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Abstract

The mathematical semiconductor device model, consisting of the po-
tential equation and the current continuity subsystem for the carriers, is
studied from the standpoint of its decoupling fixed point map and the
numerical approximate fixed point map. Variational principles will be
discussed for this process and for discretizations achieved by use of gen-
eralized splines. By the choice of trial space, these capture the upwinding
associated with Scharfetter-Gummel methods. An approximation calcu-
lus will be introduced in conjunction with the numerical fixed point map.

1 Introduction.

The standard Van Roosbroeck model for the flow of electrons and holes in a
semiconductor device, incorporating diffusion and electric field induced drift,
has been much studied since its introduction ([7]). Among the more significant
computational ideas introduced in the study of this model were the iterative,
decoupling technique, introduced by Gummel ([1]) and the exponential upwind-
ing, introduced by Scharfetter and Gummel ([6]), for the discretization of the
current continuity subsystem. Of interest also is the mathematical understand-
ing achieved during this period (cf. [4]).

At the heart of both mathematical analysis and the development of ef-
fective computational procedures, is the construction of the system fixed point
map. Fixed points can be identified with solutions of the coupled system of Par-
tial Differential Equations (PDEs) in terms of the system dependent variables.
The system is not a gradient system, i., e., it does not arise as the Euler system
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associated with a global convex minimization principle of least ”energy”. Such
variational principles can be derived by partial or total decoupling, however.
Since the quasi-Fermi levels appear to be the optimal choice of dependent vari-
ables from the standpoint of computing, the bulk of our remarks concerning
variational principles at the PDE level will focus on this situation.

A critical issue is the extent to which lagging should be employed in the
recombination term. This is taken up in Section 2. The next major topic is
taken up in Section 3. Here, we present a novel interpretation of the Scharfetter-
Gummel scheme in terms of appropriate local basis functions. Such functions
may be identified with generalized splines, and are defined to have the property
that the associated flux is piecewise constant. The natural variables here are
the Slotboom variables. Since these are not the ultimate computing variables
of interest, this should be viewed as intermediate discretization analysis. How-
ever, this is consistent with the currently accepted view that upwinding should
be applied, as a preliminary step, to the Slotboom variables; then, further lin-
earization should occur with respect to the quasi-Fermi levels, via Newton’s
method, for example.

The final topic treated is an introduction to a nonlinear approximation
theory, which we shall refer to as the Krasnosel’skii calculus. This is taken up
in Section 4.

2 The Fixed Point Map

Denote the dimensionless electrostatic potential by u and the quasi-Fermi levels
by v and w, respectively. Thus, in intrinsic concentration units, n = exp(u− v)
and p = exp(w − u) are the expressions for the electron and hole densities.
When the Gummel map is defined in terms of v and w, the first (fractional)
step is the determination of u by use of the potential equation, where ε and k1

denote the dielectric and doping, respectively:

F1(u, v, w) ≡ −∇· (ε∇u) + exp(u− v)− exp(w − u)− k1 = 0.(1)

It remains to compute the new values, written as v∗ and w∗. Denote by
R = R(u, v∗, w∗) the Shockley-Read-Hall/Auger recombination term. The vari-
ables, v∗ and w∗, occur several places in the representation for R. The complete
elimination of recombination lag, or, equivalently, the retention of v∗ and w∗ at
each instance of their appearance in R, is one extreme possibility. Such total
coupling at first appears desirable, since it achieves quasi-Fermi level depen-
dence, at the PDE level, only upon the intermediately computed electric field,



u. The functional dependence upon the electric field need not be unique or
continuous, however, in this case. The other extreme is lag which completely
decouples the current continuity subsystem. This amounts to replacement of
w∗ by w in the electron current equation, and the corresponding operation in
the hole current equation. In this case, each decoupled equation satisfies a min-
imization principle. As an intermediate position, one is led to introduce certain
types of partial coupling. In order to fix the notation, let Rv∗ and Rw∗ repre-
sent the recombination term as it appears in the v∗-equation and w∗-equation,
respectively, after insertion of lagging.

• The condition for well-posedness of the current continuity subsystem in-
volves a comparison between the quadratic forms determined by these
recombination functionals and a certain fundamental eigenvalue for the
diffusion operator.

The details are furnished in [4].
As introduced in [3], one way of viewing the coupled current continuity

subsystem is as a so-called obstacle problem. In this analogy, the analytical
formalism is that of a variational inequality, and the extreme boundary values,
described by the maximum principles, are seen as enforced obstacles. Although
the variational inequality serves as a mathematical device, rather than the final
formulation, which takes the form of the usual system of equations,

F2(u, v∗, w∗) ≡ −∇·Jn −Rv∗ = 0,(2)

F3(u, v∗, w∗) ≡ −∇·Jp +Rw∗ = 0,(3)

it serves the essential purpose of defining appropriate maximum principles,
thereby providing the underlying stability for the system. The Gummel map,
T , may then be written as

T : [v, w]→ [v∗, w∗].

The maximum principles serve to define the domain of T .

3 Piecewise Constant Flux

We consider the one-dimensional version of the electron current equation, and
assume, for simplicity, zero recombination and constant mobility. We employ
the notation, Jn = J , and require that the discretization scheme be exact for
J a piecewise constant flux, whose discontinuities coincide with selected grid



points. If the exactness requirement is interpreted in terms of approximation
theory, we are seeking an approximation of n of the form

nh =
∑
i

αiMi(4)

where {αi} is a set of nodal values of n determined by a specified numerical
method, and where {Mi} is a nodal basis of local support functions of piecewise
constant flux. More precisely, given a grid of the interval G = [0, 1], of the form
xi = ih, i = 0, · · ·N , for Nh = 1, Mi is associated with the ith grid point, and
is specified by the following requirements for i 6= 0 and i 6= N with obvious
adjustments for the endpoints:

1. Mi(xi) = 1, support Mi = [xi−1, xi+1].

2. Mi is continuous.

3. On each subinterval determined by the grid, Mi has constant flux.

We shall refer to discretizations of the form (4) as being of the class of Scharfetter-
Gummel type. The functions Mi are generalizations of the chapeau functions,
and are examples of the generalized B-splines introduced in [2]. It is quite easy
to give explicit formulas for the B-spline functions, Mi. For example, when
i = 1,

M1(x) =

{
exp[u(x)− u(x1)]

∫ x
x0
e−u(s) ds/

∫ x1

x0
e−u(s) ds, x0 ≤ x ≤ x1,

exp[u(x)− u(x1)]
∫ x2

x
e−u(s) ds/

∫ x2

x1
e−u(s) ds, x1 ≤ x ≤ x2.

The general formula is obtained via the identifications 0 → i − 1, 1 → i, and
2→ i+1. The definition is completed by the support requirement in the second
part of item one above.

It is also quite straightforward to compute the piecewise constant flux J .
On the subinterval, (xi, xi+1), the flux has components from both Mi and Mi+1.
The total flux can then be assembled from the following result. Denoting by J−Mi

the flux due to Mi on (xi−1, xi), and by J+
Mi

the flux due to Mi on (xi, xi+1),
we have

J−Mi = e−u(xi)/

∫ xi

xi−1

e−u(s) ds,

J+
Mi

= −e−u(xi)/

∫ xi+1

xi

e−u(s) ds.

In order to evaluate the integrals appearing in the flux representations, it has
been common to employ the piecewise linear interpolant of u. When this is



done, direct flux evaluation gives the following representation for the assembled
flux on (xi, xi+1), with αi = ni:

J =
1
h

[B(4u)ni+1 −B(−4u)ni)],(5)

where we have adopted the conventions 4u = u(xi+1) − u(xi) and B(z) =
z

exp(z)−1 . The latter function is known as the Bernoulli function. Note that an
exponential fitting method of this type resolves the currents adequately, even if
the mesh allows for substantial variation in the function u. By writing the nodal
density values in the form, ni = exp(ui)νi, and recasting the vector unknown
in terms of the Slotboom vector, ν, we obtain the flux representation in the
familiar form involving the hyperbolic sin function.

Although the form given in (5) is well-known, it is not widely understood
that it holds for the class (4), irrespective of the numerical method used to
characterize the nodal values. The original method of Scharfetter and Gummel
was to define these values by the box method, or, in current parlance, a finite
volume method. An approximation procedure which may well be superior to
the classical procedure just cited is a simple Ritz procedure, based upon a
variational principle, wherein (5) is minimized in the integral mean square sense,
subject to the boundary conditions. This is known to be second order in h.

4 The Krasnosel’skii Calculus

The generic problem is the local approximation of fixed points x0 of a smooth
mapping T of an open subset of a Banach space E into itself. The admissible
approximations are contained in subspaces En of E and a suitability hypothesis
on the class {En} is contained in

• If Pn denotes the projection of E onto En, then

Pnx0 → x0 as n→∞.(6)

The goal of the theory constructed in [5] is to identify hypotheses upon a given
family of numerical fixed point approximate maps Tn, with fixed points xn
drawn from En, such that the estimate

c1‖Rnx0‖ ≤ ‖xn − Pnx0‖ ≤ c2‖Rnx0‖,(7)

holds, for Rn = PnT − TnPn. The estimate (7) specifies the truncation error,
‖Rn(x0)‖, as the convergence rate governing the numerical scheme. The overall
convergence of xn to x0 depends upon the rate in (6) as well as in (7).



The authors of [5] identify two fundamental properties which guarantee
(7). Although the terms are not used in [5], we shall identify the properties by
names familiar to numerical analysts.

1. Consistency: The derivative map of Tn is uniformly continuous in a neigh-
borhood of Pnx0.

2. Stability: The inverse maps of I −T ′n are uniformly bounded in the same
neighborhood.

The reader who consults the reference [5] will notice that the hypotheses em-
ployed there actually imply (1) and (2) above, which in turn allows the applica-
tion of a fundamental approximation lemma, derived via a mean value calculus.
The form of Tn used in applications decouples as does T , but the individual
components are discretized.
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