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1. INTRODUCTION

The hydrodynamic model has become important in the simulation of semiconductor devices during
the last decade, as an alternative to the more specialized drift-diffusion model. The more comprehen-
sive hydrodynamic model includes features of general carrier heating, velocity overshoot, and various
small device features, and is based upon moments of the Boltzmann equation. It employs a macro-
scopic relaxation time approximation, which incorporates averaged collision mechanisms. Unlike the
drift-diffusion model, the hydrodynamic model contains hyperbolic modes related to the momentum
subsystem. It is therefore much more complex to analyze and simulate than the corresponding drift-
diffusion model. A detailed introduction to both models may be found in the book [9]. In particular,
it is demonstrated how an averaging process over group velocity space, coupled with identification of
particle density as one such average, and velocity as a first moment, leads to a system whose macro-
scopic characterization is a conservation law system, much in the tradition of classical gas dynamics,
with forcing terms due to electrical, mechanical, and heating effects, as well as frictional dissipation
due to collisions. When the microscopic and macroscopic derivations are correlated, the moment
closure assumptions emerge more clearly. For example, isotropy leads to the ideal gas law for the
carriers. Readers may wish to consult the reference [2] for an in depth survey of some of these ideas.
The reader interested in a closer explanation of the engineering aspects of semiconductor devices can
consult the book [15].

In recent years, there has been an attempt to understand the relationship between the two classes
of models. In the biological context of the open ionic channel, it was noticed phenomenologically that
small variations of the saturation velocity in the energy relaxation term led to significant variation
in the computed temperature (cf. [3]). Indeed, this interpretation suggests that the temperature
tends to that of the isothermal drift-diffusion regime, which is seen as a high friction regime. Some
mathematical studies suggest this also (cf. [14]). Another way of viewing high friction is in the
framework of the inertial approximation, which here would assert that the drift-diffusion regime
(nonisothermal) is the limit of increasingly small momentum rate of change, with respect to frequency
of collisions. This approach is discussed in [10].

In this paper, we shall study the reduced hydrodynamic model, sometimes referred to as the
perturbed isentropic model, with adiabatic pressure density relationship. In fact, for the most gen-
eral initial conditions, rigorous mathematical results exist only in this case (see [18] for the initial-
boundary value problem), though recent studies have extended the models to include multi-species
and geometric structure, thus permitting multi-dimensional transport with symmetry to be analyzed
(cf. [5]). The paper [5] includes comprehensive simulations based on the shock capturing algorithm,
ENO (cf. [16] for description of the algorithm). In particular, [5] analyzes in depth the two-valley
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Gallium Arsenide Gunn diode, with stable oscillations for current and voltage; the symmetries of the
two-dimensional MESFET are also explored, and the bias is characterized as a symmetry-breaking
parameter.

The reduced hydrodynamic model in the case of one carrier type (e.g. , electrons) can be written
in one spatial dimension as:

ρt + (ρv)x = 0, (1.1)
(ρv)t + (ρv2 + p(ρ))x = ρφx − ρv/τ, (1.2)
φxx = ρ−D(x), (1.3)

where ρ is the particle density, v is the velocity, τ > 0 is the momentum relaxation time, and the
pressure relation p = p(ρ) has the property that ρ2p′(ρ) is a strictly increasing function from [0,∞)
onto [0,∞). A commonly-used hypothesis [7] is:

p(ρ) = kργ, γ > 1, k > 0,

where γ and k are constants. Equations (1.1) and (1.2) describe conservation of particle number and
momentum, respectively, while (1.3) is the Poisson electrostatic equation, with electric potential φ
and doping D. Moreover, for readers familiar with the physics, we have selected units in which the
the charge-mass ratio has been absorbed into the units of ρ, the dielectric constant has been absorbed
into the units of φ, and the charge modulus has been absorbed into the units of D.

We consider the following initial values with impermeable insulated boundaries for (1.1)–(1.3),
respectively:

(ρ, v)|t=0 = (ρ0(x), v0(x)), 0 ≤ x ≤ 1, (1.4)
(v, φ)|x=i = 0, i = 0, 1, t ≥ 0. (1.5)

The boundary conditions can be generalized routinely by following our approach to construct global
smooth solutions.

In Section 2, we establish the existence, uniqueness, and asymptotic decay of global smooth
solutions of the problem (1.1)–(1.5) by use of the energy method. Such a method has been successfully
applied to the global existence, uniqueness and asymptotic stability of classical smooth solutions for
nonlinear wave equations in [11], nonlinear hyperbolic Volterra integrodifferential equations in [8],
nonlinear thermoelasticity in [17], as well as for the compressible Navier-Stokes equations in [13] and
[4] (see also the references cited in [11,8,17,13,4]). Our result indicates that the relaxation effect
prevents the development of shock waves for the case of smooth initial data with small oscillation. In
Section 3, the singular behavior of solutions is investigated when the relaxation time tends to zero;
the drift-diffusion limit is proved by direct use of the energy estimates. The main difficulty in our
energy estimates is that the energy norms must be chosen suitably and estimated uniformly with
respect to the relaxation time τ > 0 so that the singular relaxation scaling sequence is compact in a
certain sense. Such a limit was also studied in [12], via the compensated compactness method.

Then, in Sections 4 and 5, we extend our analysis to the hydrodynamic energy model, and discuss
the existence of global smooth solutions and their singular relaxation limit, in terms of the drift-
diffusion equations, when the momentum relaxation time τp and the energy relaxation time τw tend
to zero in a controlled manner. In this limit, the relation of τp and τw is consistent with the physical
temperature dependent expressions derived in [1]. These results are stated without proof in Theorems
4.1 and 5.1, respectively, although we provide the framework for the underlying transformations used
in the arguments. Complete proofs and complementary results in this case will appear in [6].
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2. GLOBAL EXISTENCE, UNIQUENESS, AND ASYMPTOTIC DECAY

In this section we establish the global existence, uniqueness, and asymptotic decay of classical
smooth solutions of the problem (1.1)–(1.5). For concreteness, we assume

∫ 1
0 ρ0(x)dy = 1 without

loss of generality.

THEOREM 2.1. Assume that

0 < δ0 ≤ ρ0(x) ≤M, v0(i) = 0, i = 0, 1.

Also assume that the following norm,

‖(ρ0 − 1, v0,D − 1)‖H2(0,1),

and τ are sufficiently small. Then there exists a unique global smooth solution of the problem
(1.1)–(1.5) satisfying

‖(ρ− 1, ρx, ρt, v, vx, vt)‖C[0,1](t)→ 0, when t→∞.

Proof By the Lagrangian coordinates y(x, t) =
∫ x
0 ρ(ξ, t)dξ, as used in [4], we obtain the following

equations in Lagrangian coordinates from (1.1)–(1.3):

(1/ρ)t − vy = 0, (2.1)
vt + p(ρ)y = ρφy − v/τ, (2.2)
(ρφy)y = 1− D̃/ρ, (2.3)

with the following initial and boundary conditions:

(ρ, v)|t=0 = (ρ0(x(y, 0)), v0(x(y, 0))), 0 ≤ y ≤ 1, (2.4)
(v, φ)|x=i = 0, i = 0, 1, t ≥ 0, (2.5)

where D̃(y, t) = D(x(y, t)).
Let

wt = v, wy = 1/ρ− 1. (2.6)

Then, the problem (2.1)–(2.5) is transformed into the following form:

wtt −
kγwyy

(1 + wy)γ+1 +
wt
τ

+w −
∫ 1

0
wdy =

∫ 1

0
(wy + 1)

(∫ y

η
(1− D̃)(1 + wy)dξ

)
dη, (2.7)

w(y, 0) =
∫ y

0

(
1

ρ0(x(η, 0))
− 1

)
dη, wt(y, 0) = v0(x(y, 0)), (2.8)

w(0, t) = w(1, t) = 0. (2.9)

The existence of a local smooth solution w(x, t) ∈ C3([0, 1] × [0, t0)), t0 > 0, of (2.7)–(2.9) has
been obtained in [18]. In order to obtain the global smooth solution, it suffices to make a priori
arguments and estimates so that the local solution can be extended to the global solution.

We first assume that
‖(w,wy)‖C1([0,1]×[0,t0)) ≤ ε (2.10)

for certain small ε ≤ 1/2, which implies

1/2 ≤ |wy + 1| ≤ 3/2 ⇐⇒ 2/3 ≤ ρ(x, t) ≤ 2.
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Then we prove that there exists an ε0 > 0 depending only on ε such that, when

‖(ρ0 − 1, v0,D − 1)‖H2(0,1) + τ ≤ ε0,

the estimate (2.10) can be achieved.
With this a priori argument, A = kγ/(1 +wy)γ+1 is a C∞ function of one variable wy such that,

when |wy| ≤ ε ≤ 1/2,
(2/3)γ+1kγ ≤ A ≤ 2γ+1kγ.

We rewrite above equation (2.7) as

wtt +
wt
τ

+ w −
∫ 1

0
wdy −Awyy = f, (2.11)

or,

wtt +
wt
τ

+ w = Awyy + f +
∫ 1

0
wdy, (2.12)

where

f(y, t) =
∫ 1

0
(wy + 1)

(∫ y

η
(1− D̃)(1 +wy)dξ

)
dη. (2.13)

Then we have from (2.12),

(Awyy + f +
∫ 1

0
wdy)(i, t) = 0, i = 0, 1. (2.14)

We now make energy estimates step by step. We first perform the following calculations: (2.11)×
(τKw), (2.11) × (Kwt), (2.11) × (−τwyy), (2.11)t × (τ2Kwtt), (2.11)y × (Kwyt), (2.11)tt × (τ4wttt),
(2.11)yt × (τ2wytt), (2.11)yy × (τ(Awyy + f +

∫ 1
0 wdy)), and (2.11)yy × (Awyy + f +

∫ 1
0 wdy)t, and

integrate over [0, 1] × [0, t], where K = K(γ, k) ≥ 1 is determined later. Then we use integration by
parts with the aid of the boundary conditions (2.9) and (2.14), and use some elementary inequalities
such as

ab ≤ δa2 +
b2

4δ
, |w| =

∫ 1

0
|wy|dy ≤

(∫ 1

0
w2
ydy

)1/2

. (2.15)

Finally we add and re-group all the resulting inequalities from previous calculations and estimates
together, and use τ ≤ 1/2 to obtain∫ 1

0
[Kw2 + ((A+ 1)K + 1)w2

y + (1 + τ2)Kw2
t +A(K + 2)w2

yy + ((1 + τ2A)K + τ2)w2
yt + τ2Kw2

tt

+(Awyy + f)2
y + τ2Aw2

yyt + τ2(1 + τ2A)w2
ytt + τ4w2

ttt +A(wyy +
f +

∫ 1
0 wdy

A
)2
t ]dy

+
∫ t

0

∫ 1

0
[τAKw2

y + (1− τ2)K
w2
t

τ
+ τAw2

yy + (K − τ2)
w2
yt

τ
+ τKw2

tt

+τ(Awyy + f)2
y]dyds+A(1− τ2)

w2
yyt

τ
+ τw2

ytt + τ3w2
ttt

≤
∫ 1

0
[2Kw2

0 + 2τKw0w0t + ((A0 + 1)K + 1)w2
0y + (1 + τ2)Kw2

0t +A0(K + 2)w2
0yy

+((1 + τ2A0)K + τ2)w2
0yt + τ2(K + τ2)w2

0tt + (A0w0yy + f0)2
y + τ2A0w

2
0yyt

+τ2(1 + τ2A0)w2
0ytt + τ4w2

0ttt +A0(w0yy +
f0

A0
)2
t − τw0tw0yy + 2τ2A0tw0yyw0yyt
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+2τ2f0tw0yyt + 2τw0yyt(A0w0yy + f0 +
∫ 1

0
w0dy)

+2
A0t

A2
0

(A0w0yy + f0 +
∫ 1

0
w0dy)(A0w0yyt + f0t +

∫ 1

0
w0tdy −

A0t

A0
(f0 +

∫ 1

0
w0dy))]dy

+C
∫ 1

0
[τ2Kw2

t + τ2w2
yt + τ2w2

yyw
2
yt + τ2f2

t + τ2w2
yyt + τ |wyytf |+ w2

yt(Awyy + f +
∫ 1

0
wdy)2]dy

+C
∫ t

0

∫ 1

0
[K(τw4

yy + τw2w2
yy + w2

y|wyt|+ τw2
yw

2
yy + τ2|wyt|3 + τ3w2

ytw
2
tt + τ2w2

t + τf2 + |fwyyt|)

+τw2 +
1
τ
w2
t + τw2

tt + τw2
yt +

1
τ

(1 + τ4K)w2
yyw

2
yt + τf2

tt + τ3f2
yt

+
1
τ

(1 + τ4K)f2
t + w2

yyt + |ftwyy|+ τ4w2
yyw

2
ytt + τ5w2

yyw
4
yt + τw2

ytw
2
yyt + τ3w2

yytw
2
yy

+|wyt|(w2
yy + τ4w2

ytt + w2
yyt + w2

ytw
2
yy + f2

t +
∫ 1

0
|wt|2dy)

+|wyyt|
∫ 1

0
|w|dy + |wyy|

∫ 1

0
|wt|dy + (f +

∫ 1

0
wdy)2(τw4

yt + τw2
ytt +

1
τ
w2
yt)

+|f +
∫ 1

0
wdy|(τw2

ytt + τw4
yt +

1
τ

(w2
yyt + w2

ytw
2
yy + f2

t +
∫ 1

0
w2
t dy))

+
1
τ
|wyy|(w2

yyt + w2
ytw

2
yy + τw2

ytt + τw4
yt + f2

t +
∫ 1

0
w2
t dy)]dyds, (2.16)

where C is a universal constant independent of τ and t.
Using the elementary inequalities (2.15), taking K ≥ K0(C, γ) and τ ≤ τ0(C, γ,K) for sufficiently

large K0 ≥ 1 and small τ0 ≤ 1/2, and making tedious calculations, we have from (2.16):

∫ 1

0
[K(w2 + w2

t + w2
y + τ2wtt + w2

yt + w2
yy) + τ4w2

ttt + τ2w2
ytt + (Awyy + f)2

y

+(wyy +
f +

∫ 1
0 wdy

A
)2
t ]dy

+
∫ t

0

∫ 1

0
[K(τw2 + τw2

y +
w2
t

τ
+ τw2

tt +
w2
yt

τ
) + τw2

yy + τ3w2
ttt + τw2

ytt +
1
τ
w2
yyt

+τ(Awyy + f)2
y)]dyds

≤ C(K‖w0‖2H2(0,1) + ‖(ρ0 − 1, v0,D − 1)‖2H2(0,1))

+C
∫ 1

0
[w2
yyw

2
yt + τf2 + τ2f2

t + w2
yt(f +

∫ 1

0
wdy)2]dy

+C
∫ t

0

∫ 1

0
[K(τw2w2

yy + w2
y|wyt|+ τw2

yw
2
yy + τw4

yy + τ2|wyt|3 + τ3w2
ytw

2
tt + τf2)

+w2
yt(τw

2
yyt + |wyt|w2

yy) + |wyt|(f2
t + w2

yyt + τ4w2
ytt)

+w2
yy(

1
τ
w2
yt + τ3w2

yyt + τ5w2
ytt + τ5w4

yt) + |wyy|(|wytwyy|+ τw2
ytt + τw4

yt)

+
1
τ
|wyy|(w2

yyt + w2
ytw

2
yy + f2

t +
∫ 1

0
w2
t dy)]dyds, (2.17)

where we have used the following identities:

D̃t = −wtDx, D̃y = Dx/ρ, D̃tt = −w2
tDxx − wttDx,
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and the following inequalities:

|fy| ≤ |1− D̃|+ |(D̃ − 1)wy |, |fyt| ≤ |wyt(D̃ − 1)|+ |(wy + 1)wtDx|,

|ft| ≤
∫ 1

0
|fyt|dy +

∫ 1

0
|wyt|dy

∫ 1

0
|fy|dy +

∫ 1

0
|wy + 1|dy

∫ 1

0
|fyt|dy,

|ftt| ≤ (1 +
∫ 1

0
|wy + 1|dy)

∫ 1

0
|(wy + 1)w2

t D̃xx − (2wytwt + (wy + 1)wtt)D̃x + (D̃ − 1)wytt|dη

+
∫ 1

0
|wytt|

∫ 1

0
|fy|dy + 2

∫ 1

0
|wyt|

∫ 1

0
|fyt|dy.

With the assumption (2.10), if ε and τ are sufficiently small, we have

E(t) +
∫ t

0

∫ 1

0
(τw2 + τw2

y +
1
τ
w2
t + τw2

yy + τw2
tt +

1
τ
w2
yt + τ3w2

ttt + τw2
ytt +

1
τ
w2
yyt + τw2

yyy)dyds

≤ C‖(ρ0 − 1, v0,D − 1)‖2H2(0,1), (2.18)

where we have used the a priori assumption (2.10) and

E(t) ≡
∫ 1

0
(w2 +w2

t + w2
y + τ2w2

tt + w2
yt +w2

yy + τ4w2
ttt + τ2w2

ytt + w2
yyy + w2

yyt)(y, t)dy.

From the local existence and uniqueness theorem, there exists an interval [0, t0) such that (2.9)
has a unique smooth solution. It follows from the Sobolev inequality that

‖(w,wy)‖C1([0,1]×[0,t0)) ≤ Γ sup
0≤t≤t0

√
E(t),

where Γ is a positive constant. Hence, if

‖(ρ0 − 1, v0,D − 1)‖H2(0,1) ≤
ε

Γ
√
C
, (2.19)

then (2.10) holds on 0 ≤ t ≤ t0, 0 ≤ y ≤ 1. By a priori estimate (2.17), we conclude that E(t0) ≤ ε/Γ.
Then we can apply the above arguments again, and continue the local solution to the global solution
in [0, ∞) by use of the estimate (2.17).

The solution constructed by the above process satisfies a priori estimate (2.17). It thus follows
from the Sobolev inequality that

sup
0≤t<∞
0≤y≤1

|wy| ≤ Γ
√
C‖(ρ0 − 1, v0,D − 1)‖H2(0,1) ≤ ε.

Hence,

A =
kγ

(1 + wy)γ+1 ≥
(

3
2

)γ+1
kγ

if (2.16) holds. Therefore, we have proved the existence of the global smooth solution satisfying

w ∈ L2([0,∞);H3(0, 1)); ‖w‖C2[0,1](t)→ 0, when t→∞.

By (2.6), we obtain

‖(ρ− 1, ρx, ρt, v, vx, vt)‖C[0,1](t)→ 0, when t→∞.

This completes the proof.
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3. SINGULAR RELAXATION APPROACH TO DRIFT-DIFFUSION EQUATIONS

Let

ρτ (x, s) = ρ

(
x,
s

τ

)
, vτ (x, s) =

1
τ
v

(
x,
s

τ

)
, φτ (x, s) = φ

(
x,
s

τ

)
, Dτ (x) = D(x).

Then (1.1)–(1.3) is transformed as follows:

ρτs + (ρτvτ )x = 0, (3.1)

τ2vτs + τ2vτvτx +
1
ρτ
p(ρτ )x + vτ = φτx, (3.2)

φτxx = ρτ −Dτ , (3.3)

with the following initial and boundary data:

(vτ , φτ )(i, s) = 0, i = 0, 1, s ≥ 0, (3.4)
(ρτ , vτ )(x, 0) = (ρ0(x), v0(x)/τ). (3.5)

Assume that initial data (ρ0(x), v0(x)) are independent of τ .

THEOREM 3.1. Assume that the conditions of Theorem 2.1 hold. Let (ρτ , vτ , φτ ) be the sequence
of solutions of (3.1)–(3.5). Then there exists N(x, s) such that

(ρτ , φτx)→ (N,
∫ 1

0

∫ x

η
(N(ξ, s)−D(ξ))dξdη) a.e. as τ → 0.

The limit function N satisfies the drift-diffusion equation

Ns +
(
N

∫ 1

0

∫ x

η
(N(ξ, s) −D(ξ))dξdη − p(N)x

)
x

= 0

in the sense of distributions.
Proof To show the convergence of subsequence {ρτ , φτx}, we need uniform estimates which are

independent of τ .
Observe the following relations of the scaling sequence and w:

ρτ (x, s) =
1

wy(y(x, sτ ), sτ ) + 1
, vτ (x, s) =

1
τ
wt(y(x,

s

τ
),
s

τ
),

ρτx(x, s) = −(ρτ )2wyy(y(x,
s

τ
),
s

τ
), vτx(x, s) =

1
τ
ρτwyt(y(x,

s

τ
),
s

τ
),

ρτxx(x, s) = −(ρτ )3wyyy(y(x,
s

τ
),
s

τ
) + 2(ρτ )3(wyy(y(x,

s

τ
),
s

τ
))2,

φτ (x, s)x =
∫ 1

0
(wy + 1)

(∫ y(x, s
τ

)

η

(
1− (wy + 1)D̃

)
(ξ,

s

τ
)dξ

)
dη,

φτ (x, s)xx = ρτ (x, s)−D(x),

φτ (x, s)xs = −(ρτ −D)vτ (x, s)−
∫ 1

0

wyt
τ

(∫ y

0

(
1− (wy + 1)D̃

)
(η,

s

τ
)dη
)
dy

−
∫ 1

0
(wy + 1)

(∫ y

η

1
τ

(
wytD̃ − D̃x(wy + 1)wt

)
(ξ,

s

τ
)dξ
)
dη.
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Therefore,

‖(ρτ , φτ , φτx)‖L∞ +
∫ ∞

0

∫ 1

0
[(vτ )2 + (ρτs)

2 + (ρτx)2 + (φτxx)2 + (φτxs)
2]dyds ≤ C,

where C > 0 is independent of τ .
Thus, there exist N(x, s) such that

(ρτ , φτx)→ (N,Φx) a.e. as τ → 0,

where Φx(x, s) =
∫ 1
0
∫ x
η (N(ξ, s)−D(ξ))dξdη.

From (3.1)–(3.2),∫ ∫
(ρτψs + ρτvτψx)dxds = 0,

τ2
∫ ∫

(ρτvτψxs + ρτ (vτ )2ψxx)dxds+ k

∫ ∫
(ρτ )γψxxdxds =

∫ ∫
(ρτvτ − ρτφτx)ψxdxds,

for all ψ ∈ C∞0 (R×R+). That is, for any test function ψ(x, t) ∈ C∞0 ((0, 1) × (0,∞)),∫ ∫
(ρτψs + ρτφτxψx + k(ρτ )γψxx)dxds = −

∫ ∫
(τ2ρτvτψxs + τ2ρτ (vτ )2ψxx)dxds.

Let τ → 0. Since
‖ρτ‖L∞((0,1)×(0,∞)) + ‖vτ‖L2((0,1)×(0,∞)) ≤ C,

where C is independent of τ and t, then∫ ∫
(Nψs +NΦxψx + kNγψxx)dxds = 0.

This completes the proof of Theorem 3.1.

4. GENERALIZATION TO THE HYDRODYNAMIC ENERGY MODEL

In this section we discuss the inviscid hydrodynamic energy model:

ρt + (ρv)x = 0, (4.1)
(mρv)t + (mρv2 + ρT )x = eρφx −mρv/τp, (4.2)

Et + (vE + vρT )x − (κTx)x = eρvφx − (E − 3
2
ρT )/τw, (4.3)

φxx = e(ρ− d(x, t)), (4.4)

where ρ(x, t) > 0, v(x, t), T (x, t), φ(x, t), κ > 0,D(x) ≥ D0 > 0, e > 0, T , and m respectively denote
electron density, velocity, temperature in energy units (the Boltzmann constant kB has been set
to 1), electrostatic potential, thermal conductivity, doping profile, electron charge, ambient device
temperature, and effective electron mass, and

E =
3
2
ρT +

1
2
mρv2,

is energy density for parabolic energy bands. The collision terms here have been treated classically
through momentum and energy relaxation times τp > 0 and τw > 0.
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We consider the following initial-boundary conditions:

(ρ, v, T )|t=0 = (ρ0(x), τpv0(x), T + τw(T0(x)− T )), 0 ≤ x ≤ 1,
(v, Tx, φ)|x=i = (0, 0, 0), i = 0, 1, t ≥ 0, (4.5)

Such an initial condition is natural for the drift-diffusion limit (see Section 5). For the existence
problem, this initial condition can be relaxed by modifying our energy estimates.

Using arguments and estimates as in Sections 2 and 3, we can establish the global existence,
uniqueness, and asymptotic decay of solutions of (4.1)–(4.5). We describe here the transformation of
[6]. Details of proof are given in this reference.

Similar to Section 2, the full hydrodynamic model in Lagrangian coordinates is of the form:

(1/ρ)t − vy = 0, (4.6)

vt +
1
m

(ρT )y =
e

m
ρφy −

v

τp
, (4.7)

Tt −
2
3

(κρTy)y +
2
3
ρTvy =

m(2τw − τp)
3τpτw

v2 − T − T
τw

, (4.8)

(ρφy)y = e(1− D̃/ρ). (4.9)

with the initial and boundary conditions:

(ρ, v, T )|t=0 = (ρ0(x(y, 0)), τpv0(x(y, 0)), T + τw(T0(x(y, 0)) − T )), 0 ≤ y ≤ 1,
(v, Ty, φ)|x=i = (0, 0, 0), i = 0, 1, t ≥ 0, (4.10)

where D̃(y, t) = D(x(y, t)) and we have assume for concreteness that
∫ 1
0 ρ0(ξ)dξ = 1.

Let
wt = v, wy = 1/ρ− 1, θ = T − T . (4.11)

Then, the system (4.6)–(4.9) is transformed into the following form:

wtt −
θ + T

m(1 +wy)2wyy +
1

m(1 + wy)
θy +

wt
τp

+ (w −
∫ 1

0
wdy)

=
∫ 1

0
(wy + 1)

(∫ y

η
(1− D̃)(1 + wy)dξ

)
dη, (4.12)

θt −
2κ

3((1 + wy)
θyy +

2κθy
3(1 + wy)2wyy +

2(θ + T )
3(1 + wy)

wyt +
θ

τw
− m(2τw − τp)w2

t

3τpτw
= 0, (4.13)

with the following initial-boundary conditions:

(w,wt, θ)(y, 0) = (
∫ y

0

(
1

ρ0(x(η, 0))
− 1

)
dη, τpv0(x(y, 0)), τw(T0(x(y, 0)) − T )), 0 ≤ y ≤ 1,

(4.14)
(w, θy)(i, t) = (0, 0), i = 0, 1, t ≥ 0. (4.15)

Similar to the arguments of Section 2, we can first apply the contraction mapping theorem to
(4.12)–(4.15) to obtain the local smooth solution (ρ(x, t), v(x, t), T (x, t)), t < t∗, and then make a
priori arguments and estimates to extend the local solution to the global smooth solution (see [6]).
We then obtain the following theorem.
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THEOREM 4.1. Assume that

0 < δ0 ≤ ρ0(x) ≤M, (v0, θ0)(i) = (0, 0), for i = 0, 1, |2τw − τp| ≤M
√
τpτw.

Also assume that the following norms,

‖(ρ0 − 1, v0,D − 1)‖H2(0,1), ‖θ0‖H3(0,1),

and relaxation times are sufficiently small. Then, (4.1)–(4.4) has a unique global smooth solution
(ρ(x, t), v(x, t), T (x, t)) satisfying

‖(ρ− 1, ρx, ρt, v, vx, vt, T − T, Tx, Tt)‖C[0,1](t)→ 0 when t→∞.

5. DRIFT-DIFFUSION LIMIT OF THE HYDRODYNAMIC ENERGY MODEL

In this section we study the singular limit to the full model (4.1)–(4.4) under the assumption for
relaxation times:

0 ≤ 2τw − τp ≤M
√
τpτw.

As in Section 3, we first scale the variables (ρ, v, T, φ), and then show that the limit functions, as
τp, τw → 0, satisfy the drift-diffusion equations (see [6]).

Let

ρτ (x, s) = ρ

(
x,

s

τp

)
, vτ (x, s) =

1
τp
v

(
x,

s

τp

)
, θτ (x, s) =

1
τw

(
T

(
x,

s

τw

)
− T

)
,

φτ (x, s) = φ

(
x,

s

τp

)
, Dτ (x) = D(x).

Then (4.1)–(4.4) is transformed as follows.

ρτs + (ρτvτ )x = 0, (5.1)

τ2
p v

τ
s + τ2

p v
τvτx +

1
mρτ

(
(τwθτ + T )ρτ

)
x

+ vτ =
e

m
φτ x, (5.2)

τ2
wθ

τ
s −

2κτw
3ρτ

θτxx + τpτwv
τθτx +

2τp
3

(
τwθ

τ + T
)
vτx −

mτp(2τw − τp)
3τw

(vτ )2 + θτ = 0, (5.3)

φτxx = e(ρτ −Dτ ), (5.4)

with the following initial and boundary data:

(vτ , θτx, φ
τ )(i, s) = (0, 0, 0), i = 0, 1, s ≥ 0, (5.5)

(ρτ , vτ , θτ )(x, 0) = (ρ0(x), v0(x), T0(x)− T̄ ), (5.6)

We assume that initial data (ρ0(x), v0(x), T0(x)) are independent of τp and τw.

THEOREM 5.1. Assume that the conditions of Theorem 4.1 hold. Let (ρτ , vτ , θτ , φτ ) be the sequence
of solutions of (5.1)-(5.6). Then, there exists N(x, s) such that

(ρτ , φτx)→ (N,
∫ 1

0

∫ x

η
(N(ξ, s) −D(ξ))dξdη) a.e. as τp, τw → 0.
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The limit function N(x, t) satisfies the drift-diffusion equation

Ns +
(
e

m
N

∫ 1

0

∫ x

η
(N(ξ, s)−D(ξ))dξdη − T

m
Nx

)
x

= 0

in the sense of distributions.

Acknowledgments: The first author is supported by the Office of Naval Research under grant
N00014-91-J-1384, the National Science Foundation under grant DMS-9623203, and by an Alfred P.
Sloan Foundation Fellowship. The second author is supported by the National Science Foundation
under grant DMS-9424464.

references

[1] BACCARANI G. & WORDEMAN M.R., An investigation of steady-state velocity overshoot effects in Si and
GaAs devices, Solid State Electr. 28, 407–416 (1985).

[2] CERCIGNANI C., The Boltzmann Equation and its Application, Springer-Verlag, New York (1987).

[3] CHEN D.P., EISENBERG R.S., JEROME J.W. & SHU C.-W., Hydrodynamic model of temperature change in
open ionic channels, Biophysical Journal 69, 2304–2322 (1995).

[4] CHEN G.-Q., Global solutions to the compressible Navier–Stokes equations for a reacting mixture, SIAM J. Math.
Anal. 23, 609–634 (1992).

[5] CHEN G.-Q., JEROME J.W., SHU C.-W. & WANG D., Two carrier semiconductor device models with geometric
structure, PREPRINT.

[6] CHEN G.-Q., JEROME J.W. & Zhang, B., Existence and the singular relaxation limit for the inviscid hydrody-
namic energy model, PREPRINT.

[7] COURANT R. and FRIEDRICHS K.O., Supersonic Flow and Shock–Waves, J. Wiley and Sons, New York (1967).

[8] DAFERMOS C.M. and NOHEL J.A. Energy methods for nonlinear hyperbolic Volterra integrodifferential equa-
tions Comm. PDE. 4, 219-278 (1979).

[9] JEROME J.W., Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices, Springer-Verlag,
Heidelberg (1996).

[10] JEROME J.W. and SHU C.-W. Transport effects and characteristic modes in the modeling and simulation of
submicron devices, IEEE Trans. CAD-ICAS 14, 917–923 (1995).

[11] KLAINERMAN, S. Global existence for nonlinear wave equations Comm. Pure Appl. Math. 33, 43-101 (1980).

[12] MARCATI P. and NATALINI R. Weak solutions to a hydrodynamic model for semiconductors and relaxation to
the drift-diffusion equation, Arch. Rat. Mech. Anal. 129, 129–145 (1995).

[13] MASTSUMURA, A. and NISHIDA, T. The initial value problem for the equations of motion of viscous and
heat-conductive gases, J. Math. Kyoto Univ. 20, 67–104 (1980).

[14] NATALINI R., The bipolar hydrodynamic model for semiconductors and the drift–diffusion equations, J. Math.
Anal. Appl. 198, 262–281 (1996).

[15] SELBERHERR S., Analysis and Simulation of Semiconductor Devices, Springer-Verlag, Wien-New York (1984).

[16] SHU C.-W. & OSHER S.J., Efficient implementation of essentially non-oscillatory shock capturing schemes, II.
J. Comp. Phys. 83, 32–78 (1989).

11



[17] SLEMROD M., Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-
dimensional, nonlinear thermoelasticity, Arch. Rat. Mech. Anal., 76, 97–133 (1981).

[18] ZHANG B., On a local existence theorem for a simplified one-dimensional hydrodynamic model of semiconductor
devices, SIAM J. Math. Anal. 25, 941–947 (1994).

12


