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Abstract. Moment models of carrier transport, derived from the Boltzmann equation,
have made possible the simulation of certain key effects through such realistic global as-
sumptions as energy dependent mobility functions. Some of these effects are not discerned
via classical drift-diffusion models, which are primarily local in nature. In this paper,
analysis and simulation of a recently developed energy transport model, the ET model,
will be presented. This model, intermediate between the hydrodynamic and drift-diffusion
models, was developed at the University of Illinois. The algorithms employed are the es-
sentially non-oscillatory shock capturing algorithms, developed at UCLA during the last
decade. Mathematical results will be presented as well, for the one dimensional steady
state model. Informative comparisons with the hydrodynamic model will be presented.
One carrier transport is studied.
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1. Introduction

In this paper, an energy transport semiconductor device model, with steady state
described by a nonlinear elliptic system, is introduced, analyzed and simulated, via
numerical methods originally designed for conservation law systems. Energy trans-
port (ET) systems have become topical in device modeling during the last decade,
as an alternative to drift-diffusion systems, as it has become clear that global depen-
dence of critical quantities, such as carrier mobilities, on energy and/or temperature,
is essential if certain phenomena are to be modeled adequately. These include general
carrier heating, velocity overshoot, and various small device features. Our develop-
ment of the ET model follows that of [1] (see also [2]), which is based upon moments
of the Boltzmann equation. These researchers attempted to utilize a microscopic
relaxation time approximation, which would allow for nonparabolic energy bands
∗The first author is supported by the National Science Foundation under grant DMS-9123208.
†The second author is supported by the Army Research Office under grant DAAL03-91-G-0123

and by the National Aeronautics and Space Administration under grant NAG1-1145. Computa-
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and non-Maxwellian distribution functions. The approach also allows for parame-
ter fitting of certain key quantities, via Monte-Carlo simulation of the Boltzmann
equation. The ET model was developed, partly in response to the continuing debate
concerning heat conduction processes in the hydrodynamic model. The absence of
hyperbolic modes makes for essential mathematical simplification. The plan of the
paper is as follows. In §2, we shall introduce the model, including a brief discussion of
the physically motivating features. In the following §3, we shall outline an existence
theory for the one dimensional, steady state model. The algorithm is described in
§4, and simulation results, extending those of [4], are presented for two dimensional
MESFET devices in §5; for illustrative purposes, comparisons are included with the
corresponding hydrodynamic model. The latter contains hyperbolic modes related
to the momentum subsystem, while the ET model does not possess such modes. In
both cases, however, we employ a conservation law format, and numerical methods
suitable for such systems. The ENO (essentially non-oscillatory) shock capturing
method is our technique of choice.

2. The Steady State System

We shall consider steady state models, involving single carrier transport. The three
dependent variables of the problem are electrostatic potential, φ, carrier concentra-
tion, n, and equivalent carrier temperature, T .

2.1. The System

The system is given as follows.

−∇· (ε∇φ) + qn = qnd, (2.1)
∇· J = 0, (2.2)
∇·S = −∇φ· J − nCcol. (2.3)

Here, J and S represent the current density and energy density, respectively, and
Ccol is a collision rate. They are given by the expressions,

J = q{−µn∇φ+
k

q
∇(µnT )}, (2.4)

S = −Q(T ){k
2

q
∇(µnT 2)− µnkT∇φ}, (2.5)

Ccol = c1q{(1 +
1
2
T )T − T0}, (2.6)

with the mobility µ and the effective flow factor Q(T ) functions of temperature; the
latter function is assumed to preserve uniform ellipticity. Typical representations
are:
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µ = µ0T0/T, (2.7)

Q(T ) =
3
2

(1− αkT/2). (2.8)

Here, α is a fitting parameter. Also, µ0 is a low field mobility constant, k is Boltz-
mann’s constant, T0 is the lattice temperature, c1 is a numerical constant, q is a
charge modulus constant, and ε is the dielectric constant. The function nd is the
nonnegative spatially dependent doping function. Boundary conditions are mixed
Dirichlet/Neumann boundary conditions; on a one dimensional device, these are
Dirichlet endpoint conditions.

2.2. Physical Motivation

The system (2.1), (2.2), and (2.3) is obtained by taking zeroth and second moments
of the Boltzmann transport equation,

∂f

∂t
+ u· ∇xf −

q

m
F · ∇uf = C, (2.9)

where f represents the electron probabilistic density, u the group velocity, F the
electric field, and C the collision terms. The current density J and the energy flux
S are defined by the moments,

J = −q
∫
ufodd du, S =

∫
Eufodd du, (2.10)

where E denotes the (microscopic) carrier energy. The Boltzmann transport equation
determines the relation of feven to fodd, and this relation is substituted into (2.10):

J = q[nµ(E)F +∇(nD(E))], (2.11)

S = −[nµE(E)F +∇(nDE(E))]. (2.12)

Here, µ and µE are tensor moment expressions for the mobility coefficients, though
in this paper isotropic assumptions lead to scalar expressions. The diffusion coef-
ficients are determined by the Einstein relations. Finally, E denotes average en-
ergy/mass/volume: E = 〈E〉.

Certain microscopic assumptions are incorporated; for precise formulations we
refer the reader to the source paper [1]. The principal assumptions are:

1. Isotropic functions: feven = feven(E);

2. Nonparabolic energy bands;

3. The temperature is a modified variable: E = 3
2kT (1 + 5

2αkT ).

The mathematical system is a nonlinear parabolic system. When conservation
variables, qn, nE/m are employed, the moment subsystem is a perturbed hyperbolic
conservation system, with real eigenvalues for flux gradients, fi(u)xi.
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3. Existence Theory in One Dimension
We shall sketch the existence theory for the steady state ET model in one dimension.
We find it helpful to introduce a new set of dependent variables.

3.1. Exponential Variables in One Dimension

In this subsection, we introduce a set of exponential variables. They will be used
in the next subsection to deduce corresponding maximum principles. The latter
facilitate the definition of an invariant map, whose fixed points coincide with the
system solutions.

The exponential variables are similar to the quasi-Fermi levels of the drift-
diffusion model. They are determined by implicit relations involving the variables
φ, n, and nT ; φ is the first variable of the new set. The variables v and z of the
new set are implicitly given. Also, it is critical to interpret µ as an explicitly given
(composite) function.

n(x) = exp(c0(Φ(x)− v(x))), (3.1)
n(x)T (x) = exp(c0(Φ(x)− z(x))), (3.2)

where
Φ(x) =

∫ x

a
µ(t)φ′(t) dt. (3.3)

We shall now rewrite the system in terms of these variables. Although µ must be
explicit, the system is still strictly logically equivalent to the two systems defined in
the previous section. We shall actually make use of the exponential variables when
lagging has been employed in the original system as a means of defining the fixed
point map.

−(d/dx)(εdφ/dx) + q exp([Φ− v]c0) = qnd, (3.4)
(d/dx)(exp([Φ− v]c0)dv/dx) = 0, (3.5)

(d/dx)(kQ(T ) exp([Φ− z]c0)dz/dx) = −dφ/dx J −G(Φ, v, z), (3.6)

G(Φ, v, z) = c1q exp(c0Φ){(1 +
1
2

exp([v − z]c0)) exp(−zc0)− T0 exp(−vc0)}. (3.7)

Note that in this system, c0 = q
kT0µ0

, and that there is a simplified formula for the
constant J : J = −qv′n, so that v′ may be identified with carrier velocity. We shall
agree to track right-left current flow, i. e. , v′ > 0 and J < 0. The equation (3.5) is
an example of Bernoulli’s equation, with exponent 2, for v′. The solution is given
by,

v′(x) = Y (x)
1

C − c0
∫ x
a Y (t) dt

, (3.8)

where
Y (x) = exp(−c0Φ(x)), C =

1
v′(a)

> 0. (3.9)

We close this subsection with a relation for J .
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Proposition 3.1. The constant current J is negative and satisfies

J = qe−c0v(x∗)
v(a)− v(b)
b− a /

∫ b

a
Y (x) dx, (3.10)

for some x∗ ∈ (a, b).

Proof. Since J is constant, it may be evaluated at any x:

J = q
e−c0v(x)

c0
∫ x
a Y (t) dt− C . (3.11)

The appropriate value is x = x∗, where x∗ is guaranteed, by the mean value theorem
of integral calculus, applied to

∫ b
a v
′(x) dx, to satisfy

c0

∫ x∗

a
Y (x) dx− C =

∫ b
a Y (x) dx
v(a)− v(b)

. (3.12)

The proposition follows from these relations.

3.2. Maximum Principles

The key to defining a fixed point map, T , on the variables v and z is the estab-
lishment of maximum principles, which induce a mapping invariance property. In
this section, we derive these necessary results. We begin by describing the map intu-
itively; φ is computed as a fractional step, if initial values of v and z are prescribed.
This employs µ(v, z), as a means of determining Φ. System decoupling proceeds as
follows. In (3.5), Φ and v are substituted in the exponential; in (3.6), Φ and v are
substituted throughout, but z in Q(T ) only. New values, v∗ and z∗, and hence the
image coordinates of the map, are then computed via the decoupling.

If boundary values of v are chosen so that v(a) < v(b), then the discussion of the
previous subsection shows that v′ > 0, hence v satisfies the elementary maximum
principle,

v(a) ≤ v ≤ v(b). (3.13)

A separate argument shows this to be the case if v(a) = v(b). Prior to passing to a
discussion of boundary values for z, we note that the specifications,

φ(a) ≤ φ(b), n(b) ≤ n(a), (3.14)

imply v(a) ≤ v(b), hence, (3.13). Bounds for z are considered next. The possible
change of sign of φ′ makes standard approaches inapplicable. We begin as follows.
Lemma 3.2. Let γ = min(0, γ∗), where exp(c0γ∗ − c0v(a)) − inf nd = 0. If Y is
the function defined in (3.9), then ψ = (Y −1 − exp(c0γ))− ≡ 0 if (3.14) holds,
where t− = t − t+. In particular, Y −1 ≥ exp(c0γ) and Φ of (3.4) satisfies, without
restriction on z,

Φ ≥ Φmin := γ. (3.15)
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Proof. The assumption, (3.14), guarantees that ψ(a) = ψ(b) = 0. We shall employ
ψ as a test function in the weak formulation of (3.4). Now one sees that the function,

qn− qnd = q(exp([Φ− v]c0)− nd), (3.16)

arising in (3.4), is nonpositive on the set, {Φ ≤ γ∗}. The integrated product of this
function with ψ is therefore nonnegative. Moreover,∫ b

a
εφ′ψ′ dx =

∫
{Φ≤γ}

εY

µc0
| ψ′(x) |2 dx ≥ 0,

so that, from the weak relation, the latter integral vanishes. We conclude that ψ ≡ 0,
and the lemma follows.

Definition 3.3. We assume the existence of a root, z = z∗∗, satisfying

0 = c1qe
c0Φmin [(1 +

1
2
ec0(v(b)−z∗∗))e−c0z∗∗ − T0e

−c0v(b)] +
q2(v(b)− v(a))

εYmin

supnd
b− a e

−c0v(a),

(3.17)
where

Ymin = exp(−c0(φ(b)− φ(a))µ0T0e
z∗∗−v(a)). (3.18)

Moreover, we select the root, z = z∗, satisfying

0 = c1qe
c0Φmin [(1 +

1
2
ec0(v(a)−z∗))e−c0z∗ − T0e

−c0v(a)]− q2(v(b)− v(a))
εYmin

sup nd
b− a e

−c0v(a).

(3.19)
Finally, we define zmax = max(z(a), z(b), z∗∗) and zmin = min(z(a), z(b), z∗).

Proposition 3.4. Suppose that the solution φ of (3.4) satisfies

φ′(a) ≥ 0, φ′(b) ≤ 0, (3.20)

for v(a) ≤ v ≤ v(b) and zmin ≤ z ≤ zmax. Then the bound,

| φ′ |≤ q(b− a)
ε

sup nd, (3.21)

holds, and the function G of (3.7) satisfies

G(Φ, v, z) + φ′J ≤ 0, z ≥ zmax, (3.22)
G(Φ, v, z) + φ′J ≥ 0, z ≤ zmin. (3.23)

In particular, for solutions of (3.6), the maximum principle follows:

zmin ≤ z ≤ zmax. (3.24)

Proof. The bound (3.21) follows directly from (3.4) and the hypotheses, (3.20).
The relations (3.10) and (3.21), and the definition of G in (3.7), lead to (3.22) and
(3.23). The maximum principle for (3.6) follows as in the proof of Lemma 3.2, via
the respective choices of positive and negative parts for test functions, (z − zmax)+,
(z − zmin)−, yielding upper and lower bounds.
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3.3. The Fixed Point Map
We shall prove that a solution exists in this subsection.

Theorem 3.5. Let G = (a, b), and suppose (3.17) and (3.20) hold. Set K equal to
the closed convex subset of

∏2
1 L2(G) defined by,

K = {[v, z] : v(a) ≤ v ≤ v(b), zmin ≤ z ≤ zmax}. (3.25)

Let T be the mapping, invariant on K, introduced in §3.2. Then T is well-defined,
acts continuously on K, and has relatively compact range. In particular, T has a
fixed point, [v, z], and the triple, [φ(v, z), v, z], defines a solution of the steady state
system, (2.1), (2.2), and (2.3).

Proof. The fact that T is well-defined follows from quadratic minimization applied
to (3.5) and convex minimization applied to (3.6); note that G is decreasing in z.
These are individual gradient equations. The details of a similar argument may
be found in [3]. Here, a slight modification is required for the determination of φ,
as computed in the fractional step. What is necessary is a preliminary mapping
of φ 7→ Φ. The relative compactness follows from H1 bounds for v∗ and z∗; test
functions v∗ − vint and z∗ − zint are employed, where the linear interpolants of the
boundary values are subtracted. The routine estimates here employ the maximum
principles.

Continuity is established for v∗ and z∗ by using the components of the difference
of two solutions as test functions: v∗2 − v∗1, z∗2 − z∗1 . The preliminary continuity of
the dependence of φ must first be established, however. We illustrate this. Starting
with the identity,

φ
′′
2 − φ

′′
1 =

q

ε
(exp([Φ2 − v2]/c0)− exp([Φ1 − v1]/c0)), (3.26)

we employ ψ = φ2−φ1 as test function. This yields, after some estimation, constants
C1 and C2 such that

‖ψ′‖2
L2
≤ C1‖ψ‖2

L2
+ C2‖ψ‖L2(‖µ2 − µ1‖L2 + ‖v2 − v1‖L2). (3.27)

Here, we have used previously derived estimates for φ′, as well as the maximum
principles and elementary calculus. Though the positive function µ, in the definition
of Φ, need not be continuous, it can be approximated by such, and thus the mean
value theorem of integral calculus may be employed. The Poincare inequality in one
dimension, applied to ψ, allows us to conclude continuous H1 dependence of φ upon
L2 variation of v and z if b− a is sufficiently small; in this case, the terms involving
‖ψ‖L2, on the right hand side of (3.27), can be absorbed on the left hand side.
However, a simple change of variable then gives the general result. The arguments
for the continuity of the other variables follow closely in spirit Lemmas 3.3 and 3.4
of [3]. An application of the Schauder fixed point theorem then yields a fixed point.
This can be identified with either set of dependent variables.

Remark. The condition (3.20) appears to hold approximately, on the basis of
numerical simulations, carried out on n+−n−n+ diodes. A so-called neutral region
surrounds the contacts, and the field is approximately zero.
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4. Numerical Algorithm

We shall only briefly describe the algorithm used in this paper, namely the ENO
scheme developed in [7] and [8]. The ENO scheme is designed for a system of
hyperbolic conservation laws of the form,

ut +
d∑
1
fi(u)xi = g(u, x, t), (4.1)

where u = (u1, · · · , um)T , x = (x1, · · · , xm), and the hyperbolicity condition,

d∑
1
ξi
∂fi
∂u

is diagonalizable, with real eigenvalues,

holds for any real ξ = (ξ1, · · · , ξd). An initial condition is adjoined to (4.1).
For systems of conservation laws, local field by field decomposition is used, to

resolve waves in different characteristic directions. For this purpose, analytical ex-
pressions are needed for the eigenvalues and eigenvectors of the Jacobian matrix,
which are readily available for the current ET system. Multidimensional regions are
treated dimension by dimension: when computing fi(u)xi in any particular direction,
variables in all other directions are kept constant, and the Jacobians are treated in
this direction. This, in essence, reduces the determination of the scheme to the case
of a single conservation law in one spatial dimension. Thus, to describe the schemes,
consider the scalar one dimensional problem, and a conservative approximation of
the spatial operator given by

L(u)j = − 1
4x(f̂j+ 1

2
− f̂j− 1

2
). (4.2)

Here, the numerical flux f̂ is assumed consistent:

f̂j+ 1
2

= f̂(uj−l, · · · , uj+k); f̂(u, · · · , u) = f(u). (4.3)

The conservative scheme (4.2), which characterizes the f̂ divided difference as
an approximation to f(u)x, suggests that f̂ can be identified with an appropriate
function h satisfying

f(u(x)) =
∫ x+4x2

x−4x2
h(ξ) dξ. (4.4)

If H is any primitive of h, then h can be computed from H ′. H itself can be ap-
proximated by polynomial interpolations using Newton’s divided difference method,
beginning with differences of order one, since the constant term is arbitrary. The
necessary divided differences of H, of a given order, are expressed as constant mul-
tiples of those of f of order one lower. After the polynomial Q of degree r + 1 has
been constructed, set

f̂j+ 1
2

=
d

dx
Q(x)|x=x

j+ 1
2

, (4.5)
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to obtain an rth order method. The main ingradient of the ENO method is the
adaptive choice of stencil: it begins with a starting point to the left or right of the
current “cell” by means of upwinding, as determined by the sign of the derivative of
a selected flux (or the eigenvalue of the Jacobian in the system case); as the order
of the divided differences is increased, the divided differences themselves determine
the stencil: the “smaller” divided difference is chosen from two possible choices at
each stage, ensuring a smoothest fit.

Steady states are reached by explicit time stepping using nonlinearly stable
(total-variation-diminishing) Runge-Kutta methods [7]. Special attention is paid
to achieve efficient vectorization for computations on Cray supercomputers. For
details of the efficient implementation, see [6].

5. Simulations

We now present numerical simulation results for a one carrier, two dimensional
MESFET device using the ET model. A similar device was simulated earlier by
us using the HD model and the same ENO algorithm in [4]. The third order ENO
shock-capturing algorithm, as described briefly in Section 4 and in more detail in [8],
is applied to the hyperbolic part (the first derivative part) of the two dimensional ET
system. A nonlinearly stable third order Runge-Kutta time discretization [7] is used
for the time evolution towards steady states. The forcing terms (the derivative-free
part) are treated in a time consistent way in the Runge-Kutta time stepping. The
double derivative terms are approximated by standard central differences owing to
their dissipative nature. The coupled Poisson equation (2.1) is solved by Successive
Over-Relaxation (SOR) or the Conjugate Gradient (CG) method. Initial conditions
are chosen as n = nd for the concentration and T = T0 for the temperature. A
continuation method is used to reach the steady state: the voltage bias is taken
initially as zero and is gradually increased to the required value, with the steady
state solution of a lower biased case used as the initial condition for a higher one.

The two dimensional MESFET we simulate is of the size 0.9 × 0.2µm2. The
source and the drain occupy 0.1µm and 0.2µm at the upper left and the upper
right, respectively, with the gate occupying 0.2µm at the upper middle (Figure
1, left. Here and in what follows, the units shown in the graphs for n or nd are
1012cm−3). The doping is defined by nd = 3×1017cm−3 in [0, 0.1]× [0.15, 0.2] and in
[0.7, 0.9]×[0.15, 0.2], and nd = 1×1017cm−3 elsewhere, with abrupt junctions (Figure
1, right). A uniform grid of 144× 32 points is used. Notice that even if we may not
have shocks in the solution, the final steady state solution has a sharp transition
around the junction. With the relatively coarse grid we use, the non-oscillatory
shock capturing feature of the ENO algorithm is essential for the stability of the
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numerical procedure.

Figure 1: Two dimensional MESFET. Left: the geometry; Right: the doping nd

We apply, at the source and drain, a voltage bias vbias = 2V . The gate is
a Schottky contact, with a negative voltage bias vgate = −0.8V and a very low
concentration value n = 3.9× 105cm−3 obtained from Equation (5.1-19) of [5]. The
lattice temperature is taken as T0 = 300◦K. The numerical boundary conditions are
summarized as follows (where Φ0 = kbT

q
ln
(
nd
ni

)
with kb = 0.138× 10−4, q = 0.1602,

and ni = 1.4× 1010cm−3 in our units):

• At the source (0 ≤ x ≤ 0.1, y = 0.2): Φ = Φ0 for the potential; n = 3 ×
1017cm−3 for the concentration and T = 300◦K for the temperature.

• At the drain (0.7 ≤ x ≤ 0.9, y = 0.2): Φ = Φ0 + vbias = Φ0 + 2 for the
potential; n = 3 × 1017cm−3 for the concentration and T = 300◦K for the
temperature.

• At the gate (0.2 ≤ x ≤ 0.4, y = 0.2): Φ = Φ0 + vgate = Φ0 − 0.8 for the
potential; n = 3.9 × 105cm−3 for the concentration and T = 300◦K for the
temperature.

• At all other parts of the boundary (0.1 ≤ x ≤ 0.2, y = 0.2; 0.4 ≤ x ≤ 0.7, y =
0.2; x = 0, 0 ≤ y ≤ 0.2; x = 0.9, 0 ≤ y ≤ 0.2; and 0 ≤ x ≤ 0.9, y = 0), all
variables are equipped with Neumann boundary conditions.

Notice that the boundary conditions for the concentration n and the temperature
T are the same as those used in [4] for the HD model, although in the HD model one
also has to specify boundary conditions for velocities. These boundary conditions
may not be adequate, as is evident from some serious boundary layers observable
in Figures 2 through 4. ENO methods, owing to their upwind nature, are robust
to different boundary conditions (including over-specified boundary conditions in
hydrodynamic models), and do not exhibit numerical difficulties in the presence of
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such boundary layers, even with the extremely low concentration prescribed at the
gate (approximately 10−12 relative to the high doping).

In Figures 2 through 4, we show pictures of the concentration n, temperature T ,
and the potential Φ. Surfaces of the ET solution are shown at the left, and cuts at
y = 0.175, which cut through the middle of the high doping “blobs” horizontally,
are shown at the right. For those cuts we show both the ET (“+” symbols) and HD
(solid line) simulation results in order to see a comparison.

Notice that ET and HD results agree reasonably well for the concentration n
and for the potential Φ, but not so well for the temperature T . Whether this shows
any essential difference of the two models, or is simply due to some inadequacy in
the choice of the various empirical parameters in the ET model, is not clear, and is
currently under additional investigation.

Figure 2: Two dimensional MESFET, concentration n. Left: surface of the ET
solution; Right: cut at y = 0.175 (ET—“+” symbols; HD—line)

Figure 3: Two dimensional MESFET, temperature T . Left: surface of the ET
solution; Right: cut at y = 0.175 (ET—“+” symbols; HD—line)
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Figure 4: Two dimensional MESFET, potential Φ. Left: surface of the ET solution;
Right: cut at y = 0.175 (ET—“+” symbols; HD—line)
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