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Abstract

We consider whether the association of charged species of oppo-
site parity in a chemical cell constitutes a spontaneous reaction. The
initial distributions of the species are modeled as a steady-state phe-
nomenon, characterized by a drift-diffusion system and two coupled
constraints: (1) the electroneutrality of net system charge; and, (2)
a coupled thermodynamic inequality constraint, reflecting the net de-
crease of the Gibbs’ free energy in the closed system required for any
spontaneous chemical reaction leading to uniform association of the
species. A useful analytical technique of partial convexity allows the
reformulation of thermodynamic compatibility. A control theory in-
terpretation of the Dirichlet boundary conditions allows the selection
of a trapping region for the range of the solution components which
ensures that the reaction is spontaneous. A specific application is the
production of hydrogen in an electrochemical cell. This is contained
in a larger modeling context: reduction processes in electrochemistry.
The final section describes extensions of the modeling in which an
open mathematical problem and a pointer to the nonisothermal case
are identified.

∗The author is supported by the National Science Foundation under grant DMS-
0311263.
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1 Introduction

We consider isothermal chemical reactions at a fixed temperature T > 0 of
the form,

AB2
⇀
↽ 2A+ + 2B−.

We will consider only the reverse reaction of association, which is motivated
by the oxidation-reduction processes of electrochemical cells. For these reac-
tions, we assume the stoichiometry is such that for each mole of the cation A+

and each mole of the anion B−, one-half mole of the product forms. Routine
modifications of the stoichiometry are possible to include other reduction
processes. Our analysis is motivated by, but not restricted to, the second
stage of a two-stage process occurring in a modern fuel cell with semiconduc-
tor electrodes. For fuller physical descriptions, we refer the reader to [1, 2, 3].
The first stage, examined mathematically in [4], involves illumination of the
electrodes, releasing electrons and holes into solution under thermodynamic
compatibility with oxygen and hydrogen evolution. Anodic oxidation of wa-
ter occurs, in which the holes are transformed into hydrogen ions (protons).
The second stage (reduction) involves the association of hydrogen ions and
electrons to form hydrogen. In the notation above, H2 is identified with the
product AB2. It is this type of reaction which we study with respect to
chemical spontaneity. In the terminology of electrochemistry, it is a half-
cell reaction with a specified right electrode, with the cell completed by a
reference electrode (left electrode). Spontaneity has a technical meaning in
electrochemistry: the change ∆G of the Gibbs free energy of the closed sys-
tem is nonpositive. This is equivalent to the statement that the change ∆S
in the entropy of the universe is nonnegative, provided only energy (but not
matter) is exchanged with the outside of the system. We make the simplify-
ing assumption that the electrolyte is an ideal solution. This means that we
are not directly incorporating the Debye-Hückel theory, and that we assume
the effective concentrations are equal to the actual concentrations. In the
final section, we concisely describe a model incorporating the Debye-Hückel
theory, and pose an open problem. In this paper, well-posedness is estab-
lished only for ideal solutions. In our formulation, we shall use what physical
chemists call the (partial) electrochemical potential µC , associated with a
given species C, so that the Gibbs free energy density prior to the reaction
is characterized by

Gr =
∑

reactants

µCNC ,
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where NC is the molar density of C (see [5, p. 524]), and the free energy after
the reaction by

Gp =
∑

products

µCNC .

Thus, we are defining a model based on macroscopic, rather than microscopic,
principles. The stoichiometry specifies the number of times a term appears
in each summation. The criterion of a spontaneous reaction is obtained by
integration of the density:

∆G =

∫
Ω

{Gp − Gr} dx ≤ 0,

where Ω denotes the physical region occupied by the electrolyte solution.

1.1 Criteria for the Associative Reaction

For an ideal solution, we have the following definition of µC [6, pp. 134,150]:

µC = µ0
C +RT lnNC + zFu, (1)

where F is the Faraday constant, z = −1, 0, 1, and R is the universal gas
constant. The values of z correspond to anion, neutral, and cation species,
respectively. µ0

C is an equilibrium value tabulated in the physical chemistry
literature for a broad class of reactions and NC is the concentration relative
to the standard state (moles per liter). For the reactants, we shall identify
C with either A+ or B− and designate by p and n the non-constant molar
concentration densities of A+ cations and B− anions, respectively. We des-
ignate by the constant M the product concentration of AB2 at equilibrium,
to be completely specified in due course, and by M0 its integral over Ω. In
particular, we have the representations

Gr = 2pµA+ + 2nµB− , Gp = MµAB2 . (2)

Units are chosen so that RT
F

= 1, and potentials v and w via

n = N0 exp(u− v), p = P0 exp(w − u). (3)

The electroneutrality principle requires that the concentrations satisfy∫
Ω

n dx = 2M0 =

∫
Ω

p dx, (4)
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which fixes N0, P0. This represents one of the two constraints on the system.
These relations, the definition (1), and the characterization (2), provide the
second constraint. In fact, the criterion ∆G ≤ 0 is expressed:

0 ≥ −C0/F + 2

∫
Ω

(nv − pw) dx+M0(lnM − 2 lnP0 − 2 lnN0). (5)

The (assumed positive) number,

C0/F = (2M0)(µ0
A+ + µ0

B− −
1

2
µ0

AB2
)

represents the reaction at standard conditions, given the specified electrodes.
We elaborate [7]. Given the cell emf E, defined as the difference between
right and left hand electrode potentials at standard conditions, C0 can be
expressed [7, pp. 86,93] as

C0/F = 2M0E = 2M0(v0 − w0), (6)

where v0 is tabulated and w0 < v0 is the given left-hand electrode potential.
In a given application, w0 might be specified by oxygen evolution. We shall
employ two normalizations in the sequel: M = 1 (so that the product con-
centration is one mole per liter) and |Ω| = 1 so that M0 = 1. These are for
convenience only, and do not affect the analytical results.

1.2 The Boundary Value Formulation

The system presented here is a standard drift-diffusion system corresponding
to charge induced by two species of opposite parity: cations and anions. We
retain the definitions of u, n, p presented in the previous subsection. The
isothermal model, prior to association, is presented as:

−∇· [ε∇u] + n− p = 0, (7)

−∇· [µnn∇u−Dn∇n] = 0, (8)

−∇· [µpp∇u+Dp∇p] = 0. (9)

The dielectric satisfies ε(x) ≥ ε0 > 0, and is an L∞ function of the position x
only. Similar considerations apply to the mobility and diffusion coefficients,
and we employ the Einstein relations; the thermal voltage RT/F is 1 in
our units. The system is augmented by boundary conditions of mixed type,

4



including homogeneous Neumann boundary conditions on Γ ⊂ ∂Ω and equi-
librium Dirichlet boundary conditions on the contact portions (electrodes)
∂Ω \ Γ. In terms of the electrochemical potentials v and w, the system (7),
(8), and (9) is rewritten as

−∇· [ε∇u] +N0e
u−v − P0e

w−u = 0, (10)

−∇· [µne
u−v∇v] = 0, (11)

−∇· [µpe
w−u∇w] = 0. (12)

The solutions of this system are required to satisfy (4, 5, 6), with M = M0 =
1 and Dirichlet boundary conditions on the left electrode Σ1 and the right
electrode Σ2. We write these as

u = v = w = σ1 on Σ1, u = v = w = σ2 on Σ2.

The appropriate way to see this is through the interpretation of σ1, σ2 as
control variables. This applies specifically to the electrostatic potential u,
since equilibrium boundary conditions then give u = v = w on each of the
two electrodes defining ∂Ω \Γ. In effect, we raise the left electrode potential
and lower the right electrode potential with respect to standard conditions.
This is directly related to the trapping region for the solutions. The extreme
example of this is now briefly discussed.

1.3 The Special Case of Equilibrium

Given v0, w0 as above, we define the equilibrium potential

u0 =
1

2
(v0 + w0) .

It follows that the special equilibrium solution u = u0, v = u0, w = u0,
leading to

n = p = 2,

satisfies the steady-state system above with constant Dirichlet boundary con-
ditions u = u0, v = u0, w = u0. The product reaction is spontaneous if C0 ≥ 0
in this case.
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2 Mathematical Well-Posedness

The natural progression is to formulate a sufficient condition for the thermo-
dynamic inequality. This is achieved by partial convexity. We first restate
the Gibbs inequality:

0 ≥ (w0 − v0)− lnN0 − lnP0 +

∫
Ω

(nv − pw) dx. (13)

2.1 A Partial Convexity Inequality for Thermodynamic
Spontaneity

Define the function of two variables (y, z),

J(y, z) = N0 exp(u− y) + P0 exp(z − u),

for fixed u. The Hessian is positive definite, and J is globally convex in
(y, z). By convexity, there is a tangent plane at [(v, w), J(v, w)] lying below
the graph of J , such that

J(y, z) ≥ J(v, w) + Jv(v, w)(y − v) + Jw(v, w)(z − w).

Here, the subscripts denote partial derivatives. The choice (y, z) = (v∗, w∗)
gives:

N0 exp(u− v∗) + P0 exp(w∗ − u) ≥ N0 exp(u− v) + P0 exp(w − u)

+N0(v − v∗) exp(u− v) + P0(w∗ − w) exp(w − u).

If we select for (u, v, w) a solution triple, satisfying the electroneutrality con-
dition, and integrate we obtain

0 ≥
∫

Ω

{(n+ p)− (n∗ + p∗)− nv∗ + pw∗} dx+

∫
Ω

(nv − pw) dx.

Here we have defined n∗ = N0 exp(u − v∗), p∗ = P0 exp(w∗ − u). We shall
identify v∗, w∗ with upper and lower bounds for the trapping region which
bounds u, v, w. In particular, v ≤ v∗, w ≥ w∗, so that n ≥ n∗, p ≥ p∗.
Comparison with the Gibbs inequality (13) then reveals that the latter is
satisfied if

(v0 − w0) + lnN0 + lnP0 + 2(w∗ − v∗) ≥ 0. (14)
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2.2 The Trapping Region

Suppose that a solution of the system coupled to the electroneutrality con-
straint satisfies inequalities of the form,

w∗ ≤ u, v, w ≤ v∗, (15)

where v∗ − w∗ ≤ (v0 − w0)/4. Then the Gibbs inequality (13) is satisfied.
Indeed, we note that

lnN0 + ln

(∫
Ω

exp(u− v) dx

)
= ln 2, lnP0 + ln

(∫
Ω

exp(w − u) dx

)
= ln 2,

so that

max(| lnN0/2|, | lnP0/2| ≤ v∗ − w∗,

and, hence, (14) via

(v0 − w0) + lnN0 + lnP0 + 2(w∗ − v∗) ≥ (v0 − w0)− 4(v∗ − w∗) ≥ 0.

2.3 The Main Result

We choose the Dirichlet boundary conditions σ1 = w∗, σ2 = v∗. We have the
following result.

Theorem 2.1. There exists a weak solution of the system (10, 11, 12) satisfy-
ing homogeneous Neumann boundary conditions weakly on Γ and the Dirich-
let boundary conditions just cited on Σ1∪Σ2 = ∂Ω\Γ. This solution satisfies
electroneutrality (4) and thermodynamic compatibility (13) with the normal-
izations M = M0 = 1 and lies in the trapping region (15).

We shall prove the theorem in the following subsections. The idea is to
define a mapping T , which embeds the trapping region in its definition, and
to exhibit fixed points of T , via the Schauder theorem, which define solutions.

2.4 The Mapping

In this section, we shall define the domain and action of the mapping T . The
trapping region domain is designed, in accordance with a previous subsection,
to induce the Gibbs inequality. The map itself will incorporate the features of
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the system, as well as the electroneutrality. Consider the individual mappings
U, S defined as follows. The domain of U is the closed convex set in L2,

DU = {u ∈ L2(Ω) : w∗ ≤ u ≤ v∗},

where the pointwise inequalities are understood ‘almost everywhere’. Then
U(u) = [v, w] if v, w (uniquely) satisfy the weak version of the decoupled
gradient system:

−∇· [µne
u−v∇v] = 0,

−∇· [µpe
w−u∇w] = 0,

subject to the following Dirichlet boundary conditions:

v = w = w∗ on Σ1, v = w = v∗ on Σ2. (16)

We will subsequently show that [v, w] ∈ DS, where

DS = {[v, w] ∈
∏

L2(Ω) : w∗ ≤ v, w ≤ v∗}.

Intermediate numbers,

N0 = N0(u, v), P0 = P0(u,w),

are introduced so as to guarantee electroneutrality:

N0

∫
Ω

exp(u− v) dx = 2, P0

∫
Ω

exp(w − u) dx = 2.

We then define S[v, w] = ũ if ũ solves the weak form of the gradient equation

−∇· [ε∇ũ] +N0e
ũ−v − P0e

w−ũ = 0,

subject to the specified boundary conditions on ũ. We have: T = S◦(N0, P0)◦
U .

2.5 Properties of the Mapping and Fixed Points

Since the transformation v 7→ V = exp(−v), w 7→ W = exp(w), leads to
linear equations for V,W , existence of solutions [v, w] with range contained
in the Cartesian product

[w∗, v∗]× [w∗, v∗]
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is standard. Suppose u1, u2 are given in the domain of U . We give the argu-
ment, via sequential continuity, which compares V1, V2, where ui 7→ Vi, i =
1, 2. The corresponding argument for W1,W2 is similar, and is omitted. The
weak solution characterizations yield∫

Ω

µn exp(u1)|∇(V1−V2)|2 dx ≤
∫

Ω

µn| exp(u1)−exp(u2)||∇V2| |∇(V1−V2)| dx,

with test function defined by V1−V2. Note that the factor exp(u1) cannot be
less than exp(w∗). After application of the Schwarz inequality and division
by ‖∇(V1 − V2)‖2, we consider the sequential convergence of u2 → u1 in
L2. A subsequence of every subsequence of V2 = V (u2) is convergent to
V1 = V (u1) as is seen by utilizing pointwise subsequential convergence of the
L2 convergent sequence exp(u2)→ exp(u1) and by making use of Lebesgue’s
dominated convergence theorem. This yields sequential continuity of U . The
continuity of the mapping yielding (N0, P0) is shown to be continuous from
the continuity of Carathéodory mappings composed with integration.

The existence of a weak solution of the gradient equation defining the
mapping S follows the analysis of [8]. The trapping region argument re-
quires the idea of lower and upper solution utilized in [9]; w∗ is a lower
solution and v∗ is an upper solution. The continuity of S is established in a
manner similar to [8, Lemma 4.3], with addition of an extra term required to
accommodate the mapping (N0, P0). Moreover, the range of T is relatively
compact. The Schauder theorem yields a fixed point u in the trapping re-
gion. The electroneutrality is built into the mapping T . The trapping region
is designed to imply thermodynamic compatibility. This gives the desired
solution and concludes the proof.

3 Generalization: Open Problem and Exten-

sions

We present the generalized version incorporating the Debye-Hückel theory
for sufficiently dilute solutions.

3.1 The Gibbs Criterion

For a non-ideal solution, we have the following definition of µC [6, p. 153]:

µC = µ0
C +RT ln(γCNC) + zFu,

9



where, again, F is the Faraday constant, z = −1, 0, 1, and R is the universal
gas constant. The γC are termed the activity coefficients. As is typical, we
represent the sum (average) of these coefficients via the Debye-Hückel theory
for sufficiently dilute solutions [6, p. 156–159]:

ln γA+ + ln γB− = −α
√
I,

for a constant α depending on temperature, where I is the ionic strength,
given here as

I =
1

2
(n+ p) .

The reformulation of ∆G ≤ 0 now becomes (with the normalizations chosen
earlier):

0 ≥ −C0/F+2

∫
Ω

(nv−pw) dx−2 lnP0−2 lnN0)+
√

2α

∫
Ω

(n+p)3/2 dx. (17)

3.2 Reaction Rate and Reaction-Drift-Diffusion Sys-
tem

According to [7, p. 17], the rate f is determined by

f = k0 exp

(
−2β
√
I

1 + δ
√
I

)
,

where β, δ, and k0 are positive constants. We retain the definitions of u, n, p
presented earlier. The isothermal model is presented as:

−∇· [ε∇u] +N0e
u−v − P0e

w−u = 0, (18)

−∇· [µne
u−v∇v]− f = 0, (19)

−∇· [µpe
w−u∇w] + f = 0. (20)

The system is augmented by boundary conditions of mixed type, as before.
The open question pertains to solutions of the boundary value problem for
the above system, satisfying electroneutrality and the generalized Gibbs con-
dition. For concentrated ionic solutions, the Debye-Hückel theory must be
extended [6, pp. 159–161]. This presents even greater challenges.
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3.3 Extensions to the Nonisothermal Case

Most reactions in electrochemistry occur over a range of temperature vari-
ation. The system considered here would require expansion to include an
energy conservation balance law. Extensions of the rudimentary theory out-
lined in this paper will eventually have to incorporate this very significant
case.

3.4 Comparisons with Existing Thermodynamic Mod-
eling

A considerable amount of study has been devoted recently to maximum en-
tropy models. The field is too comprehensive to survey here. Essentially,
moment closure is achieved by a maximum entropy principle for systems of
equations defined by moments. Although no definitive statements can yet be
made, it appears that maximum entropy is more restrictive than approaches
based on partial convexity. This permits a family of admissible reactions and
the trapping region defines a control parameter.

3.5 Comments on the Proof of Theorem 2.1

It was observed by Professor S. Carl that the region described as a trap-
ping region is not shown to satisfy the usual upper and lower solution re-
quirements. What we show here is that the image of T , ũ = Tu, satisfies
w∗ ≤ ũ ≤ v∗. This allows standard Schauder theory to be applied, and avoids
the direct use of application of results in [9].

The argument is straightforward. By the argument given in [8], we can
obtain a solution ũ of the final mapping step in defining Tu. Indeed, the
function,

N0e
ũ−v − P0e

w−ũ,

is increasing in ũ, so that the arguments of convex analysis apply as in [8].
Moreover, since ũ is a minimizer of the convex functional F used in [8], it
follows that the functions, min(v∗, ũ) and max(w∗, ũ) must agree with ũ,
otherwise the functional F would increase, which leads to a contradiction.
Notice that this argument works because of the boundary conditions chosen
for ũ, which are the same as for v, w. This removes the gap in the proof of
Theorem 2.1.
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