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Abstract

The Cauchy problem and the initial-boundary value problem for the Euler-Poisson
system have been extensively investigated, together with a study of scaled and un-
scaled asymptotic limits. The pressure-density relationships employed have included
both the adiabatic (isentropic) relation as well as the ideal gas law (isothermal). The
study most closely connected to this one is that of S. Nishibata and M. Suzuki [Osaka
J. Math. 44 (2007), 639–665], where a power law was employed in the context of the
subsonic case, covering both the isothermal and adiabatic cases. These authors char-
acterize the steady solution as an asymptotic limit. In this paper, we consider only
the steady case, in much greater generality, and with more transparent arguments,
than heretofore. We are able to identify both subsonic and supersonic regimes, and
correlate them to one-sided boundary values of the momentum and concentration.
We employ the novelty of a differential/integral equation formulation.

1 Introduction

In this article, we use elementary methods in combination with the Schauder
fixed point theorem to establish steady solutions of a general version of the
Euler-Poisson system. This system is formulated as an equivalent differen-
tial/ integral equation. In the remainder of the introduction, we outline the
motivation for this study. In [13], S. Nishibata and M. Suzuki characterized
asymptotic limits of certain initial-boundary problems for the Euler-Poisson
system. This paper followed the more comprehensive study of Y. Guo and W.
Strauss [5], who also considered the multi-dimensional initial-boundary value
problem and the associated exponential asymptotic convergence. The authors
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of [13] discuss in detail the steady problem, which is the focus of this paper.
An earlier study was carried out by I. Gamba [4], who examined the steady
isentropic model via an artificial viscosity method.

The principal application, in the mathematical literature cited here for the
Euler-Poisson system, has been to solid state semiconductor devices, in which
the electrons are visualized as a compressible fluid. This perspective dates
to K. Blotekjaer [2], who derived a comprehensive hydrodynamic model in
1970 (see also [16], which merged the model with numerical studies). The
hydrodynamic model is derived and discussed in the author’s monograph [7]
via the first three moments of the Boltzmann equation. A local well-posedness
study for this model is contained in [8]. The literature involving scaled drift-
diffusion limits is extensive; see, [11,3,1,15,6] for the isentropic case, and [9] for
the isothermal case. Recent studies have shifted to unscaled asymptotic limits,
and [5] is fundamental in this regard. Since our intent is the consideration of
the steady problem, we attempt to extend the framework to include a broader
class of applications, while retaining the semiconductor as a benchmark. For
example, the present model includes the general case of an electron plasma.
We have in mind two different situations of contrasting spatial scale:

• Macro-scale: A column of charged atmospheric fluid above an observation
point on the earth’s surface, where the observation points serve as boundary
control inputs for the momentum and electron concentrations;

• Micro-scale: A steady (within a specified time scale) electron cloud, cre-
ated in the aftermath of a dynamic laser ablation process during material
machining and femto-second frequencies [12].

In these plasma models, it is desired to determine the electron concentration
profile, subject to a spatially dependent constitutive law for the pressure-
density relation and the source/sink information regarding electron concen-
tration. Many other models could be cited which fall within the scope of the
mathematical framework constructed here. An advantage of this study is the
relative transparency of the mathematical arguments, which use elementary
real analysis, combined with the Schauder fixed point theorem. The perspec-
tive of this article, then, is to define certain steady models as attainable. It is
a separate question whether these states are actually attained via a dynamic
process. This is a highly intricate issue confirmed by the literature cited above.
We note, in addition, that we present only general theorems related to super-
sonic and subsonic solutions. Special cases are reserved to a future study.

2 The Steady Euler-Poisson System

We present here the equations of the steady Euler-Poisson gas.
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px = f(x) Particle balance (1)
(

p2

mn
+ P (x, n)

)

x

= −enE − H(x)p Momentum balance (2)

The electric field E = −Φx is determined by

ǫ0Φxx = e(n − D) Poisson equation, (3)

where we use the subscript x for derivatives with respect to x. The fundamental
dependent variables are n, p, Φ. For simplicity, the spatial interval is selected
as [0, 1]. The above symbols are defined as follows:

ǫ0 is the dielectric constant of the device; D is the fixed charge; n is the
electron concentration; p is the electron momentum density; m is the mass
of the electron; k is Boltzmann’s constant; e is the electron charge; Φ is the
electric potential as a function of position; f is the rate of gain or loss of
electron concentration; P is the spatially-dependent pressure-density relation;
H expresses the proportionality in the relaxation approximation, and may be
zero. Two-point boundary conditions are specified for Φ, whereas the one-
sided boundary conditions p(0) and n(0) are additionally specified. We make
the choice of x = 0 as the control point; a simple change of variable retrieves
the point x = 1. One can view the particle balance relation as a constitutive
relation, controlled by p(0) and f .

Remark 2.1 The choice,

P (x, s) = csγ, γ ≥ 1,

leads to the ideal gas law when γ = 1 and the adiabatic heat flow condition
when γ > 1. Both cases are covered here.

2.1 Assumptions

The following assumptions are employed in this article. They are labeled A1–
A5. Assumption A6 is specified in the following section.

A1 The function,

F (x) = p(0) +
∫ x

0
f(s) ds, 0 ≤ x ≤ 1,

is absolutely continuous and is never zero.
A2 For each x ∈ [0, 1], the function P (x, · ) : [0,∞) 7→ R is convex in its

second argument and, furthermore,

lim
s→0+

P (x, s) = 0.
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For each x we also assume that P (x, · ) is non-constant and has its global

minimum at s = 0, 0 ≤ s < ∞. The partial derivative, ∂P (x,s)
∂s

, is assumed
continuous on [0, 1] × [0,∞), while satisfying the condition,

lim inf
s→∞

∂P (x, s)

∂s
≥ cx > 0,

for each fixed x.
A3 H is essentially bounded.
A4 D is essentially bounded.
A5 Boundary conditions are specified as indicated above, with n(0) > 0.

2.2 Differential/Integral Equation Formulation

We may reformulate the steady Euler-Poisson system. We seek a solution n
of the differential/integral equation:

(

[F (x)]2

mn(x)
+ P (x, n(x))

)

x

=−en(x)E(x) − H(x)F (x),

E(x) = Φ(0) − Φ(1) +
e

ǫ0

∫ 1

0
Γx(x, s)(n(s) − D(s)) ds, (4)

where Γ is the Green’s function, given explicitly by

Γ(x, s) = s(1 − x), 0 ≤ s ≤ x; x(1 − s), x ≤ s ≤ 1.

Note that, once such a solution n is obtained, Φ is given by

Φ(x) = xΦ(1) + (1 − x)Φ(0) −
e

ǫ0

∫ 1

0
Γ(x, s)(n(s) − D(s)) ds. (5)

Remark 2.2 The Euler-Poisson system is equivalent to (4) by direct calcu-
lation. Specifically, if n, p, Φ satisfy the system (1,2,3), then the application of
the Green’s function Γ leads to (4) and (5). Conversely, if (4,5) are satisfied,
then (3) holds, and then (2). One can define p via f = F ′.

3 Preliminaries

Define the function suggested by (4):

E(x, s) =
[F (x)]2

ms
+ P (x, s). (6)
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Lemma 3.1 For x fixed in ∈ [0, 1] and s > 0, E(x, · ) is positive and convex,
and achieves a unique positive minimum E0(x) ≥ η > 0 at s0(x). The latter
satisfy positive bounds: 0 < σ0 ≤ s0(x) ≤ σ1, independent of x. Moreover, on
each of the two branches s < σ0, s > σ1, E(x, · ) is invertible for each x.

Proof. Fix x ∈ [0, 1] and consider the partial derivative,

∂E(x, s)

∂s
=

−[F (x)]2

ms2
+

∂P (x, s)

∂s
.

One sees that ∂E(x,s)
∂s

is continuous and increasing on (0,∞), and possesses
either a finite positive limit or an extended limit of +∞ as s → ∞. Moreover,
this function has a (right-hand) limit at s = 0+ of −∞. To support these

claims, note that ∂E(x,s)
∂s

is the sum of a strictly increasing function and a non-

decreasing function, hence is strictly increasing. Further, ∂P (x,s)
∂s

is nonnegative;

it follows from the assumptions that ∂E(x,s)
∂s

is eventually positive. The limit
assertions follow from the properties of monotone functions. One concludes
that, for each fixed x, there is a unique zero:

∂E(x, s0(x))

∂s
= 0.

From the derivative sign properties, this represents a global minimum for
E(x, · ). We first establish the existence of a positive lower bound σ0 for
the roots. Suppose not. Then there is a sequence {xk} ⊂ [0, 1], such that

s(xk) → 0, and such that ∂E(xk,s(xk))
∂s

= 0, ∀k. Since [F (x)]2 is positive and

bounded away from zero, an examination of the expression for ∂E(xk,s(xk))
∂s

shows
that the first terms are tending to −∞ while the second terms remain bounded,
an evident contradiction. The existence of the upper bound σ1 is also proven
by contradiction. In this case, the first terms of ∂E(xk,s(xk))

∂s
tend to zero, contra-

dicting the assumed limit infimum assumption on ∂P
∂s

. The number η may be
characterized as the positive minimum of the continuous function E over the
compact set [0, 1]× [σ0, σ1]. Branch invertibility follows from the monotonicity
and limit properties outlined above. 2

Definition 3.1 For each fixed x ∈ [0, 1], and ρ > E(x, σ0), set G0(x, ρ) =
[E(x, · ]−1(ρ). It is required in this case that s = G0(x, ρ) be taken from the su-
personic branch. A similar definition is made for ρ > E(x, σ1) for the subsonic
branch, resulting in an inverse G1. The branches are conveniently labeled:

• Supersonic branch: s < σ0;
• Subsonic branch: s > σ1.

Remark 3.1 If n0 < σ0, then
∣

∣

∣

∣

∣

∂E(x, s))

∂s

∣

∣

∣

∣

∣

≥ c > 0, s ≤ n0; 0 ≤ x ≤ 1.
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A similar statement holds if n0 > σ1. It follows from the inverse function
theorem that the Lipschitz constant of the inverse does not depend on x, in
the sense that a universal upper bound exists for each of the two branches.

We now pose the final assumption.

A6 For each branch, the inverse G = G0, or G = G1, is uniformly continuous
in its first argument x ∈ [0, 1], uniformly for each compact subset of the
second argument, relative to (0,∞).

Remark 3.2 If f(x) ≡ 0, H(x) ≡ 0, and P = P (s), then σ0 = σ1 = σ. In
this case, the corresponding velocity,

c = p0/(mσ),

is a generalized soundspeed. Moreover, in the isothermal case, c assumes the

usual form, c =
√

kT0/m.

4 The Prescribed Electric Force Problem

We use the inversion properties of the previous section to solve the prescribed
electric force problem, under hypotheses on the given data of the model. The
electric force is defined by F = −enE, for given n, where the electric field E
is determined by the second formula in (4). This requires a formal analytical
relation.

4.1 Analysis of the System Work Function

The quantity E , as a spatially integrated internal momentum flux, has the
units of a work, or energy, density. We consider the variation of E as (x, s(x))
moves along a path from (0, n0).

Definition 4.1 Let a positive absolutely continuous function n, satisfying
n(0) = n0, be given. Denote the integrated right hand side of (4) by G(n):

G(n)(x) = −
∫ x

0
[en(t)E(t) + H(t)F (t)] dt.

This quantity is related to E in the following lemma.

Lemma 4.1 If G(n) is given as a specified energy density, then any path s(x),
beginning at n0 and satisfying E(x, s(x)) = G(n)(x), 0 ≤ x ≤ 1, must satisfy
the condition, for each 0 ≤ x ≤ 1:
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E(x, s(x))−E(0, n0) =

{

e(Φ(1) − Φ(0)) +
e2

ǫ0

∫ 1

0
t[n(t) − D(t)] dt

}

∫ x

0
n(t) dt

+
e2

ǫ0

∫ x

0
n(t)

∫ 1

t
[D(y) − n(y)] dy dt −

∫ x

0
H(t)F (t) dt. (7)

Proof It is possible to carry out certain explicit integrations involving Γx.
These are routine, and not written explicitly here. 2

We have shown in section 3 that E forms an energy density ‘well’. We shall
visualize supersonic solutions as ‘ascending ’ the well as n decreases; subsonic
solutions ‘descend’ the well.

4.2 Ascent Inequalities: Supersonic Case

Lemma 4.2 Suppose n0 < σ0 and suppose n is given as in (7). If the ‘a
priori’ conditions,

H(x)F (x)≤ 0, ∀x ∈ [0, 1],

e(Φ(1) − Φ(0))−
e2

ǫ0

(
∫ 1

0
tD(t) dt + n0 − inf(0, D)

)

≥ 0, (8)

hold, E(x, s(x)) − E(0, n0) ≥ 0, ∀x ∈ [0, 1] for any path s(x) ≤ n0 satisfying
(7). In this case, trajectories s(x) are both feasible with bounded energy density,
independent of n, and

E(x, s(x)) − E(0, n0) ≤

{

e|Φ(1) − Φ(0)| +
e2n0

ǫ0

+
2e2

ǫ0

∫ 1

0
|D(t)| dt

}

n0

+
∫ 1

0
|H(t)F (t)| dt := c0. (9)

The lemma is a routine consequence of (7).

Remark 4.1 Define:

ν0 = inf
0≤x≤1

G0(x, c0 + E(0, n0)),

when the supersonic branch is chosen. Then ν0 ≤ s(x) ≤ n0.

4.3 Descent Inequalities: Subsonic Case

As previously, the following lemma is a routine consequence of (7).
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Lemma 4.3 Suppose n0 > σ1 and suppose n is given as in (7). If the ‘a
priori’ conditions,

H(x)F (x) ≥ 0, ∀x ∈ [0, 1],

e(Φ(1) − Φ(0)) +
e2

ǫ0

(

n0

2
−
∫ 1

0
tD(t) dt + n0 sup(0, D)

)

≤ 0,

hold, then E(0, n0) − E(x, s(x)) ≥ 0, ∀x ∈ [0, 1] for any path s(x) ≤ n0

satisfying (7). If the quantity c0, defined in (9), satisfies

c0 < E(0, n0) − E(x, σ1), ∀x,

then the path s(x) is feasible.

Remark 4.2 Define:

ν1 = inf
0≤x≤1

G1(x, E(0, n0) − c0),

when the subsonic branch is chosen. Then ν1 ≤ s(x) ≤ n0.

4.4 The Solutions of the Prescribed Force Problem

As preparation for the general case, we define a closed convex subset K of L1

such that F is determined via a selection of n ∈ K; this permits the definition
of an operator S : K 7→ K Here, in the supersonic case,

K = K0 = {n ∈ L1(0, 1) : ν0 ≤ n ≤ n0}.

and in the subsonic case,

K = K1 = {n ∈ L1(0, 1) : ν1 ≤ n ≤ n0}.

Formally, Sn = N is defined by:

E(x, N(x)) − E(0, n0) =
∫ x

0
[F(s) − H(s)F (s)] ds, (10)

when this is meaningful.

Lemma 4.4 Under the hypotheses of Lemma 4.2, S is invariant on K0. A
similar result holds in the subsonic case if the hypotheses of Lemma 4.3 hold.

5 The Main Theorem

Theorem 5.1 Suppose the hypotheses (A1)–(A6) hold. If n(0) < σ0, and the
hypotheses of Lemma 4.2 hold, then a supersonic solution n exists in K0.
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Similarly, if the hypotheses of Lemma 4.3 hold, then a subsonic solution exists
in K1 in the case n0 > σ1.

Proof We give the details in the supersonic case. The subsonic case presents
no essential differences. We use the Schauder fixed point theorem and we show
that the mapping S is continuous and relatively compact. The assumptions
of the lemma imply that K0 is invariant under S. We first establish the se-
quential continuity of S. Suppose n∗ ∈ K0, and a sequence {nk} ⊂ K0 is L1

convergent to n∗. One observes the uniform convergence of the associated Φk,x

sequence, and the corresponding L1 convergence of the electric force sequence
to F = −en∗Φ∗,x, so that the anti-derivative sequence uniformly converges to
the anti-derivative of F . Since G0 preserves the uniform convergence, one has
established continuity of S. It remains to verify compactness. We use a result
of Riesz [10, p. 44].

Lemma 5.1 Let M ⊂ L1(0, 1). Suppose:

(1) M is bounded in L1; and,
(2) for every ǫ > 0 there exists a δ > 0 such that, for all f ∈ M and for all

h with |h| < δ,
∫ 1

0
|f(t + h) − f(t)| dt < ǫ.

Then M is compact in L1.

We note that L1 boundedness follows from the definition of K0. To verify the
lemma, write, for an arbitrary member N = Sn:

∫ 1

0
|N(x + h) − N(x)| dt = T1 + T2,

where

T1 =
∫ 1

0
|G0(x + h, · )

∫ x+h

0
en(t)Φx(t) − G0(x, · )

∫ x

0
en(t)Φx(t) dt| dx,

and T2 is the corresponding term derived from the product HF . If ǫ is pre-
scribed, estimate T1 by adding and subtracting the term,

G0(x + h, · )
∫ x

0
en(t)Φx(t) dt,

within the absolute value expression of the outer integral. A combination of the
uniform continuity of G0 in its first argument and the pointwise boundedness
of the integrand permits the required estimation of T1 and T2. 2

Remark 5.1 Uniqueness of the solutions derived in the main theorem requires
more stringent hypotheses, which correspond to those of the contraction map-
ping theorem as applied to the integro-differential operator of (4). For example,
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we can require the bound:

(sup |G|)e[|Φ(0) − Φ(1)| + (e/ε0)(2n0 + sup |D|)] < 1,

where the first supremum is taken over a compact set in the variables (x, s) and
the second supremum is taken over [0, 1]. Here, G is the appropriate branch
of the inverse of E . Uniqueness under hypotheses commensurate with those of
existence remains an open question.
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