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Abstract

In a companion presentation, we have discussed the theory of a mesoscopic/macroscopic model,
which can be viewed as an augmented drift-diffusion model. Here, we describe how that model is
used. The device we consider for this presentation is the one dimensional GaAs n+-n-n+ structure
of length 0.8µm. First, a full hydrodynamic (HD) model, proven reliable when compared with
Monte Carlo simulations, is used to simulate the device via the ENO finite difference method. As
applied to the full device, the new model is not necessarily superior to traditional drift-diffusion

(DD). Indeed, when we plot the quantity η = µ0E/
√

kT0
m , where µ0 is the mobility constant and

E = −φ′ is the electric field, we verify that the high field assumption η > 1, required for the high
field model, is satisfied only in an interval given approximately by [0.2, 0.5]. When we run both
the DD model and the new high field model in this restricted interval, with boundary conditions of
concentration n and potential φ provided by the HD results, we demonstrate that the new model
outperforms the DD model. This indicates that the high field and DD models should be used only in
parts of the device, connected by a transition kinetic regime. This will be a domain decomposition
issue involving interface conditions and adequate numerical methods.
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1 Introduction

In previous work, we have demonstrated the robustness of an algorithm (ENO: Essentially Non-

Oscillatory) designed for the simulation of the hydrodynamic model for semiconductors over a wide

range of parameters. In [5] and [6], n+-n-n+ diodes in one dimension and MESFETS in two dimensions

were simulated. The present paper deals with the high field model introduced in [3], and appearing

elsewhere in these proceedings [2].

2 The Models

The new model is an extension of the drift-diffusion (DD) model. Hence we first describe the DD

model in a context for comparison.

2.1 Drift-Diffusion Model in One Dimension with µ Depending on E

The DD model is well documented (see, for example, [4]). It is given by:

nt + Jx = 0,

where the representation in terms of hyperbolic and viscous components is given by

J = Jhyp + Jvis,

and

Jhyp = −µnE,

Jvis = −τ(nθ)x.

Here, n denotes carrier concentration and J denotes current defined per unit charge modulus. We

have separated current components in anticipation of the high field model to follow. Also, the electric

field is denoted by E, so that in terms of the electrostatic potential φ,

E = −φx, (εφx)x = e(n− nd),

where we use the customary expressions, for doping nd, dielectric ε, and charge modulus e. Set

τ =
mµ

e
, θ =

kb
m
T0.
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τ denotes the relaxation time, m denotes effective mass and ambient temperature is denoted by T0,

with θ given in energy units. Of course, µ is mobility, and we take µ to be dependent upon the electric

field E, using the formula (2.42) in [4]:

µ(E) = 2µ0/

[
1 +

√
1 + 4(µ0|E|/vd)2

]
.

Here, vd has the interpretation of the saturation velocity and µ0 is the low field mobility. The

velocity for the DD model is a derived quantity computed by v = J
n .

The device we consider for this presentation is the one dimensional GaAs n+-n-n+ structure of

length 0.8µm. The device used is as follows: x ∈ [0, 0.8]; the doping is defined by nd(x) = 105/µm3

in 0 ≤ x ≤ 0.1 and in 0.5 ≤ x ≤ 0.8, and by nd(x) = 2 × 103 in 0.15 ≤ x ≤ 0.45, with a smooth

intermediate transition. The boundary conditions are: fixed n at both ends, and fixed φ at both

ends (with a difference = vbias). Simulations are performed for vbias = 0, 0.5 and 1.0V , but results

are shown for vbias = 1.0 only to save space. Other parameters: m = 0.065 × 0.9109 (10−30Kg),

e = 0.1602 (10−18C), kb = 0.138046 × 10−4 (10−18J/Kelvin), ε = 13.2 × 8.85418 (10−18F/µm).

In the definition of µ, we take µ0 = 4.0 µm2/V/ps. We consider T0 = 300 K for which vd =

0.6 µm/ps, which is taken to be the maximum of the velocity in the HD run with vbias = 1.0.

The results are shown in Figure 1. They do not match as well with those of the HD model (with

a doping nd dependent µ), as in the silicon case which is not presented here. The oscillations in the

velocity near the left junction are due to the numerical differentiation of rapidly changing quantities.

********** place to insert Figure 1***********

2.2 The High Field Model

The model can be written as follows:

nt + Jx = 0,

where the representation in terms of hyperbolic and viscous components is now given by

J = Jhyp + Jvis,

and

Jhyp = −µnE + τµ

(
e

ε

)
n(−µnE + ω),
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Jvis = −τ [n(θ + 2µ2E2)]x + τµE(µnE)x.

Also, the electrostatic equation is satisfied as in the DD model, and τ and θ are defined similarly.

Furthermore, ω is taken to be a constant:

ω = (µnE)|x=0,

and the velocity is again a derived quantity.

We again consider the same GaAs device as before. The results are shown in Figure 2. Not much

improvement, if any, is observed over the DD results. The spikes in the velocity near the junctions

are due to the derived nature of that quantity; particularly the numerical differentiation of rapidly

changing quantities.

********** place to insert Figure 2***********

3 Restriction to Channel

We plot the quantity η = µ0E/
√

kT0
m , where µ0 is the mobility constant and E = −φ′ is the electric

field (obtained from the HD simulation), in Figure 3.

********** place to insert Figure 3***********

We can clearly see from Figure 3 that the high field assumption η > 1 is satisfied only in an interval

given approximately by [0.2, 0.5]. We thus run both the DD model and the new high field model in

this restricted interval, with boundary conditions of concentration n and potential φ provided by the

HD results. We can see in Figure 4 that the new model decisively outperforms the DD model.

********** place to insert Figure 4***********

This indicates that the high field and DD models should be used only in parts of the device,

connected by a transition kinetic regime. This will be a domain decomposition issue involving interface

conditions and adequate numerical methods, and is currently under investigation.
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4 Comparison with Kinetic and Augmented Drift-Diffusion Models

The high field model may be thought of as a form of an augmented DD model. In this section, we

briefly compare the results of our simulations with those of [1] and [7]. The results of [7] deal primarily

with tracking the carrier drift velocity in Silicon. The model is very similar to that originally employed

by Thornber [9]. We note that the perturbation terms of the high field model introduced here include

more than simply differentiated electric field terms. Comparisons are made in [7] among various

models, including DD and augmented DD, as well as the hydrodynamic model and Monte-Carlo

simulation. In these studies, the authors of [7] tended to find that standard DD understated drift

velocity, even in GaAs. In our own comparisons, when using derived velocity, and a field dependent

mobility in DD, we did not experience such a pronounced understatement. We have presented the

results of the simulations in Figure 1 for comparison with standard DD, and in Figure 2 for comparison

with the high field model. And, remarkably, we find that in the channel, as a problem posed only there,

DD overstates the derived velocity! Moreover, the high field model predicts a velocity intermediate

between the DD model and the hydrodynamic model.

Paper [1] is difficult to correlate directly because emphasis is placed upon frequency distributions.

Nonetheless the average velocity and electric field calculations made there compare favorably with

our own. Issues of heating and cooling discussed there are not raised in the present paper, but we

intend to consider the effect of energetics in future work. The model has already been developed by

the second author.

5 Algorithm

We shall only briefly describe the algorithm used in this paper, namely the ENO scheme developed in

[8]. The ENO scheme is designed for a system of hyperbolic conservation laws of the form,

ut + f(u)x = g(u, x, t), (5.1)

where u = (u1, · · · , um)T , and the hyperbolicity condition,

∂f

∂u
is diagonalizable, with real eigenvalues,

holds. An initial condition is adjoined to (5.1).
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For systems of conservation laws, local field by field decomposition is used, to resolve waves in

different characteristic directions. For this purpose, analytical expressions are needed for the eigen-

values and eigenvectors of the Jacobian matrix. This reduces the determination of the scheme to the

case of a single conservation law. Thus, to describe the schemes, consider the scalar one dimensional

problem, and a conservative approximation of the spatial operator given by

L(u)j = − 1
4x(f̂j+ 1

2
− f̂j− 1

2
). (5.2)

Here, the numerical flux f̂ is assumed consistent:

f̂j+ 1
2

= f̂(uj−l, · · · , uj+k); f̂(u, · · · , u) = f(u). (5.3)

The conservative scheme (5.2), which characterizes the f̂ divided difference as an approximation

to f(u)x, suggests that f̂ can be identified with an appropriate function h satisfying

f(u(x)) =
∫ x+4x2

x−4x2
h(ξ) dξ. (5.4)

If H is any primitive of h, then h can be computed from H ′. H itself can be approximated by

polynomial interpolations using Newton’s divided difference method, beginning with differences of

order one, since the constant term is arbitrary. The necessary divided differences of H, of a given

order, are expressed as constant multiples of those of f of order one lower. The main ingredient of

the ENO method is the adaptive choice of stencil: it begins with a starting point to the left or right

of the current “cell” by means of upwinding, as determined by the sign of the derivative of a selected

flux (or the eigenvalue of the Jacobian in the system case); as the order of the divided differences is

increased, the divided differences themselves determine the stencil: the “smaller” divided difference is

chosen from two possible choices at each stage, ensuring a smoothest fit.
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Figure 1: Comparison of the results of the HD model with a doping nd dependent µ (solid line) and

that of the DD model with an electric field E dependent µ (dashed line). GaAs, T0 = 300, vbias = 1.0.

Top left: concentration n in µm−3; top right: the electric field E = −φx in volts/µm; bottom left:

the potential φ in volts; bottom right: the velocity v in µm/ps.
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Figure 2: Comparison of the results of the HD model (solid line) and that of the new model (dashed

line). GaAs, T0 = 300, vbias = 1.0. Top left: concentration n in µm−3; top right: the electric field

E = −φx in volts/µm; bottom left: the potential φ in volts; bottom right: the velocity v in µm/ps.
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Figure 3: the quantity η = µ0E/
√

kT0
m , where E = −φ′ is the electric field obtained from the HD

simulation.
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Figure 4: The comparison of the drift-diffusion (DD) model (dashed line), the new high field model

(dotted line), and the hydrodynamic (HD) model (solid line), in the sub-interval [0.2, 0.5] using the

HD results as boundary conditions. GaAs, T0 = 300, vbias = 1.0. Top left: concentration n in µm−3;

top right: the electric field E = −φx in volts/µm; bottom left: the potential φ in volts; bottom right:

the velocity v in µm/ps.
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