Appendix: First consider the conditions in Theorem 2.1. For a fixed ¢ > 0,
define the following extremal problem. Find 2z € H! = W£[0,1] such that

0/1;32(8) ds = min /133'2(8) ds:z(0) =1,2(1) =0,z > (),/O1 z(s)ds =c

0

We make the following observations about z. Define H to be the Hilbert space:
H={yeH :yQ1)=0},

with inner product:
1
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Then, K is a closed convex subset of H, where

1
K = y€H:y(0)=1,y207/y(S)ds=C
0

One sees that K is nonempty. If 0 < ¢ < 1/2, the function that is linear on
[0, a], and zero on [a, 1] is in K if the resulting triangle has area c (so that a = 2c
). If ¢ > 1/2, the quadratic function g, given in the paper, is in K :

q(t) = (1—t)(1 — 3t +6ct), 0<t < L.

Tt follows that K has a unique element z of minimal norm in H, and satisfies
the inequality:
(z,y—2) >0, Vy € K. (A1)

Lemma A The function z, which is the unique element in K of minimal norm,
has piecewise quadratic structure on sets where it is not identically zero. More
precisely, if J is an open subinterval of (0,1) on which 2(¢) > 0, t € J, then
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Proof Let ¢ € C5°(J) be an infinitely differentiable function with compact
support in J, with mean value zero:
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In (A.1), choose y = y+ = zteg, where € is small enough such that the minimum
of z on the compact support of ¢ is at least as large as the maximum of € |¢]
on this set. Note that z is continuous, which guarantees a positive minimum.




- Also, note that y+ € K. If we substitute y, in (A4.1), we obtain, after division
by e,
(z,6) 2 0.

Altogether, we have:

/z(s)¢(s) ds = 0.

J

Now suppose ¢ € C§° is an arbitrary infinitely differentiable function with
compact support in J. We observe that the derivative, ¢ = 1, has mean value
zero. We thus obtain:

[ #eids=o,
J

for this arbitrary smooth compactly supported function 1. Integration by parts
yields:

/zb(s)w”'(s) ds = 0.
J
It follows, by definition, that z is a distribution solution of D3z = 0 on J. Thus,

z is a classical solution (see I. Halperin, Theory of Distributions, 1952). This
concludes the proof of Lemma A.

Now consider the conditions in Theorem 4.2. For a fixed ¢ > 0, define a feasible
set K in H! by:

K={weH :w0)=0, w(l)=nr/2, lw| <7/2, fcosw(s)dSZ ¢
0

This allows the definition of the following extremal problem. Find 8 € K such

that:
1 1

/92(5) ds = min /aﬂ(s) ds:we K

0 0
Existence of a minimizer has been demonstrated in Theorem 4.1. We now
investigate the characterizations.

Lemma B Let 6 be a minimizer and suppose (a,b) C (0,1) is an interval on
which 0 < |68] < w/2. Then 0 satisfies the elastica equation on (a, b):

0(s) = Csinf(s), a < s < b,

for some constant C.
Proof The feasible set K is not convex, but nonetheless we consider the energy
functional

1
Ew) = /wz(s) ds,
0




for functions w in K, and attempt to exploit a derivative characterization, taken
on trajectories in K. Suppose ¢ € C§°(a, b) is of mean value zero, i.e.,

/b (1) dt = 0.

Now 6 has a particular sign on (a,b). For concreteness, we assume that 0 <
6o < 0(t) < 61 < 7/2, for ¢ in the compact support of ¢. For |¢] > 0 sufficiently
small, we consider the functions:

.(t) = arccos(cos (1) + ep(t)), a <t < b.

Here, arccos is the standard branch, and we choose |¢| > 0 sufficiently small so
that the argument of arccos is strictly constrained to (0,1) for ¢ € (a,b). One
extends the definition of 6.(t) to all of [0,1] via 6.(¢) = 6(t) on the complement
of (a,b). We have the differentiation formula:

darccost -1
7 = T a<t<b.
Moreover, 0, € K and 6y = 6. Now define the differentiable function of ¢ :
D(e) == E(be), 0< ] < e,
for sufficiently small eg. We will show‘that the derivative ®’(0), exists and
®'(0) =0

since
E(6.) > E6), YO < || < €.

The computation of ®'(0) proceeds in two stages. The explicit representation
of ®(e). The subsequent calculation of the derivative. By direct calculation,

, sin 66’ — e’
0, = ,on
V1 —(cosf + ep)?

The difference quotient may be represented as:

(a; b).

b
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since 0. agrees with # on the complement of (a, b). In computing the limit of the
difference quotient involving ®, Lebesgue’s dominated convergence theorem can
be used to validate the interchange of lim._,o with the operation fab . Moreover,
the resulting limit inside the integral can be evaluated by direct differentiation




of (6)? with respect to €, followed by evaluation at ¢ = 0. In order to facilitate
this calculation, fix ¢ € (a,b) and set ‘

[ (sin00’ —e¢/)?

Gle) 1= | —r7"—
(© 1— (cos@ +ep)? |’
where [ - | is evaluated at fixed ¢. After some simplification, one obtains:
6/ 2 1Ns
&'(0) :2( )2 cos B¢ _20¢)

sin? 6@ sin@’

Now suppose that an arbitrary function ¢ € C§°(a,b) is given. Set ¢ = ¢ to
obtain the mean value zero property for ¢. We have,

b

2'(0) =0 = / {A(Q')QCOSW ‘W'} dt.

sin® 0 sin @
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If the first term is integrated by parts, so that 1" becomes a multiplier of both

terms, and if
t
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then standard distribution theory yields the result that h(t) + ¢'/siné is a
linear function, hence differentiable. Since h is differentiable, the second term
must also be differentiable. We conclude that ¢’ has a derivative. This permits
integration by parts in the second integrand term in the expression ®'(0) = 0,
so that ¢/ becomes a multiplier of both terms. In particular, we conclude that
there is a constant C such that, on the interval (a,b),

cosf o\’
0')? — ) =C
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Upon simplification, this gives the pendulum equation stated in the lemma.
If (a,b) corresponds to the case where # is negative, a nonstandard branch of
arccos is selected, yielding a differentiation formula without a minus sign. All

other details are the same, and one is led to the same equation. This concludes
the proof of Lemma B.




