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Abstract

We describe the general algorithms of Nash iteration in numerical
analysis. We make a particular choice of algorithm involving multilevel
collocation and smoothing. Our test case is that of a linear differential
equation, although the theory allows for the approximate solution of non-
linear differential equations. We describe the general situation completely,
and employ an adaptation involving a splitting of the inversion and the
smoothing into two separate steps. We had earlier shown how these ideas
apply to scattered data approximation, but in this work we are interested
in the application of the ideas to the numerical solution of differential
equations. We make use of approximate smoothers, involving the solution
of evolution equations with calibrated time steps.
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1 Introduction

Nash iteration was introduced by J. Nash in [20] and systematized in
terms of generalized implicit function theorems by J. Schwartz in [22] and
by J. Moser in [18] (see also [19]). Nash had reduced the embedding prob-
lem for Riemannian manifolds to the problem of existence of a solution
of an under-determined system of nonlinear partial differential equations
for which linearization was not continuously invertible. The smoothing
‘iteration’ was thus intended to deal with the case when [DyF(x0, y0)]

−1

is unbounded in solving for y(x) near (x0, y0) such that F(x, y(x)) = 0.
In its final form (see [21]), this work introduced regularization as a post-
conditioning step in the application of Newton methods for generalized
implicit function theorems. A development of these ideas in terms of cur-
rent numerical methods was given, with complete convergence proofs, in
[12]. In the latter article, the special case F(x) = 0 of root determination
was considered. This continues in the present work.

We will review the nonlinear theory in the remainder of this section,
and suggest various implementations of the general Nash iteration scheme
in Section 2. Section 3 is devoted to a discussion of an approximate
smoothing operation involving the solution of evolution equations with
calibrated time steps. In Section 4 we shall then specialize the general
context to a linear differential equation and to a specific inversion de-
fined by radial basis function collocation. We shall exhibit or support the
following:

• A multilevel algorithm (without smoothing) which ceases to con-
verge.

• An added smoothing step can sustain the convergence.

• The addition of a smoothing step allows the formulation of nested
iteration algorithms which greatly improve the quality of the approx-
imation (when using basis functions of comparable support sizes).

1.1 Loss of Derivatives

Suppose that F := Φ(Dα) : Bη,0 ⊂ Y0 → X0 is a differential mapping of
order m, from Bη,0 = {v ∈ Y0 : ‖v−v0‖Y0 ≤ η} to X0, where X0 and Y0 are
Banach function spaces. The real Hölder spaces and the Sobolev/Besov
spaces are the prototypical examples. Assume that F is continuously
Lipschitz (Fréchet) differentiable on Bη,0:

‖F′(v)− F′(w)‖Y0,X0 ≤ 2M‖v − w‖Y0 , v, w ∈ Bη,0, (1a)

‖F′(v)‖Y0,X0 ≤ M, v ∈ Bη,0. (1b)

It is desired to determine a root of the operator equation F(u) = 0 by
a Newton iterative method, involving an approximate inverse Gh(v) of
the map F′(v). We are concerned in this paper with the case when Gh

is defined by a standard numerical method, i. e. , when Gh is an inverse
discretization operator and h is the “meshsize” of the discretization. If
G(v) represents the actual inverse, and w the current residual, then each
differentiation of

[G(v)−Gh(v)]w
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leads to a loss of order one in the predicted convergence order. In partic-
ular, the approximation of the identity,

[F′(v)Gh(v)− I ]w = [F′Gh(v)− F′G(v)]w

is of apparent order O(1) and thus experiences a loss of derivatives. This
observation is based upon ‘a priori’ analysis and is by no means necessary.
It does not preclude the possibility that special local approximation prop-
erties can induce the validity of an o(1) estimate in certain norms. For
example, it appears that finite element methods can satisfy the latter esti-
mate when measured in dual norms; this may be due to the special feature
of finite element methods in locally reproducing polynomials of a given
order. Classical theories, such as the Kantorovich theory, are based on
use of an approximation of the identity of the order of the residual, which
translates in the context of numerical methods to a polynomial function of
the grid size, chosen adaptively according to the current residual. The ‘a
priori’ analysis suggests that these theories are only selectively applicable.

For those readers who wish an analogy to the finite-dimensional case,
loss of derivatives is analogous to the situation of rank-deficient inversion.
As Nash originally envisioned it, the situation of concern is when the
differential operator is not continuously invertible over the entirety of its
natural range space. However, the point of [12] is that an analogue of
this can occur even in smooth problems where the differential operator
is invertible: if the deficiency is measured in terms of approximation by
discretization operators. We note that it is still possible for convergence
of Galerkin approximations, say, to occur without residual norm decay.
The Babuška-Aziz inf-sup theory describes such a situation in the linear
case in a variational context (see [1] and [13]).

It is worth commenting on the role of smoothing. On the one hand,
the goal of superlinear convergence is not the sole motivation. Indeed, at
the level of the ground space norm (L2, for example), one could achieve
this directly by the choice of sequential mesh spacing if convergence were
assured. However, typically this rate does not persist with derivatives.
Clarity of shape preserving, which is related to derivatives, may dissipate.
Moreover, there is no clear link to computational complexity at this level
of analysis. Important computational procedures such as multigrid at-
tempt to correlate the dimension of the Galerkin subspace with the work
function in a linear or log-linear manner. When this is done, residual de-
cay is an essential component. The Nash iteration we propose combines
residual decay with a superlinear rate of convergence persisting through
derivatives at least the order of the differential operator. The computed
approximation thus displays not only accuracy, but integrity with respect
to shape and contour. Moreover, our analysis is primarily intended for
the case of nonlinear problems, where the same conclusions hold.

1.2 Framework for the Postconditioning Iteration

Definition 1.1 We are led to introduce a scale of Banach spaces Xσ and
Yσ, where the following properties hold:
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• These spaces are continuously embedded, so that, for σ′ < σ,

X0 ⊃ Xσ′ ⊃ Xσ ⊃ X∞ := ∩σ≥0Xσ. (2)

There is a similar statement for {Yσ}.
• There exists a smoothing St: X0 → X∞ for t ≥ 1:

‖Stv − v‖X0 → 0, as t →∞; (3a)

‖Stv‖Xp ≤ Crptp−r‖v‖Xr , 0 ≤ r ≤ p; (3b)

‖Stv − v‖Xr ≤ Crpt
−(p−r)‖v‖Xp , 0 ≤ r ≤ p. (3c)

There is a similar set of inequalities assumed for the spaces {Yσ}.
It is necessary, finally, to express how the mapping F, its derivatives,

and approximate inverses behave relative to this scale of spaces.

Definition 1.2 We explicitly assume the following.

• F : Bη,0 ∩ Yσ → Xσ is a well-defined map for 0 ≤ σ ≤ s and s
sufficiently large (cf. (10c)). We assume without loss of generality
that the center v0 of Bη,0 is in Ys so that it serves as the common
center of all smooth balls Bη,σ to follow.

• Functional substitution in Φ is essentially of linear growth (cf. [21]
for a precise meaning). In other words, the Xs norm of the residual
can be estimated from above by the Ys norm, plus the s-th power
of the Yγ norm, where γ is defined immediately below as the loss of
derivatives.

• There exist numerical inversion operators with loss of derivatives.
Specifically, there is a constant γ ≥ 1 and a family Gh(v) : Xγ →
Y0, of linear mappings depending on parameters h and v, and a
continuous monotone increasing function τ : [0, b] → [0,∞), τ (0) =
0, such that, for all w ∈ Xγ ,

‖[F′(v)Gh(v)− I ]w‖X0 ≤ τ (h)‖w‖Xγ ,

v ∈ B1,γ ⊂ Yγ . (4)

Here, we have used the symbol B1,γ ⊂ Yγ to denote the ball of radius
1.

• The maps {Gh(v)} are uniformly bounded in h and v from Xσ to
Yσ−γ for γ ≤ σ ≤ s:

‖Gh(v)w‖Yσ−γ ≤ M‖w‖Xσ . (5)

Remark Inequality (4) is the key inequality which distinguishes, say,
Nash iteration from Kantorovich iteration. In the latter, one requires (4)
to hold with Xγ replaced by X0. The failure of (4) with X0 and (5)
constitutes the loss of derivatives characterization.

The following result was proved in [7]. The corresponding result for
Hölder spaces was proved by Hörmander [11].
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Theorem 1.1 Let φ ∈ L1(IR
d) be a kernel whose Fourier transform φ̂ is

compactly supported and infinitely differentiable in IRd and φ̂(ω) = 1 in a
neighborhood of the origin. Furthermore, let φt = tdφ(t·), t ≥ 1. Then φ
is a smoothing kernel defining smoothing operators in the above sense by
convolution with φt. Thus, for u ∈ W k

p (IRd) (u ∈ Bk
p,∞(IRd)) φ satisfies,

for a and b not exceeding k,

lim
t→∞

‖φt ∗ u− u‖p = 0,

‖φt ∗ u‖b,p ≤ Ctb−a‖u‖a,p, 0 ≤ a ≤ b,

‖φt ∗ u− u‖a,p ≤ Ct−(b−a)‖u‖b,p, 0 ≤ a ≤ b.

Here the norms ‖ · ‖a,p and ‖ · ‖b,p are used to denote either Sobolev or
Besov space norms depending on whether or not a, b are integers.

In principle, this result forms the basis for smoothing via a convolution
equivalent to high frequency cutoff. In practice, the implementation in
the spatial domain is badly conditioned because of the highly oscillatory
nature of the convolution kernel.

1.3 Nash Iteration

We discuss the approximate Newton method with postconditioning (Nash
iteration) and the fundamental parameters. We begin with u0, the initial
iterate, and identify u0 with the center v0 of Bη,0. More generally, u0 will
be the center of the closed balls Bc,σ ⊂ Yσ of radius c. We assume

f0 = F(u0) ∈ Xs, u0 ∈ Ys,

‖f0‖X0 ≤ ρ−λ, (6)

where ρ > 0 and 1 < λ < s. We need a parameter β, satisfying 1 < β < 2,
to control superlinear convergence later. In terms of these quantities, we
require

‖f0‖Xs ≤ Mρ(s−λ)β. (7)

Similarly, we select a parameter θ > 1 to describe acceleration of conver-
gence, and parameters

tk = ρθβk

, k ≥ 1, (8)

to serve as smoothing speeds. We assume inductively that uk−1 ∈ Ys∩B1,γ

has been defined for k ≥ 1. Then uk is defined by Newton/postconditioning
iteration:

uk − uk−1 = −StkGhk
(uk−1)F(uk−1). (9)

Here the parameter hk is subject to specification (cf. (11) below), so that
the function τ (hk) is of the order of F(uk−1) (see (11) below). The it-
eration is required to converge in Yµ for specified µ ≥ 1. The relations
among γ, s, λ, β, θ, and µ are given in the definition to follow. For ease
of estimation, we assume that M is chosen so that M is sufficiently large.
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Definition 1.3 The relations satisfied by the exponents and parameters
are presented here. We require

1 < β < 2, 1 < θ, 1 ≤ γ ≤ µ < λ < s, (10a)

λ ≥ max{2βγ(2 − β)−1, β(γ + µβ)}+ λ0(2− β)−1, (10b)

s ≥ max{θγ(θ − 1)−1, λ + θγ(β − 1)−1}+ s0 max{(θ − 1)−1, (β − 1)−1},
(10c)

for arbitrary λ0 > 0, s0 > 0. The number ρ is required to be sufficiently
large (see the remark at the end of this section). The numbers hk are
selected so that

τ (hk) ≤ M5‖F(uk−1)‖Xγ , k = 1, . . . . (11)

The choices θ = 1.16, λ = 29
6

, s = 47
6

and β = 1.4, for µ = γ = 1,
satisfy the necessary inequalities (10 a-c) with λ0 = 0.1 and s0 = 0.016.
They are restrictive upon ρ, however, and should eventually be replaced
by other choices.

1.4 The Superlinear Convergence Theorem

Theorem 1.2 Suppose the hypotheses of the Definitions are satisfied, and
that the initial iterate u0 ∈ Bη,0 ∩ Ys satisfies (6) and (7). Then the
Newton iterates {uk}, defined by the adaptive, postconditioning procedure
(9), converge to a root u of F in Bη,0∩B1,µ. The superlinear convergence
in Y0 is described by the estimate

‖u− uk‖Y0 ≤ M4ρ−(λ−βγ)βk−1
/βk−1,

for k = 1, 2, . . .. The superlinear convergence in Yµ is described by

‖u− uk‖Yµ ≤ M5ρ−λ0βk−1
/βk−1,

for k = 1, 2, . . ..

The proof, described fully in [15], proceeds by establishing the follow-
ing statements recursively for k ≥ 0:

‖F(uk)‖X0 ≤ ρ−λβk

,

‖F(uk)‖Xs ≤ Mρ(s−λ)βk+1
,

‖F(uk)‖Xγ ≤ M2ρ−(λ−βγ)βk

,

‖uk+1 − uk‖Ys ≤ 1
2
ρ(s−λ)βk+2

,

‖uk+1 − u0‖Ys ≤ ρ(s−λ)βk+2
,

‖uk+1 − uk‖Y0 ≤ M4ρ−(λ−βγ)βk

,

‖uk+1 − u0‖Y0 ≤ η,

‖uk+1 − uk‖Yµ ≤ M5ρ−λ0βk

,

‖uk+1 − u0‖Yµ ≤ 1.
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Remark The preceding theorem can serve as an existence theorem as
well as an approximation theorem. The reader may inquire as to what fails
in the absence of an operator root. The most likely source of failure is the
breakdown in selecting a compatible pair ρ, u0, such that ρ is sufficiently
large and the starting iterate u0 satisfies (6, 7) in relationship to ρ. By
sufficiently large here we mean the technical comparisons described in
(2.20 a–e) of [12] (or (7.21 a–e) of [15]) which restrict the sizes of certain
ratios of powers of M to powers of ρ or certain classical functions of ρ.
The remaining restrictions are detailed in (1a, b) and Definition 1.2. The
number η which appears in the induction inequalities above is defined in
(2.20 d) of [12] (or (7.21 d) of [15]) as a bound for the ratio of M4 to a
classical function of ρ. As such, it is not a restriction on this ratio, but a
measure of it.

2 The Connection to Multilevel Iteration

In a previous paper [7] we described the connection between multilevel
scattered data interpolation as suggested by Floater and Iske [8] and ap-
proximate Newton iteration. In this section we will elaborate on those
ideas as applied to the solution of nonlinear partial differential equations.

In the following we will denote a generic nonlinear PDE with

Lu = f.

Here f ∈ Xσ and u ∈ Yσ with Xσ and Yσ appropriate Sobolev or Besov
spaces (see [7]). We denote the problem linearized at uk−1 by

Luk−1v = f − Luk−1,

which suggests that we consider the mapping F to be of the form

F(u) = Lu− f.

For the algorithms discussed in this section the other mappings intro-
duced earlier, the numerical inversion Gh and the smoothing St, remain
arbitrary (subject to the conditions stated above). In our numerical exper-
iments later on we will represent Gh by collocation with locally supported
radial basis functions on a grid X with “meshsize” h, and approximate St

by a forward Euler discretization of certain evolution equations based on
the (bi)-harmonic operator (see Section 3 for details).

An approximate Newton scheme with postconditioning is then given
by (9). Using the notation just introduced this is equivalent to

Luk−1v = f −Luk−1

uk = uk−1 + Stkv (12)

It is possible to interpret this basic algorithm in various different ways.
We now describe several possibilities.
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2.1 The “Simple” Algorithm

The specific choice of numerical inversion Gh prescribes via (11) that
in each iteration the meshsize hk be coupled to the size of the residual
‖F(uk−1)‖ = ‖f −Luk−1‖. Since this coupling is very difficult to monitor
in practice, in our experiments we work with a hierarchy of computational
grids {Xk} whose meshsizes change regularly (i.e. hk = hk−1/2). The
connection between this finite-dimensional computational framework and
the infinite-dimensional function spaces used in the previous section is
either done as in the classical finite element or finite difference framework,
where the approximate solutions uk are represented by their nodal values
on the grids, or – as in our experiments – as finite-dimensional linear spaces
spanned by the translates (about the mesh points) of an (everywhere
defined) radial basis function.

The first algorithm is a direct analog of the Floater-Iske method which
we have applied previously to scattered data approximation and linear
differential equations (see [4], [5], [6], [7]). The correction v is computed
with one single computational step on the next finer grid Xk. Thus the
“simple” algorithm can be given as

Algorithm 2.1 (“Simple Algorithm”)

1. Let u0 = 0.

2. For k = 1, 2, 3, . . .

(a) Solve Luk−1v = f −Luk−1 on Xk.

(b) Smooth the residual and update: uk = uk−1 + Stkv.

Step (a) corresponds to an application of Ghk
(uk−1) to the residual

F(uk−1), and step (b) describes the postconditioning via Stk as defined
in (9).

For L = L and L = L = I , respectively, this covers the cases studied
earlier in the references listed above.

2.2 Nested Iteration

In this section we offer two refinements of Algorithm 2.1. The first varia-
tion is to add an “inner” iteration to the “outer” Newton iteration. One
can view this as Nash iteration where the numerical inversion Gh is imple-
mented by an iterative numerical method. We fix a number N of nested
computational grids X1 ⊂ X2 ⊂ · · · ⊂ XN . It is the finest grid, XN , on
which we want to know the Newton approximation. Thus, the meshsize
hk is fixed in this version. The hierarchy of grids is used to compute the
update v by solving the linearized problem on these grids. The algorithm
for this case is

Algorithm 2.2 (Nested Iteration I)

1. Let u0 = 0.

2. For k = 1, 2, 3, . . .

(a) Let v0 = 0.
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(b) For ` = 1, 2, . . . , N

i. Solve the linearized problem

Luk−1w` = f − Luk−1 − Luk−1v`−1

on X`.

ii. Update v` = v`−1 + w`.

(c) Now Luk−1vN = f − Luk−1, and so
Smooth the correction and do Newton update:

uk = uk−1 + StkvN .

The motivation for this version of the algorithm is efficient compu-
tation of the Newton update vN , i.e., instead of computing vN on XN

directly, this is done in an efficient multilevel procedure using the coarser
grids (which is of course the same philosophy used in multigrid methods).

In theory the meshsize of the finest mesh, XN , would have to change
from one iteration to the next (as explained for the “simple” algorithm).
Thus, a more accurate notation for the computational grids would be
{X k

` }N
`=1. In principle, N could also vary with k.

In our implementation we keep the computational grids fixed, i.e., we
obviously violate the dependence of the meshsize on the size of the residual
(as prescribed by (11)), and simply return to the coarsest grid to start the
computation of the next Newton update. Without any added smoothing
Algorithm 2.2 was already suggested by Wendland [24]. His description,
however, was limited to the case in which Gh is given by a multilevel
Galerkin approach using compactly supported radial basis functions. The
motivation for the return to the coarsest grid in [24] was given by the
fact that the “simple” algorithm ceased to converge at some level – but
a return to the coarsest grid led to a procedure with better than linear
convergence. In the multigrid literature this process is also known as
Kaczmarz smoothing [16].

A second variation of Algorithm 2.1 is given by

Algorithm 2.3 (Nested Iteration II)

1. Let u0 = 0.

2. For k = 1, 2, 3, . . .

(a) Let v0 = 0.

(b) For ` = 1, 2, . . . , k

i. Solve the linearized problem

Luk−1w` = f − Luk−1 − Luk−1v`−1

on X`.

ii. Update v` = v`−1 + w`.

(c) Now Luk−1vk = f − Luk−1, and so
Smooth the correction and do Newton update:

uk = uk−1 + Stkvk.
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The only difference to Algorithm 2.2 is that now the finest grid changes
from one Newton iteration to the next, i.e., uk is the Newton approxima-
tion on Xk. This is more in the spirit of the theory (variable meshsize). It
also has as a consequence that the number of iterations in the inner loop
is no longer fixed.

There are, of course, many other possible implementations of the basic
Nash iteration scheme (12) similar in flavor to the many different strategies
for cycling through multigrid. Moreover, adaptive mesh refinement is
certainly one avenue which needs to be explored. Another question related
to the nested iterations is whether it is appropriate to employ further
smoothing steps during the inner iterations. One could then interpret the
resulting procedure as one for which the linearized problem also is solved
by a Newton method – via an application of the “simple” algorithm.

3 Approximate Smoothing via Explicit
Time Stepping

At its heart, Nash iteration is based upon a framework of smooth function
spaces (cf. the estimates for s and λ following Definition 1.3). In particular,
we must be able to infer the inequalities of Theorem 1.1 for a, b ≤ s.
Actually implementing this is quite rigorous for s = 8, for example. This
is because of saturation encountered with positive kernels such as the
Gaussian kernel. In order to obtain higher order convergence, oscillatory
kernels must be employed if one is using direct kernel convolution. In
order to circumvent such computational difficulty, it is customary to use
approximate smoothing, based on the solution of initial value problems.
It is not our intent in this paper to present a complete mathematical
exposition of approximate smoothing. However, for the reader’s interest,
we wish to summarize the mathematical foundation upon which it rests.
We describe this now.

It has been known for some time via semigroup methods and the resol-
vent calculus that smoothing can be defined involving limits of the latter
(see [2], Section 4.2, for elaboration). What makes this possible is the
fundamental property of the resolvent calculus given by

lim
λ→∞

λR(λ,A)f = f,

for all f in the semigroup domain. Here, R denotes the resolvent of A:

R(λ,A) = (λI − A)−1.

It is this property which is made precise in [2] in terms of saturation. In
general, the smoother the domain of A, the more rapid the convergence in
terms of classical rates. If strict correlation with the smoothing require-
ments on St were maintained, one would require that A be of order at
least s.

It is possible to construct the resolvent convergence approximately
via an implicit time stepping method. Indeed, by properly identifying
λ with 1/∆t, one deduces the convergence of the implicit or backward
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Euler method (the Trotter-Kato theorem is a rigorous statement of this
fact, sometimes called the method of horizontal lines; see [14]). One can
actually verify directly the convergence of the explicit method (forward
Euler method), and thus deduce the smoothing properties of the latter,
via the identification with the implicit limit. In what follows, we employ
the explicit method rather than the implicit method. However, we employ
only the Laplacian and its operator square for the approximate smoothing
(see (15, 16)). We briefly discuss the time stepping now.

We consider this in the context of the numerical experiments described
below, which involve a two-point boundary value problem with homoge-
neous Dirichlet boundary conditions on (0, 1). Given the Newton correc-
tion v, we take as the smoothed correction, Stv, the solution at time t of
one of the following problems:

st = sxx , 0 < x < 1 , 0 < t

s(0, t) = s(1, t) = 0 (13)

s(x, 0) = v(x)

or

st = −sxxxx , 0 < x < 1 , 0 < t

s(0, t) = s(1, t) = sxx(0, t) = sxx(1, t) = 0 (14)

s(x, 0) = v(x) .

The first of these is the classical heat equation in one spatial dimension,
for which the time-dependent Green’s function (or “heat kernel”) is pre-
cisely the Gauss-Weierstrass kernel, here convolved with the odd-periodic
extension of v (as utilized in the smoothing context in [5] and [7]).

The second problem above gives a similar evolution but for the bihar-
monic operator. Approximations to the actions of these smoothers can be
efficiently realized using finite differences and explicit time stepping.

In the earlier notation, As = sxx in the harmonic case, and As =
−sxxxx in the biharmonic case. Since the order of A serves as a saturation
index, the biharmonic smoother is inherently superior in relation to the
general theory.

On a uniform mesh (xi = i∆x, i = 0, . . . , n, ∆x = 1/n), denote the
standard central difference approximations

sxx(xi) ≈ δ2
xsi :=

si+1 − 2si + si−1

∆x2

and

sxxxx(xi) ≈ δ4
xsi := δ2

xδ2
xsi =

si+2 − 4si+1 + 6si − 4si−1 + si−2

∆x4
.

Then we approximate (13) by

sm+1 − sm

∆t
= δ2

xsm , m = 0, 1, . . .

or
sm+1 =

(
I + ∆t δ2

x

)
sm =: G1sm , (15)
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and we similarly approximate (14) by

sm+1 =
(
I −∆t δ4

x

)
sm =: G2sm . (16)

Here sm denotes the approximate solution on time level tm := m∆t.
Now the eigenfunctions of the spatial differential operators d2/dx2

and d4/dx4 and their finite-difference counterparts δ2
x and δ4

x are all the
same, namely, the Fourier sine modes sin(kπx). From this one can obtain
explicitly the eigenvalues of the iteration matrices G1 and G2:

λk(G1) = 1− 4∆t

∆x2
sin2

(
kπ∆x

2

)
, λk(G2) = 1− 16∆t

∆x4
sin4

(
kπ∆x

2

)
,

k = 1, . . . , n − 1. The behavior of these damping factors as functions of
the wavenumber k for different values of the ratios ∆t/∆x2 and ∆t/∆x4

is depicted in Figure 1.

0 n / 2 n
−1

−1 / 3

0

1 / 3

1 / 2

1

k

λk(G1)

r = 1 / 4

r = 1 / 3

r = 1 / 2

0 n / 2 n
−1

−3 / 5

0

3 / 5

3 / 4

1

k

λk(G2)

r = 1 / 16

r = 1 / 10

r = 1 / 8

Figure 1: Damping factors for explicit time stepping with heat kernel (left) and
biharmonic operator (right) for different values of the ratio r := ∆t/∆x2 (left) and
r := ∆t/∆x4 (right).

Thus for the case of smoothing with the heat kernel, we obtain the
following distinguished values of the ratio r := ∆t/∆x2: r = 1/2 (max-
imum stable time step), r = 1/3 (maximum smoothing of the high-
frequency modes n/2 < k < n)—this corresponds to the “damped Ja-
cobi” smoother utilized in some multigrid algorithms [10]—and r = 1/4
(maximum smoothing of high-frequency modes subject to the restric-
tion λk > 0). For the biharmonic smoother, the corresponding ratios
of r := ∆t/∆x4 are r = 1/8, 1/10, and 1/16. Aspects of these approx-
imate smoothers can be controlled by choosing different values of these
ratios along with varying the number of time steps taken.

4 Numerical Experiments

We will now illustrate the Nash iteration scheme with implementations
of the algorithms of Section 2 for a linear problem. All examples will be
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based on the following simple linear two-point boundary value problem:

−u′′(x) + π2u(x) = 2π2 sin πx, x ∈ (0, 1), (17)

where u(0) = u(1) = 0. The unique solution to this problem is given by
u(x) = sin πx.

Since the differential equation in our test case is linear, Gh(u) does
not depend on u, and so the Newton scheme of (12) is simply

Lv = f − Luk−1

uk = uk−1 + Stkv (18)

beginning with u0 = 0.

4.1 Radial Basis Functions

We implement the approximate inverse Gh using radial basis function
(RBF) collocation. The radial functions φ`,κ we use come from a class
of functions introduced by Wendland [23]. These functions are compactly
supported and built of polynomial pieces. Simple direct formulas for com-
puting the φ`,κ are (see [4])

φ`,0(r)
.
= (1− r)`

+,
φ`,1(r)

.
= (1− r)`+1

+ [(` + 1)r + 1] ,

φ`,2(r)
.
= (1− r)`+2

+

[
(`2 + 4` + 3)r2 + (3` + 6)r + 3

]
,

φ`,3(r)
.
= (1− r)`+3

+

[
(`3 + 9`2 + 23` + 15)r3

+ (6`2 + 36` + 45)r2 + (15` + 45)r + 15
]
.

Here
.
= denotes equality up to a constant factor, and r = ‖x‖, where

x ∈ IRd, so that the composition of the univariate function φ`,κ with the
norm indeed yields a radial function. Note that the cut-off function (·)+
ensures the compact support of these functions. The two indices ` and κ
are related to the space dimension d, and to the smoothness of the basis
functions. More precisely, if one intends to work in IRd, then one should
take ` = b d

2
c+κ+1, where κ ensures that φ`,κ ∈ C2κ. With this choice the

functions are positive definite, and thus the associated collocation matrix
is assured to be invertible.

Solving the boundary value problem by collocation corresponds to sat-
isfying the differential equation and the boundary conditions pointwise on
some given set of points X = {x1, . . . , xn}. One of the advantages of ra-
dial basis functions is that these points do not have to be on any kind of
(regular) grid. Thus, radial basis functions can be considered as a mesh-
less method. Furthermore, many different types of boundary conditions
can be handled very easily by the collocation method. The expansion we
use for the solution of our one-dimensional example (17) is of the form

u(x) = c1φ(|x|) + cnφ(|x− 1|) +

n−1∑
j=2

cjL
(2)φ(|x− xj |), x ∈ IR . (19)

Here the collocation points x1 = 0 and xn = 1 lie on the boundary, and
the remaining xj are located in the interior of the interval. The super-
script (2) indicates that L acts on φ as a function of the second variable,
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i.e., the center location. Expansion (19) is motivated by a connection to
scattered Hermite interpolation which ensures the invertibility of the re-
lated collocation matrix (for more details see [3], [5] or [9]). We point out
that the collocation points and the centers are both chosen to coincide
with the mesh points xk. We follow this widely used approach since this
is the situation for which the theoretical foundation is sound. For the
more general situation not much is known theoretically.

We use the general form of expansion (19) on all computational grids
Xk. The basis functions φ differ from mesh to mesh by a change in their
support size. We point out that even though the computational grids Xk

are nested, the approximation spaces

Sk = span{φ(‖(· − x
(k)
j )/δk‖), x

(k)
j ∈ Xk}

are not. Here δk denotes the scale for the support size of φ on Xk.
In order to get a rough idea for the loss of derivatives (see (4)) to be

expected when using radial basis function collocation we refer to the only
known convergence estimates for collocation with radial basis functions.
In [9] upper bounds for L∞ convergence rates of the solution of an m-
th order elliptic partial differential equation via symmetric radial basis
function collocation on a single fixed grid were given as

‖u− uh‖∞ = O(h2κ−m−d/2). (20)

For this result the authors required that the smoothness of the basis satis-
fies 2κ > m + d/2 and the smoothness of the solution u ∈ Hσ(Ω) satisfies
σ > m + d/2. According to a remark in [9] one can expect to pick up an
additional factor of hd/2 for the L2 convergence rate. The approximate
solution uh in (20) is a linear combination of basis functions which have
a fixed support size throughout. Convergence is achieved by using more
and more centers, thereby decreasing the “meshsize” h.

For our problem we have d = 1 and m = 2, so that the basis functions
have to be chosen to be at least in C2.5. The expected convergence order
follows from any additional smoothness built into the basis. In our ex-
periments we used the function φ5,3 which is C6 and positive definite in
IR3. Therefore the L2 convergence rate one should expect for using this
function for collocation on a single grid is at least O(h4), and we should
therefore expect γ to be 4 at least. (In practice, on a single grid, we have
observed rates which are almost O(h8).)

As indicated in Section 2 we make use of a hierarchy of computational
grids {Xk}. In our experiments below we will always take X1 to consist of
5 equally spaced points in [0, 1]. The finer grids are obtained by halving
the meshsize of the previous grid.

The linear systems arising at each level are solved with the conjugate
gradient method and Jacobi preconditioning. In order to have a meaning-
ful initial approximation the support of the basis functions for the coarsest
grid is chosen so large that the matrix on the coarsest grid is a dense one.

For the subsequent levels we use two different strategies to determine
the support size of the basis functions. In one group of tests we insist on
keeping the bandwidth of the collocation matrices fixed, i.e., the support
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size of the basis functions is halved from one level to the next. This guar-
antees that the computational cost remains proportional to the problem
size. However, as can be seen by comparing Tables 1 and 3 the con-
vergence properties suffer. Therefore, in a second group of experiments,
we let the bandwidth increase slightly from one level to the next. This
has beneficial effects on the convergence, but at an added computational
expense.

The errors and residuals in the tables below are computed either on
the next finer grid, or on a common very fine grid. The convergence rates
are determined as

rate = ln
(

wk−1

wk

)
/ ln 2, (21)

where wk is either the `2 error or the `2 norm of the residual at level k.
In order to judge how well the various implementations fit into the

theory we offer another interpretation of equation (11), the coupling be-
tween the meshsize and the norm of the residual. If we consider τ (hk)
to be of the form τ (hk) = hγ

k , and assume that the mesh refinement is
done uniformly for all levels such that hk+1 = hk/α for some α > 1, then
taking the ratio of

hγ
k = M5‖F(uk−1)‖

(corresponding to the maximal allowable meshsize) for two consecutive
values of k implies

αγ =
‖F(uk−1)‖
‖F(uk)‖ .

Using α = 2 and equation (21) we see that ideally we should have rate = γ.
This, however, is almost never the case in our numerical simulations, and
superlinear convergence is not achieved.

In fact, for any value of α > 1, the choice of the maximum allowable
meshsize yields

γ = ln

(
‖F(uk−1)‖
‖F(uk)‖

)
/ ln α.

This formula is useful for monitoring whether the mesh refinement strat-
egy agrees with the theory, but it is of no help in adjusting the meshsize,
since the ratio ‖F(uk−1)‖/‖F(uk)‖ depends on α.

4.2 RBF Collocation without Smoothing

For comparison purposes we start off with the results of two experiments
using Newton iteration without an added smoothing step. The only way
of performing collocation on a hierarchy of nested grids is by using the
“simple” algorithm. A return to the coarsest grid is not possible, since
the residual is already zero there from the previous computations.

Example 1. The bandwidth B of the collocation matrices is kept fixed
(see the second rightmost column of Table 1). In the last few iterations
the matrices – even though they are of dimension 1025× 1025 and larger
– are very sparse (cf. the percentage of nonzero elements listed in the
rightmost column). This strategy, however, has a serious (and possibly
surprising) drawback: after a few steps the algorithm ceases to converge.
The residual F(u) is still being reduced, but at an increasingly slower rate.
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mesh `2-error rate `2-residual rate B % 6= 0

5 4.178144 10−4 1.560313 17 100

9 2.033295 10−5 4.36 5.158786 10−1 1.60 17 100

17 3.157809 10−6 2.69 2.275439 10−1 1.18 17 80.6

33 2.144409 10−6 0.56 1.117274 10−1 1.03 17 49.3

65 2.078499 10−6 0.05 5.685074 10−2 0.97 17 27.1

129 2.074232 10−6 0.00 2.965916 10−2 0.94 17 14.2

257 2.073959 10−6 0.00 1.605716 10−2 0.89 17 7.26

513 2.073942 10−6 0.00 9.244562 10−3 0.80 17 3.67

1025 2.073941 10−6 0.00 5.833538 10−3 0.66 17 1.85

2049 2.073941 10−6 0.00 4.126360 10−3 0.50 17 0.93

4097 2.073941 10−6 0.00 3.272172 10−3 0.33 17 0.46

Table 1: Newton iteration without smoothing. Constant bandwidth.

Table 2 shows that for a larger (but fixed) bandwidth the algorithm
also stops converging. However, this happens at a later stage (around
iteration 9 instead of iteration 5). In this case, a decrease in the reduction
of the residual is just starting in the last few iterations. A phenomenon
similar to this was described in [17] in the context of quasi-interpolation
with Gaussian kernels, and referred to as approximate approximation by
the authors. The fact that the `2 errors are on the order of machine pre-
cision is no reason for concern, since the absolute value of the error is still
on the order of 10−7, and the `2 errors are computed via 1/n

∑ |error|2.

mesh `2-error rate `2-residual rate B % 6= 0

5 9.292971 10−5 3.551851 10−1 65 100

9 1.076621 10−6 6.43 3.207832 10−2 3.47 65 100

17 1.351028 10−8 6.32 3.104383 10−3 3.37 65 100

33 1.893838 10−10 6.16 3.279753 10−4 3.24 65 100

65 3.196315 10−12 5.89 3.544461 10−5 3.21 65 76.5

129 1.005389 10−13 4.99 3.858650 10−6 3.20 65 45.2

257 1.593373 10−14 2.66 4.209222 10−7 3.20 65 24.4

513 1.165804 10−14 0.45 4.594098 10−8 3.20 65 12.6

1025 1.137442 10−14 0.04 5.020742 10−9 3.19 65 6.43

2049 1.135557 10−14 0.00 5.552718 10−10 3.18 65 3.24

4097 1.135435 10−14 0.00 6.800877 10−11 3.03 65 1.63

Table 2: Newton iteration without smoothing.
Constant (but larger) bandwidth.

Example 2. In order to maintain a positive convergence rate throughout
we now list the results of an experiment identical to Example 1, except
that now the bandwidth of the collocation matrices is increased slightly
from level to level. The bandwidth along with the sparsity of the matrices
is again listed in the two rightmost columns of Table 3. The runtime of this
algorithm is now considerably increased. The reward is an improvement
of the final error by a factor of roughly 50, and the residual of more than
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100. Even better results can be obtained by increasing the bandwidth
even more rapidly (see Table 13).

mesh `2-error rate `2-residual rate B % 6= 0

5 4.178144 10−4 1.560313 17 100

9 1.800810 10−5 4.54 4.723374 10−1 1.72 17 100

17 1.439388 10−6 3.65 1.653630 10−1 1.51 19 85.5

33 2.884972 10−7 2.32 5.347573 10−2 1.63 21 57.6

65 1.361248 10−7 1.08 1.405820 10−2 1.93 25 37.2

129 9.618512 10−8 0.50 2.852467 10−3 2.30 31 23.9

257 7.920015 10−8 0.28 4.654513 10−4 2.62 41 16.0

513 6.901057 10−8 0.20 9.214398 10−5 2.34 55 10.8

1025 6.074316 10−8 0.18 4.530199 10−5 1.02 79 7.75

2049 5.201413 10−8 0.22 3.585907 10−5 0.34 113 5.53

4097 4.084314 10−8 0.35 2.798865 10−5 0.36 171 4.18

Table 3: Newton iteration without smoothing. Increasing bandwidth.

4.3 The “Simple” Algorithm

In the next set of experiments we add a smoothing of the Newton update
v based on biharmonic time stepping as indicated in (16) before moving
on to the next finer grid as prescribed by (18).

Example 3. Everything here is the same as in Example 1 (with band-
width B = 17), except for the smoothing for which we define the ratio
r = 1/10, and use 9 time steps at every level. The fact that the meshsize
is decreasing from one iteration to the next results in the smoothing being
more and more localized, i.e., the smoothing is approaching the identity
as required in the general theory of the Hörmander type smoothing (see
(3a)). The choice r = 1/10 results in a “stencil” which includes negative
coefficients. This is also consistent with the interpretation of Hörmander
smoothing via convolution where the Fourier transform of the smoothing
kernel needs to be C∞

0 and identically equal to one in a neighborhood
of the origin – giving rising to an oscillating smoothing kernel (see [7]).
We observe that the smoothing in this case has a negative impact on the
performance of the algorithm. The original algorithm performs so poorly
that the smoothing – which will always start off slower – can not catch
up. The slight increase in the errors here is an artifact attributable to the
fact that the error at level k is computed on Xk+1. The increase in the
residual at the beginning is real.
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mesh `2-error rate `2 residual rate

5 8.536308 10−4 3.091776 10−1

9 1.494368 10−4 2.51 8.660728 10−1 −1.49

17 1.462289 10−5 3.35 8.551890 10−1 0.02

33 3.489102 10−6 2.07 4.265696 10−1 1.00

65 2.959211 10−6 0.24 3.307111 10−1 0.37

129 2.938334 10−6 0.01 2.728114 10−1 0.28

257 2.941996 10−6 −0.00 2.168440 10−1 0.33

513 2.944737 10−6 −0.00 1.734825 10−1 0.32

1025 2.946166 10−6 −0.00 1.395395 10−1 0.31

2049 2.946884 10−6 −0.00 1.125743 10−1 0.31

4097 2.947244 10−6 −0.00 9.123804 10−2 0.30

Table 4: Newton iteration with biharmonic smoothing.
Constant bandwidth.

Example 4. In this test we add the same smoothing as in Example 3 to
the algorithm of Example 2, i.e., we use an increasing bandwidth coupled
with biharmonic time stepping. In Table 5 we can clearly observe some of
the benefits of the smoothing. After a slow start, beginning with the fifth
iteration, the error with smoothing remains lower than without smoothing
(cf. Table 3). By the final iteration the error has improved by a factor of
about 570. The residual, however, is about 40 times larger. It should be
pointed out, though, that the rate at which the residual is improving is
slowing down towards the end in Example 2, whereas it is increasing for
Example 4.

mesh `2-error rate `2 residual rate

5 8.536308 10−4 3.091776 10−1

9 1.532232 10−4 2.48 8.629300 10−1 −1.48

17 1.022748 10−5 3.91 8.206835 10−1 0.07

33 3.725648 10−7 4.78 3.508117 10−1 1.23

65 1.601594 10−8 4.54 2.055907 10−1 0.77

129 1.126580 10−9 3.83 1.150107 10−1 0.84

257 2.308002 10−10 2.29 5.533993 10−2 1.06

513 1.320186 10−10 0.81 2.374892 10−2 1.22

1025 1.057439 10−10 0.32 9.300114 10−3 1.35

2049 8.885222 10−11 0.25 3.426087 10−3 1.44

4097 6.959743 10−11 0.35 1.226064 10−3 1.48

Table 5: Newton iteration with biharmonic smoothing.
Increasing bandwidth.

4.4 Algorithm 2.2

As already mentioned in Section 4.2, the only way to do collocation with-
out smoothing on a hierarchy of meshes is to proceed from the coarsest
to the finest grid in one sweep. If a smoothing step is added, then it
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is possible to return to the coarsest grid since in this case the residual
has been “smeared out” by the smoothing. It will be evident from the
remaining examples, which all make use of this fact in some way or other,
that returning to the coarsest grid is extremely beneficial.

We start out with an application of Algorithm 2.2. This is only a slight
modification of the “simple” algorithm. There is no smoothing during the
“inner” iterations, but before returning to the coarsest grid one smoothing
operation is added.

Example 5. The setup for this test is as follows: we use five grids (of 5,
9, 17, 33, and 65 equally spaced points) for the inner iteration. After an
approximate solution on X5 has been computed, we smooth the Newton
update using biharmonic timestepping with r = 1/10. Five time steps are
used throughout, and the bandwidth of the matrix is kept fixedat B = 17.

The benefits of returning to the coarse grid are obvious. By the end
of iteration 2 the error has reached 2.6 10−9 – a value almost 1000 times
smaller than what we were able to achieve on 4097 points in Example 1.
The residuals are also smaller.

iteration `2-error rate `2 residual rate

1 (65) 2.062621 10−6 5.685074 10−2

2 (65) 2.618147 10−9 9.62 3.762865 10−4 7.24

3 (65) 1.038725 10−9 1.33 2.589270 10−4 0.54

4 (65) 1.574223 10−9 −0.60 2.094356 10−4 0.31

5 (65) 1.702751 10−9 −0.11 1.780998 10−4 0.23

6 (65) 1.586824 10−9 0.10 1.573126 10−4 0.18

7 (65) 1.423736 10−9 0.16 1.433483 10−4 0.13

8 (65) 1.261856 10−9 0.17 1.338644 10−4 0.10

9 (65) 1.107440 10−9 0.19 1.273977 10−4 0.07

10 (65) 9.614630 10−10 0.20 1.230218 10−4 0.05

Table 6: Algorithm 2.2 with biharmonic smoothing.
Constant bandwidth.

This algorithm is extremely efficient in its first 2 or 3 iterations. More-
over, it is computationally very efficient since it operates on very coarse
grids with matrices of size at most 65×65. Therefore we can employ basis
functions with a much larger support.

Example 6. Here we use basis functions with a fixed support covering the
entire interval. This leads to full collocation matrices (which is tolerable
as long as they stay small in size). Since only the first few iterations are
significant we restrict the entries in the next table to these. A comparable
accuracy was obtained with the other algorithms only at a far higher
computational cost (e.g., see the results in Table 13).
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iteration `2-error rate `2 residual rate

1 (65) 5.011204 10−13 6.157483 10−6

2 (65) 1.246917 10−16 12.0 1.816168, 10−7 5.08

3 (65) 6.243330 10−15 −5.65 4.793290 10−9 5.24

4 (65) 7.737252 10−15 −0.31 3.030940 10−9 0.66

Table 7: Algorithm 2.2 with biharmonic smoothing, 5 time steps.
Full matrices.

We would also like to mention that a direct solution with the basis
used here on 129 points yields an error of 1.949018 10−15, and on 257
points 2.422648 10−17. The strategy of iterating twice on 65 points with
the added smoothing step compares favorably. Again, the extremely small
`2 errors are obtained by averaging the squares of the absolute errors, and
thus are no reason for concern.

Example 7. If the size of the residual is more important than the mag-
nitude of the error of the solution, then an increase in the number of
smoothing steps helps. Here we have used 500 time steps instead of 5.

iteration `2-error rate `2 residual rate

1 (65) 5.011204 10−13 6.157483 10−6

2 (65) 2.665058 10−14 4.23 1.933114 10−11 18.3

3 (65) 2.672686 10−14 −0.00 5.439174 10−12 1.83

4 (65) 2.673897 10−14 −0.00 2.566985 10−12 1.08

5 (65) 2.673753 10−14 0.00 1.503205 10−12 0.77

Table 8: Algorithm 2.2 with biharmonic smoothing, 500 time steps.
Full matrices.

4.5 Algorithm 2.3

The final group of examples illustrates the performance of Algorithm 2.3.
Here we have computed all errors and residuals on a very fine grid of 8193
points. The smoothing itself is also performed on the evaluation grid. In
order to keep the connection to the Hörmander smoothing, the number of
time steps is taken inversely proportional to the smoothing speeds defined
in equation (8). Thus, the number of time steps is determined via

steps = κρ−θβk

, k ≥ 1. (22)

The next two examples are analogous to Examples 1 and 3, i.e., the
bandwidth of the matrices is kept fixed at B = 17.

Example 8. First we use Laplacian time stepping with r = 1/3. In
order to determine the number of time steps for the smoothing, the values
κ = 15000, ρ = 2.5, θ = 1.2, and β = 1.3 are used in (22).

We can see that this algorithm has the “nicest” performance. After
an initial decrease in the rate of convergence which is attributable to the
poor convergence of the underlying algorithm (see Tables 1 and 4) the
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smoothing picks up, and the resulting rate of convergence is indeed better
than linear. The residuals are reduced even more effectively.

iteration steps `2-error rate `2 residual rate

1 (9) 2.033295 10−5 5.158786 10−1

2 (17) 3592 2.929755 10−6 2.79 2.269963 10−1 1.18

3 (33) 2339 1.740574 10−6 0.75 1.067171 10−1 1.09

4 (65) 1340 1.116929 10−6 0.64 1.981615 10−2 2.43

5 (129) 649 5.070245 10−7 1.14 7.856810 10−4 4.66

6 (257) 253 1.746176 10−7 1.54 1.765247 10−4 2.15

7 (513) 74 5.016099 10−8 1.80 5.050195 10−5 1.81

8 (1025) 15 1.619966 10−8 1.63 1.628521 10−5 1.63

9 (2049) 2 7.846139 10−9 1.05 7.872489 10−6 1.05

10 (4097) 1 1.908264 10−9 2.04 1.869062 10−6 2.07

Table 9: Algorithm 2.3 with harmonic smoothing.
Constant bandwidth.

Example 9. This experiment is identical to the previous one, except that
we now use biharmonic smoothing (with r = 1/10), and the number of
time steps are computed using κ = 5000, ρ = 2.5, θ = 1.25, and β = 1.25.
The performance of the algorithm is similar to the previous one. However,
it takes longer for the beneficial effects of the smoothing to show.

iteration steps `2-error rate `2 residual rate

1 (9) 2.033295 10−5 5.158786 10−1

2 (17) 1693 3.157784 10−6 2.69 2.275439 10−1 1.18

3 (33) 1291 2.144208 10−6 0.56 1.117274 10−1 1.03

4 (65) 921 2.076735 10−6 0.05 5.684928 10−2 0.97

5 (129) 603 2.062944 10−6 0.01 2.969758 10−2 0.94

6 (257) 355 2.014039 10−6 0.03 2.037241 10−2 0.54

7 (513) 183 1.806686 10−6 0.16 7.587786 10−3 1.42

8 (1025) 80 1.164152 10−6 0.63 1.377814 10−3 2.46

9 (2049) 29 2.082058 10−7 2.48 2.377331 10−4 2.53

10 (4097) 8 1.189030 10−8 4.13 1.304149 10−5 4.19

Table 10: Algorithm 2.3 with biharmonic smoothing.
Constant bandwidth.

Our last two examples should be compared to Examples 2 and 4, since
we are now using collocation matrices with an increasing bandwidth.

Example 10. Laplacian smoothing with r = 1/3 and the same strategy
for the choice of time steps as in Example 8 is used. As to be expected,
the errors and residuals in Table 11 are smaller than those in Table 9.
The errors in Tables 5 and 11 are quite comparable, but the residuals
using Algorithm 2.3 are much smaller than when employing the “simple”
algorithm.
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iteration steps `2-error rate `2 residual rate

1 (9) 1.800810 10−5 4.723374 10−1

2 (17) 3592 1.306465 10−6 3.78 1.650572 10−1 1.52

3 (33) 2339 2.213257 10−7 2.56 5.043259 10−2 1.71

4 (65) 1340 6.906664 10−8 1.68 1.289936 10−3 5.29

5 (129) 649 2.058588 10−8 1.75 8.185404 10−4 0.66

6 (257) 253 5.618570 10−9 1.87 2.142798 10−5 5.26

7 (513) 74 1.421454 10−9 1.98 2.054422 10−6 3.38

8 (1025) 15 3.962393 10−10 1.84 8.520311 10−7 1.27

9 (2049) 2 1.625181 10−10 1.29 1.382370 10−7 2.62

10 (4097) 1 3.016582 10−11 2.43 2.504111 10−8 2.46

Table 11: Algorithm 2.3 with harmonic smoothing.
Increasing bandwidth.

Example 11. For our last experiment we use biharmonic time stepping
as in Example 9 coupled with an increasing bandwidth. The results are
consistent with our observations made in Examples 9 and 10. The bihar-
monic smoothing shows its benefits later than the Laplacian smoothing.
In this case the choice of time steps even results in some slightly larger er-
rors than in Example 4. Initially Algorithm 2.3 performs better than the
“simple” algorithm, then it slows down before it starts to pick up speed
again towards then end. The residuals are much smaller throughout.

iteration steps `2-error rate `2 residual rate

1 (9) 1.800810 10−5 4.723374 10−1

2 (17) 1693 1.439376 10−6 3.65 1.653631 10−1 1.51

3 (33) 1291 2.884700 10−7 2.32 5.347577 10−2 1.63

4 (65) 921 1.360072 10−7 1.08 1.405797 10−2 1.93

5 (129) 603 9.563849 10−8 0.51 2.856400 10−3 2.30

6 (257) 355 7.681854 10−8 0.32 1.311373 10−3 1.12

7 (513) 183 5.981426 10−8 0.36 5.874247 10−4 1.16

8 (1025) 80 3.344160 10−8 0.84 1.211105 10−4 2.28

9 (2049) 29 4.910329 10−9 2.77 1.658395 10−5 2.87

10 (4097) 8 2.093763 10−10 4.55 1.998400 10−6 3.05

Table 12: Algorithm 2.3 with biharmonic smoothing.
Increasing bandwidth.

5 Conclusions and Closing Remarks

All tests in this paper were designed to illustrate the effects of smoothing
within the Nash iteration framework. It should be pointed out that far
more accurate results for any of the algorithms can be obtained by increas-
ing the bandwidth of the collocation matrices even more from one level
to the next. Since then the resulting errors become extremely small (ap-
proaching machine accuracy), and since the matrices become quite dense,
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those choices do not lend themselves to illustrate the convergence behavior
of the algorithms. The following table shows the dramatic improvements
that can be obtained in this manner in the case of the “simple” algorithm
without any kind of smoothing. The iteration was taken to 1025 points
only since the solution of the linear systems (which have only about 75%
zeros) and the evaluation of the approximation and the residuals at this
point takes an intolerable amount of time on our desktop PC.

mesh `2-error rate `2-residual rate B % 6= 0

5 4.178144 10−4 1.560313 17 100

9 1.609356 10−5 4.70 4.320554 10−1 1.85 17 100

17 8.022206 10−7 4.33 1.214734 10−1 1.83 21 89.6

33 4.108865 10−8 4.29 2.674686 10−2 2.18 27 68.6

65 1.673436 10−9 4.26 3.998848 10−3 2.74 39 53.1

129 3.903871 10−11 5.42 3.945453 10−4 3.34 57 40.5

257 4.762770 10−13 6.36 2.681349 10−5 3.88 93 33.5

513 3.593669 10−15 7.05 1.360633 10−6 4.30 157 28.6

1025 2.043438 10−17 7.46 5.626762 10−8 4.60 283 25.9

Table 13: Newton iteration without smoothing. Increasing bandwidth.

In this paper we have presented Nash iteration as a theoretical frame-
work for the numerical solution of partial differential equations. This New-
ton algorithm with postconditioning can be interpreted in many different
ways, some of which we suggested in Section 2. The theoretical frame-
work is sufficiently general to cover most traditional numerical methods
for the solution of partial differential equations. Our numerical exam-
ples focussed on one specific numerical inversion, namely the use of radial
basis function collocation. For this choice of method several interesting
observations were made: 1) A multilevel algorithm (without smoothing)
ceases to converge. However, by choosing an appropriate support size of
the basis functions (=bandwidth of the collocation matrix), the size of
the obtainable error can be made small enough to satisfy any practical
requirements (see [17] for the discussion of a similar phenomenon using
(quasi-)interpolation with Gaussian kernels). 2) An added smoothing step
can sustain the convergence. 3) The addition of a smoothing step allows
the formulation of nested iteration algorithms which greatly improve the
quality of the approximation (when using basis functions of comparable
support sizes).
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