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Abstract

We consider discontinuous semilinear elliptic systems, with boundary conditions
on the individual components of Dirichlet/Neumann type. The system is a diver-
gence form generalization of ∆u = f(· ,u). The components of f are required to
satisfy monotonicity conditions associated with competitive or cooperative species.
The latter model defines a system of mixed monotone type. We also illustrate the
theory via higher order mixed monotone systems which combine competitive and
cooperative subunits. We seek solutions on special intervals defined by lower and
upper solutions associated with outward pointing vector fields. It had been shown by
Heikkilä and Lakshmikantham that the general discontinuous mixed monotone sys-
tem does not necessarily admit solutions on an interval defined by lower and upper
solutions. Our result, obtained via the Tarski fixed point theorem, shows that solu-
tions exist for the models described above in the sense of a measurable selection (in
the principal arguments) from a maximal monotone multi-valued mapping. We use
intermediate variational inequalities in the proof. Applications involving quantum
confinement and chemically reacting systems with change of phase are discussed.
These are natural examples of discontinuous systems.
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1 Introduction.

Steady-state models of cooperative species provide examples of elliptic systems of mixed
monotonicity. In this case, the vector field of the semilinear system has components, each
of which is increasing in one species, while decreasing in the other. In their treatise [13]
on monotone iterative methods, Heikkilä and Lakshmikantham provide an example of a
discontinuous elliptic system of mixed monotonicity, which does not possess solutions on
an ‘interval’ defined by lower and upper solutions. In this example, the monotonicity
structure differs from that assigned to cooperative species. One of the goals of this paper
is to provide a natural category of discontinuous systems of mixed monotonicity for which
solutions do occur on natural ‘intervals’ for the models described above. However, even for
cooperative species, as we indicate later in the introduction, solutions do not exist in the
conventional sense. Thus, it will be necessary for us to interpret ‘solution’ in the sense of
a measurable selection in the principal arguments from a maximal monotone multi-valued
mapping. By a principal argument here, we mean the i th argument of fi. In particular,
for these arguments, range values may lie on the interval defined by right and left hand
limits. This incorporates ideas of Brézis [5], in an extended setting. Other authors have
also developed the earlier ideas of Brézis (see [8, 18, 23, 7]). We shall also examine other
discontinuous monotone systems, which, although not mixed, differ from the usual systems
studied in [13]. Models of competitive species provide an example of such systems. We
also indicate in §4.2 how higher order discontinuous mixed monotone systems can be
consistently constructed by using competitive and cooperative species as subunits. In all
cases, our solutions require a measurable selection in the principal arguments.

In this work, we employ a framework, based upon (possibly discontinuous) isotone
mappings in conjunction with convex analysis. A prominent role is played by an outward
pointing vector field on the boundary of the trapping region containing the solutions of the
steady-state mixed boundary value problem. This idea was introduced in [18] for evolution
systems, and was implicit in [20] as well. For the case of Carathéodory vector fields, even
without monotonicity, results for both elliptic and parabolic systems were obtained by
Carl and Grossman in [6]. In the present work, we continue the idea of [20] as applied to
steady-state systems. It allows for the consideration of variational inequalities as a bridge
to the system format.

Consider such a model, given in simplest steady-state form by

∆u = f(· ,u), u = (u1, u2)
T , f = (f1, f2)

T , (1.1)

where ui, i = 1, 2 denote the concentrations of species, on a bounded domain Ω ⊂ RN , and
where ∆ denotes the Laplacian. We shall actually study a divergence form generalization
of (1.1), and give a precise interpretation in terms of measurable selection.

The structure of the vector field f is significant. Its monotonicity properties define
the classifications of models, and the boundary behavior of the vector field is related to
stability. In addition, in its principal arguments, each fi, i = 1, 2, is required to satisfy
certain conditions relative to its right and left hand limits (minimum modulus condition).
It will later be shown how these are related to maximal monotone mappings of convex
analysis, and permit a measurable selection. Specifically, one can identify a slab in de-
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pendent variable space, R2, given by Q = [a1, b1] × [a2, b2]. Furthermore, f satisfies the
following conditions:

1. Measurability and Minimum Modulus (Property MMM) 1. For i = 1, 2, and
arbitrary bounded measurable functions ui such that [u1, u2] has range in Q,
the composition functions fi = fi(· , u1(· ), u2(· )) are measurable on Ω.

2. For all x and η2 ∈ [a2, b2], the function f1(x, · , η2) assumes its minimum modulus
at each η1 ∈ [a1, b1], relative to the interval of right and left hand limits at η1:

|f1(x, η1, η2)| = min{|y| : y ∈ [f1(x, η−1 , η2), f1(x, η+
1 , η2)]}.

The same assumption applies to f2(x, η1, · ) as a function of its second dependent
variable argument. Note that we have anticipated here the fact (see item 3
below) that fi is increasing in its i th argument.

2. Outward Pointing on the Boundary of Q (Property OP).

For i = 1, or i = 2, lim sup
ui→ai

fi(· , u1, u2) ≤ 0;

For i = 1, or i = 2, lim inf
ui→bi

fi(· , u1, u2) ≥ 0.

3. Model Classification. We distinguish two classifications. Examples are given in §4
involving quantum confinement and change of phase. The monotonicity properties
described in these classifications are assumed to hold for almost all x ∈ Ω.

a. Competing Species.

f1 is separately increasing in u1, u2; f2 is separately increasing in u1, u2.

b. Cooperating Species.

f1 is increasing in u1, and decreasing in u2;

f2 is decreasing in u1, and increasing in u2.

We describe the mixed boundary conditions as follows.

i. Dirichlet Boundary. There is a (nonempty relatively open) boundary component ΣD

such that the restriction of u to ΣD agrees with a smooth function û ∈ C∞(Ω̄), with
range in Q:

Γ(u− û)|ΣD
= 0. (1.2)

Here, Γ denotes the trace operator.
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ii. Neumann Boundary. The normal derivative of u vanishes in a weak sense on the
complement of ΣD with respect to ∂Ω. This is a natural boundary condition sub-
sumed in the weak formulation.

Before proceeding to a presentation of our results, we summarize the counterexample
presented in [13, p. 301]. In the notation of (1.1) (opposite in sign to that of [13]), we
define the discontinuous vector field,

f1(u1, u2) =

{ −1, u2 ≤ 0,
0, u2 > 0,

f2(u1, u2) = −u1.

The boundary condition is a pure homogeneous Dirichlet condition on the boundary
sphere of the ball of radius ρ, which serves as the set Ω. The authors of [13] construct
lower and upper solutions,

(0, 0)T ; ((ρ2 − |x|2)/(2N), ρ2(ρ2 − |x|2)/(4N2))T ;

but show that there is no solution in the ‘interval’ defined by these quasi-solutions. The
reader will note that this system does not fit into either of the categories of cooperating or
competing species. Although we do not use lower and upper solutions as the basis for our
results, it is instructive to note that the constant vectors, (a1, a2)

T and (b1, b2)
T , play the

role of lower and upper solutions for the boundary value problem studied in this paper.
A slight adaptation of the example above shows that existence in the conventional sense
cannot occur for cooperating species either. We define the discontinuous vector field,

f1(u1, u2) =

{ −1, u1 ≤ 0,
0, u1 > 0,

f2(u1, u2) = 0.

The boundary condition is a pure homogeneous Dirichlet condition on the same domain
as above. We choose Q = [0, 0] × [b, b] for any b > 0. It can be shown that, if a weak
solution exists, then it must coincide with (0, 0); however, the latter is not a solution.
This shows that the notion of solution must be extended. The reader will note that the
counter-example just furnished does not satisfy the minimum modulus condition (MMM–
2) we have imposed on f1 in its first argument.

We shall now state the elliptic system in the form in which we shall study it. Given
bounded measurable functions p1 and p2 on Ω, satisfying p1 ≥ c1 > 0, p2 ≥ c2 > 0, we
formulate the extension of (1.1) as

∇· p1(x)∇u1 = f1(· , u1, u2), ∇· p2(x)∇u2 = f2(· , u1, u2). (1.3)

We now describe the notion of measurable selection.
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Measurable Selection for f1 and f2 Let u2 (resp., u1) be a bounded measurable func-
tion with range in [a2, b2] (resp., [a1, b1]). For x fixed, we denote by f̄1(x, η1, u2(x)) the
interval-valued function, with range values given by [f1(x, η−1 , u2(x)), f1(x, η+

1 , u2(x))].
If, for almost all x, the single-valued measurable function, ḡ1(·, u1(· ), u2(· )), satis-
fies ḡ1(x, u1(x), u2(x)) ∈ f̄1(x, u1(x), u2(x)), we call ḡ1 a measurable selection of f̄1.
f̄2(x, u1(x), η2) and ḡ2(x, u1(x), u2(x)) are defined similarly.

The trapping principle for u is given in the following result.

Theorem 1.1. Suppose f satisfies properties MMM and OP, and suppose that there are
Lp(Ω) functions hi, such that |hi| dominates each |f̄i(· ,v)| whenever v has range in Q.
Here, p = 2N

N+2
, N ≥ 3; 1 < p ≤ 2, N = 2; and p = 1, N = 1. Then (1.3), (1.2) has a weak

solution u, with range in Q for each of the two classifications (2a, 2b) described above, if
f(· ,u) is interpreted as a measurable selection g(· ,u) of f̄(· ,u).

In order to define what is meant by weak solution, we introduce the inner product on
Y =

∏2
1 H1(Ω) as

(v,w)Y =
2∑
1

∫
Ω

pi(x)∇vi·∇wi dx +
2∑
1

∫
ΣD

ΓviΓwi dσ. (1.4)

It is a direct consequence of the open mapping theorem that the norm induced by (1.4) is
equivalent to the standard norm. We identify the zero trace subspace of Y :

Y0 = {v ∈ Y : Γv|ΣD
= 0}.

Then u is a weak solution of (1.3), (1.2) if u satisfies (1.2) and the relation,

(u, φ)Y + 〈g(· ,u), φ〉 = 0, ∀φ ∈ Y0. (1.5)

Here, the duality relation 〈· , · 〉 is used with the Lp components of g(· ,u) acting as con-
tinuous linear functionals on Lq, where the index q satisfies 1/p+1/q = 1. By the Sobolev
embedding theorem [1, Theorem 5.4], which implies the continuous embedding of H1 into
Lq, we may thus identify the components of g(· ,u) with continuous linear functionals on
H1. In this identification, it is necessary to use the equivalent norms on Y1 = H1, Y2 = H1,
given by

(v, w)Yi
=

∫
Ω

pi(x)∇v·∇w dx +

∫
ΣD

ΓvΓw dσ, i = 1, 2. (1.6)

The first step in the study of (1.3, 1.2) is the analysis of an associated variational in-
equality in §2, followed by the fundamental equivalence theorem in §3, which employs the
outward pointing hypothesis. A prominent role is played in the sequel by the Tarski fixed
point theorem, which does not require mapping continuity. We are thus able to minimize
the traditional approach of convex analysis, employed in [19], and are able to eliminate
direct continuity hypotheses. We have only assumed the Lebesgue measurability of vector
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field composition with bounded measurable functions and the existence of dominating Lp

functions. These hypotheses are in the spirit of [13]. Of necessity, we have adjoined the
notion of measurable selection. It is consistent with applications to free boundary prob-
lems, where so-called mushy regions occur at a phase change. The variational inequality
formalism is very natural in tandem with the Tarski theorem, since the latter requires
lattice ‘interval’ endpoint squeezing by the isotone map, which is enforced via the inequal-
ity. An early published version of an isotone fixed point theorem appeared in [15]. There,
the fixed point theorem is stated and proved for isotone mappings which have a type of
continuity. The theorem of Kantorovich [15] allows one to conclude the existence of the
fixed point(s) by the convergence of the iteration sequences. This set of ideas has been
fruitfully developed in [9]. We prefer to employ the stronger theorem of Tarski, which is
valid without continuity. This was used by the author in [18] and is consistent with recent
studies in ordered spaces [7]. Proofs of the Tarski theorem are now available which do not
require Zorn’s lemma [25, Theorem 11.E, p. 507]. We take up the necessary ideas now.

2 The Variational Inequality

We begin by establishing some notation. We set

K0 = {v ∈ Y : Γ(v − û)|ΣD
= 0, v(x) ∈ Q for almost all x ∈ Ω}. (2.1)

The variational inequality can be formulated as: Determine u ∈ K0 and F (u) = g(· ,u),
where g(· ,u) is a measurable selection of f(· ,u), such that

〈F (u),v − u〉+ (u,v − u)Y ≥ 0, ∀v ∈ K0. (2.2)

Parallel to Theorem 1.1 is the following proposition.

Proposition 2.1. Suppose that f is in one of the classifications, §1, 2a or 2b, and suppose
that its multi-valued extension f̄ is Lp(Ω)-dominated, where p = 2N

N+2
, N ≥ 3; 1 < p ≤

2, N = 2; and p = 1, N = 1. Then the variational inequality (2.2) has a solution u ∈ K0.

We shall deduce Proposition 2.1 from the Tarski fixed point theorem in the following
subsections. In §3, we show that the outward pointing hypothesis, adjoined to (2.2), yields
the essential conclusions of Theorem 1.1 in terms of weak solutions.

2.1 The Lattice and Tarski’s Fixed Point Theorem

In this subsection, we introduce a lattice structure. This first involves a partial ordering
for functions in Lq, where q is conjugate to p in Proposition 2.1, defined by:

v ≤ w if v(x) ≤ w(x), for almost all x ∈ Ω.

This is equivalent to the use of the cone of nonnegative functions to define a partial
ordering. Lq is a lattice (see [3]) since the elements min(v, w) and max(v, w), defined
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by real variable operations, provide greatest lower, and least upper bounds, respectively.
Now, for i = 1, 2, set

Ki = {v ∈ Lq : ai ≤ v(x) ≤ bi for almost all x ∈ Ω}. (2.3)

Recently, the authors of [7] have provided an elegant framework for the systematic use
of Tarski’s theorem in the context of ordered normed spaces. In fact, Proposition 1.1.1
of [7] allows one to introduce our partial ordering, and proceed directly to the existence
of a smallest and largest fixed point for an isotone mapping on the set Ki. However, for
readers not yet familiar with this framework, we sketch a few ‘bridge’ ideas related to the
use of Tarski’s theorem, as well as some background facts.

A chain C ⊂ Ki is a subset such that either v ≤ w or w ≤ v for any pair v, w ∈ C.
It follows from results of [13, Theorem 5.8.1, p. 478] that Ki is an inductive lattice in the
language of [3]: every chain C ⊂ Ki has a greatest lower bound and least upper bound in
Ki.

We shall require the notion of isotone mappings. Suppose a lattice is given.

Isotone Lattice Mapping. A mapping A is isotone on its lattice subdomain if

u ≤ v ⇒ Au ≤ Av.

We shall now state a strong form of the Tarski fixed point theorem (see [24], [3, p. 115],
[25, p. 507]). Note that continuity of A is not assumed.

Proposition 2.2. Let E be a partially ordered set, and suppose u0 ≤ v0 are elements of
E with the property that the interval I = {v ∈ E : u0 ≤ v ≤ v0} is an inductive lattice.
Suppose that A is an isotone mapping of I into E such that u0 ≤ A(u0) and A(v0) ≤ v0.
Then the set of fixed points u of A satisfying u ∈ I is nonempty and possesses a smallest
element u and a largest element ū.

Application of this theorem received much attention during the 1970s by certain au-
thors (see, for example [22]) who were studying two-phase Stefan problems. These authors
were proving the existence of solutions of quasi-variational inequalities, equivalent to two-
phase Stefan problems. In this context, the isotone property is evident, but continuity is
not evident from the strongly implicit nature of the fixed point mapping. The theorem
is referred to as Birkhoff’s theorem in [22]. The application is described in [18], where
Tarski’s theorem is proved via Zorn’s lemma.

2.2 Outline of the Proof of Proposition 2.1

We shall require the following closed convex subsets of H1 for i = 1, 2:

Ki = {v ∈ Yi : ai ≤ v(x) ≤ bi for almost all x ∈ Ω, v|ΣD
= ûi|ΣD

}. (2.4)

The proof of Proposition 2.1 proceeds by defining a fixed point mapping V defined on the
interval K1 with range in K1 ⊂ K1. The latter injection follows from the conjugacy of p
in Proposition 2.1 and q in (2.3).
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1. Given w ∈ K1, an intermediate mapping,

T : K1 7→ K2 ⊂ K2, Tw = u,

is introduced, where u ∈ K2 is the solution of the variational inequality,

(u, v − u)Y2 + 〈F2(· , w, u), v − u〉 ≥ 0, ∀v ∈ K2. (2.5)

2. V w is then defined as UTw, where

U : K2 7→ K1 ⊂ K1, Uu = u1,

and where u1 ∈ K1 is the solution of the variational inequality,

(u1, v − u1)Y1 + 〈F1(· , u1, u), v − u1〉 ≥ 0, ∀v ∈ K1. (2.6)

In (2.5, 2.6) above, we maintain the definitions of the inner product in Yi given in (1.6).
The elements Fi, i = 1, 2, represent measurable selections in the principal arguments. The
mapping V will be shown to be isotone in the two cases of competitive and cooperative
species, and will possess a fixed point by the Tarski theorem. It is precisely this fixed
point which satisfies the proposition.

2.3 Single Inequality Convex Analysis

We shall use traditional convex analysis for the study of a single inequality, with appro-
priate monotonicity structure. In particular, this will include existence and uniqueness for
inequalities (2.5) and (2.6), which together establish the well-posedness of the mappings
T and U . The Tarski theorem will be used for the other parts of the proof. We shall first
state the abstract result, and then the application to the specific inequality class. The
result as stated here is contained in [10, Chapter II, Section 3] (cf. [4] and [18, Proposition
3.1.5] for related results of a more general character). The result is stated here in a duality
pairing formulation.

Lemma 2.1. Let J0 be a closed, convex, bounded subset of a reflexive Banach space X ,
suppose that Φ is a proper, convex, lower semicontinuous functional defined on J0, and
that B : J0 → X ∗ is a monotone, weakly continuous mapping. Thus, we assume that

〈Bu−Bv, u− v〉 ≥ 0, ∀u, v ∈ J0, (2.7)

and

〈Bvk −Bv, ψ〉 → 0, if vk ⇀ v, ∀ψ ∈ X . (2.8)

Then the variational inequality,

〈B(y)− b, z − y〉+ Φ(z)− Φ(y) ≥ 0, ∀z ∈ J0, (2.9)

possesses a solution y ∈ J0 for each b ∈ X ∗.
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The preceding lemma implies the following result. We include a proof for completeness.

Proposition 2.3. Let Z be one of the Hilbert spaces Y1, Y2, and, for a prescribed v with
range in Q, let the measurable selection G(· , u) denote either the function F1(· , u, v2) or
the function F2(· , v1, u), correlated with the choice of Z. Then the variational inequality,

(u, v − u)Z + 〈G(· , u), v − u〉 ≥ 0, ∀v ∈ J , (2.10)

has a unique solution pair u,G(· , u) in J . Here, J is one of the corresponding closed
convex sets K1,K2.

Proof. We first establish an ‘a priori’ bound for any solution u of (2.10). This is necessary
because we have presented Lemma 2.1 with the hypothesis that J0 is bounded. Thus, in
the application of the lemma, we shall identify J0 with the intersection of J and a ball,
defined by the ‘a priori’ bound. Begin by determining a unique element u0, via the Riesz
representation theorem, such that

〈G(· , u), ψ〉 = −(u0, ψ)Z , ∀ψ ∈ Z. (2.11)

Here, u ∈ J is arbitrary, and G(· , u) is an associated measurable selection. By earlier
hypotheses, u0 is in a ball B of radius Cρ, where C is the norm of the embedding of Z into
Lq, and ρ is the Lp norm of the fixed dominating function h ∈ Lp. By standard results
concerning quadratic minimization over closed convex sets, the solution u of (2.10), with
G(· , u) given, may be characterized as the unique element v = u minimizing the functional,

Ψ(v) = ‖v − u0‖2
Z − ‖u0‖2

Z = ‖v‖2
Z + 2〈G(· , u), v〉,

over J . Define σ = 2 max{‖û− v‖Z : v ∈ B}. Here, û is the appropriate component of the
Dirichlet boundary data function, û.

‘a priori’ estimate in terms of σ: u satisfies the estimate,

‖u− û‖Z ≤ σ.

Indeed, let u0 be defined by (2.11), and note that

Ψ(u) ≤ Ψ(û),

so that
‖u− u0‖Z ≤ ‖û− u0‖Z ,

and
‖u− û‖Z ≤ ‖u− u0‖Z + ‖u0 − û‖Z ≤ σ.

This concludes the verification of the ‘a priori’ estimate.
We now use Lemma 2.1 to prove Proposition 2.3. There are two steps in establishing

the existence of the solution of the variational inequality (2.10). They are:

1. The identification of the elements in Lemma 2.1;
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2. The verification of the hypotheses of this lemma, and, hence the existence of a
solution of (2.10).

For the appropriate identifications, set b = 0, X = Z, J0 = J ∩ {v : ‖v − û‖Z ≤ σ}.
To continue the identifications, we suppose for concreteness that Z = Y1, J = K1, and
that f1(· , w, v2(· )) is given as a function of w, with v2 already prescribed. Here, f1 is the
originally given first component of the vector field, satisfying property (MMM–2). We
then define the proper, convex, lower semicontinuous functional on J0,

Φ(v) =

∫
Ω

φ(· , v(· )), (2.12)

where φ(· , w) is the absolutely continuous and convex (in w) primitive of f1(· , w, v2(· )),
vanishing at w = 0. We make note of the following critical characterization.

Subdifferential characterization

∂wφ(· , w) = f̄1(· , w, v2(· )).
Here, the subdifferential (cf. [10, pp. 20–28]) is taken with respect to the indicated
variable.

This result is due originally to Brézis [4, 5], who made extensive use of the Yosida approx-
imation, and the fact that a function which satisfies property (MMM–2) in its principal
argument coincides with the limit of the Yosida approximation. We refer the reader es-
pecially to the concrete example 2.8.1 in [5, Chapter 2, p. 43]. These facts were later
extensively developed by Chang [8], and are carefully presented by Carl and Heikkilä [7,
pp. 194–197] in their study of differential inclusions of hemivariational inequality type.
The author also used such a characterization in his study of the Stefan problem [17, 18].
Now B : J0 → Z∗ is defined by:

〈B(u), v〉 = (u, v)Z . (2.13)

Here, v ∈ Z = Y1. The verification of the hypotheses of Lemma 2.1 is standard, and we
may conclude the existence of a solution y = u of (2.9) with the stated identifications.
This permits us to conclude that

−Bu ∈ ∂Φ(u).

To infer that u satisfies (2.10), use the subdifferential characterization of φ referred to
earlier. If we agree to identify functionals with representers, this means that −Bu can
be identified with a measurable selection. This concludes the existence argument for the
stated choices. The argument in the remaining case is identical. The uniqueness for the
pair u,G(· , u) follows from the strict monotonicity property.
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2.4 The Proof of Proposition 2.1

We begin with an analysis of the mapping T .

Lemma 2.2. Let w ∈ K1 be given. There is a unique solution u = Tw of the variational
inequality (2.5). In addition,

a. competing species. T is antitone from K1 to K2:

w1 ≤ w2 ⇒ Tw1 ≥ Tw2.

b. cooperating species. T is isotone from K1 to K2.

Proof. The existence of a unique solution of (2.5) follows from Proposition 2.3. We now
establish the antitone/isotone properties of T . Suppose that w1 ≤ w2, and set u∗ =
Tw1, u

∗∗ = Tw2. In the case of competing species, define the admissible functions in K2,

v1 = u∗ + (u∗∗ − u∗)+, v2 = u∗∗ − (u∗∗ − u∗)+,

and, in the case of cooperating species, define

v1 = u∗ + (u∗∗ − u∗)−, v2 = u∗∗ − (u∗∗ − u∗)−.

Here, v+ = max(0, v) ≥ 0, and v− = min(0, v) ≤ 0. By direct substitution in (2.5), we
have the following inequalities.

competing species

(u∗, (u∗∗ − u∗)+)Y2 ≥ −〈F2(· , w1, u
∗), (u∗∗ − u∗)+〉, (2.14)

−(u∗∗, (u∗∗ − u∗)+)Y2 ≥ 〈F2(· , w2, u
∗∗), (u∗∗ − u∗)+〉. (2.15)

cooperating species

(u∗, (u∗∗ − u∗)−)Y2 ≥ −〈F2(· , w1, u
∗), (u∗∗ − u∗)−〉, (2.16)

−(u∗∗, (u∗∗ − u∗)−)Y2 ≥ 〈F2(· , w2, u
∗∗), (u∗∗ − u∗)−〉. (2.17)

Upon adding the negatives of these two inequalities, and simplifying, we have:
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competing species

0 ≤ (u∗∗ − u∗, (u∗∗ − u∗)+)Y2 ≤
−〈F2(· , w2, u

∗∗)−F2(· , w1, u
∗∗), (u∗∗−u∗)+〉−〈F2(· , w1, u

∗∗)−F2(· , w1, u
∗), (u∗∗−u∗)+〉 ≤ 0.

cooperating species

0 ≤ (u∗∗ − u∗, (u∗∗ − u∗)−)Y2 ≤
〈F2(· , w2, u

∗∗)−F2(· , w1, u
∗∗), |(u∗∗−u∗)−|〉+〈F2(· , w1, u

∗∗)−F2(· , w1, u
∗), |(u∗∗−u∗)−|〉 ≤ 0.

For the second set of inequalities, we have used the decrease of the given vector component
f2 in its first dependent variable argument to conclude that the first difference is nonpos-
itive, and the monotone selection property in the second dependent variable argument to
conclude that the second difference is nonpositive. We conclude that (u∗∗ − u∗)− = 0.
For the first set, we use the corresponding increase of f2. In this case, we conclude that
(u∗∗ − u∗)+ = 0. This concludes the proof of the lemma.

We now analyze (2.6) and the mapping U .

Lemma 2.3. Let u ∈ K2 be given. The variational inequality (2.6) has a unique solution
u1 = Uu. In addition,

a. competing species. U is antitone from K2 to K1.

b. cooperating species. U is isotone from K2 to K1.

Proof. The existence of a unique solution of (2.6) follows from Proposition 2.1. We now
prove the antitone/isotone properties. Suppose that u∗ ≤ u∗∗, and set u∗1 = Uu∗, u∗∗1 =
Uu∗∗. In the case of competing species, define the admissible functions in K1,

v1 = u∗1 + (u∗∗1 − u∗1)
+, v2 = u∗∗1 − (u∗∗1 − u∗1)

+.

and, in the case of cooperating species, define

v1 = u∗1 + (u∗∗1 − u∗1)
−, v2 = u∗∗1 − (u∗∗1 − u∗1)

−.

By direct substitution in (2.6), we have the two inequalities,

competing species

(u∗1, (u
∗∗
1 − u∗1)

+)Y1 ≥ −〈F1(· , u∗1, u∗), (u∗∗1 − u∗1)
+〉, (2.18)

−(u∗∗1 , (u∗∗1 − u∗1)
+)Y1 ≥ 〈F1(· , u∗∗1 , u∗∗), (u∗∗1 − u∗1)

+〉. (2.19)
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cooperating species

(u∗1, (u
∗∗
1 − u∗1)

−)Y1 ≥ −〈F1(· , u∗1, u∗), (u∗∗1 − u∗1)
−〉, (2.20)

−(u∗∗1 , (u∗∗1 − u∗1)
−)Y1 ≥ 〈F1(· , u∗∗1 , u∗∗), (u∗∗1 − u∗1)

−〉. (2.21)

Upon adding the negatives of these two inequalities, and simplifying, we have:

competing species

0 ≤ (u∗∗1 − u∗1, (u
∗∗
1 − u∗1)

+)Y1 ≤
−〈F1(· , u∗∗1 , u∗∗)−F1(· , u∗1, u∗∗), (u∗∗1 −u∗1)

+〉−〈F1(· , u∗1, u∗∗)−F1(· , u∗1, u∗), (u∗∗1 −u∗1)
+〉 ≤ 0.

cooperating species

0 ≤ (u∗∗1 − u∗1, (u
∗∗
1 − u∗1)

−)Y1 ≤
〈F1(· , u∗∗1 , u∗∗)−F1(· , u∗1, u∗∗), |(u∗∗1 −u∗1)

−|〉+〈F1(· , u∗1, u∗∗)−F1(· , u∗1, u∗), |(u∗∗1 −u∗1)
−|〉 ≤ 0.

For the first set of these inequalities, we have used the monotone selection property in
the first dependent variable argument to conclude that the first difference is nonpositive,
and the the increase of the given vector component f1 in its second dependent variable
argument to conclude that the second difference is nonpositive. This implies that (u∗∗1 −
u∗1)

+ = 0. For the second set, we use the decrease of f1 in its second dependent variable
argument. Thus, (u∗∗1 − u∗1)

− = 0 in this case. This concludes the proof of the lemma.

It is now immediate that V is well-defined, and has range contained in K1 ⊂ K1

through the definition of the variational inequality defining U . By use of the preceding
lemmas, we conclude that the mapping V satisfies: V is isotone on the lattice interval K1

in both cases of competing and cooperating species.
Thus, by Proposition 2.2, V has a fixed point, V u1 = u1. If now we define u2 = Tu1,

the pair (u1, u2)
T is a solution of (2.2): this follows directly from u1 = V u1 = UTu1 = Uu2,

and the individual definitions of T and U in terms of (2.5) and (2.6).

3 Major Equivalence Theorem

In this section, we use the property (OP) satisfied by the vector field f to prove that a
solution of the variational inequality (2.2) is a weak solution of the system (1.3, 1.2), i. e. ,
satisfies (1.5).

Theorem 3.1. Let (u1, u2)
T be a solution of (2.2), with g1(· , u1, u2), g2(· , u1, u2) deter-

mined to be measurable selections in their principal arguments. Then, under the hypothesis
(OP) on f , (u1, u2)

T is a solution of (1.5). In particular, Theorem 1.1 holds.
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Proof. An important preliminary observation is that, by the property (OP), g satisfies the
following:

If ui = ai, i = 1, or i = 2, then gi(· , u1, u2) ≤ 0;

if ui = bi, i = 1, or i = 2, then gi(· , u1, u2) ≥ 0.

We now proceed directly to the proof of the theorem. In order to simplify the argument,
we deal componentwise with the system. Thus, we select the test functions in K0,

v = (v±, u2)
T , v± = (u1 ± εkφ− a1)

+ + a1 + (b1 − u1 ∓ εkφ)−.

Here, φ is the first component of a vector test function, with zero trace on ΣD, to be
used in the weak formulation (1.5). Without loss of generality, we may assume that φ
is smooth, and is pointwise bounded by unity and has Y1 norm also bounded by unity.
In verifying that v± ∈ K1, we observe that u1 ± εkφ − a1 and b1 − u1 ∓ εkφ cannot be
simultaneously negative, which reduces the number of possible sign combinations to three:
positive/positive, positive/negative, and negative/positive. Each of these is easily seen to
lead to a1 ≤ v± ≤ b1; the satisfaction of the boundary condition on ΣD is immediate from
the zero trace of φ. We shall now define the numbers εk. Given {ηk}, ηk > 0, ηk → 0, we
select sequences {αk} and {βk} such that each of the following three conditions is satisfied:

1. αk − a1 := εk = b1 − βk < ηk.

2. For Ak = {a1 < u1 < αk} ⊂ RN , Bk = {βk < u1 < b1} ⊂ RN ,
∫
Ak∪Bk

p1(x)|∇u1|2 dx <
(ηk

2

)2

.

3.
∫
Ak∪Bk

|g1(x, u1(x), u2(x))| dx < ηk

2
.

The fact that conditions two and three are possible is a property of measure and integration
theory [14, Theorem 10.15 and Theorem 12.34]. We observe that

v± − u1 = ±εkφ on {αk ≤ u1 ≤ βk}, (3.1)

v+ − u1 = εkφ on {u1 = a1} ∩ {φ ≥ 0}, (3.2)

v− − u1 = −εkφ on {u1 = a1} ∩ {φ ≤ 0}, (3.3)

v+ − u1 = εkφ on {u1 = b1} ∩ {φ ≤ 0}, (3.4)

v− − u1 = −εkφ on {u1 = b1} ∩ {φ ≥ 0}. (3.5)

We require some notation for sets. Thus, make the substitutions,

Dk = {αk ≤ u1 ≤ βk}, Ek = Dk ∪ {u1 = a1} ∪ {u1 = b1},
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Fk = Dk ∪ ({u1 = a1} ∩ {φ ≥ 0}) ∪ ({u1 = b1} ∩ {φ ≤ 0}).
Note that ∇u1 vanishes for almost all x on

{u1 = a1} ∪ {u1 = b1}.
This follows from [11, Lemma 7.7]. Substitution of (v+, u2) into (2.2) yields,

∫
Ek

p1∇u1·∇φ +

∫
Fk

g1φ ≥ −
∫
Ak∪Bk

p1|∇u1·∇φ| − ε−1
k

∫
Ak∪Bk

|g1(v+ − u1)|. (3.6)

In computing the set over which the second integral on the left hand side of this inequality
is taken, we have used the fact that v+−u1 vanishes on the two sets, {u1 = a1}∩ {φ ≤ 0}
and {u1 = b1} ∩ {φ ≥ 0}. We have also made use of (3.2) and (3.4). We now employ the
critical properties that g1 ≤ 0 on {u1 = a1} and g1 ≥ 0 on {u1 = b1}, as implied by (OP).
This permits us to add two key terms involving integrals of g1φ, without changing the sense
of the above inequality. These are terms involving integration over {u1 = a1} ∩ {φ ≤ 0}
and {u1 = b1} ∩ {φ ≥ 0}. When these integrals are added, and the domain of integration
for the second left hand side integral is consolidated, we may rewrite the left hand side of
the inequality as

∫
Ek

p1∇u1·∇φ +

∫
Ek

g1φ.

The right hand side of (3.6) is greater than −ηk, by the restrictions imposed on αk, βk,
and εk. Note that |v+ − u1| ≤ εk on Ak ∪ Bk has been used here. We have obtained the
inequality,

∫
Ek

p1∇u1·∇φ +

∫
Ek

g1φ > −ηk. (3.7)

The companion inequality, whereby the left hand side is shown to be bounded above by
ηk, is obtained by substitution of v−. In fact, the inequality,

∫
Ek

p1∇u1·∇φ +

∫
Ek

g1φ < ηk, (3.8)

is obtained as a result of this substitution, and use of arguments parallel to those above.
In these arguments, (3.2, 3.4) are replaced by (3.3, 3.5), respectively. It follows that the
common left hand side of (3.7) and (3.8) has zero limit as k →∞. The three inequalities
satisfied by {ηk} above then demonstrate that this zero limit is

∫
Ω

p1∇u1·∇φ +

∫
Ω

g1φ.

The argument for the second equation is identical. The final result is obtained by addition.
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4 The Models and Extensions of the Systems

The competing species classification includes the semiconductor transport subsystem,
when Slotboom variables are employed. The reader may consult [20] for a complete de-
velopment. Here, we summarize the subsystem. It is given by

∇· exp(u(x))∇V = G(x)(V W − 1), ∇· exp(−u(x))∇W = H(x)(V W − 1). (4.1)

The variables V = exp(−v), W = exp(w) are called the Slotboom variables, correspond-
ing to quasi-Fermi levels v, w; u is the electrostatic potential. In the notation of (1.3),
p1 = exp(u) and p2 = exp(−u); u is a bounded measurable function. The vector field is
defined by the electron/hole recombination term, when a particular strategy is employed
for decoupling the transport subsystem from the Poisson equation within the full drift-
diffusion system. Also, G and H are strictly positive, bounded measurable functions. It
is clear that the vector field is outward pointing on

Q = [exp(−B), exp(−A)]× [exp(A), exp(B)].

Here, A < B are prescribed common minimum and maximum values of the quasi-Fermi
levels. The typical boundary conditions for this model are mixed conditions on a multi-
dimensional polyhedral region. Thus, the trapping principle holds in this case. It is
possible to consider a refinement of this result, compatible with the theory of this paper.

4.1 Quantum Confinement

We consider the case suggested by quantum confinement. This model can be thought
of as a subsystem of the quantum hydrodynamic model (two carrier version) described
in [21]. In this case, one or both of the variables V,W , appearing in the recombination
term, cannot assume certain values corresponding to bound energy states for x in the
quantum well W ⊂ Ω. If EV , EW are the closed forbidden interval ranges for the variables
V,W , with Cartesian product large, i. e. , V W − 1 is outward pointing on its boundary,
and χ denotes the characteristic function, then the vector field modification involves the
respective redefinitions,

F1(· , V,W ) = (1− χ(EV )χ(W))(1− χ(EW )χ(W))G(x)(V W − 1), (4.2)

F2(· , V,W ) = (1− χ(EV )χ(W))(1− χ(EW )χ(W))H(x)(V W − 1). (4.3)

In other words, only free, not bound, carriers, are able to recombine according to the
model. The new vector fields are discontinuous, but retain the necessary properties to
apply our results to competing systems. Theorem 1.1 thus holds for the system:

∇· exp(u(x))∇V = F1(x, V,W ), (4.4)

∇· exp(−u(x))∇W = F2(x, V,W ). (4.5)

The region Q remains the one given above.
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4.2 Higher Order Systems

Various extensions to higher order systems are possible. We indicate this in the following
result, involving a system of mixed monotone type, in the terminology of [13].

Theorem 4.1. Consider a system of three species, X, Y , and Z. We suppose that any
one of the species is in cooperation with the other two. Specifically, we consider the system,

∆X = F (· , X, Y, Z), ∆Y = G(· , X, Y, Z), ∆Z = H(· , X, Y, Z),

where F is increasing in X but decreasing in Y, Z; G is increasing in Y but decreasing in
X,Z; and H is increasing in Z, but decreasing in X,Y . In this case,

Q =
3∏
1

[ai, bi].

We assume the obvious extensions of the properties (MMM) and (OP). We also define the
dual indices p, q as before, and assume the existence of dominating Lp functions hi, i =
1, 2, 3. Then, a solution exists with range in Q in the sense of a measurable selection in
the principal arguments.

Proof. The reader who has followed the analysis of the order-two systems will conjecture,
correctly, that the basic map now should operate on the lattice K12 of vector functions in
Lq(Ω)× Lq(Ω), with range in [a1, b1]× [a2, b2], and should proceed as follows.

Let w = (w1, w2)
T be given in K12, and consider the weak form of the decoupled

boundary value problem for u ∈ K3 = {v ∈ H1 : a3 ≤ v(x) ≤ b3, [Γu− Γû3]|ΣD
= 0},

(u, φ)H1 + 〈H(· , w1, w2, u), φ〉 = 0, ∀φ ∈ H1, Γφ|ΣD
= 0. (4.6)

Here, the inner product on H1 is the equivalent inner product defined in analogy with
(1.6). A measurable selection solution exists by Proposition 2.3 and the theory of §3. One
writes u = Tw, and shows that T is isotone from K12 to K3. If w̃ ≥ w, one can make use
of the identity,

H(· , w̃1, w̃2, ũ)−H(· , w1, w2, u) = [H(· , w̃1, w̃2, ũ)−H(· , w1, w̃2, ũ)] +

[H(· , w1, w̃2, ũ)−H(· , w1, w2, ũ)] + [H(· , w1, w2, ũ)−H(· , w1, w2, u)].

When each of these three terms is multiplied by (ũ − u)−, the corresponding product is
nonnegative. This permits the subtraction of the equations associated with ũ and u, and
the corresponding conclusion, when the choice φ = (ũ− u)− is made, that ũ(w̃) ≥ u(w).

For w and u = Tw given, a solution (u1, u2)
T exists in K12 for the decoupled system,

∆u1 = F (· , u1, w2, u), ∆u2 = G(· , w1, u2, u), (4.7)

satisfying the prescribed boundary conditions, by an application of Theorem 1.1. We write
(u1, u2)

T = u = V w. By using the test functions,

(ũ1 − u1)
−, (ũ2 − u2)

−,

in the respective weak formulations of each of the equations in (4.7) we see that each of
these test functions is zero, and hence that V is isotone on K12. Proposition 2.2 implies a
fixed point. When this fixed point is coupled to the component obtained by the action of
T , a solution triple is defined for the boundary value problem.
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4.3 A Chemically Diffusing System with Change of Phase

We illustrate the higher order system of §4.2 by means of an idealized model of two
chemically reacting species, diffusing in a medium which is defined as having two phases.
This example is motivated by the theory described in [2](see also [18, Example 1.3.1])
for a single-phase medium. Here, the physics is adapted to that of a two-phase medium.
The system may thus be viewed as a steady-state Stefan problem, coupled to a reaction-
diffusion system. The two-phase Stefan problem has been been analyzed in [18]. One can
define a generalized temperature, via the Kirchhoff transformation,

u =

∫ θ

0

k(ξ) dξ,

where θ is the usual temperature and k is the thermal conductivity, which may be phase
dependent. The phases are then characterized by

{x ∈ Ω : u(x) < 0}; {x ∈ Ω : u(x) ≥ 0}.
We shall think of them as the liquid and vapor phases, respectively. Our convention
includes the ‘free boundary’ between phases in the vapor phase. In the liquid phase, the
medium is expected to be a heat source with respect to the chemistry, and this accounts
for the sign in the first equation. The source is abruptly shut off in the vapor phase.
This causes a discontinuity in the vector field. Similarly, we assume that there is no net
concentration flux through the boundary of any closed region in the vapor phase. This
also accounts for a vector field discontinuity. To express this mathematically, let H denote
the Heaviside-type function,

H(u) =

{
0, u < 0,
1, u ≥ 0.

Then the system for u and the concentrations Ci of the diffusing species may be written:

∆u = −(1−H(u))(h1r1(C1) + h2r2(C2)),

D1∆C1 = L(1−H(u))(r1(C1)− r2(C2)),

D2∆C2 = L(1−H(u))(r2(C2)− r1(C1)).

Here, we assume that D1, D2 are diffusion constants, and that r1, r2 are reaction rates,
with h1, h2 the corresponding heats of reaction. All quantities are assumed positive, with
the rates assumed to be monotone increasing in their respective arguments. L is a posi-
tive integer related to the stoichiometry of the reaction. We are also assuming chemical
neutrality: the sum of the vector fields for the two reactants is zero.

One sees that a1 < 0 and b1 > 0 are arbitrary choices for the temperature interval,
in order to ensure an outward pointing vector field. The minimum modulus property is
ensured by the definition of H. The intervals for C1 and C2 are not arbitrary, but depend
upon the rates. For example, if r1(C1) = Cm

1 and r2(C2) = Cn
2 , then a2 = a3 = 0 and

b2 = b3 = 1 are permissible choices, such that the vector field is outward pointing on the
boundary of Q. Theorem 4.1 yields a solution to the boundary value problem.
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