THE FBI TRANSFORM ON COMPACT (C* MANIFOLDS

JARED WUNSCH AND MACIEJ ZWORSKI

ABSTRACT. We present a geometric theory of the Fourier-Bros-Iagolnitzer transform on a
compact C>° manifold M. The FBI transform is a generalization of the classical notion of
the wave-packet transform. We discuss the mapping properties of the FBI transform and
its relationship to the calculus of pseudodifferential operators on M. We also describe the
microlocal properties of its range in terms of the “scattering calculus” of pseudodifferential
operators on the noncompact manifold 7* M.

1. INTRODUCTION

In this paper we discuss the Fourier-Bros-Tagolnitzer (FBI) transform on smooth, boundaryless
manifolds. The purpose is to revisit the seminal paper of Cérdoba and Fefferman [4] in a more
geometric way, incorporating the point of view introduced and developed by Sjostrand (see Sect. 1
of [25] and references given there). We also point out a connection to the scattering calculus of
Melrose [18] arising through non-compactness of the cotangent bundle. By reviewing the basic
constructions of the FBI transform theory, we hope to make this useful and elegant tool more
accessible to a wider audience.

The origins of the FBI transform lie with with the Bargmann transform (see [1]) which in-
tertwines the Schrédinger and Bargmann representations of the Heisenberg group. A microlocal
account in the spirit of [22] is given by Sjostrand in unpublished lecture notes, partly reproduced
in Sect. 6 of [13] and Sect. 3 of [26] (see also Guillemin’s article [10] and Folland’s book [8] for
different treatments and many references). It is related to the old tradition of “wave-packets” in
quantum mechanics.

The basic Bargmann transform in R" is given by

(1.1) Thu(z) = cnh_sn/z/e_(m_z)z/(zh)u(w)da;, z2=o0y5 —iag € C".

The range of T}, on L?(R", dz) is the space of holomorphic functions in L?(C", e~(Im Z)2dzd2) and
the orthogonal projector on the range is the well known Bergman projector. Its integral kernel
(with respect to the Lebesgue measure on C") is given by

(1.2) (2, w) = é,h~ e~ k(=0 =(Imw)*)/h

The transformation (1.1) was used by Bros and Iagolnitzer (see [14]) to characterize the ana-
lytic wave front set and proved extremely useful in the study of analyticity of solutions for partial
differential equations — see Sect. 9.6 of [12] for an introduction and Sjostrand’s book [22] for
a general treatment. Roughly speaking, the behaviour of the holomorphic function Thu(2) as
h — 0 reflects the microlocal properties of u at (Rez, —Imz) € T*R" \ 0. The relation between
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the singularities of u and the properties of T, u can be obtained using the Lebeau inversion for-
mula [15] (see (9.6.8) in [12]). We refer to Delort’s book [6] for the development and applications
of the theory of the holomorphic FBI transform in R”.

The definition (1.1) can be interpreted as the heat kernel at time h, applied to u and con-
tinued holomorphically in 2. This suggests a natural geometric definition for an arbitrary real
analytic manifold X: the FBI transform will take a function on the manifold to the holomorphic
continuation of the heat kernel applied to the function. The holomorphic continuation lives on
the Grauert tube of the manifold, which can be naturally identified with 7*X. This program
has been carried out by Golse, Leichtnam and Stenzel [9)].

The point of view of Cérdoba-Fefferman [4] differs by taking a “wave packet” integral kernel
rescaled to adapt it to the usual pseudodifferential calculus. Thus the basic transform in R™
becomes

(1.3) Tu(a) = colog)t [ elensineed(eay()da,

a=(ag,a) € TR, (ag) = (1+|ac|?)%.

This type of transform has good properties when composed with pseudodifferential operators: it
conjugates their action, approximately, to multiplication by symbols; this yields, for instance, a
quick proof of the sharp Garding inequality. The standard holomorphy of T} (z) in (1.1) has to
be modified by replacing 8, by a pseudo-differential system, ((a, D),

(1.4) (o 0") = o — o — 2i{ag)ag + O(()?)

where a* denote the dual variables, the operators are microlocalized to a neighbourhood of
a; =0, and (ag) ! plays the réle of the Planck constant in all expansions (see Sect. 4.3 for a
discussion in the language of the scattering calculus on T*X).

Consequently the projector on the range of T' has the structure similar to that of the Bergman
projector (1.2). That follows essentially from the arguments of Boutet de Monvel and Sjostrand
[3] and for more general transform in R™ was investigated by Helffer and Sj6strand [11], leading
to generalized Toeplitz operators in the style of Boutet de Monvel and Guillemin [2].

The phase and the amplitude in (1.3) are real analytic in «, permitting deformations in T*C",
the Grauert tube of T*R". This deformation allows the use of weights as in the holomorphic
theory of Sjostrand [22]—see [11] for R” and [25] for compact real analytic manifolds. This theory
has been extremely useful in the study of resonances (see [11],[24],[25],[29]) and of tunneling (see
[16],[28]).

In the applications to tunneling and resonances, the “wave packet” transform (1.3) is modified
by allowing the semiclassical parameter, h in the phase, just as in (1.1). In this paper we discuss
a generalization of such transforms to smooth compact manifolds.

Our setup is similar to that of [25], but we work without analyticity assumptions, and, since
no weights are involved, construct the orthogonal projection onto the range of the transform in
a direct manner. We further analyze the structure of the Schwartz kernel of this projection and
of the associated Toeplitz operators in terms of the “scattering calculus” of pseudodifferential
operators developed by Melrose [18]; the composition formula for Toeplitz operators follows from
a crude description of the structure of the projection. The appearance of a calculus associated
with a non-compact manifold is natural in view of non-compactness of 7*X. The wave front set
of a distribution u on X is totally determined by the behaviour of its FBI transform as o tends
to infinity, and we refine this statement to include “scattering wave front set” information on
Thu. Since the phase is close to being homogeneous in a¢ the more standard characterization of
the wave front set obtained by letting h tend to 0 is immediate.
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The proofs are all essentially well known (but not easy to locate in an accessible form!) and
rely in the C*° case on the complex stationary phase method of Melin and Sjostrand [17]. Since
Sect. 7.7 of [12] contains one of the standards accounts of this theory we follow it rather than
the almost analytic extension method of the original paper.

Throughout the paper, f ~ g means that there exists a fixed € > 0 with eg < f < e1g. The
letter C' will denote a large constant (different each time it appears).

ACKNOWLEDGMENTS. The authors are grateful to Andras Vasy and Steve Zelditch for helpful
comments on the manuscript. The first author gratefully acknowledges the support of a Post-
doctoral Fellowship of the National Science Foundation of the U.S. The second author thanks
the National Science and Engineering Research Council of Canada and the National Science
Foundation of the U.S. for partial support.

2. THE FBI TRANSFORM

Let X be a compact, boundaryless, C*° manifold of dimension n with Riemannian metric g.
We will let z denote a point in X and a a point in 7*X, in canonical coordinates (o, a¢). Let
A C T*X x X denote the diagonal a, = .

Definition 2.1. An admissible phase function is a complex-valued function ¢ € C*°(T*X x X)
such that
1. ¢ is an elliptic polyhomogeneous symbol of order one in .
.Im¢>0
. dpdla = —o¢ dx
- dzIm A ~ (o)
- pla=0

The Hessian d2Im ¢ is well defined on the diagonal since, d,Im ¢ vanishes there.
Note that as a consequence of these properties, we find that near A, we can write

(2.1) ¢ =g (az — 2) +(Q(z, &) (az — 7), (0 — 2))

with @ denoting a symmetric matrix-valued symbol of degree 1 in o with Im @ [;—q, ~ (a¢)I.

Ul W N

Ezrample 2.2. Let exp be the exponential map with respect to the metric g on X and d the
distance function. Then

_ 1
Bla,2) = —ag (exp; 1 (2)) + 5 (ae)d(o, 2)?
is an admissible phase function.

We remark that if we were interested in the classical case only (that is pseudodifferential
operators without the semiclassical parameter h) then the assumptions need only be made for
large values of |oy|.

Definition 2.3. A function a € C*(T*X x X x[0, €)) for some € > 0 is a symbol in S&ﬁ (T*X x
X) (or just S;’fl’;) if
a(a, z; h) ~ h™™(ar(z,a) + hag—1(z,a) +...)
where a;(z, o) is polyhomogeneous symbol of degree j in a¢ and the asymptotic expansion is in
both h and o, that is
la— B ™(ak +-- -+ hlag_j)| < Cjh ™+ ae*I71 for |ag| > 1.

Symbols on T* X are defined analogously.
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Such a symbol is said to be elliptic if |am (c)| ~ (c¢) uniformly with respect to other variables.
We define the quantization of such a symbol as the operator

Op(a)u(z) = ﬁ /emf exI’a;(w)/ha(oz, z; h)u(az)x(z, o) dog, dog,

where do;, dag is shorthand for the Liouville volume element on 7* X and x is a smooth cut-off
function supported near z = a,. We note that by the standard results of pseudodifferential
calculus, the operators of the form, Op(a) + R, for some symbol a € S™*, and R = O(h™) :
C~°(X) — C*(X), form an algebra with a well defined symbol map. We let \Il;”’k(X ) denote
the (bi-filtered) algebra of such operators and H™* the associated family of Sobolev spaces (see,
for example, [7] for further information). The symbol map, o, 1 : Op(a) + R — a, produces the
usual short exact sequence:

0 — TP VFHX) — TR (X)) T sk (T X) /SRR T X) — 0.
Definition 2.4. An FBI transform is a map T}, : C*°(X) — C*°(T*X) given by

Thu(a) =/ @2/ ho(a, z; h)x(a, z)dz
b'e

where dz is the volume form with respect to g, x is a cut-off function to a small neighborhood
3n n

of A, a€ Sp‘;lg’ T(T*X x X) is elliptic, and ¢ is an admissible phase function. The support of x

is small enough so that Im ¢ < —d(z,y)?/C on it.

We will often omit the parameter h in discussion of T'.

3. BASIC PROPERTIES

Since T* X is equipped with a canonical volume form, we can define T}.

Proposition 3.1. Let p € S;',Zf(T*X). Then TypT), € \Il;l"’k(X), and has principal symbol

_3n _n
|a|2bp, where b € Sph; 2 s a positive elliptic symbol depending on ¢ only. Furthermore,

WE'T} pT}), = ess supp(p).
Proof. The Schwartz kernel of T*pT is given by

(3.1) K(z,y) = / el@@v)=dlaa)/hg(a z)x(a, y)p(as; h)a(a, o; h)a(e, y; h)p(e) da
*X

where da is the standard volume form.

We apply the method of complex stationary phase (see [12]) to the phase function ®(a, z,y) =
#(a,y) — ¢(a,z). We will apply stationary phase to the a, integration in (3.1), leaving the a;
integration as the phase integral in the formula for the Schwartz kernel of a pseudodifferential
operator. All considerations are local, so we use coordinates in R”. By (2.1), we can write

(32 @=(r-1) 0+ 3 (Q W —ar), (v~ a0)) — 5(Qa,a)(z — ), (2~ )
where
(3.3) Im Q(z, @)|z=a, ~ (o)

® thus satisfies the hypotheses of Theorem 7.7.12 of [12] (complex stationary phase). To apply
this theorem, we let Z be the ideal generated by 0®/0a,, (i = 1,...,n). Thus 7 is generated by
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the entries in the vector-valued function

F =Q(4,0) (@ ~v) - Q(z,) - (o ~ 2)
5V @ )y — a2), (y — )

~5(V0.Q(@,0)(@ - a0), (@ - ar))

—_

(recall that @ is a matrix).
Now change to variables » = (z — y)/2 and s = (z + y)/2. This gives

F=Q(-r+s,a)(a;+r—35)—Q(r+s,a)(ay —r—2s)
{00, Q(r + 5,0) (7 +5 - ), (-7 4 5 - )

_%<8QEQ(T +s,a)(r+s—0a,),(r+s—a;))

Hence oF
Ww: rr:O,s:amz (Q(ama a) - Q(aza a))ij;

this expression is ~ 2i(a¢)I, by (3.3). We can now use the Malgrange preparation theorem to
conclude that there exist functions X, defined for r and s — o, small, such that
a; = X(og,r,s) (mod 7)
Expanding in Taylor series, we obtain
(3.4) X =s5+i(ImQ) ' (ReQ)r + O(r*) (mod I)
We would now want to substitute this back into (3.2), but this is not meaningful, as the O(r?)
term is complex valued. However, expanding ® into Taylor series around a, = s and using (3.4)
give
1
(3.5) ®=(z-y) a+ [(mP(z—y),(z—-y)+O0(e - y’) (mod 1),
where
P=(I+i(mQ) " (ReQ))'QU +i(Im Q)" (ReQ)) l(ysy.ac) -
We can now apply Theorem 7.7.12 of [12] to show that!
(3.6)

K~ / det 2eeae | ? L(i/M)l(@—p)-ac+ i (m Pla—y).(s=1)+O(12=y/*)]
2mih

x 3 1, (xxal(a +)/2+ O(fa = 41, i) al(e +)/2+ Ol = 1) agivi)

x p((z +y)/2+ Oz — y])*, ag; h)) (h/(ag)) dae

where the L; are differential operators of order 2j in o, as depending on the phase as described
in [12], and ®" refers, by abuse of notation, to the Hessian of the right-hand-side of (3.5). Thus

ITechnically, we need slightly more than the result quoted: we are performing stationary phase in the large
parameter h_1<a§>; since ¢ was merely a phg symbol in ¢, we have a parameter-dependent phase. After we
factor out <a5>, the resulting phase is of course bounded in a¢, together with all of its derivatives, and the proof
of Theorem 7.7.12 of [12] goes through under these hypotheses.
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we can sum the series asymptotically to (2rh) ™ times a symbol c(z, ag;y; h) € ngl’: and write,
modulo an error in ¥, *7°(X),
1

61 K=o

/ez(z_y)af/h_(<1m P(z_y)’(z_y)>+o(|z_y|3))/4h’c(m’ as; y; h) daé.‘

Note that the top-order term in c is simply |a|’bp where b is a positive elliptic symbol of or-
der (—3n/2,—n/2), depending on ¢. Note also that c is rapidly decreasing in a¢ in a conic
neighborhood of any (z, o, z) such that (z,£) ¢ ess supp p.

We now wish to use the Kuranishi trick to reduce the phase in (3.7) to the standard pseu-
dodifferential phase. We work in local coordinates. Let ¢ be an almost-analytic extension of ¢,
i.e. an extension into the complex whose antiholomorphic derivatives vanish to infinite order in
|Im a¢ /Re ag| (see [17]). Let ¢ denote the phase in the integral (3.7). We can split ¢/ into a piece
which does not vanish at o = 0 and one supported in |a¢| < 1/2 and thus write

Y= (F(x,y, Ckg)(l? - y)a Oég) + <G($7 Y, aﬁ)(x - y)a él)
for some matrix-valued F(z,y,a¢) and G(z,y,a¢) whose entries are symbols of order 0 and 1
respectively, and where é; = (1,0,...0) € R”. Note that F'[,—,= I and G [;=y= 0. We now set
n = Ftae + G*é;. Thus 7 is a symbol of order 1, and
Y =(z—-y)-n
near z = y, the Jacobian |97n/0a¢| does not vanish. In general, n is a complex-valued function
away from {z = y}. Note, however, that we do have

Tm 7|
=O(|lz —y|)-
Let I'; , denote the image of R” under the map o — n(z,y, o), so that
1 ,
K = iz—y)n/hg B d
('Tay) (27Th)n /];m,ye C(IE,?’]’ Y ) 77’

where we have now absorbed a Jacobian factor (again only dependent on ¢) into the symbol (and
then taken an almost analytic extension of the resulting symbol). Let

1 i(2—u) /b~
(27rh)"/R ')/ hE (3, m, y; ) dn.

For z # y, integration by parts allows us to write K and Kj as
hlel

W(x - y)“'/e’“‘y)"’/hD;’E(x,n;h)dn

where D, is 1/i times holomorphic derivative in 7, and the integral is over I'; , and R™ respec-
tively.
A further application of Stokes’s Theorem gives

hled _
—y) @ i(z—y)-n/h paz .
(27rh)n (.’B y) /Q 87] (e Dnc(xanayah) d’?)

where for each z,y, Q,, is the manifold in C* given by a¢t + n(z,y,a¢)(1 —t), t € [0,1],
ag € R". (because we may assume that « is large, hence Dy¢ has arbitrarily low order, there
are no boundary terms at infinity). Since

Ko(l', y) =

Tav. ma\" _ A N
D% < Cno [ =21 < —
6D32| < Cuva (o) < Cxla =]
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for any integer N > 0, we can, by choosing o € N” in (3.8), estimate
K(z,y) — Ko(z,y) = O(h™|z — y|™),
hence the difference is in ¥, *~*(X). O

Corollary 3.2.
i. T : L?(X) — L?(T*X) is bounded for all h € [0,¢€).
ii. Let |a|2 = 1/b, where is the symbol of T, and b is as in Proposition 3.1. Let P = Op(p) €
UF(X). Then

TypT), — P € ¥R 1(X).

Corollary 3.3 (Sharp Garding inequality). If P € \Il;l”’k(X) and Rep > 0, there exists C € R
such that for all u € C*°(M),

(Pu,u) > ~Clulffcs ems.
(The notation ||e||,, , indicates the norm in the semiclassical Sobolev space H mk(X).)
Proof. (Following [4]:) By the preceding corollary,
Re (Pu,u) = (T*pTu,u) — (Ru, u)
with R € ¥} *71(X). Thus,
(Pu,u) = (pTu, Tu) — (Ru, u)

> —(Ru,u)
> —C’hl‘m<(I +R2A)-=D/2 Ry (T 4 th)(k_l)/2u>
> ~Cllulfazs s
by Corollary 3.2. O

Corollary 3.4. For any FBI transform Ty, there exists an elliptic D € W%’O(X) and R €
U, °7(X) such that
TpThn=D*D+ R

We also need to understand the composition with pseudodifferential operators:

Proposition 3.5. Let P € \IJ(,)L’O(X) be elliptic with symbol p and let T be an FBI transform with
symbol a and phase function ¢. Then TP is an FBI transform with principal symbol ap and
phase function ¢.

Proof. The kernel of TP has the form

]' ; .
@nh) [[ ettemite eitata, o hyp(o, ¢ ) da
71' n

A complex stationary phase computation in £ and z reduces the kernel to the desired form. The
phase is clearly unchanged as * = y at the critical point. O
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4. ORTHOGONAL PROJECTION

We now discuss the range of 7" and the correspondmg projection operator. Given an admissible
phase function ¢ and an elliptic symbol a € Sp‘l‘1 g’ g defining an FBI transform 7', by Corollary 3.4
we may write

T*T=D*D+R

with D elliptic and R residual. (Note that the principal symbol of D*D is just |a|’b, in the
notation of Proposition 3.1.) By elliptic regularity, there exists an elliptic operator W € \II(,)L’O(X )
with WD — I, DW — I € ¥, °"°°(X). We now let B be the selfadjoint operator

= (TW)(TW)".

Note that by Proposition 3.5, B is simply 77*, for T an FBI transform with the same phase as
T; alternatively we can write B = T(WW*)T*; note that o(WW*) = |a| >b" !, so that T is the
same as the T of Corollary 3.2, part ii.

We now require some simple functional analysis to show that the range of T is closed.

Lemma 4.1. IfT : H1 — H2 is a bounded operator between Hilbert spaces and T*T is Fredholm,
then T has closed range.

Proof. Since RanT = RanT [(e; )1, We may assume that 7 is injective. Let {u;} be a sequence
in Hy with Tu; — ¢ € Hy. We wish to show ¢ € RanT. First we deal with the case in which
|lu;|| is bounded. Then we may replace {u;} by a subsequence converging weakly to v € #;.
Hence Tu; — Tv, so ¢ = Tw.

Thus we may assume that ||u;|| is unbounded. Since T*T is a selfadjoint Fredholm operator
with no kernel, it is invertible, so there exists € > 0 such that || T*Tu;|| > €||lu;|. But T*Tu; —
T*¢, i.e. ||T*Tu;|| is bounded, a contradiction. O

Thus we can decompose
L*(T*X) =RanT @ ker T*.

Let II denote the orthogonal projection operator onto Ran 7. We claim that II and B differ only
by a residual operator. In fact, on (RanT)*, B vanishes identically, while

B(Tu) = TWW*T*Tu = TWW*(D*D + R)u = Tu + Su

where S € ¥, °>~°°(X). Thus B — II vanishes on (Ran7)" and is a residual operator on Ran T
(maps tempered distributions on T7* X to h*S(T*X))). We record this result as

Lemma 4.2. Let T be an FBI transform with symbol a and phase ¢. There exists Q € lIJ(,)l’O(X)
with o(Q) = la|">b=1 (in the notation of Proposition 3.1), and there exists another FBI transform
T with phase ¢ such that

M-TQT* =T -TT* = O(h*) : §'(T*X) = S(T*X).
As an easy corollary, we obtain the composition formula for Toeplitz operators:

Proposition 4.3 (Composition of Toeplitz Operators). Let p,q € Sg;?g(T*X ). Then

TpqTl — (TIpIT)(TIgIT) = O(h) : L*(T*X) = (o) " L*(T*X).
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Proof. Let T be as in Lemma 4.2. Then, letting = denote equivalence modulo O(h) : L?>(T*X) —
(ag) LT X),
Mpgll = TT*pgTT*
= TPQT* (Cor. 3.2)
= TT*pTT*qTT* (Cor. 3.2)
= IIpIlgIl (Lemma 4.2). O

By Lemma 4.2, to study the microlocal structure of II it suffices to study the microlocal
structure of TT* for T an FBI transform with the same phase as T'. Owing to the noncompactness
of T* X, it is convenient to precede such a study by recalling some of the notions of the “scattering
calculus” introduced by Melrose [18] in the study of geometric scattering theory.

4.1. The scattering calculus. The scattering calculus of pseudodifferential operators has a
long history. It was described and developed on R" by Shubin [27], Parenti [20], Cordes [5], and
on manifolds by Schrohe [21] and Melrose [18]. We now describe the point of view of Melrose, in
which this calculus is a calculus of pseudodifferential operators on a manifold M with boundary,
whose kernels can be described as conormal distributions on a blown-up version of M x M. The
following presentation is quite sketchy; for details, see [18].

For a manifold Y and a closed embedded submanifold Z C Y, we let [Y'; Z] denote the blowup
of Y along Z, in effect obtained by introducing polar coordinates in Y about the submanifold
Z (see for instance Sect. 5 of [19] for a self-contained description). In this notation, let MZ =
[M x M;0M x OM], and let M2 = [MZ;dAp)], where Ay, is the lift of the diagonal of M under
the blowdown map Mg — M?2, that is to say, it is the closure of the preimage of the interior of
the diagonal under the blowdown. Let sf be the “scattering front face” i.e. the new boundary
face introduced by blowing up M to M2 (see Fig.1). The Schwartz kernels of elements of
the scattering calculus ¥ (M) of pseudodifferential operators (acting on half-densities) are then
defined to be half-densities on M2, that are

1. conormal to sf

2. conormal to Agc, the lift of Ay, to M2

3. vanishing to infinite order at M2 \sf.
That such operators form a calculus (are closed under composition, adjoint, etc.) is shown in
[18] by the construction of an appropriate “triple-space” obtained by blowing up M?3; one can
also do this by computing “locally” on R”. On R", the calculus can be obtained by quantization
of symbols a(z, ¢) satisfying

(4.1)

Bf‘afa(z, C)‘ < Ca,ﬁ<z>m—|a\ <<>—l_‘5|

for fixed m, .

The scattering calculus is the natural calculus of pseudodifferential operators on a manifold
with boundary endowed with a “scattering metric” with specified singularity at the boundary;
the metric (ag)’da2 + dag is such a metric on TX.

Let T" X denote the radial compactification of the cotangent bundle of X. That means a
stereographic compactification of each fiber—see [18] and Fig.2. The Schwartz kernel of B, lifted
to a distribution on (T*X )2, does not satisfy properties 1-3, but it comes close—it fails to satisfy
Property 3 as it is not rapidly decreasing on sf at Osf.

Let *°T M be the vector bundle whose sections are vector fields of the form pV with V tangent
to OM and p a defining function for M. Let 5°T*M denote its dual. Let *“T"M denote
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the fiberwise radial compactification of I*M, with fiber boundary-defining-function o. Then
the symbol map o7 for the algebra W7%!(M) takes values in (equivalence classes of) conormal
distributions on the manifold with corners *T" M. The compactified space, “T"M , has two types
of boundary hypersurface: those in SCTZ um M, and those in 5¢S* M, the unit sphere bundle. The
scattering symbol o, (A4) can be thought of as restriction of 0™ p~! times the Fourier transform of
the kernel of A in *¢T* M (identified with a tubular neighborhood of Ag.) to these two components:
the former gives the “reduced normal symbol”

Nsc(4) = F(Als)
and the latter gives (a rescaled version of) the standard pseudodifferential symbol o(A).2 In the
simple case of R, these two symbol components are merely the restrictions of the total symbol
a in (4.1) to the spheres at infinity in z and ¢&.
We can now define the microsupport WF’_(A) ¢ 8T M) as the complement of the set of

points at which o,.(A) vanishes at all orders; the elliptic set ell(4) ¢ dC“T M) is the set of
points at which ¢7%!(A) is invertible.

4.2. The Schwartz kernel of II. In the statement of the following theorem, the definitions
of reduced normal symbol Ng. and the microsupport are applied to the Schwartz kernel of II,
even though II does not lie in \IISC(T*X ). We choose boundary-defining-function p = (a,g)_l for

2This is literally true only for the “polyhomogeneous” sub-calculus; in general, one must take equivalence
classes of conormal distributions, just as in the case of the non-polyhomogeneous calculus on a compact manifold,
in which the principal symbol lies in a quotient of symbol classes rather than being a true function on the cosphere
bundle.

FIGURE 1. The scattering double-space M2, for a one-dimensional manifold M
with boundary.

R
><(z’ Y ﬂ%
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FI1GURE 2. The stereographic compactification.
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ek . . SC7* .
M =T X. Then da,/p and da¢ form a basis of local sections of ~ T M. Let the canonical
SCH7*
one-form on T M be

day

(4.2) =

+ o - dag;

hence we can take (a,, o, p, O‘Z) as coordinateson " T M ; if we wish to work near the boundary
of M, we replace a¢ with p and &¢ = pag. Let X and Y be functions on M? given by

X = (ﬂz _az)/pv
Y =,3§ —Otg.

Then X, Y lift to smooth coordinates on M2, near sf, vanishing exactly at Agc, the lifted diagonal;
we use

(,0, azyd&XaY)

as a coordinate system on MZ valid near sf. Since the scattering vector fields pds, and 9,
respectively lift to Ox and Oy on sf C M2, we can identify the interior of sf with Ty M and
hence (sf°)* with ““T,,M in such a way that the p, af coordinates defined in (4.2) are dual to
X and Y respectively (see [18] for details).

Theorem 4.4. The Schwartz kernel of the operator II lifted to “T" M , and in the coordinates
SCH* . . .
on T M introduced above, is given by’
h_"PnC(P’ Qg, &ﬁa an PY7 h)ei(X.as—H)_llZ)/h mod hooq,s—COO,OO(M)

where ¢ is a classical symbol in p and h and co(o, de; h) = ¢(0, 0z, &g, 0,0) is a smooth, nonva-
nishing function on OM = §*X and

b =9(p, az, Gg, pX, pY) = O((pX)? + (pY)?),
satisfies
(4.3) Im9 > ((pX)? + (pY)?)/C.
Hence WF. I = {u = G, af =0}, and Ngo(IT) = (2m)*™(p/h)"co(az, Ge)d (1 — Ge)d(af).

We remark that in the a, 8 variables, and in local coordinates, the estimate on the imaginary
part of the phase can be written as

Im ) (a, B) ~ (ae) ™ (o — Be)* + () (aw — Ba)?,

which is the homogenized behaviour of the phase of the Bergman projector (1.2). The point
made in Theorem 4.4 is that the oscillatory part of the phase is very clear in the “scattering
coordinates”.

Proof. By Lemma 4.2, it suffices to compute the kernel of B = TT* where T has the same phase
as T'. We drop the tilde henceforth, as we are not concerned with the precise form of the symbol.

We have (absorbing cut-off functions in the symbols for notational simplicity and identifying
operators with their kernels)

B(a,B)df = TT*(a, B)df = / el@(@a)=2B.2)/h (o, ; h)a(B, x; h) dz df

3w, (X) is the ideal of residual operators, in the indexing convention of [18].
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(the density factor dB occurring since we are letting B act on functions. We write the phase

® = ¢(a,z) — #(B,z). Then by (2.1),

1,-
¢ = (93 - a:l:) cQ¢ — ($ _,8:6) : /85 + %(Q(x,a)(a: - a:c)a (x - aw)) - 5(@(-’3,,6)(-'5 _:Bw)a (-'B - ,Bz)>
where Im Q(z, &)|y=qa, ~ (a¢) and @ is a symbol of degree 1 in a. Thus,
8,® = ag — B + Q(z,)(z — az) — Q(z, B)(z — B2) + O(ae)|z — aul” + (Be)la — Ba|*),

Let 9 = ¢ — a, and w = B, — a,; we switch to coordinates (J,w,a,B¢). We further set

¢ = (ag) H(ag = Be)s s = (Be)/ae), p = ()5 let Gg = ag/(ag). Thus (p,as, ¢, ,() are
smooth coordinates on (T X)2, with p = 0 defining the b-front-face, and @ = { = 0 defining

Ay.
In these new coordinates, we write
(4.4)
1~
0,8 = % + %P(p,ﬂ + 00,00, 86)0 = P90+ 00,7 + 1,5 — 0 = ) + O + )
and
3=9-2 _ (9w (“‘f_c)
p p
(4'5) + <P(p,’t9 + oy, az,dg)ﬁ, 19)

L
2p
1 -
_2_p<P(p,19 + g, @ + g, 4 — () (9 — w), (9 — w))

where P(p,...,&) = pQ(...,£) is a smooth complex valued function. Thus if we let Z denote the
ideal generated by 0®/0z; for all i = 1,...,n, we apply the Malgrange Preparation Theorem to
obtain functions Xy, (p, {,w, oz, &¢) such that

9, =X, (modI).
Expanding (4.4) in Taylor series near the set ¥ = w = ¢ = 0 shows that

(4.6) Xy = %(Im P)™' (( + Pw + O((* + w?))

where P now denotes the restriction P(p, oy, &y, d¢). We can now apply the method of stationary
phase (specifically Theorem 7.7.12 of [12]) with large parameter (hp)~!. To find the phase of B
we proceed as in the proof of Proposition 3.1. Formally it amounts to inserting the expression
for Xy into (4.5). We write the resulting phase as

w-6 w-(

p p
—%Im((ImP)_lP(ImP)_1 (¢ + Pw), (¢ + Pw))

2+ G ~* (ImP)™? X ((ImP)"'P
ap  Peomtemd (I P)7H, ) + 5o ((1m P)~ P, €) +

where the inner product is still the real inner product. Let P = S + iT with S, T real. The
Hessian matrix of Im with respect to (, @ is given by

1 (o7t TS\ 1 (T! 0 _1(1 0\ (T 0)\/(I S\,
4 \ST* 0 p\ 0 -T'-8T'S) " 2\s 1)\ 0o T)\0 I)’
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by our nondegeneracy assumption on the phase, T is positive definite, hence the Hessian is as
well, and

(4.8) mmy > 12+

for w, ( sufficiently small.

The symbol resulting from the stationary phase computation is A" times a smooth function
in (o, é¢, pX, pY) (i.e. a symbol of order 0), nonvanishing at p = 0 (i.e. elliptic).

We are interested in the lift of 1 (a, 8) to M2, so we now let X = w/p, Y = (/p be the smooth

C
coordinates on the scattering front-face in M2, introduced above. Since w = ¢ = 0 define Ay,

the inequality (4.8) holds for all sufficiently small p in the coordinate system (p, az,é¢, X,Y) on
(T X)ze-
By (4.7), we can now write (as usual, identifying the operator with its kernel)
B = h™"¢c(p, ap, &g, pX, pY; h)e! X dete™ D)/ yn g ¥ gy
with ¢ € C®, ¢ = ¥(p, ag, ég, pX, pY) = O((pX)? + (pY)?), and Im 4 > ((pX)? + (pY)?)/C for
some C > 0 by (4.8). This permits us to write
Fxy(B)(u oz) = h_npn/c(Pa oz, Qg, pX, pY'; h)ei[(d‘_“)'x_az'Y]/hei'Z(PX’PY)/(ﬂh) dX dY

where the integral is absolutely convergent. Since h(@& — p)"'*Dx and —h(az)_lDy leave
eill@e—u) X Yl/h invariant, integration by parts shows that Fx,y (B)(y, af) = O(h*p™) away
from {u = &¢, af = 0}. On the other hand, the leading term of Fx y(B) at p = 0 is given by

W [ clas, e )elG XeE VX dY = (22" (p/H)" ez, s )31 — Ge)6(a)
where c(ag, d¢; h) = ¢(0, oz, &g, 0,0; h) in our previous notation. Thus, we conclude that
WF, B = {§ = é, ag = 0},

Nuo(B) = (2m)*" (p/h)"c(cxz, G5 h) (1 — G¢)3(f),

where the second part has to be understood formally since B is not a scattering pseudodifferential
operator (as explained above). O

(4.9)

As straightforward consequences of Theorem 4.4, we record the following results:
Proposition 4.5. Let p € SS;L(;(T*X). Then
Tp — pll = O(h#) : L2(der) — (ae) ™2 L*(da).
Proof. Lifting p from the left and the right to M2 and subtracting shows that
Tp — pIl = (%)n ei(X-&e+p‘11/3(p7am,de,pX,pY))/h(g(pX, pY) dX dY.
We can estimate this kernel using (4.3) and the conclusion follows from Schur’s lemma. O

Corollary 4.6. Let p € Sy (T*X) and let P € ¥, (X) with o(P) = p. Then

TP — pT = O(h*) : L2(dz) — (a¢) " ? L*(dav).
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Proof. Let Q € \Pg’O(M ) be the operator given in Lemma 4.2. In the notation of Proposition 3.1,
its symbol is given by |a|">b~!. Then QT*pT — P € ¥, »71(X) and consequently

(4.10) TP — TQT*pT = O(h) : L*(T*X;da) — (o) " L*(T*X;da) .

By Lemma 4.2, we can replace TQT* by II in (4.10), and Proposition 4.5 concludes the proof as
TP —pT = (TP — TIpT) + (Tp — pII)T. O

4.3. An invariant intepretation. There is an illuminating invariant way to think of WFL_II,
which we now discuss. Let A € C®°(**T*T X) denote the canonical one-form on M = T*X
(extended to the compactification), hence in the coordinates used previously,
doy

P
The scattering cotangent bundle of the cotangent bundle has its own canonical one-form; recall
that we write it

A:aﬁ-dazzdg-

day
7
P

+ af - dag,

and that this defines the canonical dual coordinates y and o on *T"(M). Hence, regarding A
as a section of 5°T* (M), we see that

Graph A = {u = &, o =0},

that is,
WEF B = Graph A [g(sers a1y -

There is a relation between this description and the framework used by Boutet de Monvel
and Guillemin [2]. A proper discussion would involve a generalization of the pseudo-differential
family (1.4). Here we only point out that the microlocalization to a neighbourhood of af = 0 is
natural in view of the relation between Graph A and B.

The proof of the following proposition on the scattering wavefront set of a “Toeplitz operator”
now follows the same lines as the proof of the composition formula for symbols and microsupports
of scattering pseudodifferential operators [18], applied formally to the operators p and B:

Theorem 4.7. Let p € S;’,;’gk(T*X). Then

WF. BpB = WF,p N Graph A [eer- )= 7 ' (ess supp p)

where ma : Graph A [g(ser+pr)— OM is the projection map from the graph of A, restricted to the
fiber boundary of the compactified cotangent bundle; furthermore,

~

Nge(BpB) = co(z, Qg; h) dGraph A 77 (P).

where ¢y is as in Theorem 4.4.

(Note that multiplication by p is a scattering pseudodifferential operator on T" X which leaves
the wavefront set of a distribution unchanged, except where p vanishes.)

Theorem 4.8. The wave front set of u € D'(X) can be determined from the behaviour of Tu as
a¢ = oo or as h = 0 as follows:

WF, Tu =7y (WFu) C Ty M,

hence
WFu = ess suppTu C 0T X;
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WFu = C{(z,£) : there exists an open set U > (z,£) such that for a € U, Thu(a) = O(h™)}.

Proof. The first part follows from the following sequence of equivalent statements: given an open
set S C A(T X),

S c C(WFu)
< T*pTu e C>®(X) Vp:esssuppp C S (Proposition 3.1)
< pTue S(T*X) Vp:esssuppp C S
<~ WF, Tun 7rX1 ess suppp = 0 Vp: ess suppp C S
< WF, Tunm,'S = 0.

The second part follows from the first part applied to a new FBI transform T with the phase

B(o,7) = B(w, 0, el€]) (lagl/I€]) and symbol a(z,a) = a(z, o, del¢]) (|l /€)%, extended
arbitrarily to smooth functions near o = 0. Then

Thu(a) = Thie) e w0z e [€]),

and the limit of T,u as h — 0 with a¢ in a neighborhood of £ coincides with the limit of Tyu(c)
as a¢ — 00 in a positive conic neighborhood of . O

=
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