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Abstract. We show how certain widely used multistep approximation algo-
rithms can be interpreted as instances of an approximate Newton method. It
was shown in [7] that the convergence rates of approximate Newton methods
(in the context of the numerical solution of PDEs) suffer from a “loss of deriva-
tives”, and that the subsequent linear rate of convergence can be improved to be
superlinear using an adaptation of Nash-Moser iteration [9] for numerical analy-
sis purposes; the essence of the adaptation being a splitting of the inversion and
the smoothing into two separate steps. We show how these ideas apply to scat-
tered data approximation as well as the numerical solution of partial differential
equations. We investigate the use of several radial kernels for the smoothing
operation. In our numerical examples we use radial basis functions also in the
inversion step.

1. Introduction

It has been only very recently that the idea of multistep (or multilevel) in-
terpolation/approximation has attracted the interest of a variety of researchers in
approximation theory. In [2] the authors use singular integrals on the sphere to per-
form multilevel approximation, and in [5] locally supported radial basis functions
are used to do multilevel interpolation. The paper [2] contains some theoretical
results regarding the convergence of the proposed algorithm, whereas [5] is purely
computational/experimental in nature. However, the latter paper led to the theo-
retical investigations of a modified multistep interpolation algorithm in [10]. The
paper [5] is also the starting point of our work. We therefore describe the basic
iterative algorithm proposed there in more detail in the next section. One of the



fundamental ideas in our paper is to interpret the multilevel algorithm as an in-
stance of Newton iteration. This point is explained in detail in Section 2. Once this
identification has been made we can draw upon work of the second author (see [7])
which establishes a theory for the superlinear convergence of this Newton iteration
if it is coupled with an additional smoothing step. The general framework for these
results is formulated in Section 3, and the smoothing operation, which is based on
work of Hérmander [6], is carefully analyzed in the fourth section. The remaining
sections are dedicated to numerical experiments and concluding remarks.

2. Multilevel Interpolation and Newton Iteration

Since most of our computational results as well as most of the existing work on
multilevel methods is based on (locally supported) radial basis functions, we give a
brief summary of these functions and some of their properties.

In the context of scattered data interpolation or approximation, radial basis
functions are usually defined by starting with a set of nodes (or centers), say = =
{&1,...,éN} C ]Rd, which, for interpolation, are generally assumed to coincide
with the data sites. A radial basis function is then generated by composing an
appropriate continuous function ¢ : [0,00) — R with some norm in RY - usually
the Euclidean one. A radial basis function, centered at &, is therefore of the form

v (e —&l2),  zeR”.

In order to have a coherent theory, ¢ is assumed to be strictly (conditionally) posi-
tive definite. With r = || —-||, and ¢ > 0, the most prominent examples of globally
supported radial basis functions are ¢(r) = 7 (norm), ¢(r) = V72 + ¢ (multi-
quadrics), o(r) = 1/v/r? + ¢ (reciprocal multiquadrics), ¢(r) = e~ (Gaussians),
and ¢(r) = r2logr (thin plate splines in IR?). As already mentioned, these func-
tions are globally supported, and therefore (even though they have many very nice
properties) their applicability to interpolation or approximation is limited due to
the resulting dense system matrices which present severe computational difficulties
for large problems. This is what motivated the use of locally supported radial basis
functions in a multilevel algorithm in [5]. It seems that the most popular class of
these functions is due to Wendland [12]. His local basis functions are the product of
a truncated power function and a polynomial. In contrast to the “classical” radial
basis functions, these functions are strictly positive definite on IR¢ only for d less
than or equal to some number dj, and they possess only finite smoothness, say of
order k. However, they lead to sparse matrices. A few examples (with appropriate
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values of k and dj) are

p(r)=(1—-r)4 k=0, do=1,
p(r)=(1-r)33r+1) k=2, dy=1,
p(r)=(1-r) k=0, do=3,
o(r)=(1- r)i(4r +1) k=2, dy =3,
o(r)=(1-r)5(35r" +18r+3) k=4, dy=3.

The multilevel interpolation algorithm of Floater and Iske can be explained as
follows. We start with given data sites X = {z1,...,zy} CQ C R¢, and associated
values f(z1),..., f(zn) € R which we would like to interpolate. In [5] a thinning
algorithm is used to decompose X into a sequence of nested subsets X; C Ay C
--- C Xy = X. At each level ¢ in the iteration the interpolant is assumed to be of
the form

N;
si@) =Y Pes(lz—al)  ie{l,... M}, (2.1)
j=1

where @5, (1) = ¢(-/d;) is a scaled locally supported radial basis functions whose
scale 0; matches the data density at level 4, and NN; is the number of points in the
set X; = {az&i), . ,1:5\2,2}

The algorithm proceeds by interpolating at each level 7 to the residual of the
previous level 7 — 1, i.e., s; is the interpolant to f on the set X7, and for ¢ > 1,
s; is the interpolant to f — Z;;ll s; on X;. This implies that s; + s+ -+ sum
interpolates the entire set of given data.

In order to see the connection of this algorithm to Newton iteration, we define
a function F : LP(Q) — LP(Q)) which computes the residual, i.e.,

Flu)=u—f.

In terms of this function F', we can reformulate the interpolation problem. It now
becomes: Find a function u such that F(u)|x = 0. This problem can be solved by

Newton iteration,
ui — Ui—1 = =T, (ui—1) F(us—1), (2.2)

where T, (u;—1)F (u;—1) is the interpolant to the residual u;_; — f on &X;. We can
also see that Ty, (u;_1) is an approximation to F’(u;_1)~! as in the classical Newton
method.

A simple telescoping argument now shows the equivalence of the Floater-Iske

algorithm and Newton iteration. Let ug = 0 and w; —u;—1 = s;, 1 =1,..., M, and
observe:

i—1

D s =g+ (up = wg) oo (U1 — Uimg) = Uiy

=1



Then, clearly, solving the interpolation problem,
i—1
sila, = (f - Zsj)hf’i (2.3)
i=1

is equivalent to

i — Uiy, = —F(ui—1)|x;,

and the final interpolant to the given data on X" is obtained as s;+s2+---+sy =
UM -

Since we also consider the solution of partial differential equations by this
algorithm we give a modification of the Floater-Iske algorithm for linear m-th order
partial differential equations

Llu)(z) = f(z), re€QcCRY (2.4)

with homogeneous boundary conditions.

Remark. The work in [7], on which the present paper is built, was actually in-
tended to facilitate the solution of nonlinear partial differential equations. We plan
to investigate the numerical solution of such problems in a future paper. However,
we describe a general operator framework now.

Thus we define F': W*(Q2) — LP((2), such that
F(u) = Llu] - f,

for L a linear differential operator of order m, and uy = 0, u; — u;_1 = 8;, ¢t =
1,2,..., M. An approximate solution is obtained by using (2.2) to find a zero of
F. However, now T, (u;—1)F (u;—1) corresponds to the numerical solution of the
differential equation L[u; 1] — f = 0 on the grid A;. Written in multistep notation,

this becomes
L[Sl]|X1 = f|X1

Llss]|x, = (f — L[s1])| 2,
(2.5)

Hsallas = (F = 3 LlsiD -

Therefore L{si| + L[sa] + -+ 4+ Lism||lxy, = flay, and so upy = Zi\il s; is an
approximate solution of the problem (2.4) based on the node set Xy.
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3. Adaptive Newton Algorithm with Postconditioning

In [7] Jerome showed that a loss in the convergence rate of the standard Newton
iteration described in the previous section can be recovered by adding a smoothing
operation in a postconditioning step. More precisely, the iteration now proceeds as

U; — Uj—1 = _Stl-TXi (ui_l)F(ui_l), (36)

where S, is a smoothing operation with smoothing speed ¢;. This idea essentially
had already been presented by Moser in [9]. However, there the smoothing S and
the numerical inversion 7" were combined into one single operation. The main idea
in [7] was the separation of these two operations, and a thorough theoretical analysis
of the individual operations. In this section we present the central points of the
Jerome theory. The analysis of the smoothing operation itself (which is based on
work of Hormander [6]) is presented in the next section.

In order to be able to discuss convergence, we take a moment to introduce the
function spaces in which we intend to work. Whereas the results in 7], and also in
[6], were formulated for functions in Holder spaces, we intend to present our results
in the more widely used Sobolev spaces (with certain Besov or Lipschitz spaces as
intermediate spaces). To this end, we recall (see e.g. [11]) that a function u is in
the Sobolev space WF(Q), @ C R?, if the seminorm

p= > D%l

| =k

is finite. The norm in Wzﬂ“ is defined as

[ullsp = [lullp + [ulk,p,

full = [ futo)ras) "

is the usual LP norm. The intermediate Besov spaces By (©) will be equipped

where

with the norm

[ulls,p,00 = llullp + [u]s,p,00

where s = k+ 17, 0 < r < 1, and the seminorm is defined as

|ARDull,
-, sup ——— 2,
e |2|<:k nea  |B["

We are now ready to state the main result of [7] as interpreted in the context
of Sobolev and Besov spaces:



Theorem 3.1. Assumem is a nonnegative integer, and set X, = BJ . () (W7 (Q)
if o integer), Yo = Byr£7(Q) (Wr*°(Q) if o integer), 0 > 0. Let F': B C Yy —
Xo be a differential mapping of order m, from Beo = {v € Yo : |[v—vo|ly, < €} to
Xy, which satisfies
(1) F is continuously Lipschitz (Fréchet) differentiable on an open set U containing
B, o:
1F" (v) = F'(w)llvo,x, < 2M|lv —wlly,,  v,w € Beyp,

1F' (0)lve,x, < M, v € Bep.

(2) There exist numerical inversion operators Ty (v) : X, — Yy, v > 1, and a
continuous monotone increasing function 7 : [0,b] — [0,00), 7(0) = 0, such
that, for all w € X,,

|[F'(v)Th(v) — Hw||x, < 7(h)||w|x,, for allv € By, CY,. (3.7)

(3) F: BeoNY, = X, is a well-defined map for 0 < ¢ < s and s sufficiently
large.
(4) The maps {Ty(v)} are uniformly bounded in h and v from X, to Y,_. for
vy<o<s:
|Th(v)wlly,_, < Mllw|x,.

Furthermore, assume there exists a smoothing Sy, t > 1, satisfying

(1) IStw — ul|, = 0 ast — oo,
() Swlep < C¥Flulley,  0<k<E,
(i) S —ullep < CtFllulle,,  0<L<E,

with an analogous formulation in Besov spaces for nonintegral values of k and £.
In addition assume that the initial iterate uy € B, o N Y, satisfies

F(u) € X, | F (o)l xo < p~ %, | F (uo)||x, < M58,

where p > 0,1 < A< 2,and 1 < 8 < 2 is a superlinear convergence parameter.
Then u; is defined by the iteration (3.6) and the smoothing speeds t; are determined
using the additional acceleration parameter 6 > 1 via

The parameters and exponents must also satisfy the following requirements:
I<y<p<A<s,
20y

Ao
5 ﬂJ%7+Nm}+ Ao > 0,

23

A > max{




1 1 |
0—-1"3-1"
pf >,
MP°p~ < 1/4,
M3p=s0 < 1/2,
MAp= =B < ¢/9,
prolnB > ¢

s> max{097

0
1,)\—|- 71}—|—somax{ so > 0,

5

The “meshsize” h; has to be adaptively selected according to
T(hi) < MP||F(ui1)|lx,, i=1,2,.... (3.8)

If all of the above assumptions are satisfied then the iterative procedure (3.6) con-
verges to aroot u of F' in B, ¢N By ,,. The superlinear convergence in Yy is described

by

Lp- B _
||'U/—’U,i||Y0 SM Ta 7’:1727"" (39)
The superlinear convergence in Y, is described by
_Aoﬁi_l
p .
||U_Ui||Y,L§M5W; i=12,....
Finally,
i—1
lu = willy, = O(p7 ) = 7(hi),  p1=p AP, (3.10)

Some comments are in place. The function 7 describing the approximation
order of the approximate inverse T is usually of the form 7(h) = h?. Since the pa-
rameter -y also enters in the norm of u on the right-hand side of (3.7) the quantity
measured by « is referred to as loss of derivative. In the case of simple approxima-
tion, i.e., m = 0, the mapping F becomes F(u) = u — f, and so F’'(u) = I. This
means that (3.7) is nothing but a standard error estimate of the form

ITa(0)w — wlly < Ch*wllip,  for h— 0,

common in the finite element, spline or radial basis function literature. From this
one also sees that for any useful method we should have v > 1.

Another crucial point is the correlation of the mesh size to the size of the
residual as stated in (3.8). This is virtually impossible to satisfy precisely in practice
since the size of the constant M is not known a priori (it depends on the constants in
the Bernstein and Jackson inequalities (ii) and (iii) for the smoothing operation).
What can be attempted in test situations for which the solution is known is to
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estimate M from (3.9) and then ensure that the mesh size satisfies (3.8). Large
variations in M from one iteration to the next indicate trouble. The last statement
of the theorem, (3.10), shows us that the smoothing recovers the full approximation
order of the scheme used for the approximate inversion. However, there is a very
delicate dependence on the meshsize h; which has to be chosen adaptively for (3.10)
to hold.

4. Hormander’s Smoothing

We begin with a standard lemma from functional analysis.

Lemma 4.2. Foru € W]f(]Rd) and ¢ € Li(R?),
16+ ullk,p < Cllullgp-
Proof: By the definition of the convolution,
et = [ ot~ st

Now, for any ¢ € C*(R%) N Wf(]Rd), we have

D2 u)(e) = | Dol —)utu)dy
— (bl [ Dz —
(0! | Dyt~ )y,

where |a| = k, and we have made use of distributional derivatives in the next to
last step. Integration by parts yields

VP [ uwDgee -y = [ Dulwéle = vy

and so
D (¢ * u)(z) = (D%u = ¢)(z).

Finally, we use Young’s theorem to obtain the estimate

[1D%(¢ x w)llp < [l [[D¥ullp,

and the statement of the lemma follows immediately. W



Remark. Lemma 4.2 also holds for nonintegral k, as can be seen by replacing the
last inequality of the proof by

1D%(¢ * )l k—[k],p,00 < QNI D% wllk— (k] p00-

The following theorem and its proof are a generalization to Sobolev and Besov
spaces of an analogous theorem by Hérmander (see [6]) for Holder spaces.

Theorem 4.3. Let ¢ € L1(R?) be a kernel whose Fourier transform ® is compactly
supported and infinitely differentiable in R® and ®(w) = 1 in a neighborhood of
the origin. Furthermore, let ¢; = t3¢(t-), t > 1. Then ¢ is a smoothing kernel in
the sense of Theorem 3.1, i.e., ¢ satisfies

tl_i)r£10||¢t*u—u||p =0, (4.11)

61 * ullop < Ctlullap, 0 <a<b, (4.12)

¢ % u—ullpp < Ot *|luflap, 0<b<a (4.13)

Here the norms || - ||o » and || - ||»,, are used to denote either Sobolev or Besov space

norms depending on whether or not a, b are integers.

Proof: The semi-group property (4.11) is a standard result which holds for any
Fejér-type kernel, i.e., kernel with the property ¢; = t?¢(t-) (see e.g. [4] for a
one-dimensional formulation of this result).

We now turn to the Bernstein inequality (4.12), and note that, for m a positive

integer,
1t * wllatmp = [ Y (D¥e) % ulap + [1d * ullp. (4.14)
|a|=m
Observe that
D%¢y(z) = D (t%¢p(tz)) = tH™(D*¢)(tz) = t™(D*¢)s(z). (4.15)

Equations (4.14) and (4.15) imply that

4 # wllatmp = ™1 D (D¥G)s * tlap + |60 * ully
|a|=m (416)

< Ct"ullap,  t21,

where the inequality follows from Lemma 4.2 and the triangle inequality since
(D*¢), € L'(IR%). This means (4.12) is true b = a + m.
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In order to obtain the validity of (4.12) in the intermediate Besov spaces also,
we use the norm interpolation inequality,

lull 1—xysoxs1.m00 < Cllullsg o 14113, 00 (4.17)

where 0 < 59 < s; and 0 < A <1 (see [11]).
For our purposes we retain the meaning of m above and let s = (1 — A)a +
A(a 4+ m). Then (4.17) yields

|| B¢ * UHSJJ,OO = [|¢¢ * u”(l—)\)a-i-)\(a—i—m),p,oo

< C”¢t * u”(lz;a)\”qst * u”()l\—i—m,p'

By Lemma 4.2 and (4.16) the quantity above is no more than

Cllullaz ™ Mlull3p,

which in turn is equal to

Ct™Mullap = Ct~*|u|

a,ps

since Am = s — a by assumption. Therefore (4.12) is also true for intermediate
values b=s,a < s <a+m.

Since (4.13) for b = a follows immediately from an application of the triangle
inequality and (4.12), it suffices to prove (4.13) when b = 0 (the remaining cases
are again filled by norm interpolation).

First we consider (4.13) for a = s, 0 < s < 1, i.e., we show for s in this range,

luw — ¢ * U”p < Ct_S”u”s,p,oo-

This follows from the computations below in which we have made use of the defi-
nition of the norms involved as well as the assumption that ®(0) = ¢(0) = 1, and
the scaling property ¢; = t%¢(t-).

fu=desulp= [ 1] (o) = ute— )y

<L L E e
< i (BB ] i)

p
< lull oo { [ il iy}

s p
e [ 60011

< {Ct*|lullspo0}” -

P
dx
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The special case of (4.13) now follows by taking p-th roots.
The general case k < s < k + 1 can be done similarly, but requires some
additional preparations. First we recall the assumptions on the Fourier transform

of ¢, namely ® € C°(R%) and ®(w) = 1 for w € B(0), a ball with radius e centered
at the origin. Next we define a function ®, by
@a(w) — wa(l — (I)(w))’
Y (Wh)?
1Bl=k
and note that
1-9(w)= Z w®@q (w). (4.18)
lo|=k
One can easily check that ®, is zero in a neighborhood of the origin, and that
it is homogeneous of degree —k near oo. This ensures that ®, is itself a Fourier
transform, say ®, = éa. The function ¢, is rapidly decreasing at oo and has a
singularity like |z|*~9log|z| near the origin. The important consequence for us is
that ¢, is integrable.
With this additional material we can apply the Fourier transform and inverse
Fourier transform to u(z) — ¢¢ * u(z) and obtain, with the use of (4.18),

u(z) — ¢y xu(z) =t Z Gat * Du(x),
|a|=k

where D = —10. Since
/ bot () dy = / 1 (ty)dy = / bo(y)dy = Do (0) = 0,
R4 RY R4

we can use the definition of the convolution to rewrite u(z) — ¢ * u(z) in a form
amenable to calculations analogous to those performed in the case 0 < s < 1 above,
i.e.,
u(@) = ovu(e) =t Y0 [ (Dule ~ ) = Du(a)) arlv)dy.
jaf=k /B
The Jackson inequality now follows by using the norms in higher order intermediate
spaces in the same manner as before. W

An example of a kernel satisfying all the hypotheses of Theorem 4.3 was given
in [7], and we repeat it here for the reader’s convenience. We choose

L lwll <172,
- 1
P(w) =4 1— e @, 1/2 < |luf| < 1, (4.19)
0, Jwll > 1.

It is easily checked that ® € C$°(R?), and ® =1 in B, /2(0). However, the actual
kernel ¢ cannot be computed explicitly for this example.
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Remark. Since Siu is band limited, i.e.,
supp(Syu) C t[-1,1)7,

one can compute the smoothing in the Fourier domain. We have performed some
preliminary tests using this idea. However, considerably more work is needed.

Since the kernel (4.19) is extremely oscillatory, which causes computational
difficulties, we have based the numerical examples presented in this paper on the
well-known Gauss-Weierstrass kernel, i.e.,

1 ll=|®

4

¢(z) = We_ :

and the scaled version

d td el
¢t(x) =1 ¢(t$) = (47_(_)d/2e T

We point out that the Fourier transform of the Gauss-Weierstrass kernel satisfies
®(w) = 1 only for w = 0, and ® is infinitely differentiable but not compactly
supported. Moreover, the Gauss-Weierstrass kernel (as a positive kernel) is known
to be saturated, i.e., the Jackson inequality in its form (4.13) does not hold. In
fact, we have (see [3], cf. also Korovkin’s theorem (e.g., [8]) for positive polynomial
operators acting on continuous functions)

1Seu = ull, = o(t™).

Consequently, our numerical experiments do not completely satisfy the theory.

Another class of kernels we have considered are compactly supported on R¢,
and also satisfy the condition ® = 1 in B.(0). But they are only of limited regularity.
This class of kernels is related to the sinc function. For d = 1, one could use

1wl <1,
0 otherwise,

o) = {
which is a C~! function, and leads to the sinc function kernel,

o) — ﬁsin(x)

If we desire higher regularity, we can define the continuous function,

1 lw| < 1/2,
Pw)=<2(1-w) 1/2<|w|<1,
0 otherwise,
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which leads to

V2(cos(z) — cos(£))

¢($) =2 ﬁ$2 ’
or
1 lw| < 1/2,
P(w) =< 4(4w? - w2 + 6w —1) 1/2< |w| <1,
0 otherwise,

which is C! and leads to

V2(4cos(%) — 4cos(z) — wsin(z) — zsin(%))
vt '

Kernels with more regularity can easily be constructed using Hermite interpolation.

¢(z) = 24

However, all of these kernels are also extremely oscillatory and lead to the same
kind of numerical problems as the kernel defined in (4.19).

Remark. We note, however, that it is precisely this computationally troublesome
oscillatory property of the kernel that is theoretically necessary to obtain the re-
quired Jackson inequality for the smoothing. As noted above, positive kernels are
saturated.

5. Numerical Experiments

5.1. Pure Approximation

We start by giving two examples of (scattered) data approximation. In both of
the examples the data is obtained by sampling a given test function. For ease of
programming, and also to have a more accurate estimate for convergence rates,
we have chosen to sample the test function on a regular set of points: equally
spaced points in the unit interval/square for one/two-dimensional approximation,
respectively. However, the grid points need not be equally spaced in general. In
fact, (3.8) suggests that the mesh size be chosen adaptively.

In both the one-dimensional and the two-dimensional example we chose the
locally supported radial basis functions ¢(r) = (1 — r)4 (4r + 1) of Wendland for
the approximate inversion 7. In [13] one can find the following error estimate for
these functions:

1% (u) f = flloo < CRE||fllags 5,

which suggests that the “loss of derivative” v = 3/2. The test function for the
1D-case is

f(z) = 15em %e— (gzgz)z N 26_% n %B_M B %6_(%_4)2 -
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The scales §; in (2.1) were chosen to change linearly with the data separation, and
such that the support of the basis functions in the first step contained 3 grid points.

The smoothing operation was done by using a localized discretization of the
Gauss-Weierstrass kernel. In Tables 1 and 2 we list the £, and ¢5 errors along with
approximate convergence rates which are computed via

1 (i)l
rate = log < TF )] ) /log 2.

The tables contain columns for the case of multistep approximation (actually inter-
polation) without smoothing, with smoothing using parameters g = 1.1, § = 1.3,
p = 13, and using parameters § = 1.2, § = 1.2, p = 3. Table 2 also has two columns
in which we have listed the a posteriori estimate for the constant M in Theorem
3.1 obtained via (3.9). When computing the smoothed values it is necessary to
extend these values in some way. In both of the following approximation examples
we simply extended the test function as a constant outside the domain.

no smoothing smoothing 1 smoothing 2
# pts Lo rate Lo rate Lo rate
3 4.03455e+-00 4.01966e+00 4.67686e+00

5 4.30036e-01 | 3.230 6.35823e-01 |2.660 ||3.70157e+00 |0.337

9 4.33761e-01 |-0.012 || 5.97599e-01 |0.089 ||3.09263e+00 |0.259
17 7.48187e-02 | 2.535 1.94018e-01 |1.623 ||2.44893e+00 |0.337
33 2.29188e-02 1.707 5.39304e-02 | 1.847 || 1.61769e400 |0.598
65 1.00899e-02 1.184 1.20040e-02 |2.168 || 6.74170e-01 |1.263
129 4.19097e-03 | 1.268 2.15461e-03 | 2.478 || 2.34738e-01 |1.522
257 1.82722e-03 | 1.198 8.54868e-04 |1.334 || 4.48747e-02 |2.387
513 7.89726e-04 | 1.210 3.22799e-04 | 1.405 || 6.89169e-03 |2.703
1025 3.42366e-04 | 1.206 1.06968e-04 |1.593 || 1.00642e-03 |2.776
2049 1.48368e-04 | 1.206 3.74159e-05 | 1.515 || 9.91734e-05 |3.343
4097 6.43107e-05 1.206 8.54714e-06 |2.130 || 1.91653e-05 |2.371
8193 2.78753e-05 1.206 3.25218e-06 |1.394 || 1.11180e-05 |0.786
16385 | 1.20821e-05 1.206 1.96607e-06 |0.726 || 4.69820e-06 |1.243

Table 1. /., errors for 1D-approximation.

Although the beneficial effects of the smoothing can be observed in the middle
parts of both tables, one can also clearly observe deterioration in the errors in
the later stages of the algorithm with smoothing. This phenomenon probably is
attributable to the saturation of the Gauss-Weierstrass kernel as mentioned earlier.
The large increase for the values of M in the lower part of Table 2 also indicate
this problem.
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no smoothing smoothing 1 smoothing 2
# pts 2 rate 2 rate M 2 rate M
3 3.75574e+00 3.72777e+00 144 || 6.43290e+00 21
5 5.13986e-02 |6.191 1.44411e-01 [4.690 | 80 3.39290e+4-00 |0.923 27
9 1.94227e-02 | 1.404 || 5.04490e-02 |1.517 | 113 || 2.20696e+00 |0.620 46
17 8.77366e-04 |4.468 || 3.77285e-03 |3.741 | 110 1.16000e+00 |0.928 80
33 5.17874e-05 |4.083 || 2.23363e-04 |4.078 | 96 5.67597e-01 |1.031 130
65 3.32310e-06 | 3.962 || 6.88844e-06 |5.019 | 82 1.28261e-01 |2.146 206
129 2.20018e-07 |3.917 || 1.82805e-07 |5.236 | 76 7.49722e-03 | 4.097 333
257 1.60017e-08 | 3.781 7.47756e-09 |4.612 | 80 1.63265e-04 | 5.521 614
513 1.24167e-09 | 3.688 || 6.04847e-10 |3.628 | 103 2.45557e-06 | 6.055 1590
1025 1.02849e-10 | 3.594 || 1.34838e-10 |2.165 | 242 4.40398e-08 |5.801 6509
2049 8.90893e-12 | 3.529 || 7.52027e-11 |0.842 | 576 7.99693e-10 |5.783 64627
4097 7.96594e-13 | 3.483 || 8.13921e-12 |3.208 | 1084 1.75030e-11 | 5.514 1664822
8193 7.26505e-14 | 3.455 || 2.42981e-12 |1.744 | 2653 1.96715e-12 |3.153 | 61119135
16385 | 6.70740e-15 |3.437 || 8.24974e-13 |1.558 | 8277 || 6.19595e-13 |1.667 | 5910162602

Table 2. /5 errors for 1D-approximation.

The difference in the second example is that we choose a bivariate test function,

f(z,y) = 1+ tanh(92 + 9y),

and the supports of the basis functions for the approximate inversion initially con-
tain 9 points. The parameters for the smoothing are g = 1.3, § = 1.2, and p = 3.

Tables 3 and 4 list the corresponding errors and rates.

estimates for M.

no smoothing smoothing

grid Lo rate Lo rate

3X3 7.033255e-01 5.422649e-01

5X5 4.212533e-01 |0.740 ||3.126155e-01 |0.795

9X9 2.701228e-01 | 0.641 ||2.283325e-01 |0.453
17X17 | 1.348346e-01 |1.002 || 1.085956e-01 |1.072
33 X33 | 5.837676e-02 |1.208 ||2.355385e-02 | 2.205
65X65 | 2.532966e-02 |1.205 ||9.004403e-03 |1.387

Table 3. /., errors for 2D-approximation.

Table 4 again contains

In this example we cannot detect the same kind of deterioration as in the
previous example. The errors and convergence rates are better once the smoothing
is added in the algorithm. Figures 5.1-5.6 support the numerical data for the
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no smoothing smoothing
grid 2 rate 4y rate | M
3X3 1.074078e-01 7.736727e-02 11
5X5 7.756864e-03 |3.791 ||7.340859e-03 |3.398 | 16
9X9 8.123557e-04 | 3.255 ||8.700502e-04 |3.077 | 32
17X17 | 8.655500e-05 |3.230 ||6.689845e-05 |3.701 | 84
33X33 | 8.204931e-06 |3.399 ||2.853099e-06 |4.551 | 297
65X65 | 7.334848e-07 |3.484 ||1.353560e-07 |4.398 | 1965

Table 4. /5 errors for 2D-approximation.

ey

Fig. 5.1. Fit 1 unsmoothed and smoothed.

rr

Fig. 5.2. Fit 2 unsmoothed and smoothed.

bivariate example. The six figures correspond to the six grids listed in Tables 3 and
4. The smoothing effect is clearly visible.
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r

Fig. 5.3. Fit 3 unsmoothed and smoothed.

r

Fig. 5.4. Fit 4 unsmoothed and smoothed.

-

Fig. 5.5. Fit 5 unsmoothed and smoothed.
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Fig. 5.6. Fit 6 unsmoothed and smoothed.

5.2. Approximate Solution of a Boundary Value Problem

As mentioned in Section 2, we also tested the performance of the multilevel
algorithm, with and without smoothing, on a simple two-point boundary value
problem. In order to be able to verify our solutions easily, we chose

—u'" () + 7*u(z) = 27 sin e, z € (0,1),

u(0) = u(1) =0,

which has solution u(x) = sinmz. As approximate inversion we chose the method
of finite differences. In order to pass from one grid to the next finer one, we
used linear interpolation of the finite difference values. As can be seen from (2.5),
it is now necessary to differentiate the intermediate solutions s;. In order to do
that, we performed an interpolation step using globally supported multiquadrics
(hence the low number of points used) to obtain a representation for subsequent
differentiation. The smoothing was again done with the Gauss-Weierstrass kernel,
and the parameters were § = 1.4, § = 1.2, p = 3. The extension of the data
in this example was done periodically, since it is known that the solution will be
periodic. The same extension was also used in the interpolation step in order to
avoid otherwise very large oscillations at the endpoints of the interval (which have
nothing to do with the smoothing, but are solely caused by the interpolation step).

Remark. Tests with locally supported radial basis functions instead of multi-
quadrics in the interpolation/differentiation step were unsuccessful unless the sup-
port was taken very large (=global). This is due to the effects of the chain rule on
the scaling of the supports.

Tables 5-8 list the £, and ¢ errors of the approximate solution, i.e.,

lu — il o (2) on X1,

18



no smoothing smoothing

7 pts Lo rate lso rate

5 4.827905e-02 6.992085e-02
9 5.551833e-02 |[-0.202 [|1.057068e-02 |2.726
17 3.179490e-02 | 0.804 ||2.506128e-03 |2.077
33 1.740975e-02 | 0.869 ||6.591131e-04 |1.927
65 8.863612e-03 | 0.974 ||1.595434e-04 |2.047
129 4.384276e-03 | 1.016 ||1.764670e-05 |3.176

Table 5. /. errors for approximate solution.

no smoothing smoothing

# pts 2 rate 2 rate

5 7.551016e-04 2.312696e-03
9 1.177486e-03 |-0.641 ||4.521613e-05 |5.677
17 3.437134e-04 | 1.776 ||3.103748e-06 |3.865
33 7.367566e-05 | 2.222 ||1.732496e-07 |4.163
65 1.625273e-05 | 2.181 |]9.601066e-09 |4.174
129 3.793412e-06 | 2.099 |[|1.096157e-10 |6.453

Table 6. /5 errors for approximate solution.

no smoothing smoothing
# pts lso rate oo rate
5 1.927824e+01 2.403932e+00
9 4.236021e+01 |-1.136 6.063165e-01 1.987
17 5.552220e+01 |-0.390 4.524052e-01 0.422
33  |9.432692e+01 |-0.765 || 7.833539e-01 |-0.792
65 |1.953632e+02 |-1.050 || 8.658790e-01 |-0.145
129 |3.820763e+02 |-0.968 9.984408e-01 |-0.206
Table 7. /., errors for residuals.
and of the residual
If = Llwillloo@ = IF(i)lleozy  om Xigr.

Figures 5.7-5.12 depict the residuals corresponding to the six iterations listed
in Table 7. Since the scales on the figures are difficult to read, we included the
graph of the original right-hand side function 272 sin 7z in each of the figures as a

reference.
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no smoothing smoothing
# pts 2 rate 2 rate M
9 1.487833e+-02 1.422781e+00 5
9 3.341058e+02 |-1.167 || 1.019696e-01 | 3.803 6
17  |6.223095e+02 |-0.897 || 4.925842e-02 | 1.050 19
33 9.976837e+02 |-0.681 1.019520e-01 |-1.049 | 108
65 1.499176e+03 |-0.588 || 9.374004e-02 | 0.121 | 1590
129 | 2.317924e+03 |-0.629 1.444180e-01 |-0.624 |59747

Table 8. /5 errors for residuals.

- 40-

Fig. 5.8. Residual 2 unsmoothed and smoothed.

6. Concluding Remarks

We have generalized results of Hormander and Jerome to Sobolev and Besov
spaces. The theory provides convergence results for certain multilevel approxima-
tion algorithms which seem to enjoy a considerable amount of popularity. The
established convergence rate is superlinear if a smoothing operation is included in
the algorithm as a postconditioner. Our numerical experiments suggest the power
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Fig. 5.12. Residual 6 unsmoothed and smoothed.
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of the theory, especially for the iterative solution of differential equations. The
smoothing was computed using the Gauss-Weierstrass kernel which, as pointed out
earlier, does not completely match the requirements of the theory we presented.
This is justified, however, by the fact that efficient and accurate computation with
oscillatory kernels is highly nontrivial. We plan an efficient implementation of the
smoothing based on oscillatory kernels in the Fourier domain in the future. Fur-
thermore, as can be seen from the hypotheses of Theorem 3.1, the theory requires
that the solution have a fairly high degree of regularity. We hope to relax these
requirements in a future paper. Other work will focus on nonlinear differential
equations.
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