, uniformly in ¢, if p,,(-,t) converges in L?, uniformly in .

The consolidated quantum correction potential is then given by

(qu('vtvp) = q)]da(p)+q)C()+q)(7tap) (8)
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Definition 2.1. The local density approzimation ®1q, is now defined. We
consider the following approximation, where X is a real constant, positive or

negative.
Puaa(p) = A% = A T|". (9)

Additionally,
o If XA >0, the range of a is 1 < a < 4.

e If A\ < 0, the range of a is 1 < a < 4/3. Also, |A| must be sufficiently
small, consistent with (6) and (7).

We redefine the Hamiltonian considered here as

. K2
H= _%V2 + V(X,t) + W p+ (PQC(' 7tap)a
N
Pac(-,t.p) = AW (1) + D ei7—— +2(.t.p). (10)
N——— = |-—X]|
q:'lda M_/
q)c

The proofs accommodate a finite number of terms in ®14,. One term has been
chosen for simplicity. The parameters of @4, satisfy the assumptions of Def-
inition 2.1. The numerical constants c; are of arbitrary sign, and the ionic
locations x; are fixed interior points in §2. ® satisfies the hypotheses specified
in (3) above, and is a nonlocal potential such as weighted density approxima-
tion. Convolutions, discussed in Remark 1, represent an important class. For
simplicity, we assume that the leading part, ®(-,0,p), is conserved, up to a
positive constant multiple. This holds for convolutions and other important
examples. The time integrated part of ® is motivated by [14]. The following
theorem is the goal of our analysis.

Theorem 2.1. If the effective potential is redefined by
Ve(x,t,p) = V(x,t) + W5 p + @ge(-, ¢, p), (11)

then there is a weak solution of (4) in the regularity class C(J; HY)NC(J; H™1)
which satisfies the specified initial condition. Uniqueness holds except possibly
forl<a<2.

The existence part of the proof of Theorem 2.1 is carried out in section three
(see Theorems 3.1 and 3.2). The uniqueness is demonstrated in section four.

2.1 The smoothing
We begin by defining a standard convolution [18].
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Definition 2.2. Suppose that a nonnegative function ¢y is given, ¢1 € C§°(R?),
of integral one. Set

be(x) = e 2p1(x/e), x € R?,
and, for f € LP(Q),1 < p < oo,
fe = ¢€ * f
We recall [18] that limc o fe = f in L? and || fel[z, < || fllz,, Ve > 0.

Definition 2.3. We denote by ®. a smoothed replacement of ®qc as follows.

1. (I)lda — Qe * (I)lda'
2. ®&¢c — ¢5 * Oc.
3. Time-history terms are not smoothed.

The effective potential for the approximate problem is given by:

Ve(x,t,pe) = V(x,1) + Wk pe + Pe(x, L, pe). (12)

2.2 Existence and uniqueness for the smoothed system

As mentioned in the introduction, we will show that the smoothed problem has
a unique weak solution on [0, 7] for each fixed € > 0. We first state the result.

Proposition 2.1. If ®. is replaced by its smoothing ®., as specified in Defini-
tion 2.3, then the hypotheses of section 1.3 hold, as applied to ®.. In particular,
Theorem 1.1 is applicable. With V. defined by (12), there exists a unique weak
solution W, as specified in Definition 1.1, of the corresponding system:

2

‘ 8\116(15)’0:/Q;nvq,é(x,t).vg(x)+Vj3(x7t,p6)\116(x,t)g(x) dx. (13)

ih( T

Proof. We observe that the time-history term, if present, is assumed to satisfy
the assumptions of section 1.3. This includes (6) and (7), which are required
to hold in the aggregate, inclusive of all nonpositive terms for the potential ®..
The Coulomb potential does not depend on t or p; although the unsmoothed
potential fails to be in W13, its smoothing is in this space. Since individual
terms of ¢, * ®. may be negatively signed, we estimate the collective potential.
We show that this potential satisfies (6) and (7), with C; preselected to be
arbitrarily small. Initially, we estimate, for n > 0 arbitrary,

(@ * @) Lr < (1/2)[0°[[(de * P) P72 + 172 W] 7] (14)
By the Holder inequality, with conjugate indices p = 3,p’ = 3/2, we have

1(ge * @) (|72 < [lipe * Dellza | @llze]® < [lldnll el Pellze[[W]ze]?.  (15)
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By the equivalence of norms on H{, and by Sobolev’s inequality, we may select
n so that (7) holds for any preselected Cy. This verifies the final requirement
for the Coulomb potential.

For the smoothing of ®4,, we state the three properties required to be
verified.

1. ®. maps sets bounded in H{ into sets bounded in W13,
2. The Lipschitz property (5) holds.
3. If X <0, ||de x Praal(p)|¥)?||Lr < C1]|VY|?%,,, where C; does not depend

HD
on t and satisfies (7). This is a case where Cy = 0.

Before verifying properties (1) and (2), we note that there is no restriction on
the size of |A|, and the range of o is 1 < v < 4, whatever the sign of A.
Property (1) is immediate from the inequalities,

[dexPraa(p)llLs < (Al [[@cllLall[¥]* L1, [VoerPraa(p)llLs < (AL VellLs[I[®]*] L1,

which follow from Young’s inequality, applied to the convolution. Indeed, recall
that o < 4, so that the Sobolev inequality may be applied.

For the verification of property (2), we begin with the gradient term, and
specifically with the product rule as applied to the definition of ¢, * ®14./|A|:

V(e * [U1]* = de * [T *)]|| 2 =

Ve s ([W1]* = [Wa| )t + e * (|W1]* — [Wa|*) V|2 (16)

We have used the differentiation property of the convolution. When the triangle
inequality is employed, the second term is the more delicate to estimate since
Vi € L? (only). Thus, by use of the Schwarz inequality and Young’s inequality,
we must estimate |||U1]|® — |¥a|%*||L:. The case @ = 1 is immediate. We prepare
for the cases 1 < a < 4 by citing the following useful numerical inequality [19]:

<§s_;i)rsSmax@,z»yzo7zzo,y¢z,r>o,s>o,s¢r. (17)

We apply (17) with the identifications.
r=a,s=1,y =|Uy|,z = [Ty,
to obtain the pointwise estimate, which holds almost everywhere in §2,
W] = [W2|* < a(max(| W], [Pa]))* 7" [ [T1] = [Wa] | (18)

Although we will require inequality (18) later in the article, it is more convenient
here to use the less sharp inequality, derived from (18):

| @] = [ < a1+ [Wy] + [Wo)* | [W1] — [Ty |.
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We use a technique motivated by [4]. If r = « + 2, and ’ is conjugate to r, if
p=r/r’, and p’ is conjugate to p, then

ar'py’ =r, r'p=r, (19)
and an application of Holder’s inequality gives
W] = (W[ o < [T 4 [Wa] 4+ [Wol [T ]| [®1] = [Waf - < Cf[W1 — Wal|Lr.

An application of Sobolev’s inequality shows that the rhs of this inequality is
dominated by a locally bounded constant times || — Wy|/1. Since the L*
norm is dominated by a constant times the L” norm, the estimation of the
second term arising from (16) is completed. The first term also reduces to the
estimation of |||¥1]|* —|Us|¥|| L1, as does the non-gradient term. Thus, the proof
of property (2) is completed.

For property (3), which corresponds to A < 0 and 1 < a < 4/3, we consider
the following estimate via two applications of Holder’s inequality:

Al ’/Q e * Wl Wef? dx| < AL Q272012 el T (20)

Since the L? norm of ¥ = W, is specified in (6), A can be chosen to satisfy (7) by
use of the Sobolev embedding theorem. It follows that a unique weak solution
U, exists for the smoothed system as formulated. O

3 Existence

The results of this section are derived for an arbitrary time interval [0, T]. They
are directed toward the existence statement in Theorem 2.1. The compactness
techniques are motivated by [4].

3.1 ‘A priori’ bounds for the smoothed solutions

We begin by quoting a result proved in [7], now applied to the family of solutions

V.. We have absorbed constants into the conserved Hamiltonian quantities

associated with ®.. Thus, A — -2 with a similar statement for the leading

a+2
term of O.

Lemma 3.1. If the functional E(t) is defined for 0 <t <T by,
£(t) —/ w2 e ) + v v o e p0)) 02| ax, 21)
- Q 4m € 4 € 2 € b 7p5 € )
then the following identity holds:

Et)=£(0) + %/0 /Q[((“)V/as)(x, ) 4+ o(x, 5)]| W, |* dxds, (22)
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where £(0) is given by

K2 1 1
/ {47’1|V‘I/0|2 + <4(W * [Wo[*) + 5(‘/(' ,0) + ‘I’e(',oapo)) |‘I’0|2} dx.
Q

Proposition 3.1. The kinetic term is bounded above by a natural splitting. For

each fized t:
]:LQ
— [ VU dx < Fo(t) + Ge(t).
Q

4m

Here, F(t) is a quantity which can be bounded above, independently of t and e,
in a manner depending only on the data of the problem. It is given explicitly by

Fe(t) :5(0)+%/0 /Q[(@V/@s)(x, s)+¢(x,s)]\\116|2dxdsf%/ﬂV(x,t)|\I!€|2dx.

Moreover, G.(t) can be estimated as the sum of two terms: the first can be
absorbed into the kinetic term, while the second is independent of € and t. G.(t)
s given explicitly by

1
Ge(t) = —5/9(1)6(p6)|\116|2dx.

Proof. e The estimation of F.(t)

We notice that V,0V/0t, ¢ are bounded on the finite measure space-time
domain € x [0, 7T}, so that the estimation of F. () reduces to the analysis of the
smoothed term in £(0) given by

/ ¢6( 70ap0)|\110‘2 dx.
Q

Since the time-history, if present, is not smoothed, and acts boundedly, it suffices
to examine the Coulomb and LDA potentials.

e The Coulomb term.

By the Schwarz inequality and Young’s inequality, we estimate

[(¢e * @) [Wol [l 21 < [I¢1 [l 2| @ell 2 [P0 7a-
An application of Sobolev’s inequality concludes the argument.
e The LDA term.
This is a direct estimate:
6+ B1ap0) ol s < 16+ 1911 o W20 < 161l o | Wol* 1 | Wo 20
Since a < 4, the estimate follows as previously from the embedding theorems.

e The estimation of G.(t)
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This represents the more delicate part of the proof.
e The time-history term.

If the term,
t
B(x.1,p) = D(x,0,p) + / o(x, 5, p) ds,
0

is included, and the leading term fails to be a positive functional, then we have
required that (6, 7) hold, here as applied to ¥.. This is consistent with the
structure of G, as stated. The integral term has been discussed in the previous
part and is bounded. Note that (7) is required to hold for the aggregate potential,
including those components to be discussed now. We shall mention this at the
appropriate time.

e The Coulomb term.

We use the core of the argument as developed in the proof of Proposition 2.1.
Indeed, for any preselected Cj, inequality (7) can be satisfied. This follows
directly from (14) and (15 with a proper choice of 7.

e The LDA term.

This pertains to the case A < 0 if this term is included. We have already derived
the relevant inequality, viz. , (20) near the conclusion of the proof of Proposition
2.1. This inequality is required here also.

In order to satisfy (7) in the aggregate sense, we reason as follows. We accept
the time-history term as given, if at all. We choose A so that the sum of the
LDA potential and time-history potential continues to satisfy this inequality.
This can be extended to a finite number of such terms. Finally, we have shown
that the Coulomb potential can be included so as to maintain this inequality.
This concludes the proof. O

The following corollary is immediate from the equivalence of norms on Hg.

Corollary 3.1. There is a bound 1o in the norm of C(J; H}) for the smoothed
solutions.

Proposition 3.2. There is a uniform bound, int € J and e > 0, for the norms,

(Tl

Proof. One begins by using the weak form of the equation as discussed in Propo-
sition 2.1, and isolating the time derivative acting on an arbitrary test function
¢, HCHH[% < 1. The gradient term is bounded by Corollary 3.1, while the bound
for the external potential term follows directly from the hypothesis on V. For
the Hartree term, we estimate, by Holder’s inequality and Young’s inequality,
for each t € J,

AWl 19elZsl1Wellze I€lze.

’/ W U U
Q
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Sobolev’s inequality, combined with Proposition 3.1, gives the bound for this
term.
We now consider the components of the quantum correction potential.

e The LDA term.

For the smoothed LDA term, the sign of A is not relevant and we consider
1 < a < 4. We estimate by Holder’s inequality, for r = a + 2 and r’ conjugate
to r, for each t € J,

‘/ere 10 | < 6w [ W e

The first factor on the rhs requires additional explanation. We have, by another
application of Holder’s inequality, with p = r/r’ and p’ conjugate to p (note
that r/a = r'p’),

[ge * [We|* Well o < [lde # [Wel* [ rsa 1 WellLr < NWel*[[prsa | Well

< [[welizr (23)

We conclude that the LDA term is bounded in the dual norm, as claimed.
e The Coulomb term.

By the Schwarz inequality and Young’s inequality, uniformly in ¢,

/Q¢e * P e

and the estimate is completed by Sobolev’s inequality.

<|lrll2l|®ell [Wellps €]z,

e Time-history term.

By Proposition 3.1, the smoothed solutions are bounded in H}, uniformly in ¢,
so that, by the first hypothesis in section 1.3, the functions ®(-,¢, ¥.) have a
uniform H¢ bound. It follows as in previous estimates that the term,

/ q)( ,07 \Ile) \IJEC dX,
Q

defines a functional which is bounded in the dual norm. O

The following corollary is an immediate consequence of Corollary 3.1 and
Proposition 3.2.

Corollary 3.2. Any sequence taken from the set {U.} of solutions of the
smoothed systems is bounded in the norms of C(J; HY) and C*(J; H1).
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3.2 Convergent subsequences

We begin by stating the two basic lemmas derived from the propositions in
Appendix B. These are due, in the form stated there, to the authors of [4] and
[21], resp.

Lemma 3.2. There is an element ¥ € L>=(J; H}(Q))NWhee(J; H1(2)), and
a sequence V. satisfying the weak convergence property,

U, (t) = U(t), in H}, Vt € J. (24)

Proof. The preceding corollary, coupled with Proposition B.1, part (1), furnishes
the necessary argument. O

Lemma 3.3. Suppose r < 6 is fivzed. A subsequence of the sequence in (24)
may be assumed to converge in C(J; L™ (Q)).

Proof. The equicontinuity of the sequence from J to Hg is derived from the
fundamental theorem of calculus applied on an arbitrary subinterval, together
with the boundedness estimates in the dual space. The compact embedding
of H} — L™, coupled with Proposition B.2, furnishes the necessary remaining
details. We have identified Y with L" here. O

We divide the verification of Theorem 2.1 into two parts.

Theorem 3.1. The function ¥ of Lemma 3.2 satisfies the TDDFT system
discussed in Theorem 2.1 with the quantum corrections.

Proof. By Lemma 3.3, by relabelling if necessary, it follows that
U, (t) = ¥(¢), in L", uniformly Vt € J, (25)
for an arbitrary r < 6 selected in advance. It follows that ¥ € C(J;L"). We

now examine the equation satisfied by . By weak convergence (Lemma 3.2),

. h? h?
lim —mvlllen (x,1)- V(¢(x) dx = /Q %V\II(X, t)- V{(x) dx. (26)

n—o0 Q

We now consider each of the three cases required to verify that

lim [ Vo(x,t, pe, )P, (%,)((x) dx = / Ve(x,t, p)¥(x,1)((x) dx. (27)

By the boundedness of the external potential, and the strong convergence of the
sequence, we conclude immediately that, for each ¢,

lim [ V(x,t)%, (x,t)((x) dx = /QV(X, )V (x,t)((x) dx. (28)

n—oo fo "
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For the Hartree potential, we will use the triangle inequality. Thus, we begin
by writing,

/W*pen\IlEn(xj)Q(x) dx - /W*p\Il(x,t)C(x) dx =
Q Q

/ W pe, [P, (x,t) — U(x,1)]¢(x) dx  + / W ok [pe, — p]¥(x,t)¢(x) dx.
Q Q

Each of the two rhs terms is estimated by the generalized Holder inequality.
This reduces to estimating the following two triple products of norms:

W s pe, 221 We, () = C(@) [ Lsl[Clize, (W [pe, = plll2[[¥ (@)l s <]l o

For the first triple product, Young’s inequality is applied to the convolution
term, followed by L? boundedness; L? convergence is applied to the second term
of the first product; and Sobolev’s inequality is applied to the third term. For
the second triple product, the only term requiring explanation is the convolution
term of the product. We estimate as follows.

W [pe, = plllez < W2 I(1e, | = [N (P, [+ [N L1,

which is estimated by the Schwarz inequality. An application of L? boundedness
and L? convergence yields the final result:

lim /QW % pe, Ve, (X,t)¢(x) dx = /QW * p U(x,t)((x) dx. (29)

n—oo

The potential @ requires the analysis of the three components introduced in
section 2. For the smoothed LDA potential ¢, * ®1q,, we will use the triangle
inequality, and we write,

/ ber % Draa (o) W, (%, )C(x) dx — / Bra () (x, £)C(x) dx =
Q Q

/Q Ge.  Draa(pe ). (x,1) — U(x, )]C(x) dx+

/Q[Qf)en * Plga(pe, ) — Praa(p)]¥(x,)((x) dx.

We apply the Holder inequality to each of the terms to obtain two products of
norms:

[fe, *Praa(pe, )[We, (0)=C O L Il L7, [[[@c, #Praa(pe,, ) =Praalp) ¥ @) Lo 1<

where r = a + 2 and r’ is conjugate to r. We use the method employed in
the proof of Proposition 3.2 (cf. (23)) in order to estimate the L™ norms. For
convenience, we suppress the scalar |\[; also, 1 < o < 4. We have, for the first
product,

[fc,. * Praalpe, ) [We, () = WOl L < lle, * [We, [l rral[We, () = U@L <
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e, [*NrrrallWe, () = OOlzr < [[Pe, |7 [ Ve, () = ¥ e,

which converges to zero as remarked at the beginning of the proof (see (25)).
Thus, the first product of norms is convergent to zero. For the second product,
we begin as before, to obtain,

[[@e,, * Praalpe,) — PraalP)]¥(t)|| L < [|Pe, * Praalpe, ) — Praa(p)l Lr/e W () r-

To estimate this, we apply the triangle inequality to the first factor:

[[Pe, * Prdalpe,) — Piaalp)llpr/o < l@e, * Puaalpe,) = e, * Piaalp)llLr/a+

[0c,, * Prda(p) — Praalp)]
The first term on the rhs is bounded, via the smoothing property, by

Lr/e

[@e, * Praalpe,) = P, * PudalP)rra < [[We,|* = W% prve

The estimation of this expression requires inequality (18) with the identifications
Uy — U, Uy — U. When the power r/a is applied to the inequality, and
integration over € is carried out, one can apply Hélder’s inequality with p = «
and p’ = a/(a—1) to conclude convergence. Convergence for the second term is
a consequence of the property of smoothing; since |¥|* € L"/* its convolution
is convergent in norm. Altogether, we have shown:

Hm | ¢, * Praalpe, )Pe, (%,1)((x) dx = / D14.(p) ¥ (x,1)¢(x) dx.  (30)
Q Q

n—oo

We now consider the Coulomb term. Again, we write
[ b tow gt dx [ w(x0(x) dx =
Q Q
/ Oe,, * PV, (x,t) — U(x,1)]((x) dx + / [@e,, * P — PJU(x,t)((x) dx.
Q Q

The estimation is now straightforward. The Holder inequality yields the two
triple products for the rhs term estimates:

[fc,, * Pecllzz [|We, (£) = W(@)|[zs ICllzes (e, * Pe = Pell L2 [[W ()]s [I<]]Ls-

The first term is convergent because of strong convergence; the second, because
of the convergence of the smoothing in L?2.

The final term to estimate among the quantum correction terms is the time-
history term, if present. Recall that this term is not smoothed. The term
®(-,t,p) is analyzed as follows. We have the algebraic representation,

/(b(at7p€n) \I/EnCdx—/q)(,t,p) \I’CdX:
Q

Q

/g;[(b( 7t7pen) - @( ,t,p)] \Ijﬁnc dx +
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/Q (1, p)[T.. — D¢ dx.

The first term converges to zero because of the assumed uniform L? continuity
of @ in its third argument, while the second term is governed by the uniform
convergence in L".

We now use (26) and (27) to conclude that

2
lim (0¥, /0t () = / h—V\IJ(x, t)- V{(x) + Ve(x,t, p)U(x,t)((x) dx.
n— oo QO 2m
However, we may deduce from Lemma 3.2 that
lim (9., /t,C) = (00 /01.), (31)

so that W solves the TDDFT system. The initial condition is a consequence of
(25) in, say, L? for t = 0. O
It remains to verify the regularity class for V.
Theorem 3.2. The function ¥ of Theorem 3.1 satisfies
Ve C(J; Hy(Q)NCHT; HH(Q)).

Proof. We begin with the verification that ¥ € C(J; H}), and make use of
Proposition B.1, part (2), of appendix B. In particular, it suffices to show that

h? h?
/ — VU, |? dx — / —|VV|? dx, n — oo, uniformly in ¢.
Q 4m 0 4m

We use the representations contained in Lemma 3.1 as applied to ¥, . We
rewrite them as follows.

hQ 2 1 2 1 2
Eu(t) = [ |l Te P (GO0 5100 50+ 00t ) e P
(32

En(t) =E(0) + %/0 /Q[(aV/as)(x, s) + o(x, 8)]| V., |? dxds. (33)

Note that the expression &,(t), as defined in (32), converges uniformly in ¢ to
£(t), when the boundedness for 0V /dt+ ¢ is applied, due to strong convergence.
The approach now is to solve for the gradient term in (32) and deduce its
uniform convergence from that of each of the other terms. Because of the
hypotheses made on the external potential and the time-history terms, the terms
requiring analysis are the Hartree and remaining quantum correction terms. The
techniques are similar to those used earlier. For the Hartree potential, we have

/ W ok pe,, (t) pe, (X,t) dx — / W« p(t) p(x,s) dx =
o Q

[ W o @l (x8) = plxst) x| W [ (6) = 0ol 1) .
Q Q
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Each of the two rhs terms is estimated by the Schwarz inequality, so that we
must estimate the following two products of norms:

W pe, (0|2 lpe,, () = p(E)l[ L2, (W [pe,, (8) = p(®)][ 2]l p(E) ]| 2

For the first product, the first term is estimated by Young’s inequality, to obtain
a quantity, bounded on J. We estimate the second factor as

[1pe, () = p(B)ll L2 < [[We, O] = (W] [[e,, ()] + LD 2

which is convergent to zero as n — oo, by the strong uniform convergence. For
the second product, an application of Young’s inequality and the strong uniform
convergence allows one to conclude that uniform convergence to zero as n — oo.
Next, we consider the LDA term.

/ Buaa(pe (£))pe, (3,1) dx — / B1aa () plx, ) dx =
Q Q

/ Braa (oo, (1)) [pe, (%, 1) — p(x,1)] dx + / [Bra (e, (£)) — Praa(p(t))] 0, ) dx.
Q Q

Holder’s inequality is applied to each of the terms on the rhs, so that we need
to estimate the following norm products:

Ve, D[ We, O] = €O Lo [[We, (O] + 12 (@)]]

1We, O = 1@ O | W@ 2

where 7 = a+ 2 and 7’ is conjugate to r. As has been demonstrated previously,
the first product is estimated by

1We, (DI Ve, () = T L ([Pe, (Ol L + 1(E)]|2r),

L7,

L’

which converges to zero as n — co. The second product is estimated, with the
help of (18) and Holder’s inequality, as

all (1@, ) + [LOD (W, O = [LOD] /e L ONZ-, (34)

and another application of Holder’s inequality, with p = o and p’ conjugate to
«, gives the bound,

all (e, O+ EODIZ I1e, ) =[Oz [ @17,

so that this term also converges to zero. Finally, the Coulomb term is directly
estimated via the strong convergence; we omit the details. It follows that ¥ €
C(J; H}).

In order to conclude that ¥ € C(J; H~!), we subtract two copies of the
TDDEFT system, one evaluated at ¢, and the other at s, and we estimate for
an arbitrary test function (. We need to show that this difference satisfies a
zero limit as ¢ — s, uniformly in |[([|zz < 1. The property just established,
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U € C(J; H}), implies this for the gradient and external potential terms. The
remaining terms can be estimated via a very useful analogy: replace the n — oo
limit in the estimates for Theorem 3.1 by the ¢ — s limit, after constructing
parallel algebraic representations. The convergence of the corresponding domi-
nating terms holds since ¥ € C(J; H}). This completes the proof. O

Remark 3.2. The combination of Theorem 3.1 and Theorem 3.2 gives Theorem
2.1 as formulated earlier. This is the first central result of the article.

4 Uniqueness

This section is a replacement for the original section. The following theorem will
be established in this section by the techniques associated with evolution oper-
ators. We first state the theorem, and then establish appropriate background,
prior to providing the details of the proof. We note that the analysis presented
here excludes from uniqueness the case(s) 1 < « < 2 in the representation of
the LDA component of the potential.

Theorem 4.1. Under the assumptions of this article, there is a unique weak
solution of (4), where Vi is defined in (11). The defining properties of weak
solution are described in Definition 1.1. The cases 1 < a < 2 are excluded.

Some results allow for 1 < a < 2. We will be specific when these cases are
excluded.

4.1 Background

The evolution operator permits the solution of the linear Cauchy problem,

Wy Atulty = F(),

dt
u(0) = uyp, (35)

on an interval [0, T], with values in a Banach space. The solution is given by
t
u(t) = U(t,0)ug —|—/ U(t,s) F(s) ds, (36)
0

under (strong) assumptions on ug, F'. In order that (36) hold rigorously, the evo-
lution operators U(t, s) are derived for a pair, (A(t), X) and (A(¢),Y), where Y
is continuously embedded in X and is a core subspace of the domains of A(t).
The operators are typically generated on X, and shown to be invariant on Y by
a commutator relation. For this article, Y = H} and X = H~!. This theory
is due to Kato, and is developed in [17, Chapter 6]. For this article, we may
use the results of [7], where the desired properties of the evolution operators
were derived for Hamiltonian operators A(t) = H(t), including the kinetic term
plus the external, Hartree, and time-history potentials. The Coulomb and LDA
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potentials were not included in that theory. It follows that any application of
these results, intended to derive uniqueness, must shift the Coulomb and LDA
terms into the action of F(t). The theory asserts [17, Prop. 6.4.1] that there
is a one-to-one correspondence between the representation (36) and the unique
solution of (35) if ug € Y and F € C(J;X) N L'(J;Y). When this hypothesis
holds, the unique solution is in C*(J; X)NC(J;Y). However, the characteriza-
tion of F' in the current situation does not satisfy the required regularity. This
accounts for the following method which we use. Note that we are able to use
the linear theory by defining coefficients of A(¢) in terms of the solution itself.
Further, for p = |¥|?, define

F(\I]) = 7[(I)c + (I)lda(p)}qlv (37)

and U?(t,s) to be the evolution operators derived in [7], based on a Hamil-
tonian including the kinetic term plus the external, Hartree, and time-history
potentials. As defined, F fails to be in C(.J; H}). We make use of the following
smoothing.

Definition 4.1. Consider the smoothing of section 2.1, and define
F (V) = —[¢e * Pe + e * Praa(p)]V, 1 < a < 4. (38)
This smoothing will be used to prove the following.

Lemma 4.1. Suppose that F(V(s)) is defined by (37). If U satisfies (4), then
¢

U(t) =U*P(t,0)¥, +/ UP(t,s) F(¥(s)) ds, (39)
0

where the integral is interpreted as a member of C1(J; H™1Y), and W is inter-
preted as a distribution. Conversely, if ¥ € C(J;HE) N CH(J; H™Y) satisfies
(39), then ¥ satisfies (4).

Proof. Suppose ¥ is a solution of (4), with the specified regularity. The function
F.(¥) is a member of C(J; H}) and the replacement in (39) of F(¥) by F.(¥)
yields a solution W,

U.(t) = UP(t,0)T + /0 UP(t,s) F.(¥(s)) ds, (40)

of the adjusted equation (4). These may be thought of as nearby approximate
linear equations, indexed by e. We notice the important fact for the argument
that the functions W, (¢) form a bounded family, independent of e, in C(J; H}).
We use the specific properties that the convolution terms in the definition of
F, are L*™ functions, with bound independent of €, and possess L? derivatives,
with this norm independent of e.

In the smoothed case, there is a one to one correspondence between the
representation and the adjusted system. As ¢ — 0, the representations V.
converge in C(J; H~1) to a representation

UL (t) = UP(t,0) Ty +At UP(t,5) F(U(s)) ds. (41)
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The convergence follows from [17, Prop. 7.1.1] and the argument presented now.
Since the evolution operators are independent of ¢, it suffices to estimate the
norm of

[1E (W) = Fe(W) [l gim-1)-

The LDA component is estimated in C(J; H~1) as follows. For 1 < a < 4, we
have that |¥|* € C(J; L3/?). Tt follows that, for ¢ € H{,

IIF(Y) = F(D)]ollL — 0,

uniformly in ¢. This combines the generalized Holder inequality and the prop-
erties of the smoothing in L3/2.

The duality estimate for the Coulomb potential is carried out by a similar
estimate, via the generalized Holder inequality. All that is required is the known
convergence of the smoothing in L3/2. We conclude that (41) holds.

It remains to equate ¥, with U. If we examine the adjusted system (4), cor-
responding to (40), we conclude that the family OW 0t is bounded in C(J; H~1).
This is implied by the boundedness, already noted, of the family F.(¥) in
C(J; H}). This in turn yields the equicontinuity required for the application
of Proposition B.1 of appendix B. When this convergence result is applied to a
subsequence of ¥, we conclude that the difference ¥ — W, solves a linear initial
value problem, upon cancellation of the terms involving F', for which zero is the
unique solution.

For the converse, we begin with ¥ satisfying (39), and define F, as before.
We again argue that U satisfies (4) using the same limit analysis. O

The following is immediate from the lower semicontinuity of the norm with
respect to weak convergence.

Corollary 4.1. For the weakly convergent sequence V., of the proof, we have

1¥llcesmyy < lim inf Ve, llo;m)-

4.2 The approximation arguments: Proof of Theorem 4.1

In order to establish uniqueness, we consider two separate equations, defined by
H, (), F(¥(t)), and H,,(t), F(¥s(t)), with solutions ¥y, Uy, resp. The evo-
lution operators are denoted by U”i(t,s),j = 1,2. The representations satisfy
the lemma and are understood to be in C(J; H~1), since the functions F(¥;)
are in this space. Explicitly,

F(¥V)) = —[®c + Puaa(p)]¥;, j =1,2. (42)

Proposition 4.1. Suppose that 1 and Vs are two distinct solutions of (39),
where p; = |‘I/j|2,j = 1,2. Suppose the respective approximations are given by
(40), written here as

V(1) = UP (£,0) Ty + /O U (1, 5) F(W,(s) ds. (43)
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Fora =1, or 2 < a < 4, there exists a constant C, not depending on €, such
that

t
WS (8) — WS (8) ) < C / 191(5) — Wals) | 3 ds, (44)
for allt € [0,T7.

Proof. We begin the argument by writing the operator difference,

TS (t)—05(t) = [U(t,0)-U*? (t,O)]\IIO+/Ot[U"1 (t,8)=U"(t,5)] Fe(¥1(s)) ds +

/0 U (t,5) [F.(¥1(s)) — F.(Ta(s))] ds. (45)

The estimations of the first and second terms depend on the representations
(17, (7.1.3)], for g € H},

un (ta T)g -ur (ta T)g = _/ ur (tv 5)[‘[:Ip1 (S) - }:]pz (s)]Upz (Sa T)g ds. (46)

Here, R R
[HP'(s) — H*(s)]g = W [p1 — p2]g + [®(V1) — ®(V2)]g (47)

is a member of C(J; H}) if g € C(J; H}). We have employed cancellation of
the kinetic term and the external potential term in (47). Both terms are readily
estimated, uniformly in s, in the H} norm, the first by [20, Theorem 3.1], for
g = ¥y, and the second by the hypothesis assumed for ®, for g = F.(¥1(s)).
After the action of the evolution operators, with respect to bounded sets in H},
uniformly in ¢t € J, is taken into account, we obtain an estimate of the form
(44) for these terms in (45).

For the estimation of the third term in (45), we may write the preliminary
algebraic step as

Ge x| W1 Wy — P * [Wa|*" Wy = Pe  [| W1 |* — [Wa|*| WUy + Pe x [Wo|* [y — Wy]. (48)

The H{ seminorm requires the estimation of four rhs terms for this relation
as computed by the product rule for differentiation. We provide a summary
analysis of each term involved in the differentiation of (48). We must show that
such terms are Lipschitz in L2, uniformly in ¢ € .J. The partial derivative, with
respect to x;, of the first term has a pointwise upper bound given by

x| [W 710U /O~ Wa|* 71 OWs /O] (1W1])+¢ex][U1]*— Vo] | (|0W1/D;]).

(49)
The second term of (49) is readily estimated, since the convolution factor is
uniformly in L* by Young’s convolution inequality. In fact,

[ge # [[Wa]* = [Wo|*[[lzee <lgellr [1W2]* = W2l [l
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where r = o + 2 and 7’ is conjugate to r. In the proof of Proposition 2.1, we
showed that
W% = [Wo*[[| v < comst|[ Wy — Wal| (50)

uniformly in ¢. The estimation of the first term in (49) requires the pointwise
inequality,

ade* (| [U1]* 1 OW [0z — [Wo|* 1 OWs [0z |)|¥y] <

age* ([[1|*7 — [Wa| 71|00y /0uy) 91|+
age * (|00 /dx; — Oz /0x;| [Ta|*1|) [Ty ]. (51)

For both terms on the rhs of (51), we demonstrate that the terms being smoothed
are uniformly in L'. The resulting convolution yields a function in every L
space, with bound uniformly in ¢. The L? estimation of the product with |¥]
is then estimated by Holder’s inequality. We now present the details.

The first term on the rhs of (51) requires a case distinction (o = 1 is trivial):

l<a<2;2<a<4.
For 2 < o < 4, we use (18) so that, pointwise, we have
(W[ =W 7|00 /9] < (@=1) max(| W], [Wa])*2||W1|—[Wal[ 091 /D]

The application of Holder’s inequality, with indices, 1/3,1/6,1/2, resp. together
with Sobolev’s inequality, gives the desired estimate.

For 1 < a < 2, this upper bound does not hold in general, hence this interval
1s excluded.

For the estimation of the second term in (51), the L' norm of the term being
smoothed is estimated by the Cauchy-Schwarz inequality. Thus, the product
of the smoothed term and |¥;| can again be estimated in L? by the Holder
inequality. The upper bound of the rhs of (50) is obtained.

We now estimate the derivative of the second term in (48). A pointwise
upper bound for the partial derivative is given by

aqSE * (|\I/2|°‘*1|8\Ilg/8xj|)|\111 — \I/2| + ¢5 * |\I/2|°‘(|8\I/1/8xj - 8\112/8x3|)

The estimation of the first of these two terms follows the previous pattern:
determination of uniform L' bounds for the functions being smoothed, followed
by the L? product estimation via the Holder inequality. The upper bound of
the rhs of (50) is directly obtained. For the second of these two terms, notice
that the convolution factor is uniformly L°° by Young’s convolution inequality.
The conclusion is immediate.

A typical kth term for the partial derivative with resp. to «; of the Coulomb
potential is bounded above pointwise:

k| dex (|- —ar7)|W1 — Wa| + |ex| de * (| - —ax]|71)[0€1/0x; — OU2/0x].

Holder’s inequality implies the bound for the first term. The second term is
directly estimated, since the convolution factor is uniformly L°°. This completes
the proof of the proposition. O
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Corollary 4.2. The uniqueness for the quantum corrected model holds for the
potentials introduced in this article, except for the exclusion 1 < o < 2 in the
LDA potential. No further boundary reqularity is required.

Proof. Since the norm is weakly lower semicontinuous, the estimate is trans-
ferred to ||¥; — o Gronwall’s inequality implies the result. O

The uniqueness result permits a useful convergence result for the smoothing
‘sequence’.

Corollary 4.3. We assume the conditions of the uniqueness theorem. Suppose
that €, is any positive sequence of real numbers convergent to zero. Then the se-
quence ., satisfying Proposition 2.1, converges in the norm of C(J; HE(2))N
CHJ; H71(Q)) to the unique solution W defined in Theorem 2.1.

Proof. We use the elementary fact that, if every subsequence has a further sub-
sequence converging to a unique limit, then the entire sequence converges to that
unique limit. The first part of the proof of Theorem 3.2 demonstrates subsequen-
tial convergence in C(J; H}(2)). The arguments leading to (31) demonstrate
convergence in C1(J; H=(Q)).

O

5 Summary Remarks

We have formulated a model within the framework of time dependent density
functional theory. It is a closed system model, posed on a bounded domain in
R3 with homogeneous boundary conditions. The novelty of the article lies in
the flexibility of the choice of potentials. In addition to the Hartree potential
and a given external potential, we permit Coulomb potentials with fixed ionic
point masses, a time-history potential, and the local density approximation
(LDA), which is typically used in simulation. We have obtained existence and
uniqueness for this model on a bounded domain in R and a given finite time
interval. The growth of the LDA term, in terms of the exponent «, cannot be
modified for the methods of this article to apply. We have selected the form
here, because of its wide usage in the literature. Finally, Corollary 4.3 assumes
significance because the smoothed solutions can be obtained via the evolution
operator, and its approximations (see the cited references).

We note finally, that the case of periodic boundary conditions frequently
occurs in applications. It is a topic of future study.

A Notation and Norms

We employ complex Hilbert spaces in this article.

N
L*(Q) ={f = (f1,---, f~v)" : |f;|? is integrable on Q}.(f,g)r> = Z/ij(x)m dz.
j=1
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However, fQ fg is interpreted as

N
Z/ fjgj dx
j=1"9¢

For f € L?, as just defined, if each component f; satisfies f; € Hg(Q;C), we
write f € HE(Q;CN), or simply, f € H}(Q). The inner product in H} is

N J—
(f,9mr = (f,9)r2 + Z/Qij(m)- Vg;(z) dz.

fQ V f-Vg is interpreted as

N
> [ V@) ay(@) da.

Finally, H~! is defined as the dual of Hg, and its properties are discussed at
length in [23]. The Banach space C(J; H}) is defined in the traditional manner:

C(J;HY) = {u: J s H} : u(-)is continuous}, lullermp = sup [[u(t)|| g1 -
teJ

e Since () is assumed to be a bounded Lipschitz domain, the standard
Sobolev embedding theorems for H}(Q) hold, relative to LP(£2) [23].

B Subsequential Convergence for Bounded Fam-
ilies

In section 3.2, we applied two basic compactness results, taken from [4] and [21].
Here, we quote the underlying results for the reader’s convenience. The first is
cited from [4, Proposition 1.3.14(i,iii)].

Proposition B.1 (Cazenave). Let I be a bounded interval of R, let m be a
nonnegative integer, let  be an open subset of RY | and let (f,)nen be a bounded
sequence of L°°(I; HL(Q)) N Whoo(I; H=™(Q)).

(1) Then there exist (fn, )ken and f € L°°(I; HY(Q)) N Whoo(I; H=™(Q))
such that

Vt €I, fn, (t) = f(t),k — oo, in H) ().
(2) If (fn)nen C C(I; HY(Q)) and || fr, O]z = || f )|l g2 uniformly on I, then
feC(I; H{(Q)) and
frp = fin C(I; Hi ().

The next result is cited from [21, Theorem 2.3.14]. It is a generalized Arzela-

Ascoli theorem.
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Proposition B.2 (Simon). Let X be a separable metric space andY a complete
metric space, with C C'Y compact. Let F be a family of uniformly equicontin-
uous functions from X toY with Range(f) C C for every f € F. Then any
sequence in F has a subsequence converging at each x € X. If X is compact,
then F is precompact in the uniform topology.

Acknowledgement: The author thanks Dr. Gabriele Ciaramella for extremely
helpful comments regarding the manuscript, leading to improved accuracy and
exposition.
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