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ABSTRACT. We establish propagation of singularities for the semiclassical Schrodinger
equation, where the potential is conormal to a hypersurface. We show that semiclas-
sical wavefront set propagates along generalized broken bicharacteristics, hence re-
flection of singularities may occur along trajectories reaching the hypersurface trans-
versely. The reflected wavefront set is weaker, however, by a power of h that depends
on the regularity of the potential. We also show that for sufficiently regular poten-
tials, wavefront set may not stick to the hypersurface, but rather detaches from it at
points of tangency to travel along ordinary bicharacteristics.

1. INTRODUCTION

1.1. Statement of results. Let (X, g) be a smooth n-dimensional Riemannian man-
ifold, and Y C X a hypersurface. We study propagation of semiclassical singularities
for the Schrodinger operator

P=-h*A,+V, (1.1)

where the real-valued potential V' is conormal to Y. Semiclassical propagation of sin-
gularities theorems constrain the distribution of energy in phase space of a solution
to (1.1), asymptotically as h — 0: for V smooth, it is known that the energy con-
centrates on the classical energy surface and is invariant under the associated classical
dynamics. Here, by contrast, the singularities of the potential V' play an important
role, diffracting energy along broken classical trajectories.

The class of potentials V' that we consider are real-valued conormal distributions
with respect to Y, a class of distributions that are smooth functions except at Y. If
x is a defining function of Y then z¢ is an instructive example, with o > 0. More
generally, we assume throughout that V € I'='=°/(Y) for some o > 0. This means
that V is locally the inverse Fourier transform of a Kohn—Nirenberg symbol of order
—1 — a, transverse to Y. In particular, V' is 1 + « orders more regular than the delta
distribution along Y. If & > k + v with k € N and v € (0, 1), then V € C*?(X), but V
is C*> away from Y. (See Section 2.1 below for details.)

Let p = [€]2 + V denote the semiclassical principal symbol of P. Let H, denote its
associated Hamilton vector field, e.g., H, = 2 - 0, — (0,V) - O¢ if ¢ is the Euclidean
metric. Recall that WE; (u), the semiclassical wavefront set of order s, measures where,
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in T7*X, the family u fails to be Or2(h®). If Pu = 0, then known results imply that
the semiclassical wavefront set WE; (u) of order s is contained in the characteristic set
Y = {p = 0}, and is invariant under the H, flow for each s € R U {+o00}, at least
away from Y. This result breaks down for singularities striking 73 X: the conormal
singularity of V' causes ray splitting, generating wavefront set along both the reflected
and transmitted components.

To make the notion of ray-splitting precise, we introduce a suitable generalized bro-
ken bicharacteristic (GBB) flow, taking into account both transverse and tangential
incidence to Y. Properties of this GBB flow are described in detail in Section 4.3; its
main feature is that the allowed trajectories are continuous in space but potentially
discontinuous in momentum, with momentum tangent to ¥ conserved at interactions
with this hypersurface, in accordance with the laws of reflection and refraction. The
GBB flow is, consequently, not defined on the usual cotangent bundle, where it would
be discontinuous. Instead, we introduce an adapted notion of semiclassical wavefront
set by using a variant of Melrose’s b-calculus of pseudodifferential operators. This gives
rise to a semiclassical b-wavefront set which lives in a rescaling of the usual cotangent
bundle, and agrees with the usual semiclassical wavefront set away from Y, but has
the combined virtue and defect of not distinguishing different normal momenta over Y
itself. The compressed characteristic set employed below is likewise an appropriately
rescaled version of the set {p = 0}, which does not distinguish among different normal
momenta over Y. (For details, including the relevant notation, see Section 3.)

Theorem 1 (Propagation of singularities). Let a > 0 and s € RU {4+o00}. If u is
h-tempered in Hy . (X), then WEF} ,(u) \WF;%SH(PU) is the union of mazimally
extended GBBs within the compressed characteristic set Y.

Suppose Pu = 0. Then Theorem 1 tells us that a given point in the wavefront set
must give rise to wavefront set along at least one maximally extended GBB through it,
but does not distinguish among the various possibilities. The theorems that follow draw
subtler distinctions among them, and in particular give a special role to GBBs that are
in fact ordinary solutions to Hamilton’s equations of motion. Thus we now return to
the usual cotangent bundle, where we may consider the usual Hamilton flow provided
that there is enough regularity for it to make sense. Introduce local coordinates (x, )
such that Y = {x = 0}, and let (z,y,&,n) be the corresponding canonical coordinates
on T*X. Even though Hamilton’s equations become singular over Y when o < 1, the
integral curves of H, are well defined near transversally incident points

wt = (an(hj:gOanO) €X

where the normal momentum +¢&, does not vanish; see Lemma 4.2. The integral curves
v+ with 74 (0) = wy therefore exist on some interval (—¢,¢). To use the terminology
of [DHUV], the points wy are said to be related, in the sense of having the same
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Assume no WF} (u) here.

F1GURE 1. Illustration of the diffractive improvement. The trajectory at
lower left is v, ((—¢, 0)); its continuation across the interface is v, ((0, €)).
The other incident trajectory at lower right is v_((—¢,0)). The limita-
tion on the propagation of regularity through the interface is s < r + a.

tangential momentum. Since WEY ;(u) = WFj(u) away from Y, Theorem 1 states
the following at transversally incident points: if v4((—¢,0)) and v_((—¢,0)) are both
disjoint from WEFj (u), then

7+((0,€)) N WEj (u) = 0. (1.2)

On the other hand, the reflected singularity (namely the contribution of incident wave-
front set along v_((—¢,0)) to outgoing wavefront set along v, ((g,0))) is expected to
be weaker than the original incident singularity along v_((—¢,0)). In other words,
if v, ((—¢,0)) is disjoint from WF;(u) and vy_((—¢,0)) is disjoint from WEF} (u), then
(1.2) should hold for a range of s depending on « and r. We show that at least when
« > 1, this holds for s <r + a.

Theorem 2 (Diffractive improvement at transverse reflection). Let a > 1 and s <
r 4+ «, where s,r € RU {4+00}. Suppose that u is h-tempered in H,%,IOC(X) with Pu €
L% (X), and WF;T (Pu) = (). Let

@+ = (0,0, £60,M0) €
with & # 0, and let v4 be as above. If w, € WF}(u), then there exists € > 0 such that

V+((=€,0)) € WF}(u) or 7-((=¢,0)) € WF}, (u).
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Assume there is possibly WF9 (u) here, but no WF} (u).

Ficure 2. Diffractive reflection of a single incident singularity.

For an illustration, see Figure 1. We refer to this result as a “diffractive improve-
ment” as it shows that corrections to the naive geometric optics ansatz (wherein sin-
gularities propagate along ordinary bicharacteristics) is in fact a small perturbation.
It is perhaps easier to visualize the following reinterpretation in terms of reflection:
let Pu = 0, where WF) (u) = (). This of course allows v_((—&,0)) to possibly contain
incoming singularities in WF? (u) for § > 0. On the other hand, assume that WF?°(u)
is disjoint from 7, ((—¢,0)). Then using the background regularity » = 0, the theorem
guarantees absence of WF} (u) along v, ((0,¢)). No matter how small § > 0, any inci-
dent singularity in WF? (u) is partially reflected (the sign of & has flipped) to produce
at most a milder singularity — see Figure 2.

The threshold s < r + « is in general sharp, as we show by example in the next
section. The same example indicates that Theorem 2 may hold for a > 0, rather than
just a > 1.

One might further ask exactly what happens to semiclassical wavefront set at points
tangent to Y; an understanding of diffractive improvements along this set is essential
in understanding global propagation phenomena. For instance, propagation along
generalized broken bicharacteristics as in Theorem 1 permits singularities to “stick”
to the boundary of a convex Y rather than detaching from it. Our final result shows
that, at least for slightly more regular V| this sticking phenomenon does not in fact
occur.

We consider points in the glancing set G (defined below in (4.2)) which is essentially
the points in the characteristic set where rays are tangent to the boundary; as G
is technically a subset of the compressed cotangent bundle (a quotient of 7% X, also
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defined in Section 3), it is actually points in 771(G) C T*X at which we consider
microlocal regularity, where 7 is the relevant quotient map.

For the moment we continue to assume that a > 1, in which case H,, is a C° vector
field, hence we in general have existence but not uniqueness of bicharacteristics (see
Remark 4.4 for an example where uniqueness fails). Thus, given any wy € X, there
exists at least one bicharacteristic 7 : (—¢,¢) — 3 with 7(0) = wo. If @ > 2, then the
Hamilton vector field is Lipschitz and this bicharacteristic is unique.

Theorem 3 (Diffractive improvement at glancing). Let & > 1 and r € R. Let
wy € m1(G). Suppose that u is h-tempered in Hy, (X) with Pu € L}, (X), and

WFE T (Pu) = 0. If wy € WF}(u), then there exists ¢ > 0 and a bicharacteristic v
with v(0) = wy such that

7((=€,0)) € WF(w).

While this theorem certainly holds for the range o > 1, it is considerably more
powerful when « > 2 since the set

{7((—¢,0)) : 7 is a bicharacteristic, v(0) = wy}

consists of the unique solution to Hamilton’s equations on (—e, 0] with v(0) = wp; in
this case, the theorem proves the “non-sticking” alluded to above, as it shows that
a singularity in G propagates along the unique ordinary bicharacteristic through that
point rather than along one of the many possible generalized broken bicharacteristics:
to see this we use Theorem 3 to obtain absence of WEF} (u) at wy based on regularity
along the backward bicharacteristic; if the bicharacteristic is, e.g., tangent to Y at the
single point @, before leaving it, then since WF} (u) is closed, we obtain this regularity
at nearby points, and may propagate it forward over X\Y (by the usual propagation
of singularities) to obtain absence of WF} (u) along the whole bicharacteristic — see
Figure 3.

It would be of considerable interest to know in more detail what happens in the
range 1 < a < 2. We at least know that singularities propagate along one or more
of the non-unique bicharacteristics; it is possible that bicharacteristics sticking to the
interface Y may gain regularity at a fixed rate as they do so.

1.2. A one-dimensional example. On R, consider a compactly supported potential
V € L*(R) with the following properties:

e V =29 on an interval (—oo, o) with z € (0,1), where a > 0.

o VVis C* away from x = 0, and sup V' < 1.

Observe that V € I'='=%({z = 0}). Consider the operator P = (hD,)? 4+ V. Working
at energy E = 1, away from the support of V' solutions to (P — 1)u = 0 are linear
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FIGURE 3. A bicharacteristic (dashed line) that is tangent to Y. For
any 7, absence of WF} (u) on the part of the bicharacteristic marked
“Incoming ray” implies absence of WF} (u) at wy; since wavefront set
is closed, ordinary propagation of singularities then gives absence of
WF;} (u) on the part of the bicharacteristic labeled “continued ray,” i.e.,
propagation of regularity along this bicharacteristic. (We are assuming
a>2.)

combinations of e*™/". There is a unique solution of the equation (P — 1)u = 0 such
that
ix/h —ix/h
e + Re for z <0,
u = . R (1.3)
Tei/h for z > 1,

where R, T € C.
Proposition 1.1. If a € (0,1), then R ~ 277 2¢°"/2(a + 1)h® as h — 0.

Note that to leading order R is independent of the choice of potential satisfying the
properties above. Thus reflected waves exist and are exactly order A in this simple
example. A proof of this result is given in Appendix A.

Proposition 1.1 is almost certainly true for @ > 1 as well; see Figure 4 for a numerical
example. An analytic proof would require computing lower order terms in various
asymptotic expansions that quickly becomes impractical. For the case of integer a@ =
k € N an analysis of this problem can be found in Berry [Ber], where it is shown that
if the k’th derivative of the potential is discontinuous, then the reflection coefficients
are (to top order) explicit multiples of the jump in V*) times h*.

1.3. Related work. While there is little literature on semiclassical problems with
rough coefficients, the related problem of the wave equation with a rough metric has
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FIGURE 4. The rescaled reflection amplitude corresponding to a poten-
tial as in Section 1.2 with o = 1.2 plotted against h~!. The horizontal
line represents the analytic expression from Proposition 1.1. The limiting
asymptotics only emerge for very small values h ~ 1073; this phenome-
non was already observed in [Ber].

attracted considerable attention. In particular, there is a long history of propaga-
tion of singularities theorems in the setting of C*® coefficients, showing propagation
of smoothness along bicharacteristics up to a maximum level of regularity as in our
Theorem 2; see Bony [Bon], Beals—Reed [BR], Smith [Smil, Smi2], Geba—Tataru [GT],
Taylor [Tay2].

While the papers listed above are primarily focused on unstructured coefficient sin-
gularities, the only prior study on conormal singularities appears to be the work of De
Hoop-Uhlmann—Vasy [DHUV]. This paper, which deals with the wave equation with
coefficients in II=1=°(Y") for Y a hypersurface and a > 1, was the primary inspiration
for our work. The authors are able to show that singularities propagate along general-
ized broken bicharacteristics and that transversely reflected singularities are weaker, in
analogy with our first two theorems, although the regularity obtained for the reflected
wave (i.e., the threshold regularity up to which one can obtain propagation results
based on a fixed level of background regularity) does not appear to be sharp. Differ-
ences in the approach taken here include use of mixed-norm rather than L? estimates
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in the commutator arguments, as well as a precise decomposition of the potential into
high and low frequencies.

In the semiclassical case, there are explicit one-dimensional computations due to
Berry [Ber]. Semiclassical diffraction effects from potentials with conical singularities
have been studied by Fermanian-Kammerer—Gérard-Lasser [FIXGL] and Chabu [Chal],
[Cha2]; see also Harris-Lukkarinen-Teufel-Theil [HLTT] for a discussion of potentials
with singularities of the form |z|. A closely related problem of propagation of semiclas-
sical defect measure across an interface whose width shrinks at an h-dependent speed
has also been studied by Nier [Nie] and Miller [Mil].

The principal novelties of this paper, in addition to obtaining in a semiclassical
setting results analogous to those of [DHUV], are, first, the sharpness of the regularity
of the diffracted wave, and, second the improvement at glancing, which ensures that
for o > 2 there is no sticking of singularities to the boundary.

1.4. Strategy of proof. We follow the same overall strategy as employed in the study
of the wave equation in [DHUV]. We obtain Theorem 1 by a commutator argument
in a semiclassical version of Melrose’s b-calculus of pseudodifferential operators. This
calculus, which loosely speaking consists of operators

A = A(z,y, ha Dy, hD,)

where x is a defining function for Y, are effective at localizing in both position and
tangential momentum with respect to Y, but not in the normal momentum, since hD,
is not in the calculus. This makes these operators useful for proving that the tangential
momentum is conserved in the interaction of singularities with the boundary, which
is the main content of the propagation along GBBs theorem (albeit at glancing the
connection to the definition of GBBs is somewhat tricky to untangle). Such a strategy,
employing a positive commutator argument, goes back to the original work of Melrose—
Sjostrand on boundary problems [MS1, MS2]; our approach is strongly influenced by
Vasy’s work on manifolds with corners [Vas3].

The diffractive improvement at transverse reflections is obtained instead via a com-
mutator argument involving a commutant that is an ordinary semiclassical pseudo-
differential operator, ignoring the singularity of the operator P across Y. The price
one pays is that the commutator is then no longer a pseudodifferential operator, but
involves operators whose Schwartz kernels are paired Lagrangian distributions, which
must be estimated separately. It is in the estimates of these terms that we are forced
to use assumptions on the background regularity of u, and it is here that limitations
are placed on the range of exponents for which we can expect to obtain propagation
of regularity directly across the interface.
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Paired Lagrangians were introduced in the setting of homogeneous microlocal analy-
sis by Guillemin—Uhlmann [GU3] and Melrose-Uhlmann [MU] and studied by Antoniano—
Uhlmann [AU], Greenleaf~Uhlmann [GU1, GU2|, and De Hoop—Uhlmann—Vasy [DHUV].
There seems to be very little literature on these objects in the semiclassical setting,
however, so we have provided a self-contained presentation of the basic theory here.

One key to obtaining the sharp threshold regularity in the transverse reflection
theorem is to estimate certain terms by using mized-norm estimates in the space
L®(R,; L*(Y)) (where x is a defining function for Y) rather than the L? estimates
customary in commutator arguments. Our ability to work in this space relies on
a simple energy estimate similar to the estimates standard in hyperbolic problems.
Another novelty to our approach is the decomposition of the potential V' into low-
and high-frequency pieces, which simplifies the decomposition of the commutator into
paired Lagrangian pieces, one of which is nearly microlocal. This decomposition is
readjusted from step to step in the iterative commutator argument to allow for shrink-
ing microsupports necessary in the iteration.

The improvement in the glancing region is obtained much as in the case of trans-
verse interaction, with the important difference that we are able to microlocalize the
necessary background regularity more finely: we require only background regularity
in a region of specified tangential momentum very close to glancing. In this region,
b-regularity and ordinary regularity turn out to be essentially interchangeable, and we
are thus able to make a propagation argument that can be iterated as in the usual
commutator proof, with the necessary background regularity being obtained at each
inductive step by the output of the previous one.

The structure of the paper is as follows. In Section 2 we discuss background from
microlocal analysis, starting with a description of the properties of the class of conormal
distributions from which V' is drawn (Section 2.1). We then discuss pseudodifferential
operators, starting with the ordinary semiclassical calculus and associated conormal
distributions (to set notation and as a point of comparison), also recalling some basic
energy estimates. Next, we move on to the semiclassical b-calculus (Section 3), which
is the essential tool in proving Theorem 1. This section introduces the wavefront sets
that we use to measure regularity; we need both the semiclassical b-wavefront set
with respect to L2, and the analogous wavefront set measured with respect to the
energy space and its dual. The relationships among these wavefront sets, elucidated
in Lemma 3.10, explain the different wavefront sets arising in Theorem 1.

In Section 4 we then discuss the geometry of bicharacteristics, which for our pur-
poses are of two kinds: the generalized broken bicharacteristics, the largest set along
which singularities may propagate, and the ordinary solutions to Hamilton’s equations
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(well-defined whenever o > 1, and for transverse rays even when a > 0) which are dis-
tinguished by our diffractive improvements at hyperbolic (i.e., transverse) and glancing
sets.

Section 5 is devoted to the proof of Theorem 1. This splits into three steps, where
we must first treat estimates on the elliptic set for the operator and then prove distinct
propagation estimates on the hyperbolic set (rays transverse to Y') and on the glancing
set (rays tangent to Y').

We then turn to setting the stage for the proofs of Theorems 2 and 3. We begin in
Section 6 by introducing the calculus of semiclassical paired Lagrangian distributions,
together with associated operator estimates. Finally in Section 7 we prove Theorems
2 and 3.
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2. MICROLOCAL AND SEMICLASSICAL PRELIMINARIES

2.1. Conormal distributions. In this section we record Hoélder and integrability
properties of conormal distributions not discussed in standard references such as [Horl,
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Chapter 18.2]. While these facts are well known, we were unable to find a suitable
reference in the existing literature.

Let X be an m-dimensional manifold without boundary, and Y C X a codimension-
k submanifold. Let C_°°(X) denote the space of compactly supported distributions on
X.

Given a closed conic Lagrangian submanifold A C T*X, let I™(X;A) denote the
space of Lagrangian distributions of order m as defined in [Hor2, Chapter 25.1]. For
1 € R, we define the conormal distributions of order p with respect to Y as

WY = prr@e=m/A X, Ny, (2.1)

Recall that our standing assumption on the potential V is that V € I'"'=°}(Y") is real
valued, with o > 0 and Y a hypersurface.

In elucidating the class of conormal distributions, we first recall the local charac-
terization of u € I™(Y) via the Fourier transform. Let U be a coordinate patch
intersecting Y with local coordinates

= (2, 2") = (2, ..., 2,2, .. x

such that YNY = {2’ = 0}. Assume that u has compact support in i/; since 1M (Y") is
a C*(X)-module, one can always reduce to this case by passing to a partition of unity
subordinate to a covering of X by coordinate patches. Thus we consider u € C;*°(R™)
of the form

w(w) = (2m)~(m+20/a / ¢ g (3. 1) e’ (2.2)

for a symbol a € SH(R™; R’g,).

If u < —k, then a € L'(R™), so certainly u is continuous by the Riemann-Lebesgue
lemma. In fact, u has much stronger continuity properties; to describe these properly,
we must first recall the Zygmund spaces. If 1 =) >0 ¥j 1s a dyadic partition of unity
on R¥ with ;(&) = 11(279¢) and suppty C {1/2 < |¢] < 2}, then the Zygmund space
C3(R¥) consists of all distributions v € &'(R*) for which

H'U cs = Sup 2stwj(Dx/)’UHLoo < Q.
J

Directly from the Littlewood—Paley characterization of C; given above, any u of the
form (2.2) satisfies

u € C(R77F: CoHH(RE).
We now return to the assumption that p < —k. It is well known (see e.g. [Tayl,

Section 13.8]) that if s = 7+ « for some r € N and a € (0, 1), then C:(R¥) agrees with
the Holder space C™“(R¥). From this, we immediately obtain the following lemma.
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Lemma 2.1. If u < —k, then there exists 0 € (0,1] depending only on p+ k such that
any u € C;°(R™) of the form (2.2) satisfies

u(z) —u(y)| < C(la =y " + 2" = y"]) (2.3)

for each z,y € R™.

Proof. 1f —k — o € (0,1), then we can let § = —k — pu. If —k — p > 1, then actually
u € C*(R™), and we can take § = 1. The case —k — u = 1 is borderline in the sense
that C(RF) functions are not necessarily Lipschitz, although (2.3) is certainly valid
for any 6 € (0,1). O

More concisely, if 119 > p, then we can take § = min(1, —uy—k) in (2.3). For general
1 € R, the distribution u need not be represented by a locally integrable function; on
the other hand, we have the following sufficient criterion:

Lemma 2.2. If —k < p < 0, then any u € C_*°(R™) of the form (2.2) satisfies
u € L'(R™), and moreover
[u(z)| < Cla’| ™"

for x' # 0.

Proof. Since u € C*(R™ \ {z' = 0}), it follows that u(z) = > .. ¢;(Ds)u(z) for
1’ # 0. Now |2/|7#* is locally integrable (since —u — k > —k) so by the dominated
convergence theorem it suffices to show that

Z [(Do)u(z)| < Cla'| ™ (2.4)

for 2/ # 0 and every N > 0, where C' does not depend on N. (This will establish that
u differs from a locally L' function by a distribution supported along {z’ = 0}, and
the latter are ruled out since p < 0.) Integration by parts using the operator Aé‘? now
yields

[5(Dar)ul)| < Cayla’|72H200erk=200 (2.5)

for each M € N. Now simply split the sum (2.4) into two pieces, the first where
27 < |2'|7!, taking M = 0 in (2.5) and using that g+ & > 0, and the second where
27 > |2'|7, taking 2M > p+ k in (2.5). O

Under the hypotheses of Lemma 2.2 and applying the mean value theorem in the
2" variables,
u(2’,2") —u(a’,y")| < Cla’| 7 F|a" — | (2.6)
for 2’ # 0 and 2”,y"” € R™*. This estimate will be important when discussing
Hamilton’s equations in Section 4.2.
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Lemma 2.3. Let p < —k + 1. If u is given by (2.2) and f € C*(R™) vanishes along
Y = {2’ = 0}, then fu vanishes along Y .

Proof. We may assume that f is given by one of the coordinate functions f = z7.
Upon splitting " = (&7, £"),

(F)0.0") = [ Dga.a" s = [ [ Dya(0.a".¢)dgj g =0
J Rk—l R J
by Fubini’s theorem, since D¢ a(0,2”,-) € LY(RF). O

Suppose that v and f are as in Lemma 2.3, where u < —k 4+ 1. Combined with the
Holder bound (2.3), we conclude that

|(fu)(@)] < Cla')° (2.7)

for some 6 € (0, 1) depending only on p + k.

2.2. Semiclassical pseudodifferential operators. Next, we give a brief overview
of the semiclassical analysis used in this paper. For a detailed exposition, the reader
is referred to [Zwo] and [DZ, Appendix EJ.

We say that an h-dependent family of symbols a(z,8) = a(x,0;h) is in S™(R?; RY)
if the usual symbol bounds

|D2Dja(x,0)| < Cop ()™

are uniform in kA € (0,1). We also say that a(z,d) € S™P(RP;R?) if a is supported
in an h-independent compact set, and its C2°(RP x RY) seminorms are all uniformly
bounded in h.

On R™, we obtain an operator from a(x,&) € S™(R™; R") by the standard left
quantization procedure,

Opy(a)u(z) = (2nh) ™" / AV o, €yuly) dyde. 2.8)

This operator acts on S(R™) and S'(R").

For a manifold X, we similarly define the class of h-dependent symbols on T X,
which we continue to denote by S™(T*X). The space S®™P(T*X) is defined anal-
ogously. We use semiclassical pseudodifferential operators Wi (X) with symbols in
S™(T*X). For simplicity, assume that X is compact; this is only used to avoid issues
such as proper supports, and is inessential. The space W}*(X) enjoys the following
properties:

(I) Each A € ¥}*(X) maps C®(X) — C>®(X) and C~*(X) — C~>(X).



SEMICLASSICAL DIFFRACTION BY CONORMAL POTENTIAL SINGULARITIES 15
(IT) There is a principal symbol map o, : 7(X) — S™(T*X)/hS™ }(T*X) such
that the sequence
0 — AU HX) = UP(X) 2 S™(T*X)/hS™ HT*X) — 0
1s exact.

(III) There exists a (non-canonical) quantization map Op,, : S™(T*X) — ¥"(X)
such that if a € S™(T*X), then

on(Opy(a)) = a
in S™(T*X)/hS™ 1 (T*X).
(IV) If A € ¥*(X), then A* € U*(X) with principal symbol
on(A*) = on(A).
Here the adjoint is taken with respect to any fixed density on X.
(V) If A € U7(X) and B € U} (X), then [A, B] € h¥™ ™ ~1(X) with principal
symbol
on(31A, Bl) = {on(A), on(B)} = Ho,(ay0n(B)

where {-,-} is the Poisson bracket, and Hy is the Hamilton vector field of a
function f on T*X.

(VI) Each A € U*(X) extends to a bounded operator Hj(X) — H; ™(X). More-
over, if A € U)(X), then there exists A’ € ¥, *(X) such that
[Aullzz < 2sup |on(A)l|lullr2 + O(h>)[[Aul| 2 (2.9)
for each u € L?(X). Here 0,,(A) is any representative of the principal symbol
in SO(T*X)/hS—HT*X).

In (2.9), H;(X) refers to the usual Sobolev space H*(X) but equipped with its semi-
classically rescaled Sobolev norm || - [|gs. In particular, given u € Hj(X), we can
take

el = /X ful? + 12| dul? dg, (2.10)

where dg is the volume density for a Riemannian metric g, and the magnitude of du
is computed with respect to g.

The negligible operators h>°W,°(X) in this calculus are precisely those with smooth
Schwartz kernels, such that each C*°(X) seminorm is of order O(h*). Given A €
U (X), there exists a € S™(T*X) such that

A =Opp(a) + =¥, >(X). (2.11)
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The operator wavefront set (also known as the microsupport) WF,(A) of A € U7'(X)
can be defined as the essential support of its full symbol in any coordinate representa-
tion. Here essential support is meant in the semiclassical sense: if a(z,0) € S™(RP; RY),
then

esssupp(a)® = {(z,6) : a € h®°S~(R?;RY) near (z,0)}.

Note that we are viewing esssupp(a) as a subset of the radial compactification RP x IRq.
Thus WF,(A) is a subset of the fiber-radially compactified cotangent bundle T*X (see
[DZ, Section E.2]). We also write ell,(A) for the elliptic set of A € U*(X), again

viewed as a subset of T*X: this is the set where the principal symbol is invertible.

comp

The compactly microlocalized operators U;""*(X) C W, *(X) are defined to be
those with compact operator wavefront set in 7*X C T*X. Equivalently, A €
U"P(X) if A can be written in the form (2.11) with ¢ € S™(T*X). If X is
not compact, we also assume that the Schwartz kernel of A € U}*"?(X) has compact
support in X x X.

We need to consider distributions which are h-tempered relative to a fixed order
Sobolev space.

Definition 2.4. We say that an h-dependent family u = u(h) € C~*°(X) is h-tempered
in H;(X) if there exists C, N > 0 such that

N
ul[zr: < CR™.

Thus the usual notion of an h-tempered distribution v € C~*°(X) is that u is h-
tempered in some H, M (X).

Definition 2.5. Let r € R. If u is h-tempered in L*(X) we say that (z,£) ¢ WF} (u)
if there exists A € U9 (X) elliptic at (z,£) such that

| Aul|z2 < CH.

If r = 400, we write WFy,(u) for WEF°(u).

Recall that ellipticity, and hence wavefront set, is defined at points in the fiber-
compactified cotangent bundle.

We will also occasionally employ a wavefront set measured with respect to spaces
other than L?:

Definition 2.6. Let r,s € R. If u is h-tempered in H;(X) we say that (z,£) ¢
WEF;" (u) if there exists A € W) (X) elliptic at (z, &) such that
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Lastly, we consider a class of “tangential” pseudodifferential operators on R%*!. Fix
a splitting of coordinates z = (z1,7') € R x R% Given k € NU {+occ}, we consider
operators

Q € Ck(Rm; \I[hm(Rg’))
Thus we can write Q = Op,(q), where ¢ € C*(R; S™(R?)) and Op,, denotes the quan-
tization procedure (2.8) on R?. However, since ¢ is not necessarily smooth in z1, the
notion of operator wavefront set must be modified. We say that (z,{’) ¢ esssupp(q) if
there is a neighborhood of (z,¢’) in R4 x R4 where
D3, Dy D, o', &) = O(h™ () ™™)

for j < k. We then define WF,(Q) = esssupp(q). This definition guarantees that
W, (0 (Q)) € WEL(Q) for k > 1.

2.3. Energy estimates. In this section we prove a microlocal energy estimate that
will eventually be applied to the operator P in (1.1). These estimates follow the
strategy used in [Horl, Sections 23.1-23.2] for hyperbolic operators; similar estimates
for semiclassical problems have also been obtained in [Chr, Section 3.2].

In what follows we will employ the notation Difff for the algebra of semiclassical
differential operators

Z ao(z; h)(hD)*

|| <k
with a, € C*, uniformly in h — 0.

We work on R4, Let 2 = (z1,2") € R x R%, and consider a differential operator
L= (hD,,)* — R+ hR,

where R € C!(R; Diff}(R?)) and Ry € C'(R;Diff} (R%)). Writing r(x, &) = o (R), we
make the following microlocal hyperbolicity assumption:

r(z,&") > 0 near (—e,¢e) x U,

where U C T*R? is open with compact closure. Therefore we can find a self-adjoint
tangential operator A € C*(R; U5°™P(RY)) with o,(A) = r'/2 near (—¢,¢e) x U such that

AN =R+ R,
where R’ € C*(R; U3 (R?)) and (—¢,e) x UNWF,(R') = 0. Then we have
(hD,, F A)(hD,, £ A) = (hD,,)* — A> £ [hD,,, A]
=L+ R +hRy,

where Ry = h7![hD,,,A] £ Ry € C°(R; U;"™P(R%)) + C'(R; Diff; (R?)). Given u €
C°° (R4, write u(z;) for the function 2’ — u(xy,2’) on R
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Lemma 2.7. If A € C®(R; V,;""(R?)) satisfies WFy(A) C (—e,e) x U and B €
C=(R; Ui (RY)) is elliptic on WF,(A), then

|mwmmmqsmmeBwp+mﬂ/memwmmw o1,
+ O(h)|| (hDa,) |

for every u € C*(R"™) and z; € (—¢,¢).

Since (2.12) is the first of many estimates of this form, we clarify that the inequality
means that there exists C fixed such that for every M € N, there exist C); and
ho = ho(M) such that for h € (0, hg),

[Aute) sy < 1L D) Bulza + O [ | BLu(S) 2
+ Oneh™ || (hDy, ) | 2.

Proof. The usual energy inequalities hold for the operators hD,, £ A, cf [Horl, Lemma
23.1.1): for each z;,t € R,

(@) | z2rey < lu()|r2ma) + h_l/ [(h Dz, £ N)u(s)|| L2 (ra) ds. (2.13)
t

Given By € C®(R; U;"™P(R?)), set vy = By(hD,, F A)u and compute
(hDiﬁ + A)Ui = BlLU + [thl + A, Bl]u + hBlRlu + BlR/U

Take Bj elliptic on WFj(A) with WF,(B;) C (—¢,e) x U and let B be elliptic on
WEF,(By). Then

[(hDyy £ AN)vi(21)|| L2may < C||BLu(1)|| 2(may
+ Chl|Bu(zy) || L2may + O(h™)[[u(21)]| r2(Ra)

for x1 € (—e,¢). Applying (2.13) to vy yields the estimate
[0+ (@1) | 12Re) < [V ()| L2(R0)
0 [ LU w1 B+ O (s e s
for xq,t € (—¢,¢). Furthermore, we can estimate
[0+ (@)l z2®ay < Cll (hDa,) Bu(t)| r2(ma)-
On the other hand, since WF,(A) C ell,(A),

[Au(z1) | r2rey < Cllvs (20l r2a) + [[0-(21) |l 22@e)) + Oh) [[u(z1) || 2@y
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Estimating the O(h™)||u(z1)|| 2re) term on the right hand side by (2.13), we conclude
that

[Au(z1) || L2ray < Cll (hDz,) Bu(t)|| 12(re)
0 [ W IB L) sy + B e, + O (D u(s) sy d
t
for z1,t € (—¢,¢). Integrating in ¢ finishes the proof. O

2.4. Semiclassical conormal distributions. We return to the setting of Section
2.1, adopting the notation there.

Definition 2.8. If u € C;>°(X) has compact support in a coordinate patch U as in
Section 2.1, we say that v € IF'(X; N*Y) if

U= (27rh)_(m+2k)/4/ei<xl75/>a(x,§’) d¢’ (2.14)
for some a(z,&') = a(z,&'; h) € SPHM2R/A(RT RE,).

The general definition of I7(X; N*Y') is obtained by localization. If u € C;*°(R") is
given by (2.14), then wu is certainly h-tempered, and

WF,(u) C {(x,€) € N*Y : (z,¢') € esssupp(a)}.
Here we have written N*Y C T*X for the fiber-radially compactified conormal bundle

toY.

We say that v € I,°""(X; N*Y) if u € I,*°(X; N*Y) has compact support, and
WF},(u) is compact in T*X. Equivalently, u can locally be written in the form (2.14)
with a € S°mP(R"; R*), modulo an h>*°C°(R™) remainder.

3. SEMICLASSICAL B-PSEUDODIFFERENTIAL OPERATORS

3.1. b-Tangent and b-cotangent bundles. Let X be a manifold with boundary.
Let V(X)) denote the Lie algebra of smooth vector fields on X, and V,(X) the subal-
gebra of vector fields tangent to 0X. Let (z,y) = (z,v1,...,yn) be local coordinates
on a chart U intersecting 0.X, such that & N 0X = {z = 0}. With respect to these
coordinates, elements of V,(X) are locally of the form

Furthermore, V,(X) coincides with sections of a bundle, the b-tangent bundle *T'X.
There is also a natural bundle map

i:PTX - TX (3.2)
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induced by the inclusion V,(X) < V(X). Over ¢ € X° (the interior of X') this map
is an isomorphism, which gives the identification PTx.X = TX°. Here we use the
notation 7, X for the restriction of PT'X to the submanifold Z.

The dual bundle to PT'X is the b-cotangent bundle "T*X = (*T'X)*. In coordinates
(z,y) near the boundary, sections of PT* X are of the form

dx
o(z,y)— + > mi(z,y)dys. (3.3)
Thus (z,y,0,n) provide coordinates on PT*X. Let m : T*X — PT*X denote the
adjoint of (3.2). Over the interior, 7 induces a dual identification PT%. X = T*X°. On
the other hand, if (x,y,&,n) are the usual coordinates on 7*X induced by (z,y), then

m(x,y,§n) = (z,y,2£,1).

In particular, since it maps to ¢ = z€, 7 is not surjective over 0.X. We denote by
bT* X the image T X under 7, referred to as the compressed cotangent bundle.

By a slight abuse of notation, we also consider T*0X as a subset of T X. More
precisely, i takes "Tyx X onto T9X, and the inclusion T*0X < "T; X is the adjoint
of this restriction; in local coordinates, it is just the map (y,n) — (0,y,0,n).

While the definitions above apply to a manifold with boundary, for our purposes
we need to replace X with an embedded interior hypersurface Y C X, where X is
now boundaryless. In that case we consider the relative b-tangent bundle *T'(X;Y).
Sections of PT'(X;Y') coincide with the subalgebra W, (X;Y) C V(X) of vector fields
tangent to Y. The discussion above applies verbatim to PT'(X;Y) by replacing 90X
with YV, and X° = X \ 0X with X \ Y.

3.2. b-Pseudodifferential operators. We now describe the class of semiclassical
b-pseudodifferential operators on a compact manifold X with boundary. This is a
variant on the b-calculus introduced in the setting of homogeneous microlocal analysis
by Melrose [Mel2], [MM] (see also [Mell] for a detailed treatment). A description of
the semiclassical b-calculus employed here can be found in [HV, Appendix A].

We begin by defining the class of residual operators h*°W C"fl(X ). Here we resort to
a geometric description in terms of a certain blow-up of X x X since this yields the
most concise definition. (We refer the reader to [Mell] for a discussion of real blow-up
in the context of the b-calculus and for further references.)

Recall that the b-stretched product X x;, X is defined by blowing up the corner
0X x0X in X x X,
X xp X =[X x X;0X x 0X].
The blow-down map is denoted by Fp, : X X, X — X x X. The front face, namely the

lift of 0X x 0X, is denoted ff, whereas the lifts of X° x 90X and 90X x X° are denoted
If and rf, respectively.



SEMICLASSICAL DIFFRACTION BY CONORMAL POTENTIAL SINGULARITIES 21

If M is a manifold with corners, we use the notation A(M) for the space of L>
based conormal distributions on M:

AM) = {u € C(M) : Vo(M)*u € L>°(M) for all k € N}.

Returning to the b-stretched product, let ps; be a total boundary defining function for
the side faces. We then consider operators A with Schwartz kernels in pP A(X x1, X).
Note that this space has a natural family of seminorms.

In what follows C>°(X) denotes the set of smooth functions on X vanishing to infinite
order at the boundary (cf. [Horl, Appendix B.2]).

Definition 3.1. A family of operators A = A(h) : C®°(X) — C=(X) belongs to
heewy 2 (X)) if its kernel Ky is the pushforward by 8, of an element
K = K(h) € pAX x, X),

where each seminorm of K is of order O(h™). We say that A belongs to heeW 7 (X)
if K is in addition smooth up to ff.

In general, semiclassical b-pseudodifferential operators have Schwartz kernels with
additional singularities on the diagonal. We choose to give a definition via localization.
First we describe the appropriate semiclassical symbol classes. Let us identify

PT*R? = R? x R,
with coordinates (x,y) € R, x R"! in the first factor, and (o, ) € RxR""! in the sec-

ond. In that case, we define h-dependent Kohn-Nirenberg S ("T*R") corresponding
to symbol bounds of the form

|(+D,)' Dy Dy Dya(x, y, 0,n)| < Crjas ((0.0)" (3.4)

uniformly in h. Thus a need not be smooth up to the boundary of "T*R™. If we wish
to require smoothness, we can define S{"(°T*R?) by replacing xD, with D, in (3.4).
In general, S (*T*X) is defined by localization, and similarly for S/("T*X).

We now define a left quantization procedure on R’}. For this, fix ¢ € C°((1/2,2))
such that ¢(s) = 1 near s = 1. Given a € S, ("T*R"), define Opy, ,(a) by

Opy, i (@)u(z, y)
= (2zh)™" / e =D=M (02 F)a(, y, m, 2€)u(F, §) dEdndEdy.  (3.5)
Semiclassical b-pseudodifferential operators are defined in general by localization:

Definition 3.2. A family of operators A = A(h) : C®(X) — C®(X) belongs to
Wi 5 (X) if the following properties hold.

(1) If ¢, € C>(X) have disjoint supports, then p Ay € A=W 3 (X).
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(2) If yp € C°(O) has support in an interior coordinate patch O and x : O — O, C
R" is a diffeomorphism, then (k*) ' Ayr* € UT(R™).

(3) If ¢» € C*(O) has support in a boundary coordinate patch O and k : O —
O, C R is a diffeomorphism, then

(k™) AYw" = Opy,(a) + R (3.6)
for some a € Sy, ("T*RY) and R € h>W. % (R%)
We say that A belongs to Wi, (X) if (3.6) holds for some a € S, ("T*R’}) and R €
hoeW 0 (X).
The space Wy (X) of semiclassical b-pseudodifferential operators with conormal
coefficients on a compact manifold X with boundary has the following properties.
(I) Each A € Wit , (X) maps C®(X) = C=(X) and C~®°(X) = C~=(X).
(IT) There is a principal symbol map oy, : U, (X) — Sp(°T*X) /RS (PT*X)
such that the sequence
0 — hUPSH(X) = U (X) 25 ST X) /hSp (PT X)) — 0
is exact.
(III) There exists a non-canonical quantization map Opy,, = Spe(PT*X) — W | (X)
such that if a € S{(°T*X), then
ob,n(Opp p(a)) = a
in S (PT*X)/hSH(PT*X).
(IV) If A€ Uy, (X), then A* € ¥, (X) with principal symbol
ob,n(A7) = oy (A).
Here the adjoint is taken with respect to any fixed density on X.
(V) If A€ ¥, (X) and B € U, (X), then [A, B] € h\Ifg’"gﬁlm/_l(X) with principal
symbol
aun(1[A4, B]) = {oun(A), 004(B)} = H, . (1youn(B)

where the Poisson bracket is with respect to the usual symplectic form on
T*X° = PT%. X extended by continuity to PT*X, which also defines the b-
Hamilton vector H}.

In canonical coordinates given by (3.3), the symplectic form is

do Nd
w=22 x—i—dn/\dy
x
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while the Hamilton vector field of f is

H? = x(aaf)az - x(axf)aa + (afif> ’ ay o (8yf) ’ a’]'

(VI) Each A € W}, ,(X) extends to a bounded operator on L*(X), and moreover
there exists A" € W % (X) such that

[Aul[z2 < 2sup opn(A)[[[ullL: + O(h™)[[Aull 2

for each u € L?(X). Here oy,;,(A) is any representative of the principal symbol
in Sp.(°T*X) /RS, H(PT*X).

The subspace of operators with smooth coefficients, W, (X) C Wi, (X), satisfies
(I), (II), (III), (IV), (V), (VI) above, simply dropping the subscript ¢ throughout.
Moreover, \I”gfh(X ) enjoys better mapping properties, namely each element of \If’b’fh(X )
maps C*(X) — C*(X) and C~*(X) — C~>(X).

Suppose that F e 1=1- (R%; OR") has compact support, where o > 0. Then F

is continuous, smooth away from the boundary, and after a semiclassical rescaling the
Schwartz kernel of multiplication by F' is

Sz —2)o(y — §)F(z,y) = (2wh) ™" / er (=Dt W=IM P (g y) dod. (3.7)

We can always insert a cutoff ¢(x/Z) as in (3.5), since the kernel is supported by
the diagonal. In particular, (3.7) can be written in the form (3.5). The reason for
introducing the algebra with conormal coeffients is that when viewed as a symbol
(independent of o, 1),

F € Spen("T'RY),
namely multiplication by F'is in ¥9_, (X) when a > 0 (but not ¥ , (X)).

3.3. Interaction with differential operators. We will also need to consider the
interaction between Wy, ,(X) and the algebra of semiclassical differential operators
Diff),(X), which of course is not a subalgebra of Wy, ;,(X). The material in this section
is not relevant for the class of conormal coefficient operators Wy, 5 (X).

The key consideration in what follows is the indicial operator family of A € Wy, ,(X),
defined for o € C and v € C*(0X) by
N(A)(o)v = 277 A2 u) o,

where u € C*°(X) is an arbitrary extension of v; here x is a fixed, global boundary
defining function. Thus N(A) = 0 for A € W, (X) precisely when A € zW, (X).
Furthermore, the indicial operator map is an algebra homomorphism to o-dependent
families of semiclassical pseudodifferential operators on 90X :

N(AB)(c) = N(A)(c) o N(B)(0).
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Observe that N(hzD,)(o) is simply multiplication by ¢, and N(z)(c) vanishes iden-
tically.

Assume that A € U7, (X) has compact support in a boundary coordinate patch
U C X, so that (hD,)A is a well defined operator. Applying N , it follows that
[ha Dy, A] € zh¥7, (X) and [z, A] € h W} " (X). Therefore,

(hD,)A = 2 '[haD,, A] + 2~ " Az(hD,).
This can be rephrased as in the following lemma:

Lemma 3.3. Given A € V', (X) with compact support in U, there exist A, A" €
W, (X) with compact support in U such that

(hD,)A — A'(hD,) = hA", (3.8)
where A’ = 27 YAz and A" = 27 [haD,, A].

Lemma 3.3 allows us to give a reasonable definition of differential operators with
b-pseudodifferential coefficients:

Definition 3.4. Let Diff} U, (X) denote the vector space of locally finite sums of the
form 3 PjA;, where P; € Difff(X) and A; € Wi, (X).

Using Lemma 3.3, it can shown that any Y~ P;A; € Diff} U, (X) can also be written
in the form ) AL P}, where A} € U7, (X) and Pj € Difff (X).
One can moreover show that the differential-b-pseudodifferential operators form a

graded algebra in the following sense.
Lemma 3.5 (cf. [Vas3, Lemma 2.5]). If By € Diff;! U] (X) and B, € Diff}> U"2 (X)),
then the composition satisfies
By B, € Diff 2 gz (X)),
Furthermore,
(B, By] € hDiffj 2 Wit (X)),
We also have the following fundamental commutation result:

Lemma 3.6 (cf. [Vas3, Lemma 2.8]). If A € U, (X) has compact support in a
boundary coordinate patch U, then there exist Ay € U, (X) and Ay € U (X)
satisfying

i[hD,, A] = hA, + hAy(hD,). (3.9)
Here oy, ,(Ao) = Opa and oy, 1, (Ar) = 0a.
Proof. The identity (3.9) follows from (3.8), since A’ — A = 27 '[A, 2] € h¥}, 1 (X).

The computation of the principal symbol follows by continuity from 7*X° as in [Vas3,
Lemma 2.§] O
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For the next result we fix a Riemannian metric on X with respect to which all
adjoints are taken. In particular, (hD,)* = hD, + h Diff} (X).

Lemma 3.7. Let A € \Ifgfh(X) have compact support in U, and suppose that a =
ob.n(A) is real valued. Then there exist

By e U H(X), By e ¥, (X)
with oy, p(By) = 20,a and oy, (By) = 20.a, such that
(/D) [(hD.)*hD,, A] = (hD,)* Bo(hD.) + (hD,) B, + hR,
where R € Diff}, \I/Zf,jl(X).

Proof. First, compute
i[((hDy)*hD,, Al = i(hD,)*[hD,, A] — ilhD,, A*|*(hD,)
= h(hD.)*(Ag + A5)(hDy) + h ((hD,)" Ay + AT (hD,)),

modulo h Diff}, \I/Z:’,jl(X), where according to Lemma 3.6,
Ub,h(AO) = a,a, O'b7h(A1) = 83666.
Here we used that A = A* + h\I/{)’f;I(X). In particular, oy, ,(Ag + Af) = 20,a. We then

write
A;(hD,) = (hD,)*A; + hDiff, ¥y, ,(X)
according to Lemma 3.6. Therefore,

with BQ = AQ + AS and B1 = Al. ]

3.4. Wavefront set and ellipticity. In this section X continues to denote a smooth
manifold with boundary. There is an operator wavefront set for elements of Wy, ,(X),
which is naturally a subset of the fiber-radial compactification PT*X. As usual,
WEFy ,(A) can be defined locally as the essential support of the total symbol a of
A € UL ,(X). Here the notion of essential support takes into account the conormal
behavior of a: gy ¢ esssupp(a) if there is a neighborhood of ¢ in PT*X where a lies
in h*S,2(°T*X). If a € S*(PT*X), this automatically implies that a is locally in
h*> S, > (PT*X) near q. The operator wavefront set satisfies the usual relations

WFb’h(AB) C WFb,h(A) N WFbJL(B),

3.10
WFy (A + B) C WFy,(A) UWF, . (B). (3.10)

We write WP%P(X) for the subalgebra of operators whose wavefront sets are a compact
subset of "T*X C PT*X, and similarly for Wi%" (X).
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Ellipticity is also defined as usual. For instance, fix a norm || on the fibers on *T* X,
and then set (¢) = (1 + |¢|*)"/2. We say that A € U, (X) is elliptic at gy € PT*X if
for some hg > 0

Q)" lova(A)(z,¢) >0

for h € (0, hy) in a neighborhood of gy = (29, p). The set of elliptic points is denoted
ell,(A). The standard symbolic procedure for elliptic symbols allows one to construct
microlocal elliptic parametrices: if A € ¥§_,(X) and B € Wi , (X) satisfy WEy, ,(A) C
ell,(B), then there is @ € Wy_}'(X) such that

A—-QBe ™V 5 (X), A-BQeh ¥ 2 (X). (3.11)
Of course if A, B € U}, ;(X), then both @ and the residual terms in (3.11) can be
chosen in Wy, ,(X).

A simple adaptation of [Vas3, Lemmas 3.2, 3.4] shows that each A € ¥} , (X) defines
a uniformly bounded map

A H (X) = Hy(X), (3.12)
where ﬁ,lL(X ) is the space of extendible distributions in the sense of [Horl, Appendix
B.2]. The same is true if Fi(X ) is replaced by H 1(X), the space of distributions

supported on X, again in the sense of [Horl, Appendix B.2]. By duality, A is uniformly
bounded on E;I(X) and H; '(X) as well.

Lemma 3.8. Fach A € W}, (X) is uniformly bounded A : ﬁ,lz(X) — L*(X).

Proof. By a microlocal partition of unity we can assume that WF}, 5 (A) is contained
in the elliptic set of some vector field B (we can take B = hW for some W € V},(X)).
Thus A = @B + R for a parametrix Q € ¥y, ,(X), where R € h* W > (X). Hence

[Aull> < C|[Bul|L> + Oh)[ul| 2 < Cllullz
since B € Diff (X). O
It will also be convenient to have a wavefront set for operators
A € Diff}, U, (X) + Wi, (X).
For this, we define
WEE, (A)F = J{elly(B) : B € W) ,(X) and BA € h™ Diff} W, 5°(X) + h™W, % (X)}.
If A e Ui, (X), then WFﬁh(A) = WFy ,(A) for all £ € N. Consider a concrete

representation

A=>"P;A; € Diff} U1, (X)

where P; € Difff (X). In that case, if WFy,,(A;) C U for some U, then WFﬁ7h(A) cU
as well. In fact, the only reason we choose to introduce WFﬁvh(A) is to bound certain
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quadratic forms. For this, we use the following observation: if F' € U}, ,(X) satisfies
WFy,,(F) N WFy ,(A) = 0 with A as above, then FA € h™ Diff} W, 5°(X).

Lemma 3.9. If A € Diff; ¥} ,(X) and G € ¥} ,(X) satisfy WF}, ,(A) C elly(G), then
|(Au, u)| < Cl|Gullz + O(R>)|ullfn (3.13)

for each uw € H}(X), where the left hand side of (3.13) is the pairing of Au € H, '(X)
with w € H(X).

Proof. Choose B € ¥} ,,(X) such that
WEy,(B) C elly(G), WFy,,(1 — B)NWF; ,(A) = 0.

Therefore A = BA + h> Diff7 W (X). We can then choose a decomposition

BA =" BQ;Q;A;; + h> Diff; ¥ 5°(X),

0]
where Q;, Q’; € Diff, (X), and A;; € Wy (X)) satisfies WFy, ,(Aj;) C ell,(G). Therefore

[(Au,u)] <Y Q5 Ayu, Q3B u)| + Oh)||ull3n < CllGul3 + O™ |ullfy
]

as desired. O

3.5. b-Calculus relative to an interior hypersurface. In this section we depart
from the setting of manifolds with boundary, and instead consider a boundaryless
manifold X with a distinguished hypersurface Y C X. For simplicity of exposition,
we will work under the geometric assumption that Y is oriented, and that Y divides
X into two manifolds with boundaries,

X=X, UX_,

each of which satisfies Y = 0X.; the orientation is chosen so that X, is the positive
side. In fact, all of our uses of this calculus will be local near a single point in Y, so
neither the hypothesis of orientation nor that of bounding two components plays any
role here: both are always true locally.

The space W7, (X, Y) of b-pseudodifferential operators (or W, (X,Y), with conor-
mal coefficients) relative to YV is defined in analogy with boundary case discussed in
Section 3.2. For instance, to define residual operators h*™*W, % (X,Y’), the stretched
product X7 is replaced by the blow-up [X?; Y?]. The condition of vanishing to infinite
order at the side faces is then replaced by requiring the kernel to be supported on the
lift of X2 U X2.
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In the case of smooth coefficients, we must impose an additional condition to ensure
that the residual operators preserve H}(X). If R € h>U, 5°(X,Y), then by restriction
R defines two operators Ry € h®W¥, 7°(X,), and the action of R on C*(X) is given by

R=e;Ryri +e_R_r_,

where 74 : C®°(X) — C*(X4) are the restriction maps, and ey is extension by zero
from X4 to X. A priori R does not preserve C*(X). On the other hand, if we further
require that the normal operators N(R.)(0) agree along Y, then R maps C>(X) into
piecewise continuous functions with smooth restrictions to X ; this implies that R is
uniformly bounded on H}(X) and H, '(X) by duality (cf. the discussion preceding
[DHUV, Lemma 4.1)). We thus always assume this matching condition for residual
operators with smooth coefficients (observe that this is meaningless for operators with
conormal coefficients).

The symbol classes ST (PT*(X,Y)) and S(PT*(X,Y)) are defined in the obvious
way, replacing the usual b-cotangent bundle by the relative space ®T*(X,Y") discussed
in Section 3.1. The quantization procedure (3.5) does not need modification, and hence
Definition 3.2 goes through verbatim. In particular, if a € S7(°T*(X,Y)) is a smooth
b-symbol, then Opy, (@) automatically has matching normal operators.

Properties of ‘II{D"Q,L(X ,Y') are largely analogous to those in the boundary case. If X
is compact then each W} ,(X,Y) is uniformly bounded on Hj(X) for s € {—1,0,1},
cf. [DHUV, Lemma 4.1]. In the case of conormal coefficients, we still have uniform
boundedness on L*(X).

Similarly, we can define Diff} W, ,(X,Y) to consist of locally finite sums Y. PiA;,
where P; € Difff(X) and A; € Uy, ,(X,Y).

Finally, we define the wavefront set of a family v = wu(h) which is h-tempered in
Hj;(X). Here, we will only consider the cases s € {—1,0,1}. Wesay that g0 ¢ WEF}, (u)
if there exists A € Wy, (X) which is elliptic at gy and

When s = 0 it suffices to test within the larger class of operators A € ¥)_,(X), and
we also abbreviate WY ;, (u) = WFgZ(u) The action of b-pseudodifferential operators
is then semiclassically pseudolocal in the sense that

WFEZZ(AU) C WFZ’;L (U) N WFb’h(A).

In fact, the following result shows that for our purposes, the distinction between
WF, (u) and WEY ,, is irrelevant; the operator P is as in Section 1.1.

Lemma 3.10. If u is h-tempered in H}(X), then
WE (1) = WEFY, ), (u) UWF, " (Pu).
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Proof. The inclusion WFY ;, (u) U WF, V' (Pu) C WF ig(u) is obvious. The converse
inclusion follows directly from Lemma 5.4, proved in Section 5.1 below. 0J

4. BICHARACTERISTICS

4.1. The characteristic set. We return to the setting of Section 1.1: (X,g) is a
smooth n dimensional Riemannian manifold with a distinguished hypersurface Y C X,
and

P=hA,+V
where V € I'717%(Y) for some o > 0. In particular, we can consider multiplication
by V' as a b-pseudodifferential operator

Vel (X,Y).
Since Y is fixed, for ease of notation we write "7 X instead of the more precise
PTH(X,Y).
Given a point yy € Y, we can find a coordinate patch U > yo equipped with geodesic

normal coordinates (z,y) with respect to ¢g. In particular, Y NY = {x = 0}. In these
coordinates the metric is given by

g = da* + k(z,y, dy),

where z — k(x,-) is family of metrics on Y depending smoothly on the parameter x.
Therefore
P = (hD,)*(hD,) + h* A +V,

where (hD,)* is the adjoint of hD, with respect to the metric density. If (x,y, £, n) are
the corresponding canonical coordinates on T X, then the principal symbol is given
by
p =&+ knm; + V.

We also set

P=0nA,+V (4.1)
with principal symbol

p=FkInm +V.
Denote the characteristic set of P by ¥ = {p = 0} C T*X. The compressed charac-
teristic set is then defined by

»=7(X) C PT*X,

where m : T*X — PT*X is the usual map. We equip 3 with the subspace topology
inherited as a subset of PT* X (in particular, 3 is locally compact and metrizable). Note
that ¥ is compact in the fiber variables: if K C X is compact, then so is ¥NT;X. In
particular, the restriction of 7 to X is proper.
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We decompose the fiber-radial compactification PT*X into the elliptic, hyperbolic,
and glancing regions, denoted by £, H, G, respectively:

E={qc€ bT*X 7 Hg)NE =0},
G={qe’TX |7 (g)nx| =1}, (4.2)
H={qe’TX: |t (¢)nX|>2}.

Here | - | refers to the cardinality of a set. Since the restriction of m to T%(X \ Y) is
1 —1, it is clear that H C PT¢:X N'Y. Furthermore, if 7%(X \ V) is identified with its
image under 7, any point ¢ € T*(X \ Y) is either in £ or G, depending on whether
q & X or g € 3, respectively. Over a normal coordinate patch U, the glancing region
is given by

GNPT X ={xr =0, p=0} CT*Y C "T} X.

Likewise H N PT}; X consists of those points ¢ € T*Y C PT3 X for which p(q) < 0.

4.2. Hamilton flow. Formally, the Hamilton vector field of p on T*X in normal
coordinates is given by

Hp = 25855 + Qkijnjayi - ((aﬂck”) 175 + &CV) 65 - ((ayz kjk) N5k + 6yiv) aﬂw

where Einstein summation is implied. This is a smooth vector field away from 77 X, but
in general only possesses C2~! coefficients due to the 9; component. Of course if o > 2,
then H, has C' (hence Lipschitz continuous) components, where the existence and
uniqueness of solutions to Hamilton’s equations are classical. Under the assumption
that a > 0, we define integral curves in the following sense:

Definition 4.1. If I C R is an interval, we say that an absolutely continuous map
v : I — T*X is an integral curve of H,, if

3(5) = Hy(a(5)) (1.3

for almost every s € I. Such a curve is called a bicharacteristic.

Implicit in this definition is that H, o «y itself has measurable, locally integrable
components. For general o > 0, there is no reason to expect existence, let alone
uniqueness, of integral curves through an arbitrary point ¢y € 7y X.

On the other hand, near a point gy = (0, Yo, £, 70) With £ # 0, we can convert (4.3)
into an equation to which the Carathéodory existence and uniqueness theorem applies.
More generally, consider a vector field

F= ZFjaZj
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on an open set D C R7" with arbitrary real coefficients. Generalizing Definition 4.1,
we say that an absolutely continuous map ~: I — D is an integral curve of F' if

d

ds

for almost every s € I. The following lemma is a variation of [DHUV, Lemma 3.1];

(s) = F(y(s)) (4.4)

when applied to F' = H,, it allows us to treat the whole range of parameters o > 0,
whereas the given reference would only be valid for a > 1.

Lemma 4.2. Let 2 = (21,2') € R x R™ 1 with a corresponding decomposition F =
(F1,F') : R™ — R x R™™1. Assume that

D= le X Oz/,

where J C R is an interval and O C R™ L. Suppose that F, is continuous and
nonvanishing, and F' satisfies the following properties on D.

(1) F' is measurable in z for all 2’, and continuous in 2’ for almost every z.

(2) There exists m € L*(J;R;) such that |F'(z)| < m(z).

(3) There exists k € L*(J;R,) such that |F'(z1,2") — F'(z1,y)| < k(z1)|2’ — /|
Given zy € D, there exists € > 0 and a unique integral curve v : [—e,e] — D such that
7(0) = zo.

Furthermore, suppose that F' is continuous. If § > 0 is sufficiently small and |z —
20| < 0, then there is a unique integral curve

&) . [—¢,e] = D

satisfying Y (0) = z, and v*) — ~0) uniformly on [—¢,¢] as z — 2.

Proof. To avoid notational confusion, we reserve
m:RxR"™! SR, 7 :RxR™! 5 R

for projections onto the first and second factors, respectively. Suppose that v is an
integral curve of F'. Since F} is continuous and nonvanishing, the map s — (m 0y)(s)
has an absolutely continuous (and in fact C') inverse S = S(t). Define the time

dependent vector field G = (G, G’) by
Gi(t,s,2") =1/F(t,2"), G'(t,s,2)=F'(t,2')/Fi(t, 7).
Then the curve I'(t) = (S(t), (7’ 0o y)(S(t))) satisfies the equation

d
ZT(t) = G(t,T(1)). (4.5)
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This process can be reversed as well, in the sense that from an absolutely continuous
solution I'(¢) of (4.5) we can recover a solution 7(s) of (4.4) by setting

1(s) = (T(s), (7" o I)(T(5))), (4.6)
where T' = T'(s) is the inverse of t — (m o I')(%).

The equation (4.5) is well-posed in the sense of Carathéodory [CL, Theorems 1.1].
Thus, given (z1,2') € D, there exists ¢ > 0 and a unique integral curve

FI[21—€0,21+€0]%D

such that I'(z) = (0, /). Passing to a curve 7 as in (4.6), we obtain a unique integral
curve of F satisfying v(0) = (z1, 2’) on a suitable interval [—¢, €].

If F’ is continuous in its arguments, then solutions to (4.4) (which are unique by the
argument above) depend continuously on the initial data [CL, Theorem 4.2], which
implies the second point. [l

Lemma 4.2 applies directly to the equation (4.3) in a neighborhood of the hyperbolic
region.

Lemma 4.3. Let a > 0. Given wy € m ' (H), there exists € > 0 and a unique integral
curve 7y : (—e,e) = 3 of H, such that v(0) = wy. Furthermore, if a > 1, then the flow

(s,w) — exp(sH,)(w)

exists and is continuous in a neighborhood of (0, )

Proof. Apply Lemma 4.2 to F' = H,, with the splitting of variables z; = = and 2’ =
(y,&,m). Since F} = 2¢, it is continuous and nonvanishing in a small neighborhood of
Go- The hypotheses on the remaining components of F' follows from Lemma 2.2 and
(2.6). It remains to shows that y((—e,e)) C X. If  # 0, then Hy,p = 0. On the other
hand,

z(y(s)) # 0 for s € (=¢,) \ 0,
since, by our assumption that wy € 7 *(H), Fi = Hyz # 0. Thus p o v is locally
constant on (—¢, )\ 0, which completes the proof since po~y is continuous and p((0)) =
0.

Now suppose that a > 1, in which case the properties of the flow in (s,q) follow
from the second part of Lemma 4.2. O

Remark 4.4. For o < 2, uniqueness of bicharacteristics can certainly fail in the glanc-
ing region, notwithstanding the special structure of Hamilton’s equations. Consider
for instance the symbol

p=(€+n?) —1—4z*?
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on T*R?. The Hamilton vector field is
H, = 2€0, + 6(sgnz)|z|/%0; + 2n0,.

Clearly (z = 0, = 0,y = 2s,n7 = 1) is a null bicharacteristic. But on the other
hand, so is (z = s%,£ = 2s3,y = 2s,n7 = 1). This example exhibits the possibility of
bicharacteristics sticking to the interface Y for arbitrarily long times before detaching
(cf. [HW] for further related examples of non-uniqueness of geodesics).

4.3. Generalized broken bicharacteristics. We now define the generalized bro-
ken bicharacteristic flow as initially introduced by Melrose-Sjostrand [MS1]; cf. [Leb],
[Vas3].

Definition 4.5. A function f on 7*X is m-invariant if f(w;) = f(wy) whenever
m(wy) = 7(wy).

Any 7-invariant function f induces a function on P7*X, denoted by fr. A rich class
of m-invariant functions are those of the form 7* F', where F is a function on *7*X. In
that case F' = (7*F),. If f is m-invariant, then in local coordinates (x,y,&,n) on T* X,

§ f(0,9,8,n)

is constant for every fixed (y, 7).

Lemma 4.6. Let o > 0. If f € CY(T*X) is m-invariant, then H,f admits a continuous
extension to T*X.

Proof. The only obstruction to proving the lemma is the term —(9,V)0¢f. On the
other hand, since f is m-invariant, £ — f(0,y,£,n) is constant. Now O f exists and
vanishes along 73X, and hence ¢ f € 2C°(T*X). Therefore (0,V)0¢f = (20,V)F,
where ' € C%(T*X), and this latter term vanishes along Ty X by Lemma 2.3. O

We now recall the definition of generalized broken bicharacteristics as given in [Vas2].

Definition 4.7. If I C R is an interval, we say that a continuous map v : [ — S is a
generalized broken bicharacteristic (GBB) if for each sy € I and f € C*°(T*X) which
is m-invariant,

i ing 470(8) = fx(v(s0))

S—rS0 S — SO

> inf{(Hyf)(@) : (@) = v(s0), @ € X} (4.7)
If s is an endpoint of I, the left hand side of (4.7) is meant in the one-sided sense.

Note that in the case at hand, the infimum on the right hand side is in fact a
minimum over at most two values.

This is of course the same as saying that both lower Dini derivatives Dy (fr o 7)(so)
are no smaller than the right hand side of (4.7). Definition 4.7 makes it clear that
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GBBs can be concatenated: if v : (sg,51] — X and 7' : [sy,52) — X are two GBBs
with v(s1) = 7/(s1), then we can define a GBB on (s, s2) that restricts to v on (so, s1]
and 7' on [s1, $2). This concise definition can be recast more concretely, as in work of
Lebeau [Leb]:

Lemma 4.8. If I C R and v : I — X is a continuous map, then the following are
equivalent.

(1) v is a GBB in the sense of Definition J.7.
(2) The following two conditions are satisfied for each sy € I.
(a) If qo = v(s0) € G, then for each f € C>°(T*X) which is m-invariant,

d
ds

where wy € X is the unique point for which m(wy) = qo.

(fx 0 7)(s0) = (Hpf)(w0), (4.8)

(b) If go = v(so0) € H, then there exists € > 0 such that 0 < |s—sg| < € implies
that x(y(s)) # 0.

(3) For each sy € I there exist unique wy € 3 such that m(wy) = v(so) and for all
m-invariant f,
d
75 Sro7)x(s0) = (Hpf) (). (4.9)
Proof. (1) = (2): Let v : I — ¥ be a GBB and s, € I. First assume that gy =
v(s0) € G, in which case 77({qo}) consists of a single point w@y. Applying (4.7) to
f and —f shows that (4.8) holds. If ¢y € H instead, apply (4.7) to the m-invariant
function

f=x=7"0.
Then H,f = 2¢% along 7 !(H), so the infimum on the right hand side of (4.7) is
positive for ¢y € H. On the other hand f;(7(s¢)) = 0, so o(y(s)) # 0 for small but

nonzero values of |s — so|. Since 7 takes values in X, this implies that z((s)) # 0 as
well.

(2) = (3): By definition this implication is clear for v(s¢) € G, so we may assume
that v(sg) € H, and that so = 0. By hypothesis,

z(y(s)) # 0 and y(s) € G for s € [—¢,¢] \ 0,

thus we can view 7 : (0,e] — X. In particular, £(v(s)) = £(p(v(s)))/? for one choice
of sign, and since p is m-invariant, the limit £, = lim, g+ £(7(s)) exists. We then set
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Similarly, we can construct w_, and it is easy to check that (4.9) holds. The choices of
&4+ are unique, since they are recovered by applying (4.9) to the m-invariant function
x.

(3) = (1): The condition (4.9) shows that the left hand side of (4.7) is equal to
the minimum of (H,f)(w.), which is clearly bigger than or equal to the infimum on
the right hand side of (4.7). O

Suppose that ¢g € H. In view of Lemma 4.8, we can construct a backward GBB
on some (—¢,0] by solving (4.3) with a choice of initial data in 7~!({go}) and then
projecting to ¥ by ; the same construction works in the forward direction. Conversely,
any GBB through a point ¢y € H is locally obtained by concatenating two solutions
of (4.3) projected to .

If f is w-invariant, then f, o~y is Lipschitz on I. This follows from the fact that f;o~y
has uniformly bounded one sided derivatives at each s € I by Lemma 4.8. Therefore

|[(fr 0 7)(s1) = (fr 07)(s2)] < sup{[H,f(@)] : m(w) € y(1)} - [s1 = s,

so fr o~ is in fact Lipschitz on I with a constant independent of ~ provided we
assume that v takes values in a fixed compact set K (cf. [Vas3, Corollary 5.3] and
[Leb, Corollary 2]).

Furthermore, suppose that U is an adapted coordinate patch, so that PT5X is
equipped with the Euclidean distance induced by the coordinates (z,y,o,n). If
is any GBB with values in a fixed compact set K C T35 X, we conclude that

[7(s1) = (s2)| < Llsy — so (4.10)

for a constant L > 0 depending only on K. Using these observations, one deduces
some important topological information about the set of all GBBs. For a proof of the
following proposition, the reader is referred to [Vasl, Proposition 5.4 and Corollary
5.6].

Proposition 4.9. Given a compact set K C 'Y and a compact interval [a,b] C R, let
R={y:[a,b] - K :~v is a GBB}.

If R # 0, then R is compact with respect to the topology of uniform convergence.
Furthermore, if v : (a,b) — 3 is a GBB, then 7 extends to a GBB on [a, b].

For a closely related result, see Lemma 5.18.

Lemma 4.10. Let U C X be open and precompact, and K C U be compact. There
exists €9 > 0 such that if vy is any GBB defined on [—¢, ] with e € (0,e0) and v(0) € K,
then y([e,e]) C U.
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Proof. It suffices to prove the result with [0,¢] and [—¢, 0] replacing [—¢, ]. We argue
by contradiction. Fix U’ O K open with closure in U; we may thus assume that
d(U’,0U) > ¢ for some ¢y. If the result does not hold, then we may choose a positive
decreasing sequence s, — 0 and GBBs 7, : [0,s,] — U such that 7,(s,) € OU and
Yn(Sny1) € U'. In particular,

d(’Yn(Sn)a ’Yn(sn—i-l)) > Co

uniformly in n. Let ¢,¢ denote subsequential limits of 7, (s,), Vn(Snt1), respectively;
it follows that ¢ # ¢’. On the other hand, if f € C* is w-invariant, then

[ (m(sn)) = fr(yn(sni1))] < L(|sn| + [sn41])

where L is independent of n. Since functions of the form f, separate points, this
implies that ¢ = ¢/, which is a contradiction. O

We close this section with a brief description of the phenomenology allowed by the
results above. Fix a > 1, so that solutions to Hamilton’s equations exist. A bicharac-
teristic curve arriving transversely at Y (hence at a point in H) can be continued in just
one way across the interface as a bicharacteristic curve. By contrast, the continuous
trajectory in X obtained by flipping the sign of the normal momentum at the moment
of impact is also the image of a GBB; these two curves are the only possible contin-
uations of the incident bicharacteristic as a GBB, with the latter being “diffractive”
in the heuristic terminology of the introduction. A bicharacteristic arriving tangent
to Y, hence in G, may, if o < 2, stick to YV thereafter (and possibly re-release in a
tangent direction at some later point). If @ > 2, uniqueness of bicharacteristics rules
out this sticking at a point of simple tangency: the bicharacteristic brushes past Y

and continues on its way. By contrast, the sticking behavior is always possible for a
GBB.

5. PROPAGATION OF SINGULARITIES ALONG GBBs

Throughout this section we assume that o > 0. We continue to write P77 X instead
of PT*(X,Y), and also abbreviate wpy, = Ui (X, Y). To simplify various statements,
assume that X is compact; as usual this is inessential.

5.1. The elliptic region. We will begin by studying the elliptic region. The main
result here is the following:

Proposition 5.1. If A,G € V), satisfy WFy, 5 (A) C elly(G) and WFy, 5 (A) N =0,
then
[Aullgy < ClGPull g + OX)[|ullm;

for each u € H(X).
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An immediate consequence of Proposition 5.1 is microlocal b-elliptic regularity, in
the semiclassical sense.

Proposition 5.2. If u is h-tempered in H}(X), then WFéZ(U) C WF;};’"(PU) U for
each r € RU {+o0}.

Since this is just ordinary elliptic regularity away from Y, we will henceforth assume
that all pseudodifferential operators have compact support in a normal coordinate chart
U. We begin by giving a simple microlocal estimate for the Dirichlet form associated
with the operator P.

Lemma 5.3. If A,G € W}, satisfy WFy,,(A) C elly(G), then
/ B2\dAuf? + V| Au? dg < C= | GPulf,
X h
+ ell Al + ChIGul + O ully,
for each u € H}(X) and € > 0.

Proof. By Green’s formula, if v € H} (X), then
/ W?|dv|2 + V|v|* dg = (Pv,v),
b
where the right hand side is the pairing of H, '(X) with H} (X) induced by the volume
density. Applying this to v = Au € H}(X), it remains to estimate
(PAu, Au) = (APu, Au) + ([P, Alu, Au) . (5.1)
The first term on the right hand side of (5.1) is simply bounded by Cauchy—Schwarz,
[ (APu, Au) | < (1/4)eH|APul[f -+ + el Aull 7 (5.2)
h
Since WFy, 5, (A4) C ell,(G), we can use microlocal ellipticity to estimate || APul| a-t by

||GPu||H;1 + O(h™) ||Pu||H;1 on the right hand side of (5.2); we may of course further

estimate ||Pu||H;1 < Cllullg. As for the commutator, WEFL ([P, A]) € WEFy,(A),
and therefore by Lemma 3.9,

([P, Alu, A} | < Ch|[Gull% + Oh)|ul%:.
This completes the proof. O
Before proving Proposition 5.1 we record a corollary of Lemma 5.3 that will be

important when studying the hyperbolic region. Since V € L>*(X), by choosing £ > 0
sufficiently small in Lemma 5.3 we can estimate

[Aullgy < ClGPully - + Chl|Gullgy + Col|Aul| 2 + O) lullgy, (5.3)

where crucially Cy > 0 is independent of A. The remainder can also be improved, at
the cost of losing control of Cy:
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Lemma 5.4. If A,G € W}, satisfy WFy,,(A) C elly(G), then

[Aullgy < ClGPull g + CllGullr2 + O(h)]Jull -
for each u € H}(X).

Proof. The proof follows by inductively showing that for each £ € N and v € H} (X)),
and for every A, G satisfying the hypotheses of the lemma,

[Au]l gy < CIGPu] - + CllGullr2 + CHH||Gull g + OB Jullzy.  (5.4)
Now (5.4) holds for £ =1 by using (5.3) and then estimating
[Aul[r2 < Cl|Gull2 + OhT) [[ul| 2. (5.5)

In the inductive step, assume that (5.4) holds for kK = s. Apply (5.4), replacing G with
A’ satisfying WFy, ,(A) C ell,(A") and WF,(A’) C ell,(G) to obtain

[Au]| gy < C A Pull g1 + CllA'ull 2 + Ch[| A" gy + O(h™) |7 (5.6)
Likewise, replacing A with A" in our inductive assumption gives
AUy < CIGPullg-1 + CllGullze + Ch|Gull gy + O(h*°)|Jull7, (5.7)

Then substitute (5.7) into the [[A'ul[y term on the right hand side of (5.6); the
remaining A’ terms on the right are estimated by the corresponding terms with G by
elliptic regularity as in (5.5) (recall that the b-calculus is bounded on H;™' as well as
L?); this completes the inductive step. 0]

Note that the complement of 3 within PT*X is the union of PT*X \ PT*X with &.
We begin by studying regularity on the former of these sets.

Lemma 5.5. If A € W), has compact support in {|z| < 6/V/2}, where § > 0 satisfies
V| < 367%° (5.8)
in a neighborhood of WFy,(A), and G € WY ,, satisfies ell,(A) C WFy, ,(G), then
[Aullgy < CINGPull g + OR) [l 1y
for each u € H}(X).

Proof. Since A is assumed to have compact support in {|z| < §/v/2},

/5‘2|(th$)Au|2+V|Au|2dg§/ 12| d Auf® + V| Auf? dg. (5.9)
X X

In view of (5.8), we can choose B, F' € W}, (X,Y), where WF}, ,(A) C ell,(B), such
that
WFy, (6 2(haD,)*(haD,) + V) — (B*B + hF)) N WFy, ,(A) = 0.



SEMICLASSICAL DIFFRACTION BY CONORMAL POTENTIAL SINGULARITIES 39

Now integrate by parts in x to write the left hand side of (5.9) as
/ 6 2|he D, Aul? + V| Au|* dg = || BAu||32 + h (F Au, Au) + O(h>)|ul|3-.
b
In particular, this implies that

/ 1n?|dAul? dg + || BAul|7. < / h%|dAu|* + V| Aul? dg
X X
+ || F Aul 2 || Aul| 2 + O(h%)||ul)32.

Since B is elliptic on WF}, ,(A), the left hand side of the inequality above controls
| Au||3,1, whereas by Lemma 5.3 the right hand side is controlled by
h
Cs||GPuH?{}?1 + (Ce™! + Ch)HAuH?{é + ChHGuH?{é + O(hOO)HuH?i}L.
Here we used Lemma 3.8 to bound the operator norm of F € Wy, (X,Y). Thus for

¢ > 0 sufficiently small we can absorb the second term on the right hand side into the
left hand side.

This establishes the result but with an extra term Ch||Gu/|3,, on the right hand side.
h
We now eliminate this term iteratively, just as in the proof of Lemma 5.4. O

Lemma 5.5 will also prove useful later in Section 7.4. The next step is to consider
A € ¥, with wavefront set in a neighborhood of g € £.

Lemma 5.6. Let gy € €. There exists A € Wy, with qo € ell,(A), such that if G € ¥},
satisfies WEy, ,(A) C ell,(G), then

[Aul|my < CllGPull g+ + Oh™)|ullm;
for each u € H}(X).

Proof. If WF}, ,(A) is a sufficiently small neighborhood of ¢, then there exists ¢y > 0
such that

(1 —co)k"nm; +V >0 (5.10)
near WF} ,(A). As in the proof of Lemma 5.5, we can choose B, F € ¥y ,(X,Y),
where WF}, 5,(A) C ell,(B), such that

WFy,((1 — c0)k” (hDy)(hDyi) + V) — (B*B + hF)) N WFy, 5 (A) = 0.

Integrating by parts in y, it follows that
/ ((hD) Aul? + ek (hDys Au) (RDyy At) + | BAu dg
b's

< 0/ R*|dAu)?* + V| Aul? dg + h (F Au, Au) + O(h*)||ul|7-.
X
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which completes the proof as above, since the left hand side controls a multiple of
[ Aul,. 0

Proposition 5.1 follows by combining Lemmas 5.5, 5.6 with a microlocal partition of
unity argument.

5.2. The hyperbolic region. Since # is a compact subset of PT* X it suffices to
work with pseudodifferential operators that are both compactly supported in a normal
coordinate patch U and compactly microlocalized. Let qo € H. If (z,y,0,n) are local
coordinates near ¢y, then

do = (07 Yo, 07 nO)a
where p(qo) < 0.

Proposition 5.7. Suppose that u is h-tempered in H} (X) and qy ¢ WF;}L’HI(PU),
where r € RU {+oc}. If qo has a neighborhood U C S such that

UNWFy; (u)n{o <0} =0,
then qo ¢ WFIIDZ(U)

Combined with b-elliptic regularity, this proposition implies that if
G € WF, () \WF ;" (Pu),

then ¢y is a limit point of WFéZ(u) NT*(X \Y). This in turns suffices to prove
propagation of singularities; see Section 5.4. The proposition is a restatement of the
following quantitative result.

Proposition 5.8. If G € W"," is elliptic at qo, then there exist Q, Q1 € W', where

WEL 1(Q) C ell,(G) and qo € ell(Q),
WFb,h(Ql) C ellb(G) N {O’ < O},

such that
1Qullgy < CLTY|GPull g1 + Cl|Quull g + O(h™)|ul

for each u € H(X).

Proposition 5.8 holds verbatim if we replace o with —o (corresponding to propaga-
tion in the backwards direction). We prove Proposition 5.8 by a positive commutator
argument, closely following [Vas3, Section 6]. Define the functions

1

2
, =0+ —-w.
B o=t

Here the parameters ¢, 8 € (0, 00) will be chosen later; § will be chosen small, while in

w=z|>+ |y —yol>+ |n—mo

this argument [ will ultimately be taken to be large.
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Observe that |W¢| < C(1 + 72571 )w?/2, where W € {0,, 20,,,,, 0, }. In particu-
lar, if f € C®°("T*X), and U is a neighborhood of gy with compact closure in PT* X,
then using Lemma 2.1 we find

10,0| + |Hpo| < Co(1 + 26 Hw!/? (5.11)

on U, where Cy > 0 does not depend on [3,d. Choose cutoff functions xg, xy1 with the
following properties:

e o is supported in [0, 00), with xo(s) = exp(—1/s) for s > 0.
e x; is supported in [0, 00), with x;1(s) =1 for s > 1, and x} > 0.

Now set
a=x0(2—0¢/0)x1(24c/9). (5.12)
For each fixed § > 0, the support of a is controlled by the parameter § > 0 as follows.

Lemma 5.9. Given a neighborhood U C PT*X of qo € H and 3 > 0, there exists
do > 0 such that suppa C U for each § € (0,dp).

Proof. Necessary conditions to lie in the support of a are ¢ < 26 and —26 < ¢. From
the definition of ¢,

o] <26, 0<w<B2(20 — o) <4p%6?

on suppa, i.e.,

suppa C {|o| < 26, w'/? < 286} (5.13)
Finally, observe that any neighborhood of U of ¢ contains a set of the form {|o| <
20, w'/? < 246} provided § is sufficiently small. O

If A € U™ has principal symbol a, the goal is to obtain negativity of the commu-
tator (i/h)[P, A*A]. This cannot be done symbolically within the b-calculus, since P
is merely an element of Diff; (for more motivational material, see [Vas3, Section 6]).
Using the expression for P and the notation of Lemma 3.7 and (4.1),

(i/h)[P, A*A] = By(hD,)*(hD,) + Bi(hD,) + (i/h)[P, A*A] + h Diff; Wpor®
= BoP — ByP + By(hD,) + (i/h)[P, A*A] + hDiff; Uyo® . (5.14)
where oy, ,(By) = 20,(a?) and oy, ;,(B1) = 20,(a?). The last term is a b-pseudodifferential
operator (with conormal coefficients) with principal symbol HPa?.

The symbols of the operators in (5.14) can be further decomposed, depending on
whether the various derivatives fall onto x or x; when a? is differentiated. Those terms
differentiating y; give rise to an term error supported on {—26 < o < —6, w'/? < 285},
whereas derivatives of yo will yield positivity. To this end, define

b=25""2(xtx0)"*x1, B = Op,(b). (5.15)
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Here we have suppressed the arguments of o, x1 as in (5.12).

Next, fix a neighborhood U, of ¢y with compact closure in PT*X such that p < 0
near Uy. Thus we can choose B € U2P such that

Uy C ellb(B), WFle(B*B + P) NU, = 0.

The operators A, B depend on 6, 3, whereas B does not. Finally, fix ag € (0, ) and
let # = min(1, ap) € (0,1]. According to Lemma 2.3 and (2.7),

120,V | < C|x|’
on U. We then have the following decomposition of [P, A*A]:
Lemma 5.10. Given 8 > 0, there exists 09 > 0 such that for each 6 € (0,dp),
(i/h)[P,A*A] = ByP — B*(B*B + Ry + (hD,)*R,)B + E + hR, (5.16)

where A, B, By, C are as above, and remaining operators in (5.16) have the following
properties:

e Ry € U0 and Ry € W)™ satisfy

|obn(R)| < CL((88)” + ),
where C7 > 0 does not depend on (3, 9.
e E,R € Diff; U3 4+ W2%P, and WF} ,(E) C {—20 < 0 < —6, w'/? < 2086}

The b-wavefront sets of Ry, Ry, R are contained in {|o| < 26, w/? < 235}

Proof. Throughout the proof, we will use the notation E, R to denote any operators
satisfying the hypotheses of the lemma; these may change from line to line. Fix a
cutoff 1 € C=("T*X;[0,1]) such that ¢ = 1 near {|o| < 26, w'/? < 236} with support
in {|o| < 36, w/? < 385}

(1) As in Lemma 5.9, given 5 > 0 we can choose dy > 0 so that WF}, ,(B) C U, for
d € (0,dp); without loss we can assume that 63 < 1. On the other hand,

ob,n(Bo) = =40 (Xox0)Xi + 40 x5 (Xix1)
= —b* +e. (5.17)
Since e is supported in {—20 < o < =4, w2 < 230}, if we denote its quantization by
E. then
~ByP = -B*B*BB + E + hR.
Here the error R arises since we have arranged equality at the level of principal symbols.

(2) Next, consider the term By(hD,). Since o, 4(B1) = —(0,¢)1b?, we can write
Bi(hD,) = B*Ry(hD,)B + hR,
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where according to (5.11) we can bound |oy, 4(R;)| < Co(1 + 7257 1)w/? on Uy for
some Cy > 0 independent of 3,6 (recall that Uy is chosen in the paragraph preceding
the lemma). Moreover, w'/? < 3534 on its support, so

lown(R1)| < 3Co(68+ 871

as desired.
(3) We split up (i/h)[P, A*A] = (i/h)[h*Ay, A*A] + (i/h)[V, A*A].  Temporarily
writing f = k“n;n;, the first term has principal symbol
Hja® = —(Hjo)ub” + e,
where suppe C {—20 < 0 < —6, w'/? < 236}. As above, we can write
(i/h)[h* Ay, A*A] = B*RyB + E + hR,
where according to (5.11) we can bound |oy, 1, (Rp)| < 3Co(68 + 7).
(4) Finally, consider (i/h)[V, A*A] with principal symbol
Hya® = —(Hy¢)pb” +e.
Now H} = (20,V)0, + (8,,V)0,, (with Einstein summation), so when bounding |H}, o)
we certainly have
(0, V)090] < Co(1+ 57207 )
by (5.11).
This does not hold when ¢ is differentiated in o. Instead, we bound |z0,V| <
Cllz|? < Clw??. Thus we can write
(i/h)[V,A*A] = B*R'B + E + hR,
where |0y, 1 (Ry)| < 3Co((86)+571)+3°C(85)? by the support properties of ¢. Letting
Ry = Rj, + R{ completes the proof of the lemma. O

Given v € H'(X), apply Lemma 5.10 to write
—(2/h) Im (APu, Au) = (i/h) ([A* A, Plu, u)
= ||BBul|?, 4+ (RoBu, Bu) + (R, Bu, (hD,) Bu)
— (Eu,u) + h (Ru,u) — (ByPu,u) ,

noting that A, B, B preserve H} (X) and By preserves H, '(X) (these operators all
have smooth coefficients).

First, we use the ellipticity of B on WFy,;,(B) and (5.3) to estimate
coll Bullfyy < 1BBullZz + CIGPull}, + + Chl|Gull3y + O(h™)ullz;. (5.18)

where ¢y > 0 independent of 3,0 so long as § € (0,dy), and where G is elliptic on
WEy, ,(B). We fix 8 once and for all using the following lemma:
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Lemma 5.11. Given € > 0, there exists B > 0 and 61 € (0,dq) such that
| (RoBu, Bu) | + | (RiBu, (hDy)Bu) | < el| Bull3; + O(h%)[ul/7.
for each 6 € (0,61) and u € HL(X).
Proof. We bound
[ R;v|[r2 < 2sup |onp(Ry)|[|v][r2 + O(R™)[[v]| 12
< 2C1((68)" + B vl z2 + O Jv]l 2,

where C'; > 0 does not depend on f,6. It suffices to first fix § > 0 sufficiently large,
and then take &; € (0,0y) sufficiently small. Applying this to v = Bu, along with
Cauchy—Schwarz, finishes the proof. O

Now suppose that G € W™ is elliptic on WFy, ,(B), and Q; € ¥y, is elliptic on
WE, 5 (E) with WE}, ,(Q1) C ell,(G) N{o < 0} as in the statement of Proposition 5.8.
Apply Lemma 5.11 by taking € = ¢o/2 (with ¢y defined by (5.18)). Combined with
(5.18),

(co/2)||Bullfyy < (2/h)(APu, Au)| + C||GPul[};+ + Chl|Gull3
+[(Bu, u)| + hl{Ru, u)| + [(BoPu, u)| + O(h™)||ull3

for § € (0,d;). Using Cauchy—Schwarz on the By term and estimating the F term by
()1 using microlocal elliptic regularity bounds the second line by

|{Eu,u)| + h|(Ru,u)| + [{ BoPu, u)|
< ChYGPul,- + ChlGull2y + ClQruly + O0)ul.
Since WF, 5, (A4) C ell,(G) as well, we can also estimate
(2/h)|[{APu, Au)| < Ce™'h™?|GPul[} - + Cel| Aull3y + O(h™)[|ullz;-
Hence overall we obtain
(co/Dl|Bullyy < C=" WGPl + Chl Gty + ClQuul
+ Cel|Aull3y + O () Jull3; -

By construction yo(s) = s*x4(s) for s > 0, so

a = (2 6/5)(xpxo) P = 59772 — 6/3)b.

Thus we can write A = F'B + hF" for some F, ' € ¥,";"". Choosing ¢ > 0 sufficiently
small gives the estimate

1Bullgy < ChH|GPull g1 + CllQuull gy + CHY2||Gull gy + O(h™) [l .

We now finish the proof of Proposition 5.8.
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Proof of Proposition 5.8. Let G be as in the statement of the proposition. Since ell,(G)
is open, choose 0, € (0, d;) such that

{lo| < 26,, w'/? < 266,} C elly(G).
Recall that ¢;, 8 are fixed in Lemma 5.11. Then, choose @, € W}, such that
{—20, <0 < =6, w/? <2B5,} Celly(Q1), WFypi(Q1) C WFy4(G).

Take a sequence of operators By € Wi corresponding to decreasing sequence of 0y,
in (04/2,0,). Then By is elliptic on WF}, j,(Bg1), s0

|1Brrrull gy < OB BePul| -1 + Cl|Quull gy + ChY2|| Byl gy + O(h%) |[ul|

for each k. Fix Q € W)™, elliptic at go, such that each By is elliptic on WEY, ,(Q).
By induction, we conclude that

1Qullz: < CR™HIGPul 1 + CllQuullp + CR*2(|Gul| gy + O(h™) [[ul my
for each k € N, which completes the proof. O

5.3. The glancing region. As before, we assume that all b-pseudodifferential oper-
ators are supported in a fixed normal coordinate patch U, and are compactly microlo-
calized. Before proceeding to the commutator argument, we need a variant of Lemma
5.4.

Lemma 5.12. Given 6 > 0, let Us = {q € "T;;X : [p| < 0}. If A,G € W)™ satisfy
WFb,h(A) C ellb(G) N U(;, then

/ WDy Aul? dg < Ch™ |G Pul[f, + + Chl|Gull7y + 20]| Aull72 + O(h*)[ulla;
X
for each u € H}(X).
Proof. Write |hdv|? = |hD,v|* 4+ k¥ (hDy,v)(hD,,v); now let v = Au and apply Lemma
5.3 with € = h to see that
/ |hD, Aul|* dg < —/(PAu)ﬂdg
X X
+ Ch™Y|GPul? St C’h||Gu||?{}1L + (9(h°°)||u||fq}1b
after integrating by parts in y. Choose F' € W, '}¥ such that
WFbﬁ(F + ﬁ) N WFbyh(A) = @, WFbﬁ(F) C Us
One can always choose F' such that with f = oy, ,(F),
sup | f| <.

Therefore we can bound

(Fv,v) < 2sup [f][[v]|Z> + O(=)|[vl[72 < 26][v]lz2 + O(R>)|v]|Le.
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Applying this to v = Au and using that WF}, ,(A) C ell,(G), we find that
/ WDy Aul* dg < Ch™Y|GPul[7 + 20| Aullz> + Ch||Gullyy + O(h™)||ull
b
for each v € H} (X). O

Define pg € C*(T*X) over the normal coordinate patch U by

ﬁO(za Y, ga 77) = kij(oa 9)771773 + V(07 y)

Given gy € GNT*Y, let wy denote the unique point in 3 such that m(wgy) = go. Recall
that a GBB passing through ¢y at s = sq is characterized by the equality

(e om)0) = (Hy)(w0)

for each f € C>°(T*X) which is 7m-invariant. On the other hand, since {(wg) = 0, it
follows that

(Hpf)(w0) = (Hpof) (w0)- (5.19)
Via the local coordinates (z,y, o,1), we can also view py as a function on T3 X. With

this identification, py can be considered as a function on "T* X, and the flow exp(ngU)
on PT*X makes sense.

As in Section 5.2, choose oy € (0,) and let # = min(1,ap) € (0,1]. Denote by
| - | the Euclidean distance on PT};X in local coordinates, and write B(go, ) for the
corresponding ball of radius € > 0.

Proposition 5.13. Suppose that u is h-tempered in H} (X) and qo ¢ WF;;TH(PU),
where r € RU{+o0}. Let K C GNT}~Y be compact. There exists Cy, 5y > 0 such
that for each § € (0,0¢) and qo € K, if

B(exp(—6H2 )(q0), Co6™ @) N WE," (u) = 0,
then qo ¢ WF}DZ(U)

Following [Vas3, Section 7|, define the set

D(qo,€) = {g € "T"X : |x(q) — x(q0)| + |y(q) — y(q0)| + In(q) — n(qo)| < €}.

In order to prove Proposition 5.13, it suffices to replace B with D, possibly modifying
Co. Indeed, WFéZ(u) C %, and on the compressed characteristic set |o| < Cy|x],
where C7 > 0 is uniform over compact subsets of X. Proposition 5.13 is then just a
restatement of the following result:

Proposition 5.14. Let K C G NI}~y Y be compact. There exist Cy,d9 > 0 such that
the following property holds for each ¢ € (0,d0) and qo € K. If G € W5} is elliptic
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at qo, then there exist Q, Q1 € W)™, where
WEL 1(Q) C ell,(G) and qo € ell(Q),
WE,(Q1) C elly(G) N D(exp(—6HE )(qo), Co6™ =)
such that
1Qullgy < ChHIGPull -+ + Cl|Quull iy + O(h™) [[ul
for each u € H(X).

Just as with the hyperbolic estimate, Proposition 5.8, we can also reverse the
direction of propagation here. Thus the same result holds verbatim if we replace
exp(—éHEO)(qO) with exp((SHgo)(qo).

The rest of this section will be a proof of Proposition 5.14. View pg as a function
on T*Y, and thus Hj, as a vector field on 7*Y. We may assume that dpo(qo) # 0 here
viewed as a covector on T*Y, as otherwise the result to be proved is vacuous. Then
there are 2n — 2 functions (pg, p1,. - -, pen—3) on T*Y | whose differentials are linearly
independent at ¢, such that

(H;ﬁopo)(qo) > 07 (Hﬁopj)(QO) = 0, p1 = ]50.

We also arrange that these functions all vanish at gy. Since it slightly simplifies matters,
we can in fact arrange that Hjz, = 0,, near ¢ and thus

Hsopo =1, Hppj=0forj=1,...,2n -3

identically. We extend (po, ..., pan_3) to functions on PT*X by requiring them to
independent of (z,0), so that (x, 0, p, ..., pan_3) are valid local coordinates on PT*X

near go. Now define
2n—3

Wy = Zp?, w:w0+x2.
j=1
In order to construct a commutant, let xo, x1 be as in Section 5.2. Define

¢:Po+%w~

We then set A = Op,,(a), where
a = Xo(2 = ¢/0)x1(1 + (po + 0)/(59)).

The difference compared with Section 5.2 is in the argument of y;. Indeed, there will
be an error term (the analogue of E in Lemma 5.10) with wavefront set contained in

{=08—6 < py < =6, w'/? < 285}
If C > 0 is sufficiently large, then this is certainly contained in the set
D(exp(—dHz, ) (a0), C59)
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and thus lies inside a set of the form D(exp(—dHj,)(qo), Cod??~9) if we choose 3 =
6279 (Note that this time, 8 € (0,00) will be taken to be small, rather than large
as in the hyperbolic propagation argument.)

We also need to consider the difference between HE and Hgo (now vector fields on
bT*X). Here,

IHPg — HE 6| < M (1+ 8720 w!/?) w2 (5.20)
locally, where M > 0 does not depend on 3, 0.

Remark 5.15. The construction of w above is meant to localize along GBBs through
¢o- Using the same local coordinates (po, ..., pan—3), we could also localize at nearby
points ¢ € GNT*Y by setting

2n—3

wo=>_lpj—pi(@)*.
j=1

if ¢ is sufficiently close to qo. If w and ¢ are defined in the obvious way, then the
constant M > 0 in (5.20) can then be taken uniform for ¢ near go. As will be clear
from the proof below, this implies uniformity of the constants Cj, dy in Proposition 5.13
in a neighborhood of go. Thus by compactness, we can simply assume that K = {qo}.

Now let b = 2672(x}x0)"/?*x1 and B = Op,,(B) as before, and write
(i/h)[P, A*A] = By(hD,)*(hD,) + B1(hD,) + (i/h) [p, AT Al + hDiff}% \I/;?]flp,

where oy, ;,(By) = 20,(a?) and o1, ,(B;) = 29,(a*). We then have the following analogue
of Lemma 5.10.

Lemma 5.16. There exists 69 > 0 such that for each § € (0,0y) and B € (0,1),
(i/h)[P,A"A] = B*(hD,R, + Ry — 1)B+ E + hR, (5.21)

where A, B are as above, and remaining operators in (5.16) have the following proper-
ties:

o Ry € Wy and Ry € \I’ff;:lp satisfy
|obn(Ro)| < C16°6°71, lopn(Ry)| < C1 871
where C7 > 0 does not depend on (3,0.
e B, R € Diff; W), + Uy, and
WEF; L (E) C{=6—68 < py < —6, w < 280}
The wavefront sets of Ro, Ry, R are contained in {|po| < 29, w < 250}
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Proof. As in the proof of Lemma 5.10, we use the notation F, R to denote any operators
satisfying the hypotheses of the lemma; these may change from line to line. Fix a cutoff
Y € C®(PT*X;[0,1]) such that ¢ = 1 near {|py| < 26, w/? < 24§} with support in
{|po| < 30, w'/? < 336}.

(1) First, following the notation of (5.14), consider the term By(hD,)*(hD,). Since
a is independent of o, it follows that oy, ,(By) = 0 and hence By € h\I/Cb?,Tp (X,Y). Thus
Bo(hD,)*(hD,) is part of the error hR.

(2) Now consider By(hD,), where o, ,(B1) = —(0,¢)¥b*. Since 0,0 = 28726 'z
and |z| < w!/? < 386 on supp ¥, we can write B, (hD,) = B*(hD,R,)B + hR; here

lown(R1)| < 28726 W2 <687

(3) Now we have dealt with the analogs of the first two terms in (5.14), and we
turn to the term (i/h)[P, A*A]. If By is an operator with principal symbol po, write
P = Py+ (P — F). The principal symbol of (i/h)[P — Py, A*A] is given by

HE_;, (a®) = (Hy_; )vb® +e.
In view of (5.20), we can write (i/h)[P — Py, A*A] = B*RyB + F + hR, where
o, (Ro)| < (3°M)8"5°(1+35871).
Thus Ry is as advertised, since § < 1.
(4) Finally, (i/h)[Py, A*A] has principal symbol
H]Ii,’o(a2) = —b* +e,
hence we can write (i/h)[Py, A*A] = —B*B + E + hR as desired. O

We proceed as in Section 5.2, using Lemma 5.16 to write
—(2/h)Im (APu, Au) = (i/h) ([A* A, Plu, u)
= ||Bul|32 + (RoBu, Bu) + (RyBu, (hD,)Bu)
— (Fu,u) — h (Ru,w)
for u € H}(X). Applying (5.3) we can bound
col| Bullgy < ||Bulliz + ClGPully + Ch?||Gully + OB [l (5.22)

where ¢y > 0 independent of 3,6, and where G is elliptic on WF}, 5, (B). We now choose
[ depending on 9:

Lemma 5.17. Let € > 0. There exists ¢ > 0 such that if § € (0,8y) and 3 = 6%/,
then

|(RoBu, Bu)| + |(R, Bu, (hDy) Bu)| < || Bull%,
+ Ch | GPul% s + Chl|Gully + O(h™)[ull%,
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for each 6 € (0,61) and u € HL(X). The constant C' = C(§) depends on § through 3.

Proof. First consider R, in which case
(Riv, (hDy)v) < 26187 |v]| 2 [|ADyvl| 2 + Chllv] 7,
where C; does not depend on 3,4d. Apply this to v = Bu and use Lemma 5.12. Indeed,
WFb’h<B) C {|p0| < 257 wl/g < 25(5},
and by our choice of py we conclude that |z| < 286 and |po| < 286 on WF, ,(B). Now
15| < |po| + |P — Po| < 286 + C|z|® < C1(B5)°
on WF}, ,(B), where C] does not depend on ,d. Thus, by Lemma 5.12 and Cauchy—
Schwarz,
(RiBu, (hDy)Bu) < (¢/2)||Bullf: + CY572(85)°|| Bul| 72
+ Ch | GPul s + Chl|Guly + O ull%.

where again C7 > 0 is independent of 3, J; here we have taken the § in the notation of

Lemma 5.12 to be a multiple of (8§)?. Bounding |(RoBu, Bu)| is done exactly as in
Lemma 5.11, yielding

|{RoBu, Bu)| < CY"B71(80)°|| Bull2: + O(h>)[ulZ2.
It therefore suffices to choose 8 = cd% =% with ¢ > 0 sufficiently large. O

comp

The rest of the argument in Section 5.2 goes through verbatim. Thus if G € ¥}
is elliptic on WFy, ,(B), and Q1 € Wi,™ is elliptic on WF, ,(E) with WEy, ,(Q1) C
ell,(G), then
1Bullgy < ChHIGPull g + CllQuull my + ChY2(|Gull gy + O(h) |[ull .

Performing the inductive step requires that the commutant be slightly modified at each
step; however this does not cause any problems, and proceeds exactly as in [Vas3].

5.4. Proof of Theorem 1. We now prove Theorem 1, following [Vas3, Section 8] quite
closely. Without assuming that Pu = 0, we prove the slightly stronger statement that
F = WFy) (u) \ WFy " (Pu)
is the union of maximally extended GBB within ¥\ WE, Y (Pu) for each r € RU
{+00}. It suffices to prove that for each gy € F there exists € > 0 and a GBB

v:[-€0 = F

satisfying 7(0) = ¢o. Indeed, given any Z C 3, let Py denote the set of GBBs defined
on open intervals («, 0] with values in Z, such that v(0) = go. There is a natural
partial order on Py such that each chain has an upper bound. Thus, provided Pz # 0,
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Zorn’s lemma guarantees the existence of maximally extended GBB in Z on an interval
(max, 0], where possibly apa.x = —00. We apply this argument with the set Z = F,
but arguing verbatim as in [Vas3, Section 8], a maximal GBB within F is also maximal
within 3\ WEy, 71 (Pu). Replacing the backwards propagation estimates with their
forward counterparts, we similarly deduce the existence of a maximal GBB on [0, Bpax)-

By Proposition 5.1 we can assume that ¢y € H or ¢ € G. In the latter case it suffices
to assume qg € G NT*Y, since the semiclassical Duistermaat—Hoérmander theorem on
propagation of singularities applies when qo € G N T*(X \ Y), see [DZ, Appendix E]
for example

We begin with the proof when ¢y € H. Fix a normal coordinate patch U such
that P77 X contains go. Since the complement of WEF, }{TH(PU) is open, first choose
a precompact neighborhood U C ¥ NPT3X of g such that U N WF;}L’TH(Pu) = 0.
From the local compactness of 2, by further shrinking U we assume that

H,(z€) > 0 on 7 1(U), (5.23)

since this holds along 77! ({qo}). Also fix an open subset U’ C U containing ¢, with
closure in U. By Lemma 4.10 there exists €q such that every GBB defined on [—&y, 0]
with (0) € U’ satisfies v([—¢¢,0]) C U. In particular, ¢ is increasing on any such
GBB by (5.23). By Proposition 5.7, there is a sequence of points

@meEFN{c<0}nlU

tending to ¢o. Since ¢, € ¥ and o(g,) < 0, it follows that z(g,) # 0. By the
Duistermaat—Hormander theorem on propagation of singularities, there is a maximally

extended GBB
Yo (=€, 0] > FNTH(X\Y)
such that v,(0) = gp.

Arguing as in [Vas3], the claim is that e, > g¢. Indeed, since v,(0) € U’, it
would otherwise be the case that v,(s) € U for all s € (—¢,,0]. Now 7, extends
to [—en, 0] by Proposition 4.9, and o is increasing along +,,. Therefore o(v,(—¢,)) <0,
50 (Yn(—€y,)) # 0, which contradicts maximality of 7,. Thus we have a sequence of
GBBs

’7n|[750,0] : [—50,0] — F ﬂU
with values in a compact set. According to Proposition 4.9, there is a subsequence
converging uniformly to a GBB

v [~€0,0] = FNU,
thus completing the proof.

For the proof when gy € G NT*Y, we begin with a variant of Proposition 4.9. Fix a
normal coordinate patch U.
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Lemma 5.18. Let K C T} X be compact, Z C Y be closed, and [a,b] C R a compact
interval. Fix constants r,Cy > 0. For each n, consider a partition

a=5p0<5p1<...<Spk, =0
Set Gn; = Yn(snj) and 6, ; = |Snj — Snj—1| for j =1,... k,. Suppose that
Yot la,b] = K

is a sequence of continuous maps, where the restriction of v, to [Sn 1, Sn;] s either
a GBB with values in Z, or the following holds

® ¢, ; €ZNGNT*Y and q, ;-1 € Z, where
Qnj—1 € B(exp(—éHgo)(qnvj),00571:7), r > 0. (5.24)
o The restriction of vy, t0 [Snj—1,5nj] 1S a line segment (in local coordinates), and
5n,j S 2—n|b — CL|.

Then there is a subsequence of v, converging uniformly to a GBB ~ : [a,b] - KN Z.

Proof. Since K C PT;X is compact, we can choose L > 0 such that
Y (8) = ()] < L[s — & (5.25)

for s, € [a,b], uniformly in n. To see this, it suffices to consider the case when s, s’
lie in a single interval [s,, j_1, s, ]. By (4.10), the result is clear if the restriction of ~,
to [Sp,j—1, Sn,;] 15 a GBB. If the restriction is a line segment, then (5.25) holds with

Qn,'— _Qn,'
L= Tt =l < o ()] g € ).
n)]

which is bounded uniformly in n. By the Arzela—Ascoli theorem, there is a subsequence
of v, converging to a curve v : [a,b] — K, and since Z is closed, v actually maps into
K N Z under our hypotheses. It remains to check that v is a GBB.

First, suppose that v(so) ¢ G NT*Y. Since G N T*Y is closed in PT*X, there is a
neighborhood O of 7(sg) that is also disjoint from G NT*Y. Choose § > 0 such that
Tu(s) € O for s € (sg — 20,50 + 20) and n > Ny. By assumption, the restriction of
Yn t0 [So — 0, 80 + 0] is a GBB, increasing Nj if necessary, so by Proposition 4.9, the
restriction of v to [sp — d, so + ] is a GBB.

On the other hand, suppose that v(sg) € GNT*Y. Let wy = 7 !(qo), and suppose
that f € C*(T*X) is m-invariant. We must show that

Di(fro7)(s0) > (Hpf)(w0).

Furthermore, at glancing points it suffices to check this when f is one of the m-invariant
functions {z,y,n}. This follows from the fact that

f<x>y75777) = fD(yan) + xfl('rvy?gvn)
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and z(wo) = &(wp) = 0. Let ¢ = (H,f)(wp). We show that for each € > 0 there exists
0 > 0 such that

Fx(v(8)) = f=(7(s0)) = (co — €)(5 = s0)
for each s € (sg, 5o+ 0).

Since the map 7 is proper and PT* X is locally compact, from the continuity of H, f
there is a neighborhood O C ¥ of v(sg) such that

inf{(H,f)(w) : @w € 77 1(0)} > (co — £/4).
By uniform convergence, we choose ¢ > 0 such that ~,(s) € O for s € (s, 5o+ 26) and
n Z N().

Fix the interval o, §] = [Sy,j—1, Sn,;] containing sq, where we choose sy = s, j_1 if 59
happens to be an endpoint. For s € (g, sg + d) consider the function

Fy= (frov)(s) — (co —€/2)s.

If the restriction of ~, to [a, (] is a GBB, then D, F,(s) > 0 on the intersection
[, B] N (S0, 80 + &) by our choice of O. Otherwise the restriction of v, to [«, 5] is the
line segment

%L,j - Qn,jfl

Onj
Since f is one of {z,y,n}, it is clear that f; o+, is actually differentiable on [a, (], and

_ fﬂ(%z,j) - fﬁ(Qn,j—l)
On,j

Yn(5) = Gnj—1 + (s — @)

Dy (frov)(s)
is constant on [a, §]. By (5.24),
D4 (fr 0 7a)(s) = (Hp, fr)(@ng)| < ColB — af” < Gp27™. (5.26)

uniformly in n. By further increasing Ny so that 27Y°|3 — a| < §, we can assume that
B € (so, S0+ 20) for n > Ny. Thus ¢,; € ONGNT*Y. Let w, ; satisty m(w, ;) = ¢n,;-

We now collect several observations. First, since g, ; is a glancing point over Y, the
equality (5.19) holds. Furthermore, since py depends only on (y,n) and f is one of
{z,y,n}, it follows that

(Hpf) (@) = (Hpo f) (@) = (HZ fr) (Gn,g)- (5.27)
Therefore, since @, ; € 7 *(O) for n > Ny, by combining (5.26) and (5.27) we obtain
Dy Fo(s) = Di(from)(s) — (co —€/2)
> (Hpf)(@n,;) = Co2™"" = (co —£/2)
> (CO - 8/4) - 002_nr - (C() - 6/2) >0

on [a, B] N (S0, S0 + 9) if Ny is increased so that Cp2™"" < /4 for n > Nj.
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Thus we know that D, F,(s) > 0 on (so,so + 6) for n > Ny. Since F, has a
nonnegative lower right Dini derivative, it is non-decreasing, and so

fr(vn(s)) = fx(m(50)) = (co —/2)(s = s0)

for s € (sg,s0+6) and N > Ny. We obtain the desired inequality for each s € (g, So+9)
by choosing n > N sufficiently large (depending on sy and s) so that

[ fr(m () = f=(v($))| + [f=(v(50)) = fx(m(50))] < (€/2)(s = 50).-

A similar argument applies for s € (sg — 0, Sp). d

The proof of Theorem 1 for g € GNT*Y is then a relatively straightforward appli-
cation of Lemma 5.18. We again fix a precompact neighborhood U ¢ ¥ N b X of qo
such that U N WF;}Z’TH(PU) = (). Let L be as in the proof of Lemma 5.18 where we
take K = U, and let Cy be as in the statement of Proposition 5.13. By Lemma 4.10
we can choose g¢ > 0 such that

U' = B(qo, (Co+ L)gg) NX Cc U

and if v : [—¢,0] is a GBB with € € (0,¢¢) such that v(0) € U’, then v(|—¢,0]) C U.
Let 6,, = 27"¢y. We then define a family of approximate GBB inductively. First, set
sp = 0, and suppose that a continuous curve v has already been defined on [s;, 0] such
that if ¢; = y(s;), then

v([s5,0]) € B(qo, (Co + L)s;|) C U.

We then extend v to an interval [s;4q, s;] as follows.

If g = v(s;) € FNGNT*Y NU’, then by Proposition 5.13 we can choose gj4+1 €
WFéZ(u) such that

|Qj+1 - eXp<_5ano)(QJ)| < 00(571)0/(2_0) < Cyon.

Let 541 = max(—eo, s; — ;). In particular since ¢; € U, the line connecting q; t0 qjt1
is contained in B(qo, (Co + L)|s;j41|) C U’. This also shows that ¢;41 € F.

Otherwise, ¢; € F'\ (GNT*Y). We know that there is a maximally extended GBB
v (=0 = F\(GNT*Y)

with 7/(—¢’) = ¢;. Let s;41 = max(—¢g,s; — ). If sj41 = —ep, then we can extend
yn from [s;,0] to all of [—¢&g,0] by concatenating with +'. The other possibility is
that sj41 > —eo. Then 7' extends up to —¢’, so we concatenate with +' and set
¢j+1 = 7' (—¢’). Either way, the extension by + has its image in B(qo, (Co + L)|s;+1])-
In the second case, g;+1 € F'NGNT*Y by maximality, and thus we proceed as in the
first step.
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The sequence vy just constructed satisfies the hypotheses of Lemma 5.18 with K =
U and Z = F, letting v = 6/(2 — 6). This completes the proof of Theorem 1 when
go € gnNnT*Y.

6. SEMICLASSICAL PAIRED LAGRANGIAN DISTRIBUTIONS

In this section we collect the technical tools that we will need on semiclassical paired
Lagrangian distributions. We largely follow the discussion in [DHUV] in the homoge-
neous case (see also the introduction for further references), but we have been forced
to revisit some of the foundations of the subject as there is no existing treatment in
the semiclassical setting.

6.1. Nested conormal distributions. Our paired Lagrangian distributions are lo-
cally modeled on oscillatory integrals in R™ associated with the conormal bundles of
two nested submanifolds of R™.

Definition 6.1. We say that an h-dependent function a € C*(R?* x R]g, x Rg,) is in
the symbol class S;”(R7; ]R’g,; RE,) if

|(hDe)* D, DYa(x,€)] < Cago (€//0) ™ {(€,€"))"
for all multiindices o, 8,7 and N € R. We say a € Sy C S, if suppa is

contained in an h-independent compact set.

Remark 6.2. An instructive example is as follows. Let x € C°(R), equal to 1 near

the origin; let 1 € C*°(R) equal 0 on (—oc0,1) and 1 on (2,00). On R! x R! we set
a(z’, 2”&, ") = (& /h)x(€)x(£") (6.1)

This symbol lies in S, (R?; RY; RY).

Remark 6.3. This class of symbols can be interpreted in terms of a certain semiclas-

sical blow-up as follows. Our symbols will be functions on R™ x R*™ x (0, 1), that
lift to certain conormal functions on R™ x S, where S is defined as the blow-up

S = [RF™ x [0,1)4; {¢ = 0, h = 0}].

The space S has two boundary hypersurfaces, ff and sf, corresponding to the lifts of
{¢’ =0, h =0} and its complement within {h = 0}, respectively. We also fix

pst = (€'/h) ", pr = h(€'/h).
These lift to S as smooth, globally defined boundary defining functions for sf, ff, and
h = pstpg.
The lift of {h > ¢|¢’|} intersects the interior of the front face. Valid coordinates here
are (z,£”, =, h), where = = ¢’/h, and in this region h is a boundary defining function
for ff. Furthermore, elements of ,(S) (vector fields tangent to all boundary faces)
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that are supported near the interior of ff are spanned over C*(S) by {0,, ¢, 0=, hoy }.
In order, these vector fields are the lifts of {0, O¢r, hdgr, hOp + &' - g}

A different set of coordinates is needed in {|¢'| > eh}. Restricting in addition to the
set where [} | > ¢|¢}|, we can use projective coordinates (z,£",0, o, (2), where
0=¢&, o=h/§, Q =&/
for j # k. In particular, 6, ¢ are boundary defining function for ff and sf, respectively.

In this case, V,,(S) is spanned over C*(S) by {0, O, 00y, 00,, 0q}, which are the lifts
of {0y, 0en, & - Opr, h@h,ﬁ,’ﬁg}}, in order.

Without localizing to the different regions of S, it follows from the previous two
paragraphs that V,(S) is spanned over C*°(S) by the lifts of

(e, €,0er, hdn, hder},

where 4,5 € {1,...,k}. Thus if we ignore hdy, derivatives, S, corresponds exactly
to compactly supported p;"L>(S) functions that remain in the same space under
arbitrary applications of Vy(S).

On R™, consider a splitting of coordinates z = (', 2", 2") € R¥ x R™m~4k x R4, and
consider the submanifolds
Sy ={2"=0}, Sy={z'"=0,2" =0}
Thus Sy C 51 C R™ are nested with codimensions codim S; = m—d—k and codim Sy =
m — d. In particular, we have d = dim Sy. Their conormal bundles are given by
N*Sl — {l’// — 07 5/ — O, 5/// — 0}7
N*SO — {x/ — O, J;// — 07 6/// — 0}’

where (2/, 2" 2" &' £", ") are canonical coordinates on T*R™ = R™ x R™. We view
these as model Lagrangians, writing

Ay = NSy, Ay =N*S5;.
We then consider oscillatory integrals whose amplitudes are elements of

— = .k . pd—m—Fk
Sy = ST (R R RE ™),

Observe that elements of S~ depend on (z,£,¢”), but not £”. Given a € S;™,
define the oscillatory integral

u(x) = (2mh) SR / i N g (0, ¢, ") g (6.2)

Since a is rapidly decaying in (¢',£"”) for each fixed h > 0, this certainly defines a
smooth function on R™. We now write

jj — (23/,.213”), 5 — (5/751/)
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ih(Dz,Dg)

and analyze mapping properties of the Gauss transform a +— e~ aon S

Lemma 6.4. Ifa € S;™ %, then e="P=Pq ¢ S;™°. Furthermore,

e—ih(Di,DE Z< ZDI,]'LD£> [E € /]| e S’r‘ N—-1,—

Proof. Since the dependence on x is smooth and parametric, it suffices to consider
the case d = 0, so that x =z and £ = &. Set

y = (h1/2.1'/, :L‘”), n= <h71/2£/’5//)'

For a given a € S;"”°°, define the rescaled amplitude b(y,n) = a(x, ), which therefore
satisfies

DS DIy, m)| < Capnh™ I (0 JR2) =P ((BA 2 ")) =N,

where we have written o = (o/, ") and = (/#/, 5”). After a change of variables,
e MPrPilb(y, ) = (2) 7" / ey — W12z, m — B2() dzdC. (6.3)

Write the integral on right hand side of (6.3) as a sum A + B, where A is the result
of inserting a cutoff x € C>°(R*™; [0,1]) into the integrand which is identically one for
|(z,¢)] <1 and vanishes for |(z,()| > 2. We then estimate

DIy Al < @ o (Dy DIb)(y — h'?2,n — B0
2,0)|<L2

< C«OéﬁNhfﬂo/|+|,6”\)/2<77//h1/2>7~7\,3’|<<hl/2n/7 n//))—N’

since ((n/ — hY2¢")/hM?) =< C (n//h'/*) when |(| is bounded. To estimate B, we
integrate by parts using the operator

L =|(z,QI7*(=D¢ + (D),
defined for |(z,¢)| > 1 and satisfying L(i (z,()) = 1. By Peetre’s inequality,
Dy Dy (LY (1 = x(2,O)bly — h'22,n = h120)]
< Capw ™ WD J2yr = (012 "))~ (2, O)

for |(z,¢)] > 1, where N(k) — —o0 as k — oo. Integrating by parts k times for
sufficiently large k shows that B satisfies the same symbol estimates as A. This
establishes the desired mapping properties of e~ P

e~ MDDl (3, ) = e M Pw-Lalp(y, n).

D) since

To obtain the expansion, simply Taylor expand
N ( )N
—ih(Dy,De) _ -
e € Zoj' < ZDx,hD§> N
J

1
/ (1= #)Ne®{D2De) (D DN g,
0
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The remainder can be estimated by replacing h with th and repeating the argument
above. U

Lemma 6.4 shows that we can always write u given by (6.2) in the form
’LL(.Z‘) _ (2’/Th)_3m/4_k/2+d/2/62(<x/’£,>+<x”’£”>) C(Q?”I,f/, 6//) déf/dé»// (64)

where the amplitude ¢ € S;’"> depends only on 2’ in the base variables. Indeed, by
the Fourier inversion formula,

C(ZL‘”/, 5’ 6”) _ e—ih(Di.,D@a(aj’ 5/’ 5”>|z/:a:”:07 (6.5)

which defines an element of S;’"> by Lemma 6.4.

Lemma 6.5. Let b € S°(R™;R™). If c € S;° and u is given by (6.4), then there is
¢ e Sy~ such that

b(ZL’, hD)u _ (27Th)—3m/4—k/2+d/2 / 6%((33/75/)4-(1“,5//)) E(CL’”/, 5/7 5//) dfldfﬂ, (66)
and moreover

é(ﬂf///, él, gll, h) = €ih(7<Dy”/’DE’”>7<D5’D€7>)I)(I" £)C<ylﬂ7 5/7 £”> ’yu/:zm’z/:x//:£///:0.
Proof. This follows from the Fourier inversion formula and Lemma 6.4. O

We now define our class of compactly microlocalized paired Lagrangians in the model
case of nested conormal distributions.

Definition 6.6. We say that u € Iy (R™; Ay, A;) if suppu and WF,(u) are com-
pact, and

ute) = rhy ik [ RO O ¢ e agae (67
with a € S;L_k/Q’_OO.
Even when | = —oo, elements of I, *“"P(R™; Ag, A;) are not residual in the sense

of O(h*) remainders:
Lemma 6.7. The following properties are satisfied.
(1) I, (R™; Ao, A1) = I,""P(R™; Ay).
(2) If l is fired, then h® Iy (R™; Ag, A;) = h°C(R™).

Proof. (1) We can write u € I, *“"P(R™; Ag, A1) in the form (6.7) with a € S, >,
This implies that

a’(aj7 57 h) = b(x7 5//h7 5”7 h)
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where b(x,Z, h) is rapidly decaying in = € R™~? uniformly in h. Making the change
of variables n = &’ /h and performing the 1 integral in the definition of u,

_(27Th>—3m/4+k/2+d/2/ %( ”5” ( fl/ h) 5

where b € C>°(R™; S(R* %)) uniformly in h. It now suffices to compare the power
—3m/d+k/2+d/2=—(m—d—k)/2—m/4

to the usual Lagrangian order convention (which is m — d — k phase variables in m
dimensions) to see that u € I;”""(R™; A;). The converse inclusion is obvious.

(2) This is just the observation that h*S; > = h*S~(R™;R™4) for any r. [

If a were a semiclassical symbol, then the wavefront set of u given by (6.7) would
be contained in Ag. However, in this case the weaker symbolic properties of a € S,
can generate additional singularities. We define the essential support of a as usual,

(esssupp a)E = {(z,£,¢&") : a € h*S™ near (z,£,¢")},
where h* Sy~ = h®S™°(R™; R™ %) for each r, as was already observed in the proof
of Lemma 6.7.

Lemma 6.8. Ifu € I:™ (R™; Ao, Ay) is given by (6.7), then
WF(u) C {(x,§) € N*S; UN*Sy) : (z,¢,&") € esssuppa}.

Proof. Let ¢ € C°(R™), and write ¢u in the form (6.4), where the amplitude a is
given by

(x/// 5 g//) _ —zh (Dz, Dg)w( ) (I’€/’§//)|x/:x”:0‘
Thus we can write @ = a; + a2, where a; = 0 if (0,0, 2") ¢ supp ), and ay € S, ™.

This gives rise to a corresponding decomposition u = wu; + us. By the first part of
Lemma 6.7, WFp(uz) C A; = N*S;. On the other hand,

Fh(wul)(n) = (271—h)m/4—k/2—d/2/ ‘<$'” ") 1(1,///’77> d:L’/”7

"

so if n) # 0, integrating by parts using the operator L = |n"|=2n" - (hDyn) shows
that Fp(vui)(n) = O(h™) in a neighborhood of 1. Therefore we find that WFy,(u;) C
{n” = 0} and lies only over an arbitrarily small neighborhood of {(0,0,z") : 2" €
supp ¢}, hence is in a small neighborhood of N*Sj. Thus have have shown that

WFh(U) - N*S() U N*Sl

On the other hand, WF(u) C {(z,§) : (z,£,£") € esssuppa} by the second part of
Lemma 6.7. 0
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It follows from Lemma 6.5 that any properly supported B € W¥9(R™) preserves
I}ll’comp(]Rm;Ao,Al). Moreover, if B = b(x, hD) with b a total symbol for B, we can
write Bu in the form (6.6), where

esssupp ¢ C {(z,&,&") € esssuppa : (z,&) € WF,(B))} (6.8)

As a consequence, we can always write u € ]é’comp(Rm;Ao,Al) in the form (6.7),
where a € S;L_k/ 299MP has compact support, modulo an h°C2°(R™) remainder. We can
also make Lemma 6.8 more precise by microlocalizing individually to each of the two
Lagrangians Ay, A; carrying possible wavefront set.

Lemma 6.9. The following hold for u € I (R™; Ao, A1) and B € W (R") of proper
support.

(1) If WE,(B) N Ay = 0, then Bu € h™' [P (R™; Ay).

(2) If WF,(B)N Ay = 0, then Bu € ;"™ (R™; Ay).

Proof. Since WFy,(u) C Ag U Ay, we can assume that B is microlocalized near Ag \ A4
in the first case, and A; \ Ap in the second case.

(1) By (6.8), we may assume that |{'| > ¢ on suppa. It follows that the symbol of
Bu is an honest semiclassical symbol, and hence Bu is Lagrangian with respect to Ag.
It remains to check the overall power of h.

(2) Again by (6.8), we may assume that || > ¢ on supp a, at which point we proceed
as in Lemma 6.8. O

6.2. Change of variables. In this section we show that [i’comp(]Rm; Ao, Ay) is invariant
under a diffeomorphism

k:R™ — R™
preserving S7 and Sy, and define a principal symbol. To simplify matters, we work
with half-densities. Thus, given

s = () I [ D (g0 ¢ N agae’,  (69)

: I—k/2,— : :
with a, € 5, /27 we transform wu, according to u = | det &'|V/%(K*u,). We write
Kk = (K1, K2, k3) relative to the splitting z = (2/, 2", 2""), and denote the Jacobian by
/ / !/
kit Rz Kz
’_ / / /
k=1 K21 HRaz HKag
/ / /
k31 K3z Rz3
Since k preserves S; and Sy, we see that 7, and k), are nonsingular at points (0, 0, "),
and that xj,, k|3, k53 vanish at such points. Let us write

k() = (Y ()2’ + ra()2”, oo (w) 2", k3(2)),
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By Lemmas 6.8, 6.9 and a partition of unity, we can assume without loss of generality
that 1, and vy are nonsingular throughout the support of u, since the invariance
properties of u away from Sy are well known. Arguing precisely as in [Horl, Theorem
18.2.9], we obtain the following.

Lemma 6.10. If s and u, € I"°™P(R™; Ay, A1) are as above, then u = | det &'|*/?(k*u,)
is of the form (6.7) with an amplitude a € S,l;kp’foo.

Indeed, a is given by the expression

a(w,&,€") = ap(ka(x), "Y1 () 7 YPoa(2)THE" = (W1 (2) T 12())E))
x | det &' ()| 2| det ¢hy1 ()| 71| det 1hga (2)] 7L,
and it is easy to see that a € Sﬁ;kﬂ’_oo. Of course the (2/,2") dependence can be
eliminated as in (6.5).

To define the principal symbol along A;, consider u,, of the form
Uy = (27Th>_3m/4_k/2+d/2 / 6%(<$l’£/>+<mu’§”>)an(CL’/, I/H, §/7 5”) dé-/dé-//'

Compared with (6.9), we are not assuming that a, in necessarily independent of ’.
We associate to u,|dz|'/? the half-density

b,i(x', :L'”/, ”)|d:13,|1/2|d$”/|1/2|d§”|1/2, (610)
where

b,{(iBI“”IJm,f”) _ (27rh)7k / €%<xl’£l>a,{(xl,:C”/,fl,f//) df/.

When 2’ # 0 (so away from Ag N Ay), this is a representative of the principal symbol
of u,|dz|'/? as a half-density valued element of I;°™P(R™; A;).

Definition 6.11. We say that b(z2', 2", ") € CSO(RZ;%, x R7747F) is in Sﬁ(fomp if there

5//
exists a(z’, 2", ¢, £") € Sib_k/Q’Comp such that
b(SBI, IL‘/”, 5//) _ (27Th)_k / €%<“‘J’5/>a($', " fl, 5//) dfl
modulo A*°C®(R™~ x Rm~47F),

That this class of symbols degenerates at ' = 0, on Ag N Ay, can be seen by dif-
ferentiating in z’: there is a term with a factor £’/h arising from differentiation of the
phase. Away from 2/ = 0 we may integrate by parts with respect to the operator
(h/a")Dgr, which, falling on the amplitude a, produces a factor (¢//h)~! that ensures
the resulting amplitude enjoys the same estimates as a. This strategy fails at 2’ = 0,
where the order of a is effectively raised to [ + 1. The singularity only arises in h — 0
asymptotics, though: b is smooth for every positive h since a is compactly supported

in £.
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Remark 6.12. If we apply this construction to the example a from Remark 6.2 (which
does have compact support in the fiber variables, albeit not in the base), we obtain

b(a',€") = x(&")(2mh) ™! / (€ [R)X(€) dE' = bo(a',€") — bi (', €")

0
where

bo(a!, €") = x(£")(2mh) / eI (1) de,

bl(az’,ﬁ”) _ X(gﬁ)(Q’/Th)_l /OO eix’{’/h(l o w)(fl/h) df/

0
(dropping a factor of x(&’) in by since it is moot for h small). Changing variables to

n = &'/h in the integral, we find that by (2/,&") € C* is independent of h. By contrast,
bo(a',€") = (2m)"2h~Ix(€") FH(HX) (' /h)

where H denotes the Heaviside function and F is the ordinary (non-semiclassical)
Fourier transform. The distribution F~!(Hx)(y) is C> and for large |y| differs from
i(2m)~Y2y~! by a rapidly decreasing function, hence in the asymptotic regime where
' [h — 00, by ~ (1/2m)x(£")/2’. (Formally taking leading order terms in an expansion
in (z//h)~! is, in effect, our principal symbol construction.) For z’/h fixed, on the
other hand, by blows up like a multiple of A~* as h — 0.

Observe that Sf\";omp is itself a degenerate version of the paired Lagrangian distribu-
tions we have been studying. Under x, we see that b, is transformed to

b(ZL‘/, 1””,6”) _ (27Th)_k / 6%<x/’€/> (B_ih<Dz”’D5”>l~)(x',x”,x"',é”’,f")|xu:0) df,, (6.11)
where we have defined
b(a' 2@ €, €") = en Wl g, (1 (0), k(@) Ui (0)€], s (@)E)
x | det &' ()| 2| det ¢hag ()| 71| det gpyy ()| 7L

The phase factor er (V1@ @) i5 harmless when differentiating e~"Pa-Pe)p in
(', 2" & &), since the result is evaluated at 2" = 0, and in particular

efih<Dw//,D§//>E c S}ll—k/2,comp'
On the other hand, the phase factor does appear in higher order expansion. Impor-
tantly,
efih<Dm//,D5//>E(x/’ .ﬁL'//, x///7 5/) 6””:):":0 _ B(l’/, O, {E///, 5/’ 5//) + hS}l;k/QJrl,comp.

This shows that the equivalence class of b.(a2', 2", &")|dz’|*/?|dz" |*/?|d€"|V/? is well
defined in Sf\’fomp / hSﬁ\tl’Comp, since the pullback of b, as a half-density is precisely

(27Th)_k / e%(;r/{/)B(x/’ 0, ZL‘/”7 5/, é-/l) dgl
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We have proved the following:

Proposition 6.13. The principal symbol
0}1}1 (uddmll/?) _ bﬁ(xl, 33/”, 5//)‘d$/|1/2’dxmll/Q‘déu//ll/Q e Skjomp/hsktl,comp
s well defined.
6.3. Pseudodifferential operators with singular symbols. In this section we dis-
cuss a calculus of pseudodifferential operators with singular symbols. Let X be an n-

dimensional manifold, and Y C X a codimension k submanifold. Consider an operator
A with Schwartz kernel

Ky € I (X x X; N*((X x Y)Ndiag), N*diag).
Since supp K4 and WF, (K 4) are compact by assumption, it follows that
Ka:C(X) = C¥(X),
and K4 is h-tempered.

By the coordinate invariance discussed in Section 6.2, it suffices to construct this
calculus on X = R", where Y = {2/ = 0} for an appropriate splitting of coordinates

T = (I'I,ZL'”) c Rk % Rn—k.

If (x,y,&,n) are the corresponding coordinates on 7*(R™ x R™), we work with the
Lagrangian pair

NM={z=y,n=—¢, NAN={"=y=02"=y" n"=-¢"} (6.12)

Working modulo h*°C2(R?"), we can write K, € I (R Ao, A;) as a left quanti-
zation

Ky = (2rh) " / ele=v &g (o oy €) dif d, (6.13)

where a € S,l;k/ 2comp (Rn—k. Rk R7k)  This parametrization arises by using coordi-
nates (2, 2”,2/,2") on R?", where z = x — y; thus
A =N{z=0}, Ag=N"{a'=0,2=0}

Alternatively, we can use coordinates (2/, 2”4/, y"), so that K4 can also be written as
a right quantization

= (et [ om0y ) af (6.14)

with @ € S */2°mP(Rn—k: RE: R"=F) . The principal symbol o1 (A) of A along A, =
N*diag, which we define simply to be 0,[1\1 (Ka), is

(27Th)_k / 6%<m,’n/>a(l’/,7 n/a g) dn,
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in Sﬁ(fomp / th\tl’Comp. As usual we use the canonical symplectic density on N*diag to
identify functions with half-densities.

Next we consider composition of two operators whose Schwartz kernels are of the
form (6.13). The proof we give is closely based on [DHUV, Proposition 5.8]. Because
of certain logarithmic terms, in some cases there appear arbitrarily small losses in the
order of the composition. Since these losses are acceptable, we will not explicate when
they can be avoided; for a more precise account, see [DHUV, Proposition 5.8]. We
remind the reader that, the homogeneous paired Lagrangians considered in [DHUV],
these semiclassical operators have smooth Schwartz kernels for all h > 0, so that
the composition of two singular pseudodifferential operators is always a well-defined
operator family. The constraints on orders only arise in interpreting the result as
another element in the calculus.

Proposition 6.14. Given K4 € I,ll’comp(RQ”; Ao, A1) and K € [g’“’mp(RQ”; Ao, Aq) let
L > max(l,I', 1 + 1"+ k/2).
Ifl+1 <0, then Kp € [f’comp(R%;Ag,Al). Furthermore, if 6 € (0,1] is such that
I+ < -0, then
o' (AB) = 03 (A) - 0" (B)
in Siicomp/hasll\lj—d,comp'
Proof. As remarked above, the proof is essentially the same as in [DHUV, Proposition

5.8]. We write A in the form (6.13) with amplitude a(z”,7,§), and B in the form
(6.14) with amplitude b(y”, 1/, £). Now

Fu(Bu)(€) = (2mh)~ / eh @Oy Eyuly) dydu,
and hence
Kap = (2nh) "% / e R o o )by, i, €) i dp dE.
Following [DHUV, Proposition 5.8], we make the change of variables
V=i v, (=8 (=€
leaving p/ unchanged (observe that £” is being renamed for later convenience, but

is otherwise unchanged). Rewriting the phase in terms of these new variables as
(x —y,() + (2, V'), it follows that

Kap = (2rh) ™" / R (" =y O Doz € d dpl de

where

C(JZ”, yl/’ V,,C/, C”) — (QWh)_k/a(l’”, V/ o M/,Nl + C/, C//)b(y//7 /J//,[/[// + C/, C//) dﬂl
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It remains to verify that ¢ € Sp-™(R2"~): R¥;R"™). Observe that the integral defin-
ing ¢ is over a compact set, since b has compact support in y', and indeed c is itself
compactly supported. We begin by giving sup-norm bounds on ¢, observing that

(a3, < O [ 4= )1 G )

First, suppose that |/| > h, in which case (v//h) can everywhere be replaced by |/ /h].
We then consider the integral over four regions.

(1) 2|/| < |V/|. Here ((v/ — p')/h) is comparable to (v//h), so the integral over this
region is bounded by

cht = [ (! /1) M2 dpt < Ol BT (L [ R
I 1<(1/2)|v'|
for any ¢ > 0.

(2) 2|v" — p!| < |V/|. Here (u//h) is comparable to (v'/h), so as above the integral
over this region is bounded by

Oly//h’l—k/Q(l + |V//h|l’+k/2+a)

for any € > 0.

(3) 2|V/| < |¢']. Here ((v/ — p')/h) is comparable to (u'/h), so the integral is bounded
by

Chk/ 2] |<u'/h>””’“ dy' < O/ /h|1,
w>2|v!

since [ + 1" < 0.
(4) (1/2)|V| < || <2|¢| and || < 2|/ — i/|. Here ((v/ — ') /h) is comparable to
(1 /h), so the integral is bounded by

o | ([ dnt < O Rl
(/)W |<[p'[<2]v']

since [ + 1" < 0.

Thus, when [/| > h, we conclude that
a1 € Y < ORI o/ A28 o /2
for any € > 0. On the other hand, if || < h, then
oy ¢ < Ot [ gy <

provided that [ + 1" < 0. Bounds on the derivatives are established in precisely the
same way.
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It remains to prove the statement about the principal symbols. Note that the prod-
uct o' (A) - o' (B) is the product

(F) a2, ¢ ) (FR) TR Y ¢ C oy

where the first inverse Fourier transform takes n’ — 2/, and the second takes u/ — y/'.
Thus oi' (A) -2 (B) at (2", ', ¢, ¢") is the inverse Fourier transform of a convolution,

(27Th)_k/efil<z/’w> /a(x//7 7// . ,LL/, CI, <//)b(l‘//, ,u/7 C/, C—//) dILL/dV/.
On the other hand, 0,11\1 (AB) is given by
)+ [t [aalv = il ¢ ) i

The only difference between these expressions is that ¢’ in the first is replaced by p'+ ¢’
in the second. Taylor expanding a at ¢’ in the second expression, we can write

a](a:j/7 V/ . /JL/,ILL, + §/7 C//) — CL(ZL‘”, I// o M/, C/’ g//)
1
+h / (W /h, Oca(z" v — ' ¢+t ¢")) dt.
0
The integral on the right hand is estimated by

Ch? {ui [1)° {0 = ) /)2,

for any 6 € [0,1], with similar bounds for its derivatives since y' is bounded. A
similar expansion also holds for b(z”, i/, i/ + ¢’, ") in terms of b(x”, i/, i, (") modulo
a remainder bounded by

Che <,u//h>l’+§—k/2 ’
along with derivative bounds. In particular,
ala” v = o+ " g+ ) = aa ) = g b ()
modulo a remainder bounded by
ChE (v = ) 1™ Gt )+

for any 0 € [0,1], along with derivative bounds. As above, if [ + I’ < —4, then the
resulting integral in (¢/, 1) yields an element of héSﬁr‘s, since

L+6>max(l,I'+6,1+1'+0—k/2).

Arguing similarly for the derivatives completes the proof. 0

We also need uniform L? mapping properties of operators with singular symbol. It
suffices to consider the local situation K4 € I }l;comp(R%; Ao, Ay).
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Lemma 6.15. Let Ao, Ay be given by (6.12). If K, € T2 (R**; Ay, Ay) and s > 0
is such that | — s < —k/2, then
||A||L2(R")—>L2(R") S Oh_s.

In particular, if | < —k/2, then A is uniformly bounded.
Proof. Using the left quantization (6.13), we may assume that K4 is parametrized by
KA — (27Th)_n_k/6;1(<x/777,+£l>_<y/7§,>+<a:”_y”7§//>)a(x//’ ’f]/,g,,g”) dgldfﬂdn/, (615)

where a € i */%°™P(Rn—k; RF; R"*). We bound this operator on L2(R™) by viewing
it as a pseudodifferential operator on R, * with values in uniformly bounded operators
on L*(R%). Thus we write

KA _ (27rh)—n+k/6i<x//_y//7E//>A(x//’é//) dgl/7
where for each (z”,£") the operator A(z”, ") has kernel

KA(x',y';x",f") — (27Th)_2k/€’ll(< LY —={y',€") ( C/ o 5/751’5//) dcldég/

We now show that
Al €") € SRR L(L2(BY))).
Because A(x”,£"”) has compact support in (z”,£”), to prove the lemma it suffices to
show
1D3 Den A", €") | 2wy r2mry < Ch™°
for all multiindices «, 8. On the other hand,

1D D A", ") caqgey-s sy = (D D Al €0)(F i ey

since h™*/2F} is unitary (F; denotes semiclassical Fourier transform only in the primed
variables). The conjugated operator on the right, which we denote by A\(IH ,&"), has
kernel

(¢'€) = (2mh) D3 Dgsa(a” ¢! = €€, €").
Since a(x”,n/, &', ") has compact support in 7/, for any s > 0,

(2mh) Hala, ¢ — €., ") < Ch4h=" (¢~ &) /)~
By Schur’s lemma, it follows that h*A(z”, £”) is uniformly bounded on L2(R*) provided
that | — k/2 — s < —k, completing the proof. 0

Remark 6.16. Lemma 6.15 is equally valid if K4 is given by the oscillatory integral
(6.15) where the amplitude has compact support in 1 uniformly with respect to the
other variables, but is not of compact support in (z”,£’,£"), provided that bounds of
the form

’Dg//Dg,CL(.CE”, 77/’ 6/’ 5//)| < Ca,@ <n//h>l—k/2 <€//>—|/3|
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are valid.

6.4. Homogeneous paired Lagrangian distributions. We also need another class
of paired Lagrangian distributions, which have wavefront set at fiber-infinity. Again,
it will suffice to consider conormal bundles of nested submanifolds. Let (z,£,£") be
coordinates on R™ x R* x R".

Definition 6.17. We say that an h-dependent function a = a(x, &', &"; h) € C°(R}* x
RE x RY,) is in ST7(R]; RE,; RE) if it satisfies the product-type estimates
DG D&y DYa(, €,€")] < Cagy (€160 (€)™

for all multiindices «, 3, .

We use the same notation as in Section 6.1, so that Sop C S; C R™, as well as
Ay = N*Sp and Ay = N*S;. We consider oscillatory integrals of the form

<2ﬂ_h)d—m/e]'i(<m/’£/>+<m”’£//>)a($7§/7§//) d§/d§/,7 (616)

where a € S?" = S¢T(R7; Rgf,_k_d; R’g,).

Definition 6.18. We say that u € If'{,lc(Rm; Ao, Aq) if suppu is compact, and u is of
the form (6.2) for some a € S¢", where ¢ =p —m/4+k/2+d/2 and r =1 — k/2.

This is a direct semiclassical adaptation of the paired Lagrangian distributions stud-
ied in [DHUV], and for this reason we take various facts for granted that were explicitly
demonstrated for the related space I }ll’comp (R™; Ag, A1). We will need the following:

e Any u of the form (6.16) can be written in terms of an amplitude a(z", &', £")
depending only on z” in the base variables.

e The space ]ﬂ’fc(Rm; Ao, Aq) is invariant under diffeomorphisms of R™ preserving
S1 and Sy, which allows for the definition of I%' on a general manifold.
However, we will not need to develop any symbol calculus for this class of distributions.
In this context, I2'(R™; Ay, Ay) arises when multiplying u € L™ (X N*Y) by v €
IW(Z), where Y, Z are two transverse submanifolds of a manifold X. It suffices to
consider the model case; thus we take X = R" with coordinates
(x/ .T” f]f/”) c Rdl % Rd2 % Rm—dl—dQ
and then set
Y={'=0}, Z={2"=0}

Thus Y and Z have codimension d; and dy in R™, respectively, while Y N Z has
codimension d; + ds.
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Lemma 6.19. If u € [ (R™; N*Y) and v € I/'/(Z), then
wy € IR R NY (Y 0 Z), N*Y)
/A2 pmm A d 2,700 (. N (Y 7)) N*Z)

Proof. Since codimY = d;, modulo a C*(R™) remainder we can write

— (2mh) -2 / A o, &) e’

where a(x,&) € CO(RI x Rg}) On the other hand, modulo C*(R™), we can find a

Kohn-Nirenberg symbol b(z,n") € S*(R™; ]RZ?,) such that

— (2nh) / e €3 € h) de (6.17)

Here we made the usual semiclassical change of variables " = £”/h. The product uv
is given by

wo = (k) /A 2 / eh (SN (0, Yb(, € /) dE'dE". (6.18)

Now insert a smooth cutoff function x(£”) such that x = 1 near ¢” = 0. Thus we may
split uv = wy + wy as a sum of two oscillatory integrals where wy has amplitude yab,
and w; has amplitude (1 — y)ab. For the term wy, let

co(z,¢,€") = x(§")a(z, )bz, £"/h).
Thus ¢o € S and —m/4 — d1/2 — dy = —3m/4 — dy/2 + dim(Y N Z)/2 since
dim(Y N Z) =m — d; — d. In particular,
= (amh) izt [ RS e (0, 1 6) d'de”
€ [T R2eme (R NF (Y Z), N*FY).

For the second term wy, observe that || > Cy on supp(1 — x(£”)) for some Cy > 0.
Let

ci(x, &) = W (1 = x(§"))a(z, §)b(z,£" /1)
Since ¢; is in fact compactly supported in &', we certainly have the symbol bounds
D& Dg Dler (,€,€")] < Cago (€ (€67
This shows that

w, :h_“(27Th)_m/4+d1/2(271'h)_d1_d2/eilla LNz 1)) 01(1‘5 5//) d§ dfﬂ

€ pormm k2 prem At 2o (g N (Y ( 7)) N* Z)
as desired. =
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Remark 6.20. If we assume that (z,&") — b(x,&”/h) in (6.18) has compact support
in (z,£”), then we are left with only a wy term in the proof above, i.e., an element of
[ (gm. N (Y () 7)) NYY).

Remark 6.21. In the notation of the proof of Lemma 6.19, let O C T*R™ be an
open neighborhood of WF),(u) N N*Y. Then wy € I/T®>/>°™(Rm: N*(Y N Z), N*Y)
can always be chosen so that WFj,(wg) C O. Indeed, by Lemma 6.8 and semiclassical
wavefront set calculus,

WF;,(wo) C (N'Y N WFy(u))
U {(0,0,2",&,£",0):(0,0,2",£,0,0) € WFy,(u), £" € supp x}
Now WEF},(wy) is closed, and WF,(wy) N N*Y C O; since O is open, the result follows
by taking y with sufficiently small support. Observe that this can be thought of as

decomposing v = vy + vy itself into a sum, where we insert x(£”) and 1 — x(£”) into

(6.17).

We now return to the setting of Section 6.3: let X be an n-dimensional manifold,
and Y C X a codimension k& submanifold. We then consider operators with Schwartz
kernels

Ka€IP(X x X; N*((X x Y) ndiag), N*(X x Y)).

We also need to consider the case when X x Y is replaced with Y x X. Although
K 4 is not compactly microlocalized, it nevertheless defines an h-tempered family of
operators A : C*(X) — C~>°(X).

As in Section 6.3, it suffices work on X = R"™ with coordinates x = (2/,2") €
R* x R"* where Y = {2/ = 0}. If (z,y,&,n) are the corresponding coordinates on
T*(R™ x R™), let

AR:N*{yIZO}, AL:N*{QZJ:O}
We work with the Lagrangian pair
A =AgorAp, AN={2'=y=02"=4" " =-0"} (6.19)

For instance, if A; = Ag, then we can parametrize K, € If{l(RQ”; Ao, A1) by
KA — (27Th)_n_k / 6%(<:E/,5')—<y/,CI>+(Z‘"—y”,§">)a(m//7 C/, gl,gl/) dgldél/dcl’ (620)
where now a(y”, (', &, £") satisfies the symbol bounds

|D§‘/D§D;,,a(y”, C/’ 5/’ 5//)| < Caﬁ’y <€>l—n/2—|ﬁ| <(</’ €>>p+(n—k:)/2—|a| .

We need uniform mapping properties of A, which can be deduced as in [DHUV, Propo-
sition 5.14].
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Lemma 6.22. Let Ay, Ay be defined by (6.19). Let K € I (R?"; Ay, Ay) be of the
form (6.20). If p+1 < —k/2 and p < —n/2, then

| Al 2 mn) s p2(rny < ChF.
Proof. For concreteness, assume that A; = Agr; the same proof can be repeated for Aj,.

We argue as in Lemma 6.15, viewing A as a pseudodifferential operator on R"* with
an operator-valued symbol A(z”,£") given by

KA<$/, y/; y//)é—//) _ (27Th)2k/€;b(<m/’<,><yl’€/>)a($ﬂ, C/’gl’gll) dC/df/

Conjugating by the Fourier transform as in Lemma 6.15, the problem is reduced to
showing that the operator with Schwartz kernel

(¢, €) = (€ Dy Dgala”, €, €") (6.21)
has uniformly bounded operator norm on L?(R¥) (we multiplied by a factor of (27h)¥).

As in [DHUV, Proposition 5.14], it suffices to show that the Hilbert-Schmidt norm of
this operator is uniformly bounded.

Write a = a; + ag, where (£) < (') on supp ay, and (¢’') <2 (&) on supp ay. For ay,
<£//>|/5| |D;//D§/,a1 (y//7 e 5//)| <C <£>l—n/2 <§/>p+(nfk)/2

by the support assumption on a;, and the proof proceeds just as in [DHUV, Proposition
5.14]. For ay the proof is even simpler, since then

<€/>k/2+5 <</>k/2+6 <€//>|5\ ’Da”D? a1<y// CI 5/ 5//)‘ < C<(CI €)>p+l+k/2+26

Y " ) 1S — ) .
If 6 > 0 is sufficiently small, then the right hand side is uniformly bounded, and this
implies that the kernel (6.21) is uniformly square-integrable in (¢, £’). O

We continue studying operators with kernels in Ifgl(]RQ”; Ao, A1), but the results that
follow are no longer coordinate invariant.

Lemma 6.23. Let Ay, Ay be as in (6.19). Let K4 € IZ'(R2*; Ao, Ay) be of the form
(6.20). Ifl < —n/2 and p < —n /2 — k/2, then K4 is continuous, and

(Kl 2"y y")| < O (! )y (' /i)~ (" = ") )™
for each N > 0.
Proof. Again, assume that Ay = Ar. As in Lemma 6.22, decompose a = a; + as,
where (£) < (') on suppay, and (¢') < 2(£) on supp as. The hypotheses imply that

a € LY(R"™), so K4 is continuous and |K4(z',2",y',y")| < Ch™™*. Furthermore,

integration by parts shows that
[’ /)™ |y R | (2" = y") ] | K a (el 2y y") < R
for every Ny, No, N3 > 0. O
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We now proceed with some L*°(RF; L2(R"*)) bounds which improve the loss in
h that occurs in Lemma 6.22; these bounds will be essential to obtaining optimal
estimates for the size of the reflected wave in our propagation argument later on.

We write u(z’) for the function z” + u(2’, 2") on R %,

Lemma 6.24. Let K, € IPH(R2; Ay, A1) be of the form (6.20). If I < —n/2 and
p<-—n/2—k/2, then

[(Aw, 0)| < Cllull poo g2 @r-r [10]] Lo ;2 1))

Proof. Write the L?(R™) pairing,
(Au,v) = / (/ Ka(2', 2" 'y uly', y")o(a, ") da:‘”dy”) dx'dy’.
By Lemma 6.23 and Schur’s lemma,
| (Au,v) | < Ch_2k/<$'/h>N ' /0 ()| 2|0 (@) | 2 gen ) da’dy

S CHUHLW(R’“;LQ(R”*’“)) ”UHL“’(R’C;LQ(R"*’C))?

which completes the proof. O

We also need an L®(R¥; L2(R" %)) — LY(R¥; L(R"*)) boundedness result which
similarly improves upon the loss in A in Lemma 6.22.

Lemma 6.25. Let K, € I2'(R?*; Ay, Ay) be of the form (6.20). Ifl < —n/2 and
p<-—n/2—k/2, then

HA"Lw(Rk;LQ(Rn—k))HLI(Rk;L2(Rn—k)) < C.

Proof. By Cauchy—Schwarz,

/ | A ey e’

1/2
S/(/|KA(:E,y)||KA($,z)||u(y',y”)\%y’dy"dz’dz”dx”) dx’,

and by Lemma 6.23, changing variables to replace z”, 2" by (" — 2")/h, (" —y")/h,
and beginning with the y” integral, we find that this is bounded by a constant times

HUHLOO(R’C;LQ(R"_’C)) [l

Finally, we will need to consider composition of A € %™ (R?*"; Ag, A;) with a
family of pseudodifferential operators on R"™* depending parametrically on R* (cf.

the discussion of “tangential” operators in Section 2.2). Thus we consider an operator
Q € C=(R*; U9 (R"*)) with Schwartz kernel

KQ(JZ/, w//’ y/’ y//) _ (27Th)_n+k5(l‘/ . y/) / e%(z”—y”,n”)q(y/’ y//’ 77//) dn//7 (6.22)
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where ¢ € S°(R"; R"*). Supposing that A; = A, compose with A given (6.20):

KAQ<=T/7 xlla y/7 y//)
_ (27Th)_n_k/6}iL(<z/’€l>_<y/’c/>+<rﬁ_y/l’£//>CL(ZE”, C',ﬁ',f”)q(y’,y”,f”) dfd(ldzﬂdn/.

Clearly the resulting operator is in 15~ *°(R?**; Ag, A;). The same argument works if
Al - AL-

Lemma 6.26. Let QQ, A be given by (6.22) and (6.20), respectively. Suppose that
(2", €, &") € esssupp(a) = (2/,2",¢") ¢ WF,(Q) for each ' € R*.
If p < —n/2, then

|AQ| 2@ry= 2@y = O(h),  [|QA| L2@r)=r2@n) = O(h™).

Proof. As in the proof of Lemma 6.22, we can view A as being a L(L*(R¥))-valued
operator, provided p < —n/2. Similarly, we can view @ as an operator on R"~*
with a L(L?*(R¥))-valued symbol; in this case the symbol of Q just acts on L2(IR¥)
as a multiplication operator. The assumed relation between esssupp(a) and WF;(Q)
guarantees that essential supports of their operator valued-symbols do not intersect,
hence

| AQ|| L2 (®n)—s L2 (mn) = O(R)

by the calculus of operator-valued pseudodifferential operators. Either directly or by
taking adjoints, QA is similarly negligible. 0

7. DIFFRACTIVE IMPROVEMENTS

We now return to our operator P = —h*A, +V on X and prove Theorems 2, 3.
Recall that we establish these theorems only when o > 1.

7.1. Decomposing the potential. We need to consider properties of the potential
appearing in our operator P = —h?A, + V more carefully. All the material in this
section applies to arbitrary codimension. Thus we let (X, g) be an n dimensional
Riemannian manifold and ¥ C X a codimension k£ submanifold. We work in a co-
ordinate patch U, identified with a subset of R", with coordinates (z’,z"), where
Y NU = {2’ = 0}. We will frequently take advantage of this coordinate decomposition
to write functions on U as functions in ’ with values in some function space in z”; in
order to obtain mixed-norm bounds. Assume that

Ve IR N*{z/ = 0})
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has compact support in Y. Thus we can write
Viw) = (2e) [ b (o,

for some v(z,n’) € S*(R™;R*) with compact support in the z variables. As in the
remark following Lemma 6.19, we decompose V' =V + Vi, where

Vala) = (2t ™ [ eHe O ryota. o ) di (r.)

and V; =V — V. Here y € C*(R¥; [0,1]) is identically one near = 0, and 7 > 0 is
a parameter which will be chosen small, so as to limit WF,(14) to a neighborhood of
the zero-section in the conormal bundle to {z' = 0}.

We remark for later use that provided p < —k, we have a trivial L>° estimate with
decay in h,

Vil = O(R™"7"). (7.2)

We also have a useful mixed-norm bound which will be used occasionally in place of
Lemma 6.23 to directly bound certain multiplication operators (the proof is completely
analogous to that of Lemma 6.23):

Lemma 7.1. ]f/,L < —k, then ||‘/1||L1(Rk;Loo(Rn—k)) = O(hiﬂ)

Proof. Recall that

Vite) = o)™ [ ko1 (o' )otol 1) d.
Owing to the support properties of xy we have the symbol estimate

D (1= x(0f /7)) o(a" 0 )] < Cah# (o' Y~V
for all multiindices 3, where Cz depends on 7 as well. Repeated integration by parts
shows that
Vi) < Cwh™#*(a'/h)~

which implies the desired estimate by integration and change of variables. 0

Fix A € U;°"P(R™) with compact support in ¢, which will later play the role of the
commutant in a positive commutator argument. Write Ay = N*({z' = 0} N diag) and
A; = N*diag. According to the proof of Lemma 6.19 (see Remark 6.20),

KVOAJ KAV() S I:+k/27comp(R2n7 A07 Al)
The kernel of A has wavefront set a compact subset of (O x O") N N*diag, where O
is open in T*X (with the usual notation O’ = {(z,—¢) : (z,£) € O}.) As noted
in Remark 6.21, by taking 7 > 0 sufficiently small in (7.1), we can arrange that the

kernels satisfy
WFh(KVOA) U WFh(KAVO) cOxO. (73)
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This is therefore true of the commutator [A, Vp] as well. We also need to compute the
principal symbol of [A, Vj] along N*diag. A priori,

Kiayy € ITF20mp(R2 Ay Ay),
but of course the principal symbol of [A, Vj] along N*diag vanishes, so in fact
K(avy) € hIjHTOmP R Ag, Ay,

To compute the principal symbol of [A, V], it is easiest to use the change of variables
formulas from Section 6.2.

Lemma 7.2. With a = o,(A), the principal symbol of (i/h)[A, Vo] along Ay is H,Vy

qutk/241 ) k242
in Sy, /hSy]

Proof. Set b(y",n') = e~ "™Pv-Lady(y 1/ /L)X (') |,y=0, 0 the kernel of AV} is

Kav(a,y) = (20h) "+ / eH WA o2, €Y (" ) i de,

where without loss we can assume that a is the total left symbol of A. To put this in
the framework of Section 6.2, set z = = — y, so that in terms of coordinates (v/, z, z"),

Kayy(z,y) = (2rh) ™" / R WA ENa(y 4 2 2", ©)b(x” — ) dn'de.

It remains to express this in terms of coordinates (2, z, 2”), namely we pull back by
the map (2/, z,2") — (' — 2/, z,2"). By (6.11), the symbol of this pullback is
67ih(DZ,D§) (67%<2l’n/>a(1’/7 I//, )b(l‘// o 21/7 7]/)) |z:0
— a(x/7'r//’ )b(x//7/’7/) + <77/7 a&'/a(x/,x//, ”)>b(l‘”,7]l)

— ih<a§//a($/, .7)”, ”)7 3zub(x”, T]l)> + thj—k/?—‘rQ,comp‘
In the same (2, z, 2") coordinates, the total symbol of V5 A along A; is

CL(LU/,ZL'”, )b(l’”ﬂ],).
Subtracting this second expression from the first, we obtain the desired result (after
integration by parts in 7’). O

Remark 7.3. If Q € U9 (R"), then the kernel of [@, V{] is not strictly part of the paired
Lagrangian calculus developed in the previous sections; we will need to consider such
an operator in Lemma 7.6 below. We therefore record two facts that remain true for

Q, Vo).
First, let g(z,&) be the total left symbol of (). Arguing as in Section 6.2, it follows
that K v, can be written in the form (6.15), with amplitude

6—ih<D2N,D£//> (q(.ﬁlﬁ, fl + 77/’ f”)b(.ﬁlﬁ” . Z”, 77,) . q(a:, 6/’ 5”)6(33”, 77/)) |Z//:0_
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Taylor expanding q(z,& 4+ 1, £") about (z,&’,£") and integrating by parts in 7’ shows
that the kernel of h='[Q, W;] can be written in the form (6.15), with an amplitude
a(x”,n' €, £") that is compactly supported in 7" and satisfies

D5 Dgala €, < Cap (o /)" (€)1
According to Remark 6.16, if ;1 < —k then this implies that for some v € (0,1/2],

|| [Q7 ‘/1] HLQHL2 = O(hQﬁy)

Secondly, let O be an open neighborhood of WF,(Q) in T*X. Taking 7 > 0 sufficiently
small in (7.1), we can still arrange that

WFh(K[Q,VO}) C O x O/,

as in (7.3). The point here is that this is true even when ) does not have compact
microsupport.

As for the residual term V7, we have
Ky, € hm 4P m2 Ay N*{y = 0}),

(7.4)
Kyya € hoRIE B0 R0 NG N* {af = 0}).

Observe that there is no gain in the commutator [A, V;] in terms of powers of h (or
order of singularity) over AV} or V1 A: we will simply estimate the summands in the
commutator separately.

Lemma 7.4. Let A € U;""P(R"). If u < —k/2, and T € C*(RF; U7 (R"F))
satisfies
(2,€) € WF,(A) = (2,£") € elly(T),
then
[AViul[L2 + [ViAul[> < O Tul|z2 + O(h)||ul 2.

Proof. Choose 1) € C*(R™) such that Ayp = pA = A, and let t € C>°(R™*) be such
that t(¢”) =1 on {&" : (z,£) € WF,(A)}. It suffices to prove the lemma with

T = ¢Op, (1)

To do this, we apply Lemma 6.26 with Q = 1 — T}, with T} satisfying the same proper-
ties as T but microsupported in the elliptic set of T'. This allows us to replace u with
Tou modulo O(h™)||u||r2 errors. We apply Lemma 6.22 to bound Vj ATyu, while the
AV Tyu term is bounded similarly, following commutation of V} with Ty; by tangential
smoothness of V, this yields an error term in the calculus C2°(R¥; W5°™P(R"~*)) which
can be estimated by ||Tu||zz where T is elliptic on WF(Tj). O
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We will also need a slightly more refined decomposition of Vj itself. With x as in
(7.1), write Vo = Wy + Wy, where

Wo = (2mh) ™" / et &)y (Fn/hyo(a, o [h) dif

= (2m) [ N Eota ) . (75)
and 7 > 0 is a parameter. The point of this decomposition is that for p + |a| < —k,

D3 W1 — 0 uniformly as 7 — 0, (7.6)

Z'/

whereas W is smooth and independent of h. Also observe that the paired Lagrangian
properties of AV and VA described above also apply to AW; and W A.

7.2. Elliptic estimates. We prove an elliptic estimate for P = —h*A, + V involving
ordinary semiclassical wavefront set. Although everything in this section applies to

arbitrary codimension, for simplicity we restrict to codimension one; thus we assume
that V € II717°)(Y), where o > 0.

Since we are ultimately interested in L? based wavefront set, the estimates we give
are quite crude in terms of Sobolev regularity.
Proposition 7.5. Let « > 0 and s < a +r, where s,r € RU {+o00}. Suppose that u
is h-tempered in H} (X). If WF}, (u) = 0, then

WEF,*(u) C S UWF, "*(Pu).

Recall that the notation WFﬁs(u) for ordinary semiclassical wavefront set relative
to HF(X) was introduced in Definition 2.6.

Proposition 7.5 follows from the quantitative estimate in Lemma 7.6 below; since
stronger results are true away from Ty X, for the proof we assume that all operators
have compact support in a coordinate patch 4 about Y.

We now obtain a semiclassical elliptic estimate. In contrast to Proposition 5.1,
this estimate concerns ordinary, rather than b-pseudodifferential operators. Since the
operators in question do not respect the interface Y, the resulting estimate has an
a-dependent loss on the right side.

Lemma 7.6. If A,G € U) satisfy WF,(A) C ell,(G) Nell,(P), then
[ Aully < ClGPull g1+ Ch|Jull 2 + O(h%) ||ullm;

for each u € H(X).

Proof. The proof makes use of the decomposition V' = Wy 4+ W7 4+ V; described in
Section 7.1. Let Py, = —h*A, + Wy and let py, denote its principal symbol. Note
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that
(¢)7%p # 0 near WF,(A),
where we have written ¢ = (§,n). If 75 > 0 is sufficiently small (where 7 is the
parameter appearing in (7.5)), then there is ¢g > 0 such that
(O)7% |pw,| > o near WF,(A) for all 7 € (0,7). (7.7)
Let Z € U, 2 be everywhere elliptic with principal symbol (¢ >72, and then set
2 Uh(A) 0 (rx
e SY(T*X). 7.8
o (P (1"X) (7.8)

If @ € ¥ has principal symbol ¢, then (7.7) and (7.8) show that we can take WF,(Q) C
WEF,(A), and that

1Qullz> < CollAullzz + ChlGull = + O]l
where Cj > 0 is uniform in 7 € (0, 7). Furthermore, we can write
A=ZQPy, +hF, FeV,!
where we may assume that WE,(F) C ell,(G). Now estimate
|Aully < 1 ZQPWoull s + ChlFull
< ClQP = Wr = ViJul| v + Chl[Gul| 2 + O(h™) [[ul| 2.
Given ¢ > 0, choose 7 sufficiently small so that ||[W;]|z~ < e. This yields
[@QWhul| L2 < [[WiQul| 2 + [[[Q, Wh]ul| 2

< el QullL> + [[[Q Whlull 2
< Coel|Aul|z2 + 11Q, Wilul[ 2 + Ch[|Gul| 2 + O(h%)|ul 2

We need to bound the L? norm of [Q, Wi]u. If Q € ¥;*™, then by Remark 6.20,
Kigwi] € b, *T/>™ (X N*((X x Y) N diag), N*diag)

and Lemma 6.15 would apply. However, since we are merely assuming that Q € U9
the kernel of [Q, W] is not strictly part of the paired Lagrangian calculus developed
here.

On the other hand, the proof of Lemma 6.15 still applies in this setting, as explained
in Remark 7.3. In the notation of latter remark, let O be an open neighborhood of
WF,(G) in T*X such that O C WF,(G). If 7 > 0 is sufficiently small so that
WF,(Kjgw,) C O x O', then we can bound

11Q, Whlullr2 < Ch*Y||Gullzz + O(h*)[|ul| 2.
for some v € (0,1/2].
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In order to bound the final term ||QVjul| ;2 simply use the estimate ||[V}]|z~ = O(h®)
by (7.2); hence
[Q@Viu|| L2 < Ch*||ul| 2.

By taking ¢ sufficiently small,
1Aullgy < 1QPull 1 + Ch*Jul| gz + K™D Gul g2 + O(h) ||| 2.

Finally, recall that G is elliptic on WF},(Q), hence @ Pu can be replaced with G Pu. The
proof is then finished by an iterative argument, increasing the semiclassical regularity
by min(1/2,+) at each step. O

Remark 7.7. The remainder term h®||u||z2 in Lemma 7.6 is not microlocalized. On
the other hand, suppose that A € Ui in Lemma 7.6. If T € C*(R; U;""P(R"1))
satisfies

(z,y,§,m) € WFL(A) = (z,y,7m) € ell,(T),

then we can replace this term by h%||Tu||z2. This follows since by Lemma 6.26 (cf.
Lemma 7.4) we can replace QViu in the proof with QViTu modulo a O(h™)r2_, 2
remainder.

7.3. Ordinary and b-wavefront sets. We now present two results relating ordi-
nary and b-wavefront sets. The first allows us to replace microlocalization by b-
pseudodifferential operators at 7*Y C PT*X with tangential operators.

Lemma 7.8. Let « > 0 and s € RU {4+00}. Suppose that u is h-tempered in
Hi(R™). If WF};}L’S(PU) = 0 and g0 = (0,90,0,m0) ¢ WFi‘Z(u), then there exists
T € C(R; W™ (R™1)) with (0,y0,m0) € ell,(T) such that

[Tull gz < Ch.
Proof. Let T € C2°((—46,8); ¥ (R™1)) satisfy (0, yo,m0) € elly(T) and
WEL(T) € {lz] + |y — ol + [n —mo| < 0}
Define f(z,y,0,n) € S2(°T*R") by

f(z.y,0.m) = x(0*/((Cod)* (1)),

where x = x(s) € C°(R) is one for |s| < 1 and vanishes when |s| > 2. The parameter
Co > 0 will be chosen later. Let

F =0p,,(f) € ‘Ijg,ha
be properly supported. Since || < C'(n) on supp f, it follows that T'F € \I/%h, where
@ € elly(TF), WEL(TF) CA{|z] + |y — yol + |o] + |7 — m0o| < C16}
for some Cy > 0. Taking ¢ > 0 sufficiently small implies that ||TFul|z < Ch.
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On the other hand, we can write 7' = T'p, where ¢ € C2°(R™) has supp ¢ C {|z| < d0}.

Therefore,
171 = Flullgy = [Te(1 = Flullgy < Clle(l = Flullg,
as T is uniformly bounded on Hj(R"™). Now observe that ¢(1—F) € ¥}, has compact
support in {|z| < 0}, and
’U| > C[)(S on WFbJL(gO(l — F))
By taking Cy > 0 sufficiently large, there exists 0y > 0 such that Lemma 5.5 applies
to p(1 — F) for § € (0,d). In particular,
IT(1 = F)ullgy < CllPull g + OT)[ullgy,

which completes the proof. 0

Note that the proof (or alternatively the Closed Graph Theorem) in fact yields the
quantitative statement

[Tully < Ch*[Goullgy + CllPull g + O [ull gy, (7.9)

where Gy, € ¥}, is elliptic near go.

Next, we show by a similar argument that at glancing points (or rather their preim-
ages in Ty X '), microlocalization by ordinary semiclassical pseudodifferential operators
can be replaced with microlocalization by tangential operators.

Lemma 7.9. Let o > 0 and s € RU{4o00}. Suppose that u is h-tempered in H}(R™).
Let

wo = (OvyOJ OJ 770) S Tril(g) N T{;X
If WE; "*(Pu) = 0 and wy ¢ WF3(u), then there exists T € C®(Rg; U™ (R771))
with (0,y0,M0) € elly(T) such that such that

[Tull gz < Ch.
Proof. The proof is similar to that of Lemma 7.8. Let T € C°((—4,0); U3 (R"1))
with total left symbol ¢ = t(x,y,n) satisty (0, yo,n0) € ell,(T) and
WE(T) € {lz] + [y — ol + |n —mo| < 0}

Let ¢ € C°(R™) be such that suppp C {|z| + |y — w| < 6} and T' = ¢T. Because w,
is a glancing point, we know that p(xg, yo,70) = 0. Thus for § > 0 sufficiently small,

15| < 6% on suppt.

where 6 € (0,1] is a Holder exponent for V' (recall that o > 0). Define f(z,y,£,n) €
SO(T*R™) by
f,y,&,m) = x(62/(Cod” (n))?),



SEMICLASSICAL DIFFRACTION BY CONORMAL POTENTIAL SINGULARITIES 81

where x = x(s) € C°(R) is one for |s| < 1 and vanishes when |s| > 2. Let
F =Opy(f) € ¥y,
As in Lemma 7.8, since [£] < C' (n) on supp f, it follows that FT € ¥;*™, such that
@o € elly(FT), WEW(ET) C {[a| + |y — ol + 1 —m| < 18, [¢] < €167}
Taking ¢ > 0 sufficiently small implies that ||F'Tul[;; < Ch*.
Next, choose T" € C°((—4,9); ;™™ P (R™1)) with same properties as T, replacing &
with (1 +¢)0 for € > 0 arbitrarily small. We may choose 7" so that
Let ¢’ be a total symbol for 77. Decompose the function 1 — f = f; + f5, where

Cod’’* < |¢] < 2C1(n) on supp f1, [§] > Ci(n) on supp fo.
Writing, F; = Op(F;), we have that F4T" € U;°™ with principal symbol f1#’. Now
€] > Co6%/% on supp(f1), so if Cy > 0 is sufficiently large, then
p(x,y, &) = E + K (z,y)min; + V(x,y) > cod’

on supp(fit'), where ¢g > 0 does not depend on 6. Thus WE,(F\T") C ell,(P), so
applying Lemma 7.6 to the function Tu,

|FTullmy < NET)Tullmy + Ol
< C||PTull g+ + Ch®[[Tul[> + Oh™)||ull ;-
On the other hand, for the term Fj, if we take C > 0 sufficiently large, then p > ¢(¢)?
on supp(¢fa). Thus WF;,(Fyp) C ell,(P), so again
[E2Tullmy = |(Fap)Tull gy < CllPTul| -1 + Ch®||Tul[2 + O(h%)|[ull
In order to handle either of the terms involving F} or Fj, it therefore suffices to bound
HPTUHH;L This is done by writing PT'u = T Pu+ [P, T|u and bounding HTPuHH;1 <
C”PUHH;I. As for the commutator,
[P,T] = h(hD,)T\ + KTy + [V, T],
where T; € C>®(R; U;""P(R"!)). Here we can view [V,T] € C°(R;h¥;"™P(R"1)).
Since T" is elliptic on WF,(T),
I[P, Tlul| -1 < Ch|[T"ul|z2 + O(h™)[[ul| 2.
Altogether, we have
ITullmy < CllPull g1 + CllAu gy + CH™ T gy + O () ||ul| g,

Since the wavefront set of 7" is larger than that of 7" by an arbitrarily small amount

the proof is finished by induction, improving the semiclassical regularity by A™in(1e)

at each step. O
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Lemmas 7.8 and 7.9 can be combined using the following observation: if Ay, € W™

and T' € C=(R; }""P(R""1)) are such that (z,y,n) € WF,(T) implies (z,y,0,7) ¢
WEFy ,(Ap) for any o € R, then

[Apul[r2 < [[Tul| L2 + O(h%)||uf L. (7.10)
The proof is similar to that of Lemma 6.26.

Lemma 7.10. Let a > 0 and r € RU {+o0}. Let wy € 7 Y(G) and gy = 7(wo).
Suppose that u is h-tempered in H} (X) and Pu € L*(X). If

WEF (Pu) =0, wo¢ WF}(u),
then qo ¢ WFéZ(u)
Proof. This follows by combining Lemma 7.9 with (7.10) and Lemma 5.4. O
7.4. Improvement at hyperbolic points. We are now ready to prove Theorem 2.
Fix wy € 7 1(H), and write
@o = (0, 0,0, M0)

with respect to a fixed normal coordinate patch U, where &, > 0 for concreteness.

Proposition 7.11. Let a > 1 and s < r+ «, where s,7 € RU{+o0}. Suppose that u
is h-tempered in H}(X) with Pu € L*(X), such that

7(wo) ¢ WFéZ(u), WEST (Pu) = 0.
If there is a neighborhood U C T*X of wq such that U N WF; (u) N {x < 0} =0, then
wo ¢ WF; (u).

As usual, Proposition 7.11 follows from a quantitative estimate via a positive com-
mutator argument.

Proposition 7.12. If G € ;™ is elliptic at wy and Qy, € W, is elliptic at 7(w),
then there exist QQ, Q1 € V3", where
WEL(Q) C elly(G) and @y € elly(Q),
WFh(Ql) C ellh(G) N {l’ < 0},
such that
1Qullz2 < Ch™H| Pullz2 + Cl|Quullr2 + Ch¥||Quull gy + O(h%)||ull 2, (7.11)
for each u € H}(X) with Pu € L*(X).
Note that G can be used to control the sizes of WF,(Q) and WF(Q1), but the term
involving Pu is not microlocalized. The term involving Q,u is microlocalized, but only

in the sense of b-wavefront set; by Theorem 1, it can be controlled by the singularities
along backwards GBBs from (wj).
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Remark 7.13. By a regularization argument it suffices to prove Proposition 7.12 (and
also Proposition 7.17 in the next section) for u € C*°(X). Indeed, given u € H}(X)
with Pu € L?(X) we can choose u; € C*(X) such that

u; — uwin HY(X), h*Aju; — h*Ayuin L*(X)

(see [DZ, Lemma E.47] for instance). This of course implies Pu; — Pu in L?(X) as
well.

One key to the proof of Proposition 7.12 is the use of the microlocal energy estimates
discussed in Section 2.3. Suppose that u € C*(X) is supported in a normal coordinate
patch near Y C X. If (z,y) € R x R"! are the corresponding normal coordinates, we
can apply Lemma 2.7 to the operator L = P with 21 = x and 2’ = y. Indeed,

P = (hD,)*(hD,) — KAy +V,
and V € C'(X) since a > 1. The hypotheses on R = —P = h?A;, — V are satisfied in
a sufficiently small neighborhood (—¢,¢) x U of a point Gy € 7' (H).
We use an approach quite close to that of Proposition 5.8. Define the functions
1

w =€ =&l + |y = wol* + In — nol?, ¢:I+%W-
We use the same cutoffs xg, x1 as in Proposition 5.8. We also fix a cutoff ¢ €
C>=(T*X;[0,1]) such that 1 = 1 near {|z| < 26, w*/? < 236} with support in {|z| <
30, w'/? < 3B6}. Now set

a=x0(2—¢/0)x1(2+z/0).
The support properties of a can be read off from the analogue of Lemma 5.9; in
particular,
suppa C {|z| < 26, w'/? < 266},
hence ¢ = 1 on the support of a. Recall that we are assuming V € I7'=(Y) with

a > 1. We will use a decomposition V' = V;, + V; as in Section 7.1 which may depend
on &, but not .

To proceed with the positive commutator argument, write
—(2/h) Im (APu — AViu, Au) = (i/h) {[A*A, —=h* Ay + Volu, u) .

The right hand side is treated symbolically within the paired Lagrangian calculus. For
convenience, set

f == O'h(—h2Ag).
Let Py, = —h*A, + Vo and py, = f + Vo. For simplicity, write z = (z,y) and
¢ = (&,m). The point of the next lemma is that it holds uniformly with respect to the
decomposition V' = Vj + V4, i.e., with respect to the choice of 7 in (7.1).
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Lemma 7.14. Let f = oy (—h*A,) € C(T*X). There exists (3, 0o, co, 70 > 0 such that
for each ¢ € (0,00) and T € (0,79) in (7.1),

Hip > 2¢o, |0,,Vo - 00| < Hpp/(4n) fori=1,... n.

on supp .

Proof. For any g € C*(T*X),

IH,w| < Cow'/?
uniformly on any fixed neighborhood U of wy. This is therefore true for the smooth
part f = on(—h*A,) of pw. As for the potential, the crucial point here is that if U is
a fixed neighborhood, then for i =1,...,n,

|8Z1Vb ) 8Ciw| < Clw1/2

on U for a constant C7 > 0 that is independent of the choice of the parameter 7 > 0
in (7.1); this is obvious from the oscillatory integral representation of ;.

On the other hand,
Hfl' = 25
If we fix a sufficiently small neighborhood U of wy, it follows that Hyx > 3¢y on U
for some ¢y > 0. Fix 8 > 3(Cy + 2nC1)/co, and suppose that dy > 0 is such that
suppt C U for ¢ € (0,0p). Then,

Hyp > 3cg — Cof 26w/ > 3¢y — 3CoB8~" > 2¢p (7.12)

on supp ¢, and in addition
0:Vo - 0¢, ¢ < 3C1B7" < co/(2n) < Hy¢/(4n) (7.13)
on supp . [l

We now examine properties of the commutator as a whole; note that 5 > 0 and
dp > 0 have been fixed by Lemma 7.14, and we are now taking § € (0,dq). First,
consider the smooth part f = o,,(—h?*A,) of py,. Define

b= (20)"2(Hs0)"* (xox0)*x1,
which is well-defined and smooth in light of (7.12). We then compute
Hy(a®) = =207 (Hyé) (xoxo)xT + 20~ (Hyz)xg(xix})
= b +e,
noting that suppe C {26 < z < —¢} Nsuppb. Fix compactly supported operators
B and FE in ¥;°™" with principal symbols b and e, respectively.

Next, fix compactly supported operators Ry,...,R, € U,;°"P(X) with principal
symbols

ry = (Hr¢) ™' (0, 0)¢.
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In particular, YHy,¢ = (Hpp) > 0., Vo - ri, and > |0, Vo - | < 1/4 by our choice of .
Moreover,

! H 0
HVO(GQ) = _2571(HV0¢)(X0X0)X% = —b (#(f) = —bQZaziVo * T,

since 1 = 1 on suppb. Note that Hy,(a?) > —(1/4)b%, but we do not use this directly
within the symbol calculus.

Instead, for a given § € (0,dp), fix an open set O C supp containing WF,(B).
Since WF(A) € WF,(B) we can choose Vj such that

WFh(K[A*A,VO]) cOxO.

By further shrinking 7 in (7.1), we can arrange that the kernels of B*(0,,Vy)R;B also
have wavefront set contained in O x O’, since the operators B, B*, R; are independent
of Vy. By Proposition 6.14,

(i/h)[Py,, A*Al + B*B+ B*> (0. Vo))R:B+ E
e I, o TW/2Feocomp A (X % V) N diag), N*diag)

for any 9 > 0. If this operator is denoted by F', then by construction the principal
symbol of F' along N*diag vanishes, and hence

F € bl *T@/2Focomp N (X % V) N diag), N*diag).

The key here is that since all of the operators above have kernels with wavefront set
in O x O, so does F.

Now we consider the identity
((i/h)[Py,, A* Alu,u) = || Bul|32 + Z ((0.,Vo)R;Bu, Bu) + (Eu,u) + (Fu,u) . (7.14)

The second, third, and fourth terms on the right hand side of (7.14) are bounded in
absolute value as follows. For the second term, we use the bound

[Riul 2 < 2sup [on(Bi)|[[ull 2 + O(h>)|ul| 2,
and the fact that 2 sup|d,,Vo||r:| < 1/2 by construction. Therefore
> (0. Vo) RiBu, Buy | < (1/2)||Bul[F2 + O(h™) ul| 2.

To bound the third term, choose Q; € U;”™ as in the statement of the proposition
such that WF,(E) C ell, (@) and estimate

[(Bu,u) | < CllQuull7: + O(h*)[ul|7..
For the fourth term, we apply Lemma 6.15: since a > 1, fix v > 0 such that

—a+ 27+ e9 < —1,
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where recall ¢y > 0 is arbitrarily small. Taking s =1 — 2,
—o + (3/2) +&—8=—a-+ (1/2) + &0 —|—2’)/ < —1/2.
Therefore, by Lemma 6.15,
| F||z2r2 < CR™. (7.15)
Let G € U;°™P(X) be elliptic on WF(B); since O was an arbitrary neighborhood of
WE,(B), we can assume that O C ell,(G) as well. Thus we can bound

[ {(Fu,u) | < CR*||Gull* + O(h™)||ul|Z-.
Combining (7.14) and (7.4), we obtain the useful bound

|Bul2: < Ch™Y | APul| || Aul| 22 + Ch™Y| (AViu, Au) |
+ Ch?||GullZ2 + [|QuullZz + O(h™) [Jull 7.

Note that the various terms involving ||Aul/;2 can be bounded in terms of ||Bul|y:.
This is done as at the end of Section 5.2, yielding

|Au|z2 < C||Bullz2 + Ch|Gul 12 + O™ |ull 1. (7.16)

It remains to bound the term h™!| (AViu, Au)|. Using Lemma 6.26 (cf. Lemma 7.4),
we can choose a tangential operator T' € C2°(R; U;""P(R"1)) with

WF,(T) C {|z] <38, [y — vol* + [n — mo|* < 98°6%},

such that
|AViul| 2 = ||AViTu|| 2 + O(R™)||u|| L2- (7.17)
The same lemma shows that
[[Vi, A" Alul[ 2 = [|[[V1, A" A]Tul| 2 + O(h%) ||ul| L2 (7.18)

The next step is to apply Lemmas 6.24, 6.25, 2.7.
Lemma 7.15. For each € > 0 there exists C. > 0 such that

| (AViu, Au) | < el|Bullfz + Co (b7 || Pull72 + [|Quull7> + A7 [|Gullf2 + h** (| Tul[7),
where T € C°(R; Ui P(R™™1)) is as above.

Proof. Recall from (7.4) that
AVy € b o oA RO X s X NF(X x Y) Ndiag), N*(X x V).
Arguing as in the preceding paragraph,
| (AViu, Au) | = | (ViTu, TA* Au) | + O(h™)]||ul|3.

Instead of using Lemma 6.24, we may easily bound a pairing of the form (Vjw,v) by
Lemma 7.1. This yields

| (ViTu, TA* Au) | < CROTY| T poo((—35,38):12n—1)) || TA* Au|| Lo (—35,38);12(Rn-1)) -
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Here we used that A has compact support in {|z| < 3}. If ¢ is sufficiently small, then
Lemma 2.7 is applicable. By Cauchy—Schwarz,
h™H {(AViu, Au) | < C€h2a”Tu||%°°((736,35);L2(R”—1)) + 5||TA*AU||%°°((736,36);L2(R"—1))
+O(h>)|Jullz:

for each &€ > 0. Let Ty € C*(R,; " (R7~1)) be elliptic on WF,(T). Applying
Lemma 2.7, we deduce that

Tl oo (e e)z2@n-1y) < Ch7H[Pull 2 + ClTyull gy + O(h>)|Jul gy
As for the next term, we again apply Lemma 2.7, but this time writing

36

||TA*AU||Loo((_35735);L2(Rn—1)) S Ch_l/ ||PA*AU,(S)||L2(R71—1) ds
36

+ Ol A" Al gy + O™ |[ull . (7.19)

Since A* € U;°"P(X), the second term on the right hand side of (7.19) is estimated
by ||Aul|z2 + O(h™)||u||r2. The first term on the right hand side of (7.19) is bounded
by a constant times

39
h*l /35 HA*APU(S)HLQ(R”—l) + ||[P’ A*A]U<S)HL2(R"_1) ds
36
< Ch™'(|APu|| 2 + ||[Pviy, A* Alul| 12) + h_l/ [V, A" AJu(s)|| L2mn-1y ds.

—36

Now recall that (i/h)[Py,, A*A] = —=B*B + B* > (0,,Vo)R;B + E + F, and hence

W \1[Py, A Alull e < || B*Bul| 2 + Y |B*(0:,Vo) Bull 2 + || Bull 2 + || Ful 2
< C([[Bullg2 + [|Quullz2 + h7[|Gull2).

The final step is to replace [Vi, A*AJu by [V, A*A]Tu modulo a O(h™)||u||L2 error as
in (7.18), and then apply Lemmas 6.25, 2.7:

39
hol / 1Vi A° AT u(s) [ gan-1 ds < Ch® [T poe (s 5502201
—36

< Ch* (Y| Pull g2 + [ Thull ).

A final application of (7.16) finishes the proof with T} instead of T’; this is of course
not a restriction, since WF(T") can be shrunk at will. O

Altogether, we have established the following:
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Lemma 7.16. There exists 3,00,y > 0 and such that the following holds for each
§ € (0,00). Let G € W™ be elliptic on WF,(B) and @y be elliptic on WFy(E). With
T € C®(Ry; W™ (R71)) as above,

| Bul|z2 < Ch7Y|Pul|pz + ChY||Gul| 2 + C||Quul| 12 + Ch||Tul| g
for every u € H}(X) with Pu € L*(X).

We now make a further argument to eliminate the Gu term on the right hand side
of our estimates. The semiclassical regularity is improved inductively by h” at each
step. Each time, we reduce 6 > 0 by an arbitrarily small amount; notice that the
decomposition V' = 1+ V) changes with every step as well by shrinking 7 > 0 in (7.1).

This nearly proves Proposition 7.12, except that we have a term ||7Tu|| ) on the right
hand side involving a tangential operator; this is easily remedied by an application of
7.8, which allows us to estimate || T'ul|g1 by [|Qvullg1 modulo acceptable terms.

Finally, we will prove Theorem 2 using Proposition 7.11.

Proof of Theorem 2. Let u be h-tempered in H}(X) with Pu € L*(X), and assume
that

WEH (Pu) = 0.

In the notation of Theorem 2, let wy = (0, yo, £&o, M0 ), Where without loss we assume
& > 0. Note that both 7. ((—¢,0)) are disjoint from 7y X for sufficiently small. To
prove the theorem, assume that there is a sequence of points €, > 0 tending to zero
such that v_(—¢,) ¢ WF}(u). We must then show that v, ([—&,0]) is contained in
WF; (u) for some gy > 0.

First let s € [r,7 + a]. We can assume that 7(wy) ¢ WF}DZ(U), since otherwise by
Theorem 1,

1+((=¢,0)) € WF}(u) € W (u),

for some € > 0, thus completing the proof. By Proposition 7.11, there is a sequence
w; € WEF} (u) N {z <0}

tending to w,. By Lemma 4.2, if j is sufficiently large, then there exists g5 > 0 such
that the backwards bicharacteristics v, from w; exists for t € [—¢g,0]. Moreover,
again by Lemma 4.2, 7; — ~; uniformly on [—&o,0]. By Hormander’s theorem on
propagation of singularities, v;([—¢o, 0]) is contained within WF} (u). Since WF} (u) is
closed, letting j — oo shows that v, ([—&¢,0]) C WEFj (u) as well.

If s < r, then apply the same argument but with ' = s instead of r. U
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7.5. Improvement at glancing points. We begin proving Theorem 3 by estab-
lishing a local result similar to [DHUV, Proposition 7.4]. The difference is that the
threshold condition is s < r 4+ o — 1 rather than s < r + (o — 1)/2, and crucially we
are able to microlocalize the background regularity more finely.

Given a normal coordinate patch U, let B(w,e) denote the Euclidean ball about
w € T} X of radius € > 0 induced by local coordinates (x,y,£,n). Also choose ap < «
and set

6 = min(1, a0 — 1) € (0, 1].

Thus ¢ is a Holder exponent for H,. The following proposition applies equally well
at glancing and hyperbolic points (but of course at hyperbolic points the threshold is
weaker than the one established in Section 7.4).

Proposition 7.17. Let o > 1 and s < r + a — 1, where s,r € R. Suppose that u is
h-tempered in H}(X) and Pu € L*(X) and WF;™ (Pu) = 0. Let

K C AT, X
be compact. There exist Cy, Cy, o > 0 such that for each wy € K and 6 € (0,0d), if
B(exp(—6H,) (o), Cod™™) N WF; (u) = 0, WFH (Pu) = 0,
{l] + Iy = yol + o] + [ = no| < C18} N WF (u) = 0, (7.20)
then wy ¢ WE; (u).
Proof. According to Remark 7.13, we can assume that u € C®(X). It will suffice to

consider the case K = {wp} (cf. Remark 5.15 and the discussion in [DHUV, Section
7]). We may also assume that dp(w) # 0, otherwise there is nothing to prove.

Choose local coordinates (py, . .., pa,—1) vanishing at wq such that
(Hppo) (o) >0, (Hppi)(wp) =0fori=1,...,2n— 1.

We use the same decomposition of V= W, + W; + Vj as in Section 7.1. As usual, set

2n—1
1

w:Z/??a ¢:p0+%w-

i=1
Also, fix a cutoff ¢ € C®(T*X;[0,1]) such that ¢ = 1 near {|p| < 26, w'/? < 236}
with support in {|po| < 36, w'/? < 355}.

Fix a neighborhood U of @, on which H,py > 4c; for some ¢y > 0. On the other
hand, using the Holder regularity of H, € C%,

[Hpw| < Mw'?(w" + | pol”)
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on U. Therefore Hy¢ > 4cy —3M B71((388)? + (35)?) on U. If we choose 3 = c&?, with
¢ > 0 sufficiently large, then we can arrange that

Hp¢ > 3C0
on supp . Given § > 0 (and setting 3 = c6? as above) we can choose 7 > 0 depending
on ¢ such that
Hpy, @ > 2¢o on supp ¢.

Further shrinking 7 if necessary (again depending on ¢) and using (7.6), we can also
arrange that

|0, W1 - 0,0 < o/ (2n) < Hpy ¢/ (4n)
on supp .
Let A = Opy,(a), where a = xo(2 — ¢/0)x1(1 + (po + 0)/(B5)). Write
—(2/h) Im (A(P — V})u, Au) = (i/h) ([A* A, Py, + Wilu,u) .
Now the term (i/h)[Pyw,, A*A] € ¥;”™ has principal symbol H,,, a®. This we write as
H

2 _ 32
@ = —b"+e,

where as usual, b = (26)'2(H,,,, )"2(xox6)"/*x1- On the other hand, suppe is con-
tained in the set

{=0-08 < po < =0, W < 286}
note that with the choice 8 = ¢6? this is contained in B(exp(—dH,) (), Cod'+?) for
all 0 sufficiently small.
Next, consider the term (i/h)[W7, A*A]. First, if 6 > 0 is given we can arrange the
decomposition V = Wy + Wy + V; so that
WFh(K[Wl,A*A}) C O x O/,
where O is an arbitrary neighborhood of WF(A).

Exactly as in Section 7.4, fix compactly supported operators Ry,..., R, € W™
with principal symbols

ri = (Hpy, @) (Oqw) .
In particular, YHy,w = (Hfp) > 0, Wi - 1y, and ) |0,, W1 - ;| < 1/4. Moreover,

/ H 1
Hu, (a®) = =267 (Hw, 6) (xoxo)xi = —b* (ﬁ) =0 0Wim,
Pwy

since ©» = 1 on suppb. On the other hand, as compared to Section 7.4 there is
an additional contribution to the commutator: fix compactly supported operators
Ly,...,L, € U;°™ with principal symbols

li = (B6) (0, p0) XX}
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We can take
WEL(L;) C {0 =08 < py < =6, w'/? < 2536},
as well. By further refining the choice of V' = W, + W; + V;, we can arrange that the
kernels of B*(0,,W1)R;B and (0.,W;)L; also have wavefront set contained in O x O'.
By Proposition 6.14,
(i/h)[Pw, + W1, A*Al+ B*B+ B* Y (0. W\)R:B+ Y (0. W\)L; + E
e I, *T/2eocomp v (X x V) N diag), N*diag)

for any €y > 0, noting the additional terms involving L; as compared to the correspond-
ing expression in Section 7.4. If this operator is denoted by F', then by construction
the principal symbol of F' along N*diag vanishes, and hence

F € hI, “TB/2teocomp x N (X x V) N diag), N*diag).

Since all of the operators above have kernels with wavefront set in O x O’ so does F.
Now we consider the identity

((i/h)[Pow, + Wi, A" Alu, u) = || Bul|7
+ ) (0 W) RiBu, Bu) + > ((0:,W1) Liu, u) + (Bu,u) + (Fu,u) . (7.21)

The second, third, and fourth terms on the right hand side of (7.14) are bounded in
absolute value as in Section 7.4: for the second term, we use the bound

[Riull L2 < 2sup [on(Rs)|[|ull 2 + O(h%)|ul| 2,
and the fact that 2 sup|0d.,Wi||r;| < 1/2 by construction. Therefore
> (0 W1) R;Bu, Bu)| < (1/2)||Bul|72 + O(h*)|[u]| 2

To bound the third and fourth terms, choose @ € ¥} such that WF(E) C ell,(Q1)
and estimate

Y (0 W) Liw, )| + |(Bu, w)| < C[|QuullFz + O(h)ul 2.
For the fifth term, by Lemma 6.15,
| F || 22 < CR*

with the same exponent 7 as in (7.15). Let G € U;""P(X) be elliptic on WF,(B);
since O was an arbitrary neighborhood of WF,(B), we can assume that O C ell,(G)
as well. Thus we can bound

[(Fu,w)| < CR|Gull® + O(h>)|Jul|Z..
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We therefore conclude that

|Bulls < Ch™ | APull2l|Aull 2 + Ch™] (AViu, Au) |
+ CH Gl + 1QuulZs + Ol
Here G is elliptic on WF;(B), and
WF(Q1) C WF,(G) N{—=26 — 2083 < py < —6/2, w'/* < 386}
Note that the various terms involving ||Aul|z2 can be bounded in terms of || Bu|| 2,
|Au 2 < C||Bullr2 + Ch||Gul| 2 + O(h™)]|u| 2.

It remains to bound the term h™!| (AVju, Au) |. As compared to Section 7.4, we are no
longer able to use the energy estimates, which leads to a loss of A~! in the threshold
condition.

Just as in (7.17), if C; > 0 is sufficiently large we can choose a tangential psedudod-
ifferential operator T" with

WEL(T) C {lz] + 1y = yol + [n — mo| < C16}
such that
h™ [(AViu, Au)| < hHIVIAT ]| + O(h%) [Jul Z..
Then (7.2) yields
h™(AViu, Au)| < e||Aul|7z + Coh* 72| Tul|72 + O(h)||ul7.-
On the other hand, by (7.9), we can choose @), € Wi’,}™ so that
|1 Tul|2: < Cl|Pullf: + [|QuullZ:,

where WE,(Qy) C {|z] + |y — yo| + |o| + |7 — no|} < C16}, increasing C} if necessary.
An inductive argument completes the proof (the commutant must be modified slightly
at each step, as pointed out at the end of Section 5.3). O

Proof of Theorem 3. Let wy € 7 1(G) N Ty X, and suppose that no bicharacteristic
segment of the form v(—¢,0), where v(0) = wy, is contained in WEF}, (u) for any £ > 0;
we wish to show that wy ¢ WF} (u). Let s be such that @y ¢ WF; (u); this always
exists by our tempered assumption. According to Lemma 7.10, this also implies that
qo = m(wp) ¢ WFé‘;(u) We now show that

wo ¢ WE}°(u) for so = min(r, s + o — 1).

Observe that s +a —1 > s since a > 1. Since wy ¢ WEF; (u), let U be a neighborhood
of wy of the form U = B(wy, £g), where gy > 0 is chosen so that U N WF; (u) = (). By
further shrinking ey, we can also assume that U, N WFé‘;(u) = (), where

Up = {|z] + |y — wol + |o| + |n —no| < &0}
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By Lemma 7.8 and Remark 7.7, we can conclude that
WE?(u)NU C X.

We now argue as in [DHUV, Lemma 8.1]: using Proposition 7.17 and ordinary semiclas-
sical propagation of singularities away from Y, we can therefore construct a backward
bicharacteristic segment through w, contained in WE}°(u); the proof is an even sim-
pler analogue of Lemma 5.18. This yields a contradiction, and thus we may reach the
desired regularity s = r by iteration. 0

APPENDIX A. PROOF OF PROPOSITION 1.1

A.1. Plane wave solutions. We construct exact solutions of (P — 1)u = 0 on [0, o)
of the form

us(z) = (1 + ba(z),
subject to the conditions b.(0) = 0 and b, (0) = 0. We then obtain C? solutions to
(P—1)u = 0 on (—o0, xg) after extending by by zero to (—o0,0). Thus uy are precisely
the continuations of the plane wave solutions e**/* from (—oc,0) to (—oo, zg).
Although the functions by are globally defined on [0, zy), their region of asymptotic
validity is small (in an h-dependent way). First consider the case b = b,, so that b,
satisfies the equation

R () + 2ihb (z) = (1 + b(x))V (2). (A1)

Viewing the right hand side as a correction, the unperturbed equation has linearly

—2iz/h

independent solutions 1 and e . By variation of parameters, (A.1) is equivalent

to the integral equation b = Jb, where
Y (s
(Jb)(z) = ﬁ/o (1 — X/ V(s)(1 + b(s)) ds.

This equation can be solved by successive approximation. Thus we set by = 0, induc-
tively define b, 1 = Jb,,. Let

1 [* p xott
o(x) = E/o V(s)lds = CE
on [0, zg). A simple inductive argument shows that
o () 20 (z)"+L
b, — b, < , |0 -0 < ——

for n > 0. Differentiating once more and using the formula for J, it follows that

(e 9]

b= Z(anrl - bn)

n=0
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is a C?([0, 00)) function solving (A.1) with b(0) = 0 and ¥'(0) = 0. Moreover, b = b; +¢,
where b; = J(0) and the remainder satisfies

le(z)| < e?@ —1 —0o(x), |he'(x)/2] <e”@ —1—o0(x)

on [0,00). We now find the behavior of by(z) as z/h — co. We will frequently use
the rescaled variable y = x/h, and by a slight abuse of notation write b; = b;(y) when
convenient.
Lemma A.1. In terms of y = x/h, the function by, satisfies
2 _iam/2 2i yot! 1
h—ab — _2—&— QT F 1 —2Y J o—

as y — oo, where the right hand side does not depend on h.

Proof. Integrating by parts once,

o e 2w Y 2is a+1
h bl(y)=a+1/0 s
— 9—a=2i(at2)r/2 (Ma+2) —T(a+2,—2iy)), (A.2)

where I'(a, z) is the incomplete gamma function, defined as

F(a,z)z/ t* et dt,

with the integral taken along any path not crossing the negative real axis. Since y is
real, there is an asymptotic expansion

Da+ 2, =2iy) ~ (<2iy)" e Y ay(~2iy) ™
k=0

as y — oo, where qp = 1 and a, = (@ +2—1)---(a+2 —k) for £ > 0 (see [Olv,
Chapter 3, §1.1]). Truncating after two terms,

F(Oé + 2’ —Qiy) _ 62z’y (2a+16—i(a+1)7r/2ya+1 + (Oz + 1)2ae—z‘om/2ya + O(ya—l)) )

Plugging this into (A.2) finishes the proof. O

For future use, define the quantity
'Y:I:(Oé) — _2—a—26:|:io¢7r/2r(a + 1)‘

Since V is real, we can define the complementary solution u_ simply by u_ = 4, so
that u_ = e (1 + by + &).
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A.2. WKB solutions. We would like to connect the solutions uq with a WKB-type
solution which is valid for € (0,00). To do this we will require precise remainder
estimates that will permit matching solutions at an h-dependent family of points xq —
0 that satisfies xo/h — 0o so Lemma A.1 will apply. Let f =1—-V,s0 P -1 =
(hD,)? — f. Define the phase

o) = [ 176 ds
0
According to [Olv, Chapter 6, Theorem 2.2|, there exists an exact solution to Pu =0
on (0,1) of the form
0, (@) = fl) VAEADIN(1 4+ 5()).
The remainder satisfies
|6(2)] < e =1, fla) PR ()] < M -1,

where
r(z) = / 7)1 (f(s) M) | ds.

In particular, vy (z) = f(x)"/*?@/h £ O(h) uniformly on any compact subset of
(0,00). Observe that f = 1 and § vanishes outside the support of V, since 7(x)
vanishes. Thus v, = ¢’/ for > 0, where

Z1
coz/ Y2(s)ds — a
0

for any fixed point x; > 0 outside the support of V.
There exist constants A, B such that v, = Au,+Bu_. Settingu = vy = Au, +Bu_,
the solution u satisfies
Aew/h 4 Be=w/h <0,
U= ,
coe®™/, x> 0.

Therefore R = B/A and T' = ¢y /A, where R, T are as in (1.3). The constants A, B are
found by computing the semiclassical Wronskians

Wi(us,vi)(@) = hug(z) - W'y (2) — bl (2) - v (@)
at an appropriate h-dependent point (the Wronskian is of course constant). Indeed,
we have the identity

_ W(u+,v+)u _ W(u,,er)u
R Wup,u) — W ul) (8.3)
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A.3. Wronskians. We continue to write y = z/h. Fix n satisfying
2+«
2+ 1)

and set xo = h". Then yy = x¢/h — oo whereas

ho“yS‘Jrl = xS‘“/h = o(ha/Q). (A.4)

<n<l

Since 2§t /h — 0, we see that
Bo)/h _ o/ gildao)—zo)/h _ iy

id(xg _ %o i(d(xo)—x0 — e (1 he )7

e e'o/Me e ( + 2i(a+1)+<(x0)
where ((z0) = O (25°"*/h?*) + O (z***!/h). We then check that

xa+2/h — plot2)n-1 h((2+a)2/2(a+1))71 _ h1+a’

so in particular, ((z9) = o(h®) and h('(xg) = o(h*). Since a € (0, 1), it follows that
flx) 4~ 1+ 2%/4 as 2 — 0%, hence

7(z) ~ ar® /4 as x — OV,
Therefore
flzo) 't =1+ag/4+o(h%), h(f ") (w0) = o(h*).
Finally, the errors in uy(zg) and v, (zo) are bounded by
(o)l + [he(zo)| = 0 (h%),  [6(x0)| + [hd'(z0)| = o(h%).

From this we conclude that

% a Y ya a
vy (o) = e y0<1 +h (2@'(02 0 ZO> +olh )>’
vt w
/ — ;o0 a _Z0 he >
v (xg) = ie (1—|—h (22,(0[_'_1) 4)+0( )
Similarly,
a+1 «
us(xg) = e <1 + h” (—y0+ + y_0> + O(ha)> + heeTWor, (a)
2i(a+1) 4 ’
a+1 a
! _ - _+iyo « Yo y_O a -1 Fiyo
hu'y (xo) = tie (1 +h <—2i(a Y 7 ) +o(h )) Fih%eTy ().

Calculating the Wronskians by evaluating at xg,
W(ug,vy) = 2ih%yy(a) + o(h*), W(u_,v;) = 2i + o(h?).

We also have W(uy,u_) = —2i by evaluating the Wronskian at © = 0. Using (A.3),
we see that v, = Auy + Bu_ with A =1+ 0(1) and B = —h%y; + o(h®). Dividing
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through by A also shows that u, + Ru_ = Tv,, where the reflection and transmission
coefficients satisfy

R =272 (q + 1)h* + o(h®), T = co+ o(1),

thereby completing the proof.
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