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Abstract. The Dirac equation in R1,3 with potential Z/r is a rela-
tivistic field equation modeling the hydrogen atom. We analyze the
singularity structure of the propagator for this equation, showing that
the singularities of the Schwartz kernel of the propagator are along an
expanding spherical wave away from rays that miss the potential singu-
larity at the origin, but also may include an additional spherical wave of
diffracted singularities emanating from the origin. This diffracted wave-
front is 1 − ε derivatives smoother than the main singularities, for all
ε > 0, and is a conormal singularity.

1. Introduction

In this paper we study the structure of the propagator for the Dirac–
Coulomb equation on R1,3. This equation, a description of the hydrogen
atom with a relativistic electron, was explicitly solved by Darwin [12] in
1928 using separation of variables, giving a mode-by-mode description of
the solutions with the radial functions defined by infinite series. Such an
approach, while computationally useful for the spectral theory of the hy-
drogen atom, yields little concrete information about the structure of the
Schwartz kernel of the propagator.

In this paper we derive the following results about the structure of the
propagator. Notation involving the Dirac equation will be explained in
detail below. Let η denote the (mostly plus) Minkowski metric on R4, whose

coordinates are t ≡ x0, x1, x2, x3. Let r = r(x) ≡
(
(x1)2 + (x2)2 + (x3)2

)1/2
denote radius in the space coordinates.
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Figure 1. The “geometric” (G) and “diffracted” (D) wave-
fronts for the fundamental solution with initial pole at y.
Note that the main and diffracted fronts intersect along a sin-
gle ray, the continuation of the null geodesic from y straight
through the potential singularity.

Theorem 1. Consider a real-valued vector potential A = (A0 = Z/r +
V,A1, A2, A3) with V,A1, A2, A3 ∈ C∞(R3), and let m,Z ∈ R, with |Z| <
1/2.

Let ψ be the admissible fundamental solution of the Dirac equation mini-
mally coupled to the electric potential V :(

i
(
γ0(∂0 + iA0) + γj(∂j + iAj)

)
−m

)
ψ = 0,

with initial condition

ψx0=0 = ψ0δy

for some four-spinor ψ0 and point y ∈ R3.
For x0 > r(y),

WFψ ⊂ G ∪ D

with G = N∗{ηαβ(xα − yα)(xβ − yβ) = 0} given by the “geometric” (i.e.,
directly propagated) light cone emanating from y and D = N∗{r(x) = x0 −
r(y)} a secondary “diffracted” wavefront. The singularity on D\G is conor-
mal and is 1− 0 derivatives smoother than the singularity at G.

(Here, as throughout the paper, we use the notation a−0 to mean “a−ε for
all ε > 0.”) The notion of admissibility of solutions, which simply refers to
lying in the scale of energy spaces defined by the self-adjoint Hamiltonian,
is defined in §4.2 below. The set N∗Y denotes the conormal bundle of a
manifold Y (here as a submanifold of R4).
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In the case of a smooth potential V , we would only have singularities on
G: it is the singularities of the solution on D that are the novel effect of the
singular Coulomb potential.

We in fact obtain Theorem 1 by proving finer results that hold uniformly
down to r = 0. These results use tools originally developed for the analysis
of diffraction by cone and edge singularities [33], [31]. In particular, the
analysis proceeds in two main steps:

(1) We show that the singularities of ψ can at most lie in G ∪ D. This
proceeds by a positive commutator argument using commutants in
Melrose’s b-calculus of pseudodifferential operators, inspired by the
methods of Vasy [43]; regularity down to r = 0 is obtained in the
sense of b-Sobolev spaces.

(2) We show that the diffracted singularity is conormal and weaker than
the main front. This uses methods of Melrose and the second au-
thor from [33], involving Mazzeo’s edge calculus of pseudodifferential
operators, and a propagation of module regularity (as employed by
Melrose–Vasy–Wunsch [31]) to obtain both the conormality and the
regularity of the diffracted front.

The Dirac–Coulomb equation describes spin-12 particles (such as electrons
and positrons) in the presence of a point charge Z. Much of the literature
about the Dirac–Coulomb system and related operators focuses on charac-
terizing its eigenvalues and eigenstates. This description is unfortunately
insufficient to describe diffractive phenomena. Darwin [12] used separation
of variables to characterize the generalized eigenfunctions of the exact Dirac–
Coulomb system in terms of confluent hypergeometric functions and spinor
spherical harmonics. One could in principle derive our theorem in that set-
ting by a careful analysis of the special functions but to our knowledge this
has not been done: The corresponding theorem for general product cones
was obtained by Cheeger–Taylor [9,10] in a tour-de-force application of Han-
kel transform methods. The Bessel functions in that case are replaced here
by confluent hypergeometric functions, and much less seems to be known
about the corresponding integral transforms.

Kato in his book [23] provided one of the first results showing that the
Hamiltonian governing the evolution of the Dirac–Coulomb system is essen-
tially self adjoint in the range |Z| < 1/2 (corresponding to atomic charge
less than 68.5). Weidmann [45] extended this result to |Z| <

√
3/2; be-

yond this value of Z the Hamiltonian is no longer self-adjoint. We provide
in Section 4.1 another proof of the essential self-adjointness in this optimal
range.

Other interest in the Dirac–Coulomb system as an evolution equation
has come from the dispersive equations community. Their work has largely
focused on proving dispersive and Strichartz estimates for solutions by treat-
ing the components as solving systems of coupled wave equations. We men-
tion here the work of D’Ancona and collaborators [5, 7, 11] as well as the
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work of Cacciafesta–Séré [8] and Erdoğan–Green–Toprak [14]. The work
of Boussaid–Golénia [6] is closest in spirit to the approach used here, em-
ploying a positive commutator approach (Mourre’s method) to establish the
limiting absorption principle for Dirac–Coulomb operators.

There is now a significant body of work describing the propagation of
singularities on singular spaces, where diffraction occurs; the problem of
the wave equation on conic manifolds (or the wave equation with an in-
verse square potential) is the singular setting most closely resembling the
Dirac–Coulomb problem. The first diffraction problems were rigorously an-
alyzed by Sommerfeld [38], with many other examples subsequently studied
by Friedlander [16] and Keller [24]. The use made by these authors of sep-
aration of variables and Bessel function analysis was generalized to cones
of arbitrary cross section by Cheeger–Taylor [9, 10], who established the
analogous result to Theorem 1 in the setting of “product cones,” where the
metric on the link does not vary with the radius. The non-product situation,
where scaling invariance in r is lost, requires different methods, and in con-
sequence the b-pseudodifferential analysis used in this paper can be viewed
as a continuation of a line of work beginning with Melrose–Sjöstrand [29,30],
Melrose [28], and Taylor [41] describing the propagation of singularities on
manifolds with smooth boundary. Melrose and the second author [33] used
such commutator methods to generalize the results of Cheeger–Taylor to the
non-product setting (see also Qian [36] in the case of inverse square poten-
tials). This work was expanded to include corners and edge singularities by
Vasy [43] and Melrose–Vasy–Wunsch [32], [31]. The functional framework
for our estimates is especially inspired by Vasy’s work.

One of the original applications for the careful analysis of singularity
propagation was to the problem of wave decay. Indeed, in certain settings
Lax–Phillips [25] and Vainberg [42] (later generalized by Tang–Zworski [40])
provided a blueprint for obtaining decay estimates on “perturbations” of
odd-dimensional Euclidean spaces from propagation estimates using as input
the weak Huygens principle, which dictates that a solution with compactly
supported Cauchy data eventually becomes smooth in a fixed compact set.
More recent approaches to wave decay applying to spacetimes with ends that
are not flat Minkowski space (again following the work of Vasy [44]) give
new ways to extract decay rates for solutions of wave equations from prop-
agation estimates. Work of the authors and Vasy [3, 4] and the first author
and Marzuola [2] use related techniques to describe the radiation field on
asymptotically Minkowski spaces and on product cones, respectively. Simi-
lar techniques played a key role in the work of Hintz–Vasy [20] establishing
the global stability of the Kerr–de Sitter spacetime.

We thus hope to use the results obtained here to study the decay rates
and asymptotics of the Dirac equation with one or more Coulomb-type sin-
gularities. Additionally, there are potential applications of our results to
quantum field theory, viz., the construction of Hadamard states for the
Dirac–Coulomb problem (see, e.g., [17]). These physically acceptable states
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are characterized by their wavefront sets, with the separation between τ ≷ 0
components (with τ dual to t) playing an essential role.

Even though the square of the Dirac–Coulomb system is principally scalar,
the Dirac–Coulomb problem poses a number of difficulties not present with
scalar wave equations on singular backgrounds. Many of these can be de-
scribed in terms of the form of the second order equation obtained by (ap-
proximately) squaring the system (described in Section 4.3 below). In the
case of the exact Dirac–Coulomb system, this second order operator has the
form

−(∂t + i
Z

r
)2 −∆−m2 − i Z

r2

(
0 σr
σr 0

)
,

where ∆ is the (positive) Laplacian on R3 and σr are 2×2 Pauli-type matrices
that square to the identity. The equation differs from the Klein–Gordon
equation in two significant ways. The first way is that the potential is
coupled via the “minimal coupling” formalism, which introduces cross terms
of the form Z

rDt; this does not present much additional difficulty, although
it does need to be controlled in the b-calculus propagation arguments. More
significant is the second difference, namely the order zero term

−i Z
r2

(
0 σr
σr 0

)
.

As the Hardy inequality on R3 suggests that factors of 1/r should be treated
as derivatives, this term is principal from the point of view of scaling. More-
over, it is anti-self-adjoint and cannot have a sign because σr has eigenval-
ues ±1. Dealing with it directly can cause significant headaches. In trying
to prove the diffractive theorem (Theorem 22 below) for the second order
equation, this anti-self-adjoint term creates what should be viewed as the
top order term and cannot be controlled by the positive terms in the com-
mutator estimate. This term even makes global energy estimates difficult,
as the derivative of the energy can no longer be controlled by the energy.

The complications of the Klein–Gordon system suggest that one ought to
work with the first order system directly. On the other hand, the “energy
estimates” obtained via the first order system are not as simple to work
with as those arising from the second order equation. We therefore use
both equations in this paper. For the elliptic part of the diffractive theorem
(Section 5.2.2) and the geometric improvement (Section 6.1) we work with
the second order equation, but for the “hyperbolic” part of the diffractive
theorem (Section 5.2.3) we work directly with the first order equation.

Studying the massive (rather than massless) Dirac equation introduces
further complications. In the massive case, the equations involving the 4×4
Dirac matrices cannot be substantially simplified; in the massless (m = 0)
setting, the equations effectively decouple into two systems involving 2 × 2
matrices. More significantly, the presence of the mass term disrupts the
commutation of the equation with the scaling vector field. In the massless
setting, it is possible to show that the diffracted wave has a leading order
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polyhomogeneous term (and to compute it) but even this statement seems
to be considerably more difficult in the massive case. A formal mode-by-
mode analysis should allow us to compute the angular modes of the principal
symbol of the diffracted wave, which should in turn agree with the standard
computation of the scattering matrix of the single-electron atom, e.g. in
[1, Sections 12-14]; this relationship would follow from the method employed
by Ford–Hassell–Hillairet [15, Appendix B] to compute the diffraction coeffi-
cients for flat 2-dimensional cones and by Yang [46] for more general product
cones. Making this more than a formal computation, however, seems to re-
quire an energy estimate that is stronger than what we have been able to
obtain for the massive Dirac–Coulomb equation, so we leave this important
question for future work.

In Section 2 we introduce the Dirac–Coulomb equation and fix some nota-
tion. Section 3 provides an introduction to the b- and edge-pseudodifferential
calculi and describes the interaction of the b-calculus with differential op-
erators on R3. In Section 4 we return to the equation and provide some
preliminary results: we show that the Hamiltonian governing the evolution
is essentially self-adjoint for |Z| <

√
3/2, discuss the available energy esti-

mates, introduce the second order operator, and describe how singularities
propagate away from the origin. Sections 5 and 6 are the heart of the paper;
Section 5 proves the diffractive theorem in which we show that singulari-
ties propagating through the origin must lie on the union of the diffracted
and propagated fronts and Section 6 shows that the singularity along the
diffracted front is 1− 0 orders smoother than along the propagated one.

2. The Dirac–Coulomb equation

2.1. Notation. We use coordinates xα, α = 0, . . . , 3 on R1,3; when refer-
ring to spatial coordinates (indices 1, 2, 3) we use Latin rather than Greek
superscripts. When appropriate, we employ the notation t = x0 and use
polar coordinates r ∈ (0,∞), θ ∈ S2 in the spatial variables. Below and in
what follows, we use A to denote an electromagnetic potential with Aµ its
components, i.e., A = (A0, A1, A2, A3). We are most interested in the case
when A0 has Coulomb-like singularities; in this case we write

A0 =
Z

r
+ V,

where V ∈ C∞.
The Dirac operator on R1,3 is given by

/∂ = γα∂α,

where γα are the 4× 4 matrices

γ0 =

(
I 0
0 −I

)
,
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and

γj =

(
0 σj
−σj 0

)
,

and σj are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The γ matrices satisfy the anticommutation relation1

γαγβ + γβγα = −2ηαβ Id4,

where ηαβ are the components of the Minkowski metric, i.e.,

ηαβ =


−1 α = β = 0

1 α = β ∈ {1, 2, 3}
0 α 6= β

.

The free Dirac equation then reads

(1) (i/∂ −m)ψ = 0.

With an electromagnetic potential A = (A0, A1, A2, A3), we replace /∂ by

/∂A ≡ γ0(∂0 + iA0) + γj(∂j + iAj);

this is the “minimal coupling” convention.
Other notational conventions that we employ are as follows. We use

a boldface Greek letter (such as σ) to denote the associated 3-vector of
matrices (such as (σ1, σ2, σ3)). We then set

(2) Σ ≡
(
σ 0
0 σ

)
.

and, in keeping with physics notation, we also write

β = γ0,

and let α be defined by
γ = βα,

hence

α =

(
0 σ
σ 0

)
.

Letting

(3) γ5 = iγ0γ1γ2γ3 =

(
0 Id
Id 0

)
,

we then obtain
α = γ5Σ.

1Readers consulting other references should be aware that there are at least two conven-
tions in the literature. Indeed, many physics texts (e.g., Akhiezer and Berestetsky [1] and
Rose [37]) ask that the gamma matrices satisfy a Riemannian anticommutation relation
and then set x0 = ict.
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When using spherical coordinates, we will require radial versions of vari-
ous of the matrix quantities discussed above. To this end, we set

(4) σr =
3∑
j=1

xj
|x|
σj , αr =

3∑
j=1

xj
|x|
αj , Σr =

3∑
j=1

xj
|x|

Σj ,

2.2. Spherical spinors and separation. Let

L = r× p,

where as usual

p =

i−1∂x1i−1∂x2
i−1∂x3

 .

Let

J ≡ L +
1

2
Σ

denote the total angular momentum operators (orbital angular momentum
and spin together.) Following Dirac, we also let

K = β(1 + Σ · L).

Lemma 2. Suppose A0 is radial and Aj = 0. The following operators are
mutually commuting:

/∂A, J
2, J3, K.

Moreover,
[β,K] = 0.

(See e.g. [37], Section 12 for proofs.) In the case where the potential A0

is exactly radial, we could separate variables explicitly and study the action
of /∂A on the common eigenfunctions of the remaining operators. Although
we do not take this approach, we include a discussion of the eigenfunctions
because some of the calculations below are easier to verify on individual
eigenspaces. These eigenfunctions are well known to be described blockwise
by two component spinor spherical harmonics as follows. Following e.g.,
[39], we set for θ ∈ S2

Ωκµ(θ) =

(
sgn(−κ)

(κ+1/2−µ
2κ+1

)1/2
Yl,µ−1/2(θ)(κ+1/2+µ

2κ+1

)1/2
Yl,µ+1/2(θ)

)
,

where

κ ∈ Z\{0},(5)

µ ∈ {−|κ|+ 1/2, . . . , |κ| − 1/2},(6)

l =

∣∣∣∣κ+
1

2

∣∣∣∣− 1

2
,(7)

and where Ylm are the standard spherical harmonics (see [39, (2.1.9)–(2.1.10)]
for normalization conventions). Then by [39, (3.2.3)], we obtain

(σ · L + 1)Ωκµ = −κΩκµ,



DIFFRACTION FOR THE DIRAC-COULOMB PROPAGATOR 9

hence

(8) K

(
aΩκµ

bΩκ′µ′

)
=

(
−aκΩκµ

bκ′Ωκ′µ′

)
and eigenvectors of K are given by the span of(

Ωκµ

0

)
,

(
0

Ω−κµ′

)
, µ, µ′ ∈ {−|κ|+ 1/2, . . . , |κ| − 1/2};

the eigenvalue of K on this eigenspace is −κ. Note that

(9) Σr

(
aΩκµ

bΩ−κµ′

)
=

(
−aΩ−κµ
−bΩκµ′

)
,

where Σr is defined in (4) above.
We further record here the relationship between K and ∆θ:

∆θ = K2 − βK.
This follows from the identity (see Rose [37]):

(Σ ·A)(Σ ·B) = A ·B + iΣ · (A×B).

Applying this to Σ · L yields

(Σ · L)2 = ∆θ − Σ · L,
so that

(10) K2 = (Σ · L + 1)2 = ∆θ + Σ · L + 1 = ∆θ + βK.

In particular, note that

[∆θ,K] = [K2 − βK,K] = 0,

i.e., K commutes with ∆θ.
We now describe the separation of variables for a stationary Dirac equa-

tion: The massive Dirac equation with an electromagnetic potential A =
(A0, A1, A2, A3) reads

(i/∂A −m)ψ ≡
(
i
(
γ0(∂0 + iA0) + γj(∂j + iAj)

)
−m

)
ψ = 0,

hence multiplying by β ≡ γ0 we obtain((
i(∂0 + iA0) + iβγj(∂j + iAj)

)
−mβ

)
ψ = 0,

i.e.,

(11) ðψ ≡
(
i(∂0 + iA0) + iαj(∂j + iAj

)
−mβ

)
ψ ≡ i∂tψ − Bψ = 0,

where this is taken as a definition of the operator ð and

B ≡
3∑
j=1

αj
1

i
(∂j + iAj) +A0 +mβ;

here we have, exceptionally, written out the summation explicitly here to
remind the reader that it is only over spatial indices 1, 2, 3.

Thus we are concerned with the unitary group generated by the operator
B.
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Now we compute, in the notation of [37],

α · 1

i
∇ = α · p

= γ5Σ · p

= γ5Σr

(
1

i
∂r +

i

r
Σ · L

)
= −iαr

(
∂r −

1

r
(βK − Id)

)
= −iαr

(
∂r +

1

r
− 1

r
βK

)
.

More detail for the above calculation can be found in Rose [37, p. 158,
eq (2.47)].

Thus, finally, in polar coordinates,

(12) B =
(
− iαr

(
∂r +

1

r
− 1

r
βK

)
+A0 +

∑
αjAj +mβ

)
.

3. b- and edge-geometry

Owing to the need to microlocalize solutions finely at the potential sin-
gularity, it is natural to introduce a new space obtained by blowup from our
Minkowski space. In the simple case under consideration here, the blowup
amounts to substituting the space

X ≡ [R3; {0}] ≡ [0,∞)r × S2
θ

for the Euclidean space R3, with the blowdown map

b : X → R3

being the polar coordinate map (r, θ) → rθ; this is a diffeomorphism away
from the boundary r = 0 (which is referred to as the front face of the
blowup). The blowdown map induces a fibration of the front face of the
blowup with fibers diffeomorphic to S2; it is a diffeomorphism elsewhere.
We will use the same notation for the blowdown map in the full Minkowski
space, where we introduce polar coordinates in spatial variables only, hence
set

M ≡ [R1,3;R× {0}] ≡ Rt ×X.
Both X and M are manifolds with boundary. (That they are noncompact

as well will play no essential role in our analysis, owing to the local nature
of the propagation of singularities.) We will need to consider two separate
calculi of pseudodifferential operators on M, yielding microlocalizations of
two different Lie algebras of vector fields. The first, Melrose’s b-calculus [34],
contains as first order operators the vector fields tangent to the boundary
of M . The second, Mazzeo’s edge calculus [27], contains instead the vector
fields that are tangent to the fibers of the blowdown map as well as to the
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boundary, hence in particular, we obtain r∂t rather than ∂t in the latter
calculus. We describe the important features of these two calculi below.

3.1. b-calculus. Full technical details on the b-calculus can be found in
the book of Melrose [34]; see also the introductory article by Grieser [19].
These treatments both focus on the b-calculus on a compact manifold with
boundary, while we technically need to deal with a noncompact setting here;
we thus refer the reader to Chapter 18.3 of [21] for a treatment that deals
with the noncompact setting. As all considerations here will be local in r
and t, however, the technical distinction is a very mild one and we could
just as easily have compactified our manifold instead.

The space of b-vector fields, denoted Vb(M), is the vector space of vector
fields on M tangent to ∂M ; they are spanned over C∞(M) by the vector
fields r∂r, ∂t, and ∂θ. We note that r∂r is well-defined, independent of choices
of coordinates, modulo rVb(M); one may call this the b-normal vector field
to the boundary. One easily verifies that Vb(M) forms a Lie algebra. The
set of b-differential operators, Diff∗b(M), is the universal enveloping algebra
of this Lie algebra: it is the filtered algebra consisting of operators of the
form

(13) A =
∑

|α|+j+k≤m

aj,k,α(r, t, θ)(rDr)
jDk

tD
α
θ ∈ Diffmb (M)

(locally near ∂M) with the coefficients aj,k,α ∈ C∞(M).
The b-pseudodifferential operators Ψ∗b(M) are the “microlocalization” of

this Lie algebra, formally consisting of (properly supported) operators of the
form

b(r, t, θ, rDr, Dt, Dθ)

with b(r, t, θ, σ, τ, η) a Kohn-Nirenberg symbol.
The space Vb(M) is in fact the space of sections of a smooth vector bundle

over M, the b-tangent bundle, denoted bTM. The sections of this bundle are
of course locally spanned by the vector fields r∂r, ∂t, ∂θ. The dual bundle to
bTM is denoted bT ∗M and has sections locally spanned over C∞(M) by the
one-forms dr/r, dt, dθ.

The symbols of operators in Ψ∗b(M) are thus Kohn-Nirenberg symbols

defined on bT ∗M. The principal symbol map, denoted σb, maps the classical
subalgebra of Ψm

b (M) to homogeneous functions of order m on bT ∗M. In
the particular case of the subalgebra Diffmb (M), if A is given by (13) we have

σb(A) =
∑

|α|+j+k=m

aj,k,α(r, t, θ)σjτkηα

where σ, τ, η are “canonical” fiber coordinates on bT ∗M defined by specifying
that the canonical one-form be

σ
dr

r
+ τdt+ η · dθ.
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As homogeneous functions of a given order on Rn \ 0 can be identified with
smooth functions on Sn−1, we sometimes view σb as a smooth function on
bS∗M .

We also identify a subalgebra of Ψb(M) that will be essential for the
commutator argument in Section 5.

Definition 3. We say A ∈ Ψm
b (M) is invariant if it is scalar and invariant

under the action of SO(3) on functions, i.e., if A is scalar and R−1AR = A
for all R ∈ SO(3), where the action of SO(3) on functions is simply Rf(x) =
f(R−1x).

Any scalar symbol invariant under the (lifted) action of SO(3) on bT ∗M
may be quantized to an invariant operator.

Lemma 4. Invariant operators commute with ∆θ and K.

Proof. Let A be invariant. For each j ∈ {1, 2, 3}, [A,Lj ] = 0 since the
flowout of Lj is in SO(3). Since ∆ = L · L and K = β(1 + Σ · L) (and A is
scalar) we obtain the desired commutation. �

Remark 5. Although invariant operators commute with ∆θ and K, they do
not commute with the matrices σr (defined in (4)). Because σr is indepen-
dent of r, though, the terms arising from commuting an invariant operator
with σr will be microsupported away from the characteristic set and so will
be handled by the elliptic estimate in the course of the hyperbolic estimate
of Section 5.2.3 below.

In addition to the principal symbol map, describing the leading order
behavior of elements of Ψ∗b(M) in terms of the filtration, there is a second
map that measures the leading order behavior of the operators at the front
face r = 0, and which, together with the principal symbol, measures the
obstruction to compactness of b-operators. We will refer to this notion
below only in the simple case of b-differential operators, where it is simple
to describe, and we will work in just spatial variables on X rather than in
spacetime. Then this extra symbol, which is operator-valued, is simply the
new operator obtained by freezing coefficients of powers of b-vector fields at
the boundary. If A is given by∑

|α|+j≤m

aj,α(r, θ)(rDr)
jDα

θ

we thus define the indicial operator

I(A) =
∑

|α|+j≤m

aj,α(0, θ)(rDr)
jDα

θ .

I is a homomorphism. Operators in the range of I, which in terms of r
are now simply polynomials in (rDr), are thus further simplified by Mellin
transform in r, hence the same information is contained in the indicial family

I(A, σ) =
∑

|α|+j≤m

aj,α(0, θ)σjDα
θ .



DIFFRACTION FOR THE DIRAC-COULOMB PROPAGATOR 13

The boundary spectrum of A is then defined as

specb(A) = {σ ∈ C : I(A, σ) is not invertible on C∞(S2)}.
This set plays an important role in establishing the mapping properties of b-
operators—see [34, Chapter 5]. It also is a key ingredient in the identification
of the domain of the essentially self-adjoint Hamiltonian in Section 4.1 below.

Let L2
b(M) denote the space of square integrable functions with respect

to the b-density
dr

r
dt dθ.

Note in particular that this space differs from L2(M), which here denotes
the space with the usual metric density, and in particular

L2(M) = r−3/2L2
b(M).

When emphasizing the use of the metric density, we will in fact write

L2
g(M) ≡ L2(M)

for added clarity. We let Hm
b (M) denote the Sobolev space of order m

relative to L2
b(M) corresponding to the algebras Diffmb (M) and Ψm

b (M). In
other words, for m ≥ 0, fixing A ∈ Ψm

b (M) elliptic, one has w ∈ Hm
b (M) if

w ∈ L2
b(M) and Aw ∈ L2

b(M); this is independent of the choice of the elliptic
A. For m negative, the space is defined by duality. (For m a positive integer,
one can alternatively give a characterization in terms of boundedness of

elements of Diffmb (M).) Let Hm,l
b (M) = rlHm

b (M) denote the corresponding
weighted spaces. We will also use all these notions on X rather than M,
simply omitting the t variable. Sometimes it will be convenient to use the
Sobolev spaces defined with respect to the metric density rather than the b
density we have used here, and to that end we set (on either M or X)

Hm
b,g ≡ r−3/2Hm

b .

Associated to an operator A ∈ Ψm
b (M) is its microsupport,

WF′b(A) ⊂ bS∗M.

This closed subset is the essential support of the total symbol, just as in the
usual pseudodifferential calculus, and obeys the usual microlocality property

WF′b(AB) ⊂WF′b(A) ∩WF′b(B).

Conversely, there is a notion of b-ellipticity at a point, obtained from the
invertibility of the principal symbol. Note that global ellipticity is not suf-
ficient to make an operator Fredholm over a compact set in X; additional
decay at r = 0 is required to ensure that the remainder term in a parametrix
argument is compact.

While there is a notion of wavefront set (lying in bS∗M) associated to
the b-calculus, we will require a slight variant of this wavefront set in our
estimates, hence we postpone discussion of WFb until we have introduced
differential-b-pseudodifferential operators.
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3.2. Edge Calculus. Full technical details on the edge calculus can be
found in Mazzeo [27].

The space of edge-vector fields, denoted Ve(M), is the vector space of
vector fields on M tangent to ∂M as well as to the fibers of the fibration
of the boundary obtained from b : M → R4; they are spanned over C∞(M)
by the vector fields r∂r, r∂t, and ∂θ. Like the b vector fields, Ve(M) forms
a Lie algebra. The set of e-differential operators, Diff∗e(M), is the universal
enveloping algebra of this Lie algebra: it is the filtered algebra consisting of
operators of the form

(14) A =
∑

|α|+j+k≤m

aj,k,α(r, t, θ)(rDr)
j(rDt)

kDα
θ ∈ Diffme (M)

(locally near ∂M) with the coefficients aj,k,α ∈ C∞(M).
The edge-pseudodifferential operators Ψ∗e(M) are the “microlocalization”

of this Lie algebra, formally consisting of (properly supported) operators of
the form

b(r, t, θ, rDr, rDt, Dθ)

with b(r, t, θ, ξ, τ, η) a Kohn-Nirenberg symbol. The (non-canonical) map
from total symbols to operators will be denote Opb .

For the commutator arguments below, we will require a doubly-filtered
version of the edge calculus, where we also track variable growth or decay
at r = 0. In particular, if we set

Ψm,l
e (M) = r−lΨm

e (M),

then this is a doubly filtered algebra. We remark that the operators that
are residual in the sense of both decay and regularity are

Ψ−∞,−∞e (M);

the reader is cautioned that different conventions exist in the literature for
the sign convention on the l index.

The space Ve(M) is in fact the space of sections of a smooth vector bundle
over M, the edge tangent bundle, denoted eTM. The sections of this bundle
are locally spanned by the vector fields r∂r, r∂t, ∂θ. The dual bundle to eTM
is denoted eT ∗M and has sections locally spanned over C∞(M) by the one-
forms dr/r, dt/r, dθ.

The symbols of operators in Ψ∗b(M) are thus Kohn-Nirenberg symbols
defined on eT ∗M. The principal symbol map, denoted σe, maps the classical

subalgebra of Ψm,l
e (M) to r−l times homogeneous functions of order m on

bT ∗M. In the particular case of the subalgebra Diffm,le (M), if A is given by
(14) we have

σe(r
lA) = rl

∑
|α|+j+k=m

aj,k,α(r, t, θ)ξjλkζα
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where ξ, λ, ζ are “canonical” fiber coordinates on eT ∗M defined by specifying
that the canonical one-form be

ξ
dr

r
+ λ

dt

r
+ ζ · dθ

As before we let L2
b(M) denote the space of square integrable functions

with respect to the b-density
dr

r
dt dθ.

We let Hm
e (M) denote the Sobolev space of order m relative to L2

b(M)
corresponding to the algebras Diffme (M) and Ψm

e (M). In other words, for
m ≥ 0, fixing A ∈ Ψm

e (M) elliptic, one has w ∈ Hm
e (M) if w ∈ L2

b(M)
and Aw ∈ L2

b(M); this is independent of the choice of the elliptic A. For
m negative, the space is defined by duality. (For m a positive integer,
one can alternatively give a characterization in terms of Diffme (M).) Let

Hm,l
e (M) = rlHm

e (M) denote the corresponding weighted spaces.
There is a notion of edge microsupport

WF′e(A) ⊂ eS∗M,

as well as of edge ellipticity satisfying the usual properties.
We recall also that associated to the calculus Ψ∗,∗e (M) is associated a

notion of Sobolev wavefront set: WFm,le (w) ⊂ eS∗M is defined only for

w ∈ H−∞,le (since Ψe(M) is not commutative to leading order in the decay

index); the definition is then α /∈WFm,le (w) if there is Q ∈ Ψ0,0
e (M) elliptic

at α such that Qw ∈ Hm,l
e (M), or equivalently if there is Q′ ∈ Ψm,l

e (M)
elliptic at α such that Q′w ∈ L2

b(M). See [33, Section 5] for a fuller list of
the properties of the edge calculus and wavefront set.

3.3. The differential-pseudodifferential b-calculus. The crux of the
proof of the diffractive theorem in Section 5 below lies in understanding
the interaction between differential operators and the pseudodifferential b-
calculus. A crucial ingredient below will be the Hardy inequality

Lemma 6. If u ∈ H1(Rn) with n ≥ 3, then

(n− 2)2

4

∫
|u|2

r2
dx ≤

∫
|∇u|2 dx.

We will use this inequality in R3, where it reads

(15) ‖r−1u‖ ≤ 2‖∂ru‖.

As the Dirac operator is not a b-operator, it is convenient to measure
regularity with respect to the classical Sobolev space H1, pulled back to X.

Lemma 7. The pullback b∗(H1) agrees with D = r1H1
b,g = r−1/2H1

b locally
near r = 0, and this pullback is injective.
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Note that the injectivity of the pullback is not completely trivial since we
are mapping to b-Sobolev spaces, which are spaces of distributions dual to
functions vanishing to infinite order at ∂X. So, for instance, a distribution
supported at the origin in R3 would in fact by annihilated by such a pullback,
and we need a little bit of regularity to avoid this situation.

Proof. We take all functions below to be supported in the unit ball.
The injectivity of the pushforward is assured by the fact that for all

u ∈ H1(R3), if χ(r) is a cutoff function equal to 1 for r > 2 and 0 for r < 1,
the approximation χ(r/ε)u converges to u in H1(R3) norm, i.e. elements
supported away from the origin are dense in H1, and it suffices to show that
the pushforward is bounded above and below as a Hilbert space map when
acting on these distributions. Since ∇u ∼ (∂ru, r

−1∂θu), the H1 norm of
u is bounded by the rH1

b,g norm of b∗u; the Hardy inequality ensures that

‖r−1b∗u‖L2 is controlled by the H1 norm of u, which then shows that the
rH1

b,g norm of b∗u is controlled by the H1 norm of u. �

In Section 5, we let H1(M) be the closure in the H1(R1+3) norm (identi-
fied via the blowdown b) of C∞c (M). The lemma above can be rephrased as
the statement that

H1(M) = b∗H1(R1+3),

H1(X) = b∗H1(R3).

In this paper we will only be dealing with functions compactly supported
in a fixed (large) neighborhood of x = 0, and we note that on such functions,

‖Dtu‖2 + ‖Dru‖2 +
∥∥r−1∇θu∥∥2

is equivalent to ‖u‖2H1 . We will use this equivalence heavily.
To facilitate the accounting of error terms in Section 5, we will use the

terminology

A ∈ DiffmΨs
b

if

A =
∑

j+k≤m
r−jDk

rAj,k

with Aj,k ∈ Ψs
b. (Cf. [43, Definition 2.3]; here we allow powers of r−1 in

addition to differentiations.) For such operators, we write

WF′bA = ∪j,k WF′bAj,k.

Vasy [43] made extensive use of these spaces of operators in the setting of
manifolds with corners; many of the results below have analogues in that
paper.

The following lemma from [31, Lemma 8.6] (cf. also [43, Lemma 2.8])
shows that Diff∗Ψ∗b forms an algebra.
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Lemma 8. Let A ∈ Ψm
b (M) and let a = σb(A). Then

[Dr, A] = B + CDr,

with

B ∈ Ψm
b (M), C ∈ Ψm−1

b (M),

σb(B) =
1

i
∂ra, σb(C) =

1

i
∂σa;

moreover,
[r−1, A] = r−1CR = CLr

−1,

where C• ∈ Ψm−1
b (M) with

σb(C•) =
1

i
∂σa.

As we will measure b-regularity with respect to H1, we also need to know
that Ψ0

b is bounded on this space.

Lemma 9. Given A ∈ Ψ0
b, there is some C > 0 so that for all u ∈ H±1,

‖Au‖H±1 ≤ C‖u‖H±1 .

Proof. We begin by proving boundedness on H1. By Lemma 8, [Dr, A] =
S + TDr, where S ∈ Ψ0

b and T ∈ Ψ−1b , so that

‖DrAu‖L2
g
≤ ‖ADru‖L2

g
+ ‖[Dr, A]u‖L2

g

≤ ‖ADru‖L2
g

+ ‖Su‖L2
g

+ ‖TDru‖L2
g

≤ C
(
‖Dru‖L2

g
+ ‖u‖L2

g

)
≤ C‖u‖H1 .

Similarly, we may use Lemma 8 to write[
1

r
Dθ, A

]
=

1

r
[Dθ, A] +

[
1

r
,A

]
Dθ =

1

r
S + T

(
1

r
Dθ

)
,

where S ∈ Ψ0
b and T ∈ Ψ−1b , so that by the pseudodifferential calculus and

the Hardy inequality we may bound∥∥∥∥1

r
DθAu

∥∥∥∥
L2
g

≤ C‖u‖H1 .

The boundedness on H−1 now follows by duality. �

The previous two lemmas then motivate a definition of H1 (and H−1)-
based b-wavefront set.

Definition 10. Let u ∈ H±1(M). Let ρ ∈ bT ∗M\o. We define

ρ /∈WF±1,mb u

if there exists A ∈ Ψm
b (M), elliptic at ρ, such that Au ∈ H±1.

Similarly, for ρ ∈ bT ∗M\o, we define

ρ /∈WFmb u
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if there exists A ∈ Ψm
b (M), elliptic at ρ, such that Au ∈ L2

g.

Remark 11. At this moment we provide the reader with two notes of cau-
tion: First, observe that we measure b-regularity with respect to L2

g rather

than L2
b; we adopt this convention because it makes applications of the

Hardy inequality more straightforward and allows us to avoid introducing
the weighted b-calculus. Second, be aware that although WF1,m

b and WFm,le

each have seem to have two superscripts, homologous indices have different
meanings in these two objects. Indeed, one should think of WF1,m

b as having
only the index m and therefore measuring Ψm

b -regularity with respect to H1.

On the other hand, WFm,le measures Ψm,l
e -regularity with respect to L2

b and
thus has two indices corresponding to those of the edge algebra.

As with other pseudodifferential algebras, it is convenient to know that
we can microlocalize our estimates:

Lemma 12. If A,G ∈ Ψs
b with WF′bA ⊆ ellG, then for all u with

WF±1,sb u ∩WF′bG = ∅,

we may bound

‖Au‖H±1 ≤ C (‖Gu‖H±1 + ‖u‖H±1) .

Proof. The proof is a standard microlocal elliptic parametrix argument: let
E ∈ Ψ−sb with WF′bE ⊆WF′bG so that

R = I−EG ∈ Ψ0
b, WF′bR ∩WF′bA = ∅.

We may then write

Au = A(EG+R)u,

so that

‖Au‖H±1 ≤ ‖(AE)Gu‖H±1 + ‖ARu‖H±1 ≤ C (‖Gu‖H±1 + ‖u‖H±1) .

�

In Section 5, we repeatedly use the algebra properties of Diff∗Ψ∗b and the
following lemma to allow easy estimates on error terms by doing commuta-
tions freely.

Lemma 13. Suppose E ∈ Diff1Ψs+r−1
b +Ψs+r

b . There are pseudodifferential

operators A ∈ Ψs−1
b and B ∈ Ψr

b with WF′bA∪WF′bB ⊆WF′bE so that for

all u ∈ H1 and v ∈ L2 with WF′bE ∩ (WF1,s−1
b u ∪WF1,r−1

b v) = ∅,

|〈Eu, v〉| ≤ C
(
‖Au‖H1‖Bv‖L2

g
+ ‖u‖H1‖v‖L2

g

)
.

Similarly, if E ∈ Diff2Ψs+r−2
b +Diff1Ψs+r−1

b +Ψs+r
b , we may find A ∈ Ψs−1

b

and B ∈ Ψr−1
b so that

|〈Eu, v〉| ≤ C (‖Au‖H1‖Bv‖H1 + ‖u‖H1‖v‖H1) .
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Proof. Let T±r ∈ Ψ±rb be elliptic, self-adjoint b-operators which are inverses
of one another modulo a smoothing error, so that TrT−r = Id +R with
R ∈ Ψ−∞b . Setting A = T−rE and B = Tr ∈ Ψr

b finishes the proof. �

4. Analytic preliminaries

We return to the Dirac–Coulomb equation (i/∂A−m)u = 0. In this section
we discuss several preliminary results needed in the main proofs below.

4.1. Self-adjoint extension. Recall that

M = [R1+3;Rt × 0x]

denotes the blowup of our spacetime at the spatial origin, and

X = [R3; 0]

denotes its spatial cross section, with b denoting the blowdown map in either
case.

We shall abuse notation later on in confusing X with all of R3, but will
begin by distinguishing these two spaces for the purposes of describing do-
mains and Sobolev spaces precisely before proving that the confusion is safe.

We now examine the indicial roots of the formally self-adjoint operator
B (defined in Section 2.1) where2 A0 = Z/r + V and V,Aj ∈ C∞, i.e., the
boundary spectrum given by the points of non-invertibility of I(rB, ξ).

By (12), if σ denotes the dual to rDr in bT ∗X,

I(rB, σ) = Z Id−iγ5Σr

(
iσ + 1− βK

)
.

To study the equation I(rB, σ)ψ = 0 we split

ψ =

(
ψu

ψl

)
into upper and lower spinors, and, as above, expand each in the basis of
spherical spinors of the form(

Ωκµ

0

)
,

(
0

Ωκ′µ′

)
.

Thus, once again using (8), (9), we obtain

I(rB, σ)

(
aΩκµ

bΩκ′µ′

)
=

(
aZΩκµ − (σ − i− iκ′)bΩ−κ′µ′
bZΩκ′µ′ − (σ − i− iκ)aΩ−κµ

)
.

We obtain an element of the nullspace only when κ′ = −κ, µ′ = µ, and the
determinant of the resulting two-by-two matrix vanishes, which is to say:

Z2 = κ2 + (σ − i)2,
i.e. when

σ = i± i
√
κ2 − Z2.

2More generally, we remark that we can replace the smooth term by a term that is
smooth on the blowup of the origin with no change in the arguments of this section.
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Because κ takes values in Z\{0}, we can explicitly calculate these indicial
roots for small values of Z. Indeed, if |Z| <

√
3/2, we are assured that

(16) Im specb(rB) ∩ [1/2, 3/2] = ∅.

Letting H1
b,c(X) denote the compactly supported element of H1

b (and

using the subscript c more generally to denote compact support) we note
that 3

B : r−1/2H1
b,c(X)→ r−3/2L2

b,c(X) = L2
g,c(X)

is continuous. Thus we certainly find that r−1/2H1
b,c(X) is contained in the

minimal domain of B. On the other hand, (16) implies by work of Lesch
[26, Corollary 1.3.17] (see also Melrose [34, Chapter 5] for a parametrix con-
struction, as well as Gil–Mendoza [18] for a general discussion of self-adjoint
extensions of operators of this type) that the maximal and minimal domains
must in fact coincide, hence B is essentially self-adjoint, with domain given
by

(17) D =
{
u : χu ∈ r−1/2H1

b , (1− χ)u ∈ H1(R3)
}

where χ is a compactly supported cutoff function equal to 1 in a neighbor-
hood of 0 and we have abused notation by identifying supp(1− χ) with the
corresponding subset of R3. (Cf. [23, Theorem V.5.10, Remark V.5.12] for
the essential self-adjointness of Dirac operators and for the characterization
of the domain away from the origin as H1.)

Having established the self-adjointness of B with domain D, we now define

Ds = Dom(Id +B2)s/2, s ≥ 0

with the powers of the operator being defined by the spectral theorem. For
s < 0, we denote the corresponding spaces by duality. Note that away from
the origin, the Ds spaces simply agree with Sobolev spaces:

Lemma 14. For all s ∈ R

Ds ∩ E ′(R3\{0}) = Hs ∩ E ′(R3\{0}).

Proof. For s an even integer, the result follows inductively from the charac-
terization of D = D1, which does agree with H1 away from the origin. The
inductive step follows from the interior ellipticity of B, which means that
for u supported away from the origin, Bu ∈ Hk implies u ∈ Hk+1. Thus for
any ϕ ∈ C∞c (R3\{0}), whenever Re s ∈ 2N,

(18) ϕu ∈ Ds ⇐⇒ (Id +∆)sϕu ∈ L2,

since the pure imaginary powers of (Id +B2) and of (Id +∆2) are both uni-
tary. Then by interpolation and duality (18) holds for all s. �

3Recall that b-Sobolev spaces are by default defined with respect to the b-density rather
than the metric density.
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4.2. Admissible solutions and energy estimates.

Definition 15. A solution to (i/∂v −m)u = 0 is admissible if it lies in

C(R;Ds)

for some s ∈ R.

In the propagation theorems in this paper, we deal only with admissible
solutions. Note that there is a unique admissible fundamental solution, since
the initial data δ(x− x0) lies in D−n/2−0 by Lemma 14.

Given Cauchy data u0 ∈ Ds, there exists a unique admissible solution

e−itBu0

by Stone’s theorem; the propagator is of course unitary on Ds for all s ∈ R.
More generally, we will have use for the following energy estimate:

Lemma 16. Let u solve (i/∂V −m)u = 0 on [t0, t1]×X and lie in C∞(R;D∞).
For any operator Q : C∞(R;D∞)→ C∞(R;D∞) with [Q,Dt] = 0,

1

2

d

dt
‖Qu‖2Ds = Re 〈i[B, Q]u,Qu〉Ds

Proof. This follows by self-adjointness of B and the definition of the Ds norm
in terms of its powers. �

For purposes of shifting regularity of solutions up and down conveniently,
we now define, for s ∈ R, Θs ∈ Ψs(R) to be the operator whose Schwartz
kernel is κ(〈Dt〉s)χ(t − t′) with χ a compactly supported cutoff function
equal to 1 near 0. This yields an operator whose Schwartz kernel is properly
supported and such that [Θs, Dt] = 0. Moreover, ΘsΘ−s− Id is a smoothing
operator with properly supported Schwartz kernel. We then note by t-
translation invariance of the Dirac equation that if u ∈ C(R;Dk) is a solution
to the Dirac equation, then (by ellipticity of the spatial part of the Dirac
operator)

Θsu ∈ C(R;Dk−s) ∩Hk−s
loc

is another solution (up to a smooth remainder), and, again using ellipticity
to transfer t regularity to spatial regularity,

Θ−sΘsu− u ∈ C∞(R;D∞).

It is helpful in what follows to be able to pass freely among different
notions of solution: viewing a solution as lying in locally Hs(R × R3) is
most natural in dealing with microlocal analysis away from r = 0, while the
energy spaces L2(R;Ds) or C(R;Ds) are natural from the point of view of
global energy estimates.

Lemma 17. An admissible solution of the Dirac equation in C(R;Ds) lies
in Hs

loc(M
◦).
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Proof. For such a solution (with all norms below local ones, for t in a finite
interval, and over a compact set in the interior of X)

Θsu ∈ C(R;L2) ⊂ L2,

hence
u ∈ Hs(R;L2) ∩ L2(R;Hs) ⊂ Hs,

by the local Fourier characterization of Sobolev regularity (and since |τ |s +
|ζ|s ∼ |(τ, ζ)|s outside the unit ball). �

Remark 18. The operator B can certainly have L2 eigenvalues, e.g. corre-
sponding to bound states of a single-electron atom or ion in the case of exact
Coulomb potential. In this exact Coulomb case, though, the eigenvalues are
known to lie in the interval (−m,m) hence any u in the L2 span of the
eigenfunctions of B certainly lies in D∞, since

∥∥Bku∥∥ ≤ mk‖u‖ for all k.
Thus such a function u can have no singularities in the sense under study
here.

We expect that the same argument should continue to hold for the more
general potentials under consideration in this paper (with some additional
conditions on the behavior at infinity so that we continue to have bound-
edness of the the discrete spectrum), but we will not pursue this essentially
spectral-theoretic question here.

4.3. Reduction to Klein–Gordon. Some of the arguments below are con-
siderably simplified by considering a related principally scalar second-order
operator obtained essentially by squaring the Dirac operator.

Consider a four-spinor solution u to

(i/∂A −m)u = 0,

where A = (A0, A1, A2, A3), i.e.,(
i(γ0(∂0 + iA0) + γj(∂j + iAj))−m

)
u = 0.

Applying (i/∂A +m) we obtain immediately

0 = (−/∂2A −m2)u

= −
(
γ0(∂0 + iA0) + γj(∂j + iAj)

)(
γ0(∂0 + iA0) + γk(∂k + iAk)

)
u−m2u

= −
(
(∂0 + iA0)

2u− (∂j + iAj)
2u+ γjγ0(i∂j(A0))u+ γjγk(i∂jAk)u

)
−m2u

= −(∂0 + iA0)
2u+ (∂j + iAj)

2u−m2u− iγjγ0∂j(A0)u− iγjγk∂k(Ak)u−m2u.

For A0 radial,

−iγjγ0∂j(A0) = iγ0γj∂j(A0)

= iγ0γr∂r(A0)

= i

(
I 0
0 −I

)(
0 σr
−σr 0

)
∂r(A0)

= i

(
0 σr
σr 0

)
∂r(A0),
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hence, for A0 radial and Aj = 0,

−(∂0 + iA0)
2u+ ∂2j u−m2u+ i

(
0 σr
σr 0

)
∂r(A0)u = 0.

More generally, assume Aj ∈ C∞ and

A0 =
Z

r
+ V,

where V ∈ C∞. We now lump the extra terms together as perturbations, and
multiply through by γ0 rewrite the first order equation in a more convenient
form as

(19) ð ≡ i(∂t + i
Z

r
+ iV ) + iαr

(
∂r +

1

r
− 1

r
βK

)
−

3∑
j=1

αjAj −mβ,

where we recall that β = γ0 and αj =

(
0 σj
σj 0

)
. The corresponding oper-

ator of Klein–Gordon type

(20) P ≡ (i/∂A +m)(i/∂A −m)

then satisfies the following hypotheses:

Klein–Gordon Hypotheses. P is a second-order operator of the following
form:

(21) P = −(∂0 + i
Z

r
)2 +

∑
∂2j −m2 − i Z

r2

(
0 σr
σr 0

)
+ R

with

(22) R = Z
W0

r
+ Wα

1 ∂α + W2

where W• ∈ C∞(R3) but are not necessarily scalar.

These assumptions on the operator will suffice for most of our propagation
results below.

Note that the term

−i Z
r2

(
0 σr
σr 0

)
is, in contrast to the other main terms in the equation, formally anti-self-
adjoint rather than self-adjoint. This creates significant technical difficulties
in the b-propagation arguments, since, while lower order in terms of differ-
entiation, this anti-self-adjoint term is large. If we estimate it in pairings
by the Hardy inequality, is larger than the second-order terms in the equa-
tion. This obstacle is why we use the first order equation directly in the
hyperbolic part of the b-propagation argument below.

The presence of the charge parameter multiplying W0 is in fact inessential
here, as its size will play no role in the analysis of that term.



24 DEAN BASKIN AND JARED WUNSCH

4.4. Interior propagation. In this section, we discuss the propagation
away from r = 0 of singularities (or, dually, of regularity) and also of iterated
regularity under the angular test operators Dθ as well as the spacetime
scaling vector field

(23) R = rDr + tDt.

First, we remark that away from the potential singularity at the origin,
the standard theory of propagation of singularities applies:

Proposition 19. Let u satisfy (i/∂A − m)u = 0. Then WFu ⊂ Σ ≡
{ηαβξαξβ = 0} and is a union of maximally extended integral curves of

the Hamilton flow generated by ηαβξαξβ, i.e., lifts of straight lines.

Here (and here alone) we have used ξα to denote the dual cotangent
variable to the Minkowski coordinate xα.

Proof. Applying (i/∂A + m) yields Pu = 0. Since P is an operator of real
principal type (away from the potential singularity), the result follows from
the theorem of Hörmander [13]. �

Now we turn to propagation of iterated regularity under R,Dθ. Note
that this is a simple case of propagation of test module regularity, with
Dθ together with P being generators of a module of operators testing for
coisotropic regularity relative to the manifold

C ≡ {τ2 = σ2, η = 0} ⊂ T ∗M◦

(using coordinates τ, σ, η dual to t, r, θ respectively) and with Dθ, R, P to-
gether testing for regularity relative to the Lagrangian submanifold(s)

L ≡ N∗{t = ±r} ⊂ C
Proposition 20. Let u be an admissible solution to the Dirac equation.

Let p0 ∈ {σ(P ) = 0} ⊂ T ∗(M◦) and let p1 lie on the maximally extended
null bicharacteristic through p0 in T ∗M◦.

If p0 /∈WFsDα
θ u for all |α| ≤ N then p1 /∈WFsDα

θ u for all |α| ≤ N.
Likewise, if p0 /∈WFsRjDα

θ u for all j + |α| ≤ N then p1 /∈WFsRjDα
θ u

for all j + |α| ≤ N.
Proof. The proof is a standard exercise in propagation of “test module reg-
ularity” and is essentially an easier version of the b- and edge-calculus ar-
guments employed below to obtain propagation through the potential sin-
gularity, hence we merely sketch it (cf. [31, Proposition 6.11]).

By Taylor’s theorem and the symbol calculus, for a solution to Pu ∈ C∞,
the regularity hypothesis p0 /∈ WFsDα

θ u for all |α| ≤ N is microlocally
equivalent to the assertion that for any A1, . . . AN ∈ Ψ1(M◦) with proper
support, characteristic on C,

A1 . . . ANu ∈ Hs.

Now by [21, Theorem 21.2.4], we may find a homogeneous symplectomor-
phism Φ, defined on a neighborhood of p0,mapping from coordinates (y, z, η, ζ)
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such that σ(P ) ◦ Φ = ζ1q with q elliptic and Φ−1(C) = {ζ = 0}. We may
also assume Φ(p0) = 0 and hence Φ(p1) lies on the z1-axis.

We may then quantize Φ to a microlocally unitary FIO T such that TP =
QDz1T + E with E ∈ Ψ−∞, and where Q ∈ Ψ1 is elliptic. Then Pu = 0
implies QDz1Tu ∈ C∞, hence Dz1Tu ∈ C∞ by ellipticity. The hypotheses are
equivalent to Dα

z Tu ∈ Hs near Φ(p0) for all |α| ≤ N. Solving the equation
Dz1Tu ∈ C∞ then guarantees that the same holds near any Φ(p1) along the
z1-axis.

The second part of the result, dealing with Lagrangian regularity, follows
via the same kind of proof: here we conjugate instead to a coordinate system
(z, ζ) so that the operators P,R,Dθ, whose symbols cut out the Lagrangian
L, become multiples of the model operators Dzj and proceed as before. �

5. Diffractive theorem

5.1. Main theorem. In this section, we prove the diffractive theorem, which
tells us that the only wavefront set emanating from the singularity of the
potential arises at the time of interaction with a singularity of the solution.

In making our propagation arguments in the b-calculus we will study the
Dirac equation directly. It turns out to be simplest to deal with the Klein–
Gordon operator P, however, in making the elliptic estimates that constrain
where the b-wavefront set may lie. We thus employ both equations in turn
in proving the diffractive theorem.

In both settings, we deal with large potential terms by employing the
Hardy inequality, with the result that our results only hold for |Z| < 1/2.

Definition 21. A diffractive geodesic is a geodesic that is either

(1) a lightlike geodesic not passing through r = 0, or
(2) a continuous concatenation of two lightlike geodesics, both passing

through t = t0, r = 0 for some t0 ∈ R, hence in polar coordinates a
geodesic passing through the origin at time t = t0 with

r = |t− t0|, θ =

{
θ−, t < t0

θ+, t > t0.

(Geodesic here refers to a geodesic with respect to the Minkowski metric,
hence a straight line.) Note that in the latter case, when the geodesic is
broken, there is no need for the arriving and departing spatial directions
of the geodesic to match up as it enters and leaves the origin, though the
direction in time must be conserved.

We will abuse notation by using the term geodesic interchangeably for the
curve in M◦ and for its lift to T ∗M◦.

A simple version of the diffractive propagation theorem, making no ref-
erence to b-wavefront set, says that the wavefront set of a solution to the
Dirac equation is, away from the spatial origin, given by a union of lifts of
diffractive geodesics to T ∗R3. To prove the theorem, however, requires prov-
ing uniform estimates at the time the geodesic reaches r = 0, which requires
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analysis of the b-wavefront set; Proposition 19 takes care of propagation
away from r = 0.

In order to describe wavefront sets conveniently, we will use coordinates
associated to the canonical one-form

(24) α ≡ σdr
r

+ η · dθ + τ dt

on bT ∗M. We may canonically identify this cotangent bundle with T ∗R4

away from r = 0 : this follows from the observation that b is a diffeomor-
phism away from r = 0 (identifying T ∗R4 and T ∗M there) and that the
natural map T ∗M → bT ∗M is an isomorphism in this region.

In the coordinates given by (24), the dual Minkowski metric is −τ2 +
σ2 + r−2η2. Thus for the radial geodesics (i.e., null integral curves of the
Hamilton flow of the dual metric), dr/dt = −σr/τ (with the factor of r
arising from the singularity of the symplectic form dα). Hence the set where
σ and τ have the same sign should be viewed as “incoming” toward r = 0
under the bicharacteristic flow, while the set where they have opposite signs
is outgoing. Thus the following theorem describes propagation into and then
back out of the singular point of the Coulomb potential.

Theorem 22. Let A = (A0 = Z/r + V,A1, A2, A3) with V,Aj ∈ C∞(R3),
and |Z| < 1/2.

Whenever u is an admissible solution of

(i/∂A −m)u = 0,

if

{(r = t0−t, θ, t, σ, τ, η = 0): t < t0, θ ∈ S2, σ, τ ∈ R, τ ≷ 0, σ ≷ 0}∩WFu = ∅

then

{(r = t−t0, θ, t, σ, τ, η = 0): t > t0, θ ∈ S2, σ, τ ∈ R, τ ≷ 0, σ ≶ 0}∩WFu = ∅.

Thus, no wavefront set arriving at r = 0 at time t = t0 implies no
wavefront set emanating from r = 0 at time t = t0, and we have established
propagation on diffractive geodesics. Moreover the sign of τ is conserved in
this interaction.

We will prove Theorem 22 by obtaining a stronger result, uniformly true
across r = 0, concerning the propagation of b-wavefront set.

5.2. Propagation of b-regularity. The following treatment of the prop-
agation of b-regularity is heavily influenced by the work of Vasy in the
context of manifolds with corners [43], which gave in turn a new perspective
on previous results of Melrose–Sjöstrand in the boundary case [29], [30].

The main propagation results take place inside the compressed character-
istic set, which is the appropriate extension of the ordinary characteristic set
to the boundary setting. In coordinates associated to the canonical one-form

τdt+ σdr + η · dθ
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on T ∗M , Σ is given by

Σ = {(r, θ, t, σ, η, τ) | τ2 − σ2 − 1

r2
∣∣η∣∣2}.

The compressed characteristic set Σ̇, originally due to Melrose–Sjöstrand [29,
30], is the image of the characteristic set under the natural map T ∗M →
bT ∗M . In the coordinates associated to the canonical one-form

τdt+ σ
dr

r
+ η · dθ

on bT ∗M , Σ̇ has the following form over r = 0:

Σ̇|r=0 = {(r = 0, θ, t, σ = 0, η = 0, τ) | θ ∈ S2, τ 6= 0}.

We will obtain Theorem 22 by proving the following more precise state-
ment. Recall from equation (19) that ð is a Dirac–Coulomb operator with
additionally a smooth vector potential, multiplied through by γ0.

Theorem 23. Assume u is an admissible solution of ðu = 0, and assume
that |Z| < 1/2.

For each m, WF1,m
b u ⊂ Σ̇. Away from r = 0, WF1,m

b u is invariant under
the bicharacteristic flow.

Fix ρ0 = {(r = 0, θ ∈ S2, t0, σ = 0, η0 = 0, τ0)} ⊂ Σ̇ and let U denote a

neighborhood of ρ0 in Σ̇. If

U ∩ {σ/τ > 0} ∩WF1,m
b u = ∅,

then

ρ0 ∩WF1,m
b u = ∅.

Note that the openness of the complement of WF1,m
b u means that the

theorem yields regularity at the outgoing points (where σ/τ < 0) sufficiently
near ρ0.

In fact, we prove a stronger statement for the inhomogeneous problem, in
which

WF1,m
b u ⊂ Σ̇ ∪WFmb (ðu),

and if

U ∩WF0,m+1
b (ðu) = ∅

and

U ∩ {σ/τ > 0} ∩WF1,m
b u = ∅,

then ρ0∩WF1,m
b u = ∅, with analogous statements with the additional factors

included.
We also prove a statement about the propagation of coisotropic regularity.

Theorem 24. The same statements hold with u replaced by K`u or R`u,
where K is Dirac’s K-operator and R = (t − t0)Dt + rDr is the scaling

vector field. More precisely, for each `, WF1,m
b (Kju) and WF1,m

b (Rju) are
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invariant under bicharacteristic flow away from r = 0 for j = 0, . . . , ` and
if

U ∩ {σ/τ > 0} ∩WF1,m
b (Sju) = ∅

for S = K or S = R and all j ≤ `, and ρ0 ∩WFm+1
b (Sjðu) for j = 0, . . . , `,

then

ρ0 ∩WF1,m
b (Sju) = ∅

for all j ≤ `.

Remark 25. The statement for K provides a proof of the propagation of
Lagrangian regularity through the singularity. It immediately follows that
a similar statement (with hypotheses modified as needed) holds for K`Rku;
this shows that coisotropic regularity (in the b-sense) also propagates through
the singularity.

Since WF1,m
b is closed, this theorem implies Theorem 22 as follows:

Proof of Theorem 22 using Theorem 23. Assuming the hypotheses of The-
orem 22, we first can use ordinary propagation of singularities and elliptic
regularity over M◦ to conclude that a neighborhood of

{(r = 0, θ, t = t0, sgnσ = sgn τ) : θ ∈ S2}

over M◦ is disjoint from the wavefront set, since the backward bicharacter-
istic flowout of any of these points lies in the region where our hypotheses
yield regularity, provided we take a sufficiently small such neighborhood.
Without loss of generality, we will focus on the component τ < 0, with the
other component to be treated mutatis mutandis.

Now we find that since ordinary and b wavefront sets coincide for r > 0,
over a neighborhood of (r = 0, θ ∈ S2, t0), WF1,m

b u ∩ {r > 0, sgnστ =

1, η = 0} = ∅; since Σ̇ ∩ {r = 0} ⊂ {σ = 0}, this suffices to establish
the existence of U as in the hypotheses of Theorem 23, where we have taken
fixed a sign of τ. Thus Theorem 23 implies that ρ0∩WF1,m

b = ∅; since WF1,m
b

is closed, this implies the existence of an open neighborhood of ρ0 in Σ̇ that
is disjoint from WF1,m

b u, and in particular, there is a such neighborhood in

Σ̇ ∩ {σ > 0, r > 0}.
This neighborhood disjoint from WF1,m

b u is then the projection of an
open neighborhood in Σ, the usual characteristic set, that is disjoint from
WFm+1 u and where τσ < 0. In particular, it contains a point in every
bicharacteristic (r = t− t0, t > t0, sgn τσ = −1, η = 0). By interior propaga-
tion of singularities, all these bicharacteristics are disjoint from WFm+1 u.

Since WFu =
⋃
k WFk u, this completes the proof of Theorem 22. �

We now proceed with the proof of Theorem 23. To this end, we begin
with preliminary estimates on commutators, with a crucial role played by
commutators between � and b-operators that are rotationally symmetric in
the space variables.
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5.2.1. b-Commutators. We record for our use below the form of the com-
mutator of an invariant (defined above in Definition 3) b-pseudodifferential
operator with the second order operator P and the first order operator ð.

Lemma 26. Let C ∈ Ψm
b (M) be invariant, with principal symbol c scalar

and real-valued. Then, for P satisfying the Klein-Gordon hypotheses of Sec-
tion 4.3,

[P,C] = B0
1

r2
∆θ +B1,

where

• B0 ∈ Ψm−1
b and

• B1 ∈ Diff2Ψm−1
b + Diff1Ψm

b + Ψm+1
b .

Both B0 and B1 are microsupported in WF′bC.

Proof. The term containing B0 arises by commuting C through the 1
r2

∆θ

term in P . The remaining terms in P contribute to the B1 term; as

P +
1

r2
∆θ ∈ Diff2Ψ0

b ,

Lemma 8 shows that this commutator lies in Diff2Ψm+1
b . �

Lemma 27. Let C ∈ Ψm
b (M) be invariant, with principal symbol c scalar

and real-valued. Then
(25)
1

i
[ð, C] = A0

(
αr

(
i∂r +

i

r
− i

r
βK

)
− Z

r

)
+B0+αrB1+B2

1

r
+B3Dr+B4+B5

1

r
+B6Dr,

where

• A0 ∈ Ψm−1
b (M), with σb(A•) = −∂σ(c),

• B0 ∈ Ψm
b (M), with σb(B0) = ∂t(c),

• B1 ∈ Ψm
b , with σb(B1) = ∂r(c),

• B2 ∈ Ψm
b (M), with suppσb(B2) ⊆ supp ∂η(c),

• B3 ∈ Ψm−1
b (M), with suppσb(B3) ⊆ supp ∂η(c),

• B4 ∈ Ψm−1
b (M), and

• B5, B6 ∈ Ψm−2
b (M).

Remark 28. Non-scalar pseudodifferential operators are in bold in the ex-
pressions above; roman terms are scalar.

Proof. We write

ð = i∂t −
Z

r
+ iαr

(
∂r +

1

r
− 1

r
βK

)
− α0V − αjAj ,

where we use the convention that α0 = I.
We begin with the angular term. Because αr and K depend only on

the angular variables, their commutators with the invariant operator C are
microsupported in the support of ∂ηc. Writing

1

i
[−αr

i

r
βK,C] = −αr

1

r
[βK,C]− 1

r
[αr, C]βK − [

1

r
, C]αrβK,
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we see that the first two terms give contributions to B2, while the last term
yields the angular part of the A0 term above. (Indeed, we take this to define
the operator A0.)

We now turn to the terms involving the commutator with i∂t − Z
r . The

[∂t, C] term gives B0, while the Z
r term contributes to the A0 and B5 terms.

We now consider the term involving iαr(∂r+ 1
r ). We observe that because

αr depends only on the angular variables, its commutator with C is micro-
supported in the support of ∂η(c), yielding a contribution to the B3 term.
Since

−1

i
[Dr, C] = S + TDr,

where

S ∈ Ψm
b , σb(S) = ∂r(c),

and

T ∈ Ψm−1
b , σb(T ) = ∂σ(c),

we see that the rest of this term yields contributions to the terms involving
A0, B1, and B6.

Finally, the commutator of −α0V −αjAj with C yields the B4 term. �

5.2.2. Elliptic estimate. The estimates in this section are very close to those
in [43, Section 4], hence we will be somewhat brief in the proofs; the main
difference here is in the potential terms, which need to be controlled using
the Hardy inequality. Unlike in the proof of the hyperbolic estimate in the
next section, we work here with the second order equation in order to obtain
more direct control over the H1 norm.

Lemma 29. If |Z| < 1/2 then for all u ∈ H1, WF1,m
b u ⊂WF−1,mb (Pu)∪ Σ̇.

Following the treatment in [43, Section 4], we begin with a lemma con-
cerning the quadratic form associated to P . (Cf. Lemma 4.2 of [43].)

In what follows, we split P as

P = P0 + R

with

P0 = −(∂0 + iZ/r)2 +
∑

∂2j −m2 − i Z
r2

(
0 σr
σr 0

)
.

Lemma 30. Let K ⊂ bS∗M be compact, U ⊂ bS∗M open, K ⊂ U . Let
Aλ be a bounded family of invariant elements in Ψs

b with WF′bAλ ⊂ K

(in the sense of uniform wavefront set of families), and Aλ ∈ Ψs−1
b for

λ ∈ (0, 1). Then there exist G ∈ Ψ
s−1/2
b , G̃ ∈ Ψs

b, both microsupported in U ,

and C0 so that for all ε > 0, λ ∈ (0, 1), u ∈ H1 with WF
1,s−1/2
b u ∩ U = ∅,
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WF−1,sb (Pu) ∩ U = ∅,∣∣∣‖(Dt + Z/r)Aλu‖2 − ‖∇Aλu‖2 −m2‖Aλu‖2 + Re〈RAλu,Aλu〉
∣∣∣

≤ C0

(
ε‖Aλu‖2H1 + ‖u‖2H1 + ‖Gu‖2H1 + ε−1‖Pu‖2H−1 + ε−1

∥∥∥G̃Pu∥∥∥2
H−1

)
.

The estimate is uniform for bounded Z (which is not required to be small).

Remark 31.

• The LHS of the inequality is given by the absolute value of the
Re〈PAλu,Aλu〉; the non-scalar term in P is anti-self-adjoint, hence
does not contribute.
• If Aλ commuted with P the G term would not appear; as it is, this

term is lower order than Aλ since it arises as a commutator.

Proof. Fix G, G̃ of the appropriate order, microsupported in U , so that

σb(G), σb(G̃) ≡ 1 on K.
The pairing

Re〈PAλu,Aλu〉
is finite for all λ > 0 by our wavefront set assumption, which implies that
PAλu ∈ H−1 and Aλu ∈ H1. First write

|Re 〈PAλu,Aλu〉| ≤ |〈[P,Aλ]u,Aλu〉|+ |〈AλPu,Aλu〉|.

We first estimate the term

|〈AλPu,Aλu〉|.

Indeed, we observe that

|〈AλPu,Aλu〉| ≤ ‖AλPu‖H−1‖Aλu‖H1 ≤ ε‖Aλu‖2H1 + ε−1‖AλPu‖2H−1 .

Elliptic regularity for G̃ then shows that

|〈AλPu,Aλu〉| ≤ ε‖Aλu‖2H1 + Cε−1
(
‖Pu‖2H−1 +

∥∥∥G̃Pu∥∥∥2
H−1

)
.

We now turn our attention to the commutator term. Indeed, Lemma 26
allows us to write

〈[P,Aλ]u,Aλu〉 =

〈
1

r2
∆θB0u,Aλu

〉
+ 〈B1u,Aλu〉,

where B0 ∈ Ψs−1
b and B1 ∈ Diff2Ψs−1

b + Diff1Ψs
b + Ψs+1

b , both satisfying
uniform (in λ) estimates in these spaces.

Lemmas 13 and 12 show that we may bound

|〈[P,Aλ]u,Aλu〉| . ‖u‖2H1 + ‖Gu‖2H1 ,

finishing the proof. �
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Proof of Lemma 29. (Cf. the proof of [43, Proposition 4.6].) We aim to

show that if WF′bA∩ Σ̇ = ∅ and WF−1,mb (Pu)∩WF′bA = ∅, then Au ∈ H1.

We in fact show this iteratively, assuming by induction that WF
1,s−1/2
b u

is disjoint from a(n arbitrarily small neighborhood of) WF′bA and then
showing Au ∈ H1. To pass to s =∞, one must guarantee that the supports
of the operators in each iteration do not shrink too quickly, but this can be
guaranteed as in the end of the proof of [43, Proposition 6.2].

We will use the notation

σ̂ =
σ

|τ |
, η̂ =

η

|τ |
in discussing symbol constructions below.

Since WF′bA ∩ Σ̇ = ∅, without loss of generality (since the lemma is

standard over M◦), σ̂2 + |η̂|2 ≥ ε2 > 0 on WF′bA; moreover, by a partition
of unity in x (again using elliptic regularity over M◦), we may take r < δ
over WF′bA, where we may specify δ independently from ε above. Now we
let4

Aλ ≡ Opb

(
(1 + λ(τ2 + σ2 + |η|2))−1

)
A,

so that Aλ is uniformly bounded in Ψs
b and converges to A in the topology

of Ψs+0
b , while for each λ > 0, Aλ ∈ Ψs−2

b . We may apply Lemma 30 to such
an A, so that for all ε′ > 0,

− ‖(Dt + Z/r)Aλu‖2 + ‖∇Aλu‖2 +m2‖Aλu‖2 − |〈RAλu,Aλu〉|

(26)

≤ C0

(
ε′‖Aλu‖2H1 + ‖u‖2H1

+ ‖Gu‖2H1
+ (ε′)−1‖Pu‖2H−1 + (ε′)−1

∥∥∥G̃Pu∥∥∥2
H−1

)
.

(27)

Since τ2 < ε−2(σ2 + |η|2) and r < δ on WF′bA, we estimate

‖DtAλu‖2 ≤
〈
ε−2 Op(σ2 + |η|2)Aλu,Aλu

〉
+ ‖Gu‖2H1

= ε−2
(
‖(rDr)Aλu‖2 + ‖∇θAλu‖2

)
+ ‖Gu‖2H1

≤ δ2ε−2‖∇Aλu‖2 + ‖Gu‖2H1

≤ Cδ2ε−2‖Aλu‖2H1 + ‖Gu‖2H1 .

Here again G ∈ Ψ
s−1/2
b is an error term (which we allow to change from

line to line as needed); we use it to estimate terms of the form ‖Bu‖2L2 with

B ∈ Ψ
s+1/2
b .

We also recall from (15) that∥∥r−1Aλu∥∥2 ≤ 4‖Aλu‖2H1 ;

4We assume our quantization is arranged so that it yields properly supported operators.
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thus for any ε′ > 0,

‖(Dt + V )Aλu‖2 ≤ Cδ2ε−2‖Aλu‖2H1 + (4 + ε′)Z2‖∇Aλu‖2 + ‖Gu‖2H1 .

We also use repeatedly the fact that ‖Aλu‖ ≤ C‖Gu‖H1 together with
Cauchy–Schwarz to estimate

|〈RAλu,Aλu〉| ≤ ε′‖Aλu‖2H1 + C‖Gu‖2H1 .

(The constant on the right side depends on both Z and ε′.)

Adding ‖DtAλu‖2 + ‖(Dt + V )Aλu‖2 to equation (26) now yields

‖DtAλu‖2 + ‖∇Aλu‖2 ≤ (Cδ2ε−2 + 2ε′)‖Aλu‖2 + (4 + ε′)Z2‖∇Aλu‖2
(28)

+ C0

(
‖u‖2H1 + ‖Gu‖2H1 + (ε′)−1‖Pu‖2H−1 + (ε′)−1

∥∥∥G̃Pu∥∥∥2
H−1

)
.

Assuming now that |Z| < 1/2, taking ε′ and δ sufficiently small (and drop-

ping ε′-dependence of the constants on the right side), we absorb the ‖∇Aλu‖2

and ‖Aλu‖2H1 terms on the right into the left side. (For the latter term, we

recall that up to ‖Aλu‖2L2 , which is controlled by ‖Gu‖2H1 , ‖∇Aλu‖2 is com-
parable to the squared H1 norm of Aλu.)

We thus obtain

(29) ‖Aλu‖2H1 ≤ C
(
‖u‖2H1 + ‖Gu‖2H1 + ‖Pu‖2H−1 +

∥∥∥G̃Pu∥∥∥2
H−1

)
.

The right side is uniformly bounded as λ ↓ 0 by our inductive assumption.
Now taking λ → 0 and employing a standard weak-convergence argument
(see, e.g., [43, Lemma 3.7]) shows that Au ∈ H1. This concludes the proof
of Lemma 29. �

We now record two corollaries of the previous lemma; the first is elliptic
regularity for ð:

Corollary 32. If |Z| < 1/2, then for all u ∈ H1, WF1,m
b u ⊂WFmb (ðu)∪ Σ̇.

More precisely, if A ∈ Ψm
b is properly supported and microsupported near

ρ0 /∈ Σ̇, then there are G ∈ Ψm−1
b and G̃ ∈ Ψm

b also microsupported in Σ̇c

so that
‖Au‖H1 ≤ C

(
‖u‖H1 + ‖Gu‖H1 +

∥∥∥G̃ðu∥∥∥
L2

)
.

Proof. The final estimate (29) in the proof of Lemma 29 shows that we may
bound

‖Au‖H1 ≤ C
(
‖u‖H1 + ‖G1u‖H1 + ‖Pu‖H−1 +

∥∥∥G̃Pu∥∥∥
H−1

)
,

for G1 ∈ Ψ
m−1/2
b . We first estimate ‖Pu‖H−1 and

∥∥∥G̃Pu∥∥∥
H−1

in terms of

‖ðu‖L2 .

We recall that we may write P = L̃ð, where

L̃ = (i/∂A +m)γ0,
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which maps L2 → H−1 continuously. We may therefore bound

‖Pu‖H−1 ≤ C‖ðu‖L2 .

Turning to
∥∥∥G̃Pu∥∥∥

H−1
, we write

G̃Pu = G̃L̃ðu = L̃G̃ðu+ [G̃, L̃]ðu.

As
∥∥∥L̃G̃ðu∥∥∥

H−1
≤ C

∥∥∥G̃ðu∥∥∥
L2

, we turn our attention to [G̃, L̃]. As L̃ ∈

r−1Ψ1
b, Lemma 8 and basic properties of the b-calculus show that [G̃, L̃] ∈

r−1Ψm
b . Elliptic regularity of (a slightly enlarged) G̃′ then shows that∥∥∥[G̃, L̃]ðu

∥∥∥
H−1
≤ C

(
‖ðu‖L2 +

∥∥∥G̃′ðu∥∥∥
L2

)
.

We now repeat the whole argument up to this point with G1 replacing A;
this allows us to replace (at the cost of slightly enlarging the microsupports)

the operator G1 ∈ Ψ
m−1/2
b with G ∈ Ψm−1

b . �

Remark 33. By iteration, we may replace G ∈ Ψm−1
b in the statement of

the above corollary by an operator of any order, though we do not need this
stronger statement below.

The second corollary has the same proof as Lemma 29 without an estimate
on ‖DtAλu‖:

Corollary 34. If |Z| < 1/2 and A ∈ Ψm
b is invariant and properly supported,

then for G ∈ Ψm−1
b and G̃ ∈ Ψm

b with WF′b(A) ⊂ ellG ∩ ell G̃, we have

‖Au‖H1 ≤ C
(
‖DtAu‖+ ‖Gu‖H1 +

∥∥∥G̃ðu∥∥∥
H1

+ ‖u‖H1

)
.

5.2.3. Proof of Theorems 23 and 24. We now turn our attention to the proof
of the b-propagation theorems. We first record a consequence of the elliptic
estimates of the previous section:

Lemma 35. Suppose u ∈ H1, ðu = 0. Then(
WF1,m

b u
)c

=
{
ρ ∈ bT ∗M : there exists A ∈ Ψm+1

b , elliptic at ρ,Au ∈ L2
}
.

(Cf. Lemma 6.1 of [43].)
More precisely, if u ∈ H1 and ρ0 /∈WFm+1

b (ðu), then

ρ0 ∈WF1,m
b u if and only if ρ0 ∈WFm+1

b u.

Proof. Suppose ρ0 /∈ WF1,m
b u. We may use a microlocal partition of unity

in the b-calculus to break u into pieces on each of which one of the the
operators rDr Dt, or Dθj is b-elliptic. If A ∈ Ψm+1

b and G ∈ Ψm
b is elliptic

on WF′b u, we thus obtain by microlocal ellipticity

‖Au‖2 . ‖rDrGu‖2 + ‖DtGu‖2 + ‖∇θGu‖2 + ‖u‖2H1 . ‖Gu‖2H1 + ‖u‖2H1 .

and we obtain one direction of the lemma.
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The other direction of the lemma follows immediately from Corollary 34.
�

We now turn to the proof of Theorem 23. Let us first consider the case
when M = 0 and let U denote a neighborhood of ρ0 in Σ̇ with

U ∩ {σ > 0} ∩WF
s+1/2
b u = U ∩WF

s+1/2
b (ðu) = ∅.

For our inductive hypothesis we assume that ρ0 /∈ WFsb u; we aim to show

ρ0 /∈WF
s+1/2
b u.

Let ω = r2 + (t− t0)2, and let

φ = −σ̂ +
1

β2δ
ω.

Fix a small neighborhood U of (t = t0, r = 0) in bS∗M and choose cutoff
functions χ0, χ1, and χ2 with the following properties:

• χ0 is supported in [0,∞), with χ0(s) = exp(−1/s) for s > 0,
• χ1 is supported in [0,∞), with χ1(s) = 1 for s ≥ 1 and χ′ ≥ 0, and
• χ2 is supported in [−2c1, 2c1], and is equal to 1 on [−c1, c1].

Here c1 is chosen so that σ̂2 + η̂2 < c1 < 2 in Σ̇ ∩ U .
Now set

(30) a = |τ |s+1/2χ0(2− φ/δ)χ1(2− σ̂/δ)χ2(σ̂
2 + |η̂|2)1sgn τ=sgn τ0

and let A be its quantization to an invariant element of Ψ
s+1/2
b . Note that

(31) supp a ⊂ {|σ̂| < 2δ, ω < 4δ2β2},
hence the support of a in bT ∗M can be taken to be inside any desired
neighborhood of ρ0.

In the following symbol construction and subsequent argument, we will
omit a standard regularization argument, described in detail in [43, (6.19)
et seq.].

Lemma 36. For A defined as above,
(32)

i−1[ð, A∗A] = R̃ð−sgn(τ0)Q
∗Q+R1

1

r
+R2Dr+R3

1

r
βK+R+B0+αrB1+E

′+E′′,

where

• Q ∈ Ψ
s+1/2
b is invariant and self-adjoint with

σb(Q) =
√

2|τ |s+1/2δ−1/2(χ′0χ0)
1/2χ1χ21sgn τ=sgn τ0 ,

• R̃ ∈ Ψ2s
b ,

• Rj ∈ Ψ2s−1
b ,

• R ∈ Ψ2s
b ,

• B0, B1 ∈ Ψ2s+1
b with |σb(B•)| equal to an order zero symbol times

Cβ−1σb(Q)2,
• E′ ∈ Ψ2s+1

b with WF′bE
′ ⊂ {δ ≤ σ̂ ≤ 2δ, ω ≤ 4β2δ}, and
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• E′′ ∈ 1
rΨ2s+1

b + Diff1Ψ2s
b + Ψ2s+1

b , with WF′bE
′′ ∩ Σ̇ = ∅.

All terms above have microsupport within supp a.

Proof. We apply Lemma 27 and employ the notation therein. The term A0

arising there has principal symbol −∂σ(a2) and arises from ð being nearly
homogeneous in r of degree −1. We may rewrite the A0 term in (25) as
A0(ð + Dt), modulo A0 times smooth lower-order terms (which are then
absorbed into R). We now split the symbol of A0 into three terms: those

terms where the derivative falls on χ0 can be written in the form Q̃2Dt,
which we write as the product of sgn(τ0) times squares Q2 modulo a lower
order error we that we absorb into R. Meanwhile, those terms where the σ
derivative falls on χ1 we absorb into E′ and those on which it falls on χ2 we
absorb into E′′. Thus, modulo further commutators (again absorbed into
the error terms R,Rj) we have written the first term on the RHS of (25)

as R̃ð− sgn(τ0)Q
∗Q.

The B1 term arising in Lemma 27 enjoys the asserted symbol bounds
because r derivatives on a2 may only fall on the χ0 term, giving

2|τ |2s+1(χ′0χ0)χ
2
1χ

2
2(−2r)(β−2δ−2);

since 0 ≤ r ≤ 2βδ on the support of a, this term is estimated by a multiple
of β−1δ−1|τ |2s+1χ′0χ0χ

2
1χ

2
2, which in turn is a multiple of β−1σb(Q)2. Like-

wise, the B0 term in Lemma 27 becomes the B0 term here and is estimated
similarly, as the t derivative may also only hit the χ0 term.

Finally, the B2 and B3 terms from Lemma 27 have symbols proportional
to ∂η(a

2), so the derivative must fall on χ2 and these terms are absorbed
into E′′. The B5 term is also absorbed into R. �

We now return to the main argument. We pair i−1[ð, A∗A]u with u and
employ a regularization argument as in the elliptic setting. On the one hand,
we may bound

|〈[ð, A∗A]u, u〉| = |〈Au,Aðu〉 − 〈Aðu,Au〉| ≤ 2‖Au‖‖Aðu‖ ≤ ε‖Au‖2+ε−1‖Aðu‖2.

On the other hand, we apply Lemma 36.
The main term is − sgn(τ0)〈Q∗Qu, u〉 = − sgn(τ0)‖Qu‖2, which has a

definite sign. We may then bound

‖Qu‖2 ≤ ε‖Au‖2 + ε−1‖Aðu‖2 +
∣∣∣〈R̃ðu, u〉∣∣∣+

∣∣∣∣〈R1
1

r
u, u

〉∣∣∣∣+ |〈R2Dru, u〉|

+

∣∣∣∣〈R3
1

r
βKu, u

〉∣∣∣∣+ |〈Ru, u〉|+ |〈B0u, u〉|+ |〈αrB1u, u〉|

+
∣∣〈E′u, u〉∣∣+

∣∣〈E′′u, u〉∣∣.
As R̃ ∈ Ψ2s

b , the
∣∣∣〈R̃ðu, u〉∣∣∣ term is bounded by ‖Gsðu‖‖Gsu‖ for some

Gs ∈ Ψs
b. Similarly, the terms involving Rj can be estimated by ‖Gs−1u‖H1‖Gsu‖

for some Gs−1 ∈ Ψs−1
b and Gs ∈ Ψs

b. As R ∈ Ψ2s
b , the term 〈Ru, u〉 is
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bounded by ‖Gsu‖2. This leaves the terms involving B0 and B1 as well as
the E′ and E′′ terms.

The following lemma allows us to bound the terms involving B0 and B1:

Lemma 37. There exists G ∈ Ψs
b with WF′bG ∩WFsb u = ∅ so that for

j = 0, 1,
|〈Bju, u〉| ≤ Cβ−1‖Qu‖2 + C‖Gu‖2L2 + C‖u‖2H1 .

Proof of Lemma 37. By the pseudodifferential calculus, we may write Bj =

QC1C2Q+R, where Ci ∈ Ψ0
b satisfies |σb(Ci)| ≤ Cβ−1/2 and R ∈ Ψ2s

b , and(
WF′bR ∪WF′bCi

)
∩WFsb u = ∅.

For any w ∈ L2 with WF0
bw ∩WF′bCi = ∅, our symbol estimate gives

(33) ‖Ciw‖L2 ≤ Cβ−1/2‖G0w‖L2 + C‖G0w‖H−1
b,g

+ C‖w‖H−N
b,g

for some microlocalizer G0 ∈ Ψ0
b with WF′b(1 − G0) ∩ WF′bCi = ∅. In

particular, then, setting w = Qu yields

‖CiQu‖ ≤ Cβ−1/2‖Qu‖H1 + C‖Gu‖L2 + C‖u‖H1 ,

for G = G0Q as in the statement of the lemma.
An application of Cauchy–Schwarz to 〈Bju, u〉 then yields the stated es-

timate and concludes the proof of Lemma 37. �

The term involving E′ is bounded by
∥∥Gs+1/2u

∥∥2, where Gs+1/2 ∈ Ψ
s+1/2
b

has WF′bGs+1/2 ⊂ {δ ≤ σ̂ ≤ 2δ, ω ≤ 4β2δ2}. The hypothesis that U ∩ {σ >
0} ∩WF

′1,s−1/2
b u = ∅ implies that this term is finite.

Finally, we estimate the term involving E′′. As the microsupport of E′′

is contained in the elliptic set of ð, we may use Corollary 32 to bound this
term by

C

(
‖u‖2H1 + ‖Gs−1u‖2H1 +

∥∥∥G̃sðu∥∥∥2
L2

)
,

where Gs−1 ∈ Ψs−1
b and G̃s ∈ Ψs

b are microsupported in the elliptic region
within U .

Thus,

(34) ‖Qu‖2 ≤ ε‖Au‖2 + ε−1‖Aðu‖2 +
∥∥∥G̃sðu∥∥∥2

L2
+ finite,

where the terms labeled finite have been estimated by our inductive assump-
tions on u. Since σb(A)/σb(Q) ≤ C, we may absorb the first term on the
right into the left side modulo finite terms, provided ε is sufficiently small;

‖Qu‖ is thus bounded. As Q is elliptic at ρ0, ρ0 /∈WF
s+1/2
b u (and hence, by

Lemma 35, not in WF
1,s−1/2
b u). This completes the proof of Theorem 23.

We now turn to the proof of Theorem 24. The arguments of Section 4.4
imply the propagation result away from the r = 0, so we need only prove
the result through the singularity. We first describe the commutators of ð
with R and K:
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Lemma 38. The commutators of ð with R` K` are as follows:

(1) [ð, R`] can be written as a linear combination of ðRj (or, indeed,
Rjð) and RjFj (or FjR

j), where j = 0, 1, . . . , ` − 1 and Fj ∈ C∞
(but not necessarily scalar).

(2) [ð,K`] is a linear combination of terms of the form KjBK`−1−j,
where j = 0, 1, . . . , ` − 1 and B ∈ Diff1

b only differentiates in the
angular variables.

Proof. To prove the first statement, we write ð = iγ0/∂Z/r+R, where /∂Z/r is

the Dirac operator with potential A = (Z/r, 0, 0, 0) and R = −
∑3

µ=0 αµAµ.

Because /∂Z/r is homogeneous of degree −1 in (t, r), we see that

[ð, R] =
1

i
(ð−R) + [R, R] =

1

i
ð + F0.

We then observe that

[ð, Rk] = [ð, R]Rk−1 +R[ð, Rk−1].

The first term on the right is then of the correct form by our calculation of
[ð, R], while the second term is a linear combination of terms of the form
RðRj and RFRj , where j = 0, 1, . . . , k − 2 by the inductive hypothesis. As
we can commute R with ð and Fj at the cost of lower order terms of the
same form, this proves the first statement.

We prove the second statement similarly. Because K commutes with /∂Z/r
and γ0, we can see that

[ð,K`] = [R,K`] =
`−1∑
j=0

Kj [R,K]K`−1−j .

As R is non-scalar, [R,K] ∈ Diff1
b is only a first order differential operator,

but differentiates only in the angular variables. Taking B = [R,K] finishes
the proof. �

We now proceed inductively to prove Theorem 24; the case ` = 0 is
handled above in the proof of Theorem 23. Setting S = K or S = R as
appropriate, we proceed using the commutants

W` = S`A∗AS`,

where A is the commutant employed above. Commuting ð with W` yields

(35) [ð,W`] = S`[ð, A∗A]S` + [ð, S`]A∗AS` + S`A∗A[ð, S`].

After applying the operator and pairing with u, the first term yields the
same terms in the argument above with ` = 0 (sandwiched between factors
of S). Our aim is therefore to absorb or otherwise bound the terms arising
from commuting ð with S` and pairing with u.
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In the case of S = R, Lemma 38 allows us to bound the remaining two
terms by

ε
∥∥∥AR`u∥∥∥2 + Cε−1

`−1∑
j=0

(∥∥ARjðu∥∥2 +
∥∥ARjFju∥∥2) ,

Fj ∈ C∞. The first term in this bound can be absorbed into the main term
arising from the commutator [ð, A∗A] in equation (35), while the second
term is finite by the hypothesis on ðu. The third term is finite by the
inductive hypothesis.

We now consider the case of S = K. By Lemma 38, the remaining two
terms are bounded by

ε
∥∥∥AK`u

∥∥∥2 + Cε−1
`−1∑
j=0

∥∥∥AKjBK`−1−ju
∥∥∥2.

Each of these terms will ultimately be absorbed into the main term by
choosing δ sufficiently small using the following lemma:

Lemma 39. Suppose A is defined as above and Q ∈ Ψ
s+1/2
b is invariant

with symbol

σb(Q) =
√

2|τ |s+1/2δ−1/2(χ′0χ0)
1/2χ1χ21sgn τ=sgn τ0 .

There exists some C (independent of δ) and some G ∈ Ψ
s−1/2
b so that

‖Au‖ ≤ C
(√

δ‖Qu‖+ ‖Gu‖+ ‖u‖
)
.

Proof. The proof is nearly identical to the one in Lemma 37; because σb(A)
is a multiple of σb(Q), we may write A = CQ + R, where C ∈ Ψ0

b has
principal symbol

σb(C) = (2− φ/δ)
√
δ/
√

2.

Introducing the microlocalizer G as in Lemma 37 finishes the proof. �

We now claim that we can bound
∥∥AKjBK`−1−ju

∥∥ by
∥∥AK`u

∥∥ and
terms that are finite by the inductive hypothesis. Given this claim, Lemma 39
then allows us to absorb these terms into the main one by choosing δ suffi-
ciently small, finishing the proof.

The rest of the section is devoted to the proof of the claim. First observe
that because B and K are differential operators acting only in the angular
variables, we may replace them by scalar operators in these variables, i.e.,
we may first bound∥∥∥AKjBK`−1−ju

∥∥∥ ≤ C ∑
|α|≤`

‖A∂αθ u‖,

where C is independent of u. All but the terms with |α| = ` are finite by
the inductive hypothesis. Because A and ∂αθ are scalar operators, we again
appeal to the inductive hypothesis so that it suffices to bound ‖∂αθ Au‖ for
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|α| = `. For ` = 2m even, it suffices to control ‖∆m
θ Au‖ + ‖Au‖, while

for ` = 2m + 1, the following lemma shows that it is enough to control
‖K∆m

θ Au‖+ ‖Au‖.

Lemma 40. There is a constant C so that for any u ∈ H1
b,g,

‖∇θu‖ ≤ C (‖Ku‖+ ‖u‖) ,

where the norms are taken with respect to L2.

Proof. Note that because K contains only angular derivatives, ‖Ku‖ ≤
C‖∇θu‖. We then use that ∆θ = K2 − βK to see that

‖∇θu‖2 = 〈∆θu, u〉 =
〈
(K2 − βK)u, u

〉
≤
∥∥K2u

∥∥+ ‖Ku‖‖u‖ ≤ C
(
‖Ku‖2 + ‖u‖2

)
.

�

We now rely on Lemma 4 and the following observation: Because K2 =
∆θ + βK,

(36) K2m = ∆m
θ + L2m, K2m+1 = ∆m

θ K + L2m+1,

where L2m is a constant linear combination of ∆θ, . . . ,∆
m−1
θ and βK,∆θβK, . . . ,∆

m−1
θ βK,

while L2m+1 is a linear combination of β∆θ, . . . , β∆m
θ andK,∆θK, . . . ,∆

m−1
θ K.

For ` = 2m, we obtain (using Lemma 4)

‖∆m
θ Au‖ = ‖A∆m

θ u‖ ≤
∥∥AK2mu

∥∥+ ‖AL2mu‖,

where the second term is finite by the inductive hypothesis. Likewise for
odd ` = 2m+ 1,

(37) ‖∆m
θ KAu‖ = ‖AK∆m

θ u‖ ≤
∥∥AK2m+1u

∥∥+ ‖AL2m+1u‖,

where again by the inductive hypothesis the last term is finite. This finishes
the proof of the claim and thus the proof of Theorem 24.

6. Geometric improvement

In this section we prove the second part of Theorem 1, i.e., we show that
the part of the singularity of the fundamental solution lying on the diffracted
wave front D and away from the geometrically propagated light cone G is
1− 0 derivatives smoother than the singularity along G.

There are two main steps to this argument. In the first (Section 6.1), we
describe the propagation of edge regularity, which allows us to propagate
coisotropic regularity along the geometric geodesics under a “non-focusing”
condition. In the second part (Section 6.2), we show that we can apply the
arguments of the first to a propagator.
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6.1. Propagation of edge regularity. In this section we establish the
propagation of edge regularity. The propagation argument in this setting
is somewhat less sensitive to lower-order terms and so we are able to work
with the second order operator in this section.

Let P be an operator satisfying the Klein-Gordon Hypotheses in Sec-
tion 4.3; recall that this means

(38) P = −(∂0 + i
Z

r
)2 +

∑
∂2j −m2 − i Z

r2

(
0 σr
σr 0

)
+ R

with

(39) R = Z
W0

r
+ Wα

1 ∂α + W2,

where the W•
• coefficients are smooth but non-scalar.

As before, let X = [R3; 0] and M = [R1+3;Rt × {0}]. We now view P as
an operator in the edge calculus on M :

P ∈ r−2 Diff2
e(R×X)

with

σe(P ) =
λ2 − ξ2 − |ζ|2S2

r2
.

The associated Hamilton vector field is then

H =
2

r2

((
ξ2 + |ζ|2S2

)
∂ξ + ξλ∂λ + ξr∂r − λr∂t

)
− 1

r2
HS2 ,

where HS2 denotes the geodesic flow in (θ, ζ) ∈ T ∗S2. Let Σ ⊂ eS∗(R×X)
denote the characteristic set of P .

Recall that we have defined the edge Sobolev spaces be defined with
respect to the b-weight as in [33], [31]. Thus

L2
g = r−3/2H0

e .

Likewise this is the scale on which we measure Sobolev-based edge wavefront
set WF∗e .

We let M denote the graded module generated by angular derivatives
∇S2 . Let A∗ denote the filtered algebra over Ψ0

e(M) generated byM. Hence
A is locally generated by the operators Dθj .

We will additionally be interested in testing for conormal regularity along
N∗({t = r + r′}). In addition to iterated regularity under vector fields
Dθ ∈M, this involves regularity under the operator

(40) R = (t− r′)Dt + rDr;

cf. (23) where this operator appears with r′ = 0.We will often take advantage
of time-translation invariance and tacitly set r′ = 0 in computing with this
vector field.

The fact that, unlike the Dθj ’s, R is not an edge vector field entails some
minor technical complication in what follows.

The commutator properties of P with R and with the generators of A play
an important role in what follows. As we are working in a simpler geometric
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setting than that of [31], we revert to the simple expedient of using ∆θ, the
angular Laplacian, as a test operator for regularity in A.

Lemma 41. [P,∆θ] = Q0Dr + Q1Dt + r−2Q2 and [P,R] = −2iP +
1

r
Q3

where
Qj ∈ Diff1(S2), j = 0, 1, 2, and Q3 ∈ Diff1

e(M).

Proof. All terms in the model operator P −R with exact Coulomb potential
(see (21)) commute with ∆θ, except for the matrix valued term

−i Z
r2

(
0 σr
σr 0

)
;

commuting this with ∆θ gives the r−2Q2 term above, while the terms in R
contribute to the remaining error terms in [P,∆θ].

Additionally, by exact scaling symmetry in t, r

[P +m2 −R, R] = (−2i)(P +m2 −R),

hence lumping the remaining terms in the r−1Q3 term gives the desired
expression for [P,R]. �

As above, let the canonical one form on eT ∗M be

λ
dt

r
+ ξ

dr

r
+ ζ · dθ.

Let

IC±(t0, θ0) ≡
{
t = t0, r = 0, θ = θ0, λ = ±1, ξ = ±1, ζ = 0

}
⊂ eS∗R×∂X(M),

OG±(t0, θ0) ≡
{
t = t0, r = 0, θ = θ0, λ = ±1, ξ = ∓1, ζ = 0

}
⊂ eS∗R×∂X(M).

These are the endpoint of the closures of bicharacteristic reaching the front
face of the blowup (i.e., the origin in the blown-down space) from the interior
as time increases (“incoming”) resp. as times decreases (“outgoing”). Note
indeed that IC∪OG accounts for all the radial points of the edge Hamilton
vector field H.

We now let F denote the backward resp. forward flowouts of boundary
points: if p = IC±(t0, θ0), let

FI(p) ≡
{
t = t0− r, r ∈ (0, ε), θ = θ0, λ = ±1, ξ = ±1, ζ = 0

}
⊂ eS∗(M),

and if p = OG±(t0, θ0), let

FO(p) ≡
{
t = t0 +r, r ∈ (0, ε), θ = θ0, λ = ±1, ξ = ∓1, ζ = 0

}
⊂ eS∗(M).

These are the unique interior bicharacteristics containing the corresponding
radial points in their closures.

We now state a theorem about propagation of edge wavefront set, together
with module regularity.

Theorem 42. Suppose u ∈ H−∞,le (M) solves

Pu = 0

with P satisfying the Klein-Gordon Hypotheses from §4.3.
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(1) Let m > l+ 1. Set p = IC±(t0, θ0). If FI(p)∩WFme (∆j
θu) = ∅ for all

j = 0, . . . , k then

p /∈WFm,l
′

e (∆j
θu)

for all j = 0, . . . , k and all l′ < l.
(2) Let m < l+ 1. Set p = OG±(t0, θ0). Let U denote a punctured neigh-

borhood of p in eS∗R×∂X(R × X). If U ∩ WFm,le ∆j
θu = ∅ for all

j = 0, . . . , k then

p /∈WFm,le (∆j
θu)

for all j = 0, . . . , k.
(3) For all m, and l′ ≤ l,

WFm,l
′

e u ∩ eS∗R×∂X(M)

is a union of maximally extended null bicharacteristics.

(4) Suppose additionally that Rju ∈ H−∞,le and that p ∈ OG±(t0, θ0) has
a neighborhood U ⊂ eS∗R×∂X(R ×X) such that U ∩WFm,le u ⊂ OG .

Then for 0 ≤ j′ ≤ j, p /∈WFM,l
e (Rju) for j ∈ N, provided M ≤ m−j

and M ≤ l + 1.

As shown [33, Section 6], the propagation along null bicharacteristics
within ∂M (part (3) above) connects points in IC and points in OG lying
over points θ0, θ1 that are separated by geodesics of length π with respect to
the metric on ∂X. Here ∂X is simply S2, so this means that the propagation
is from a point θ0 to its antipodal point θ1 = −θ0.

The theorem thus says that regularity propagates

(1) From the interior of M into incoming radial points in ∂M (a.k.a.
the lift of r = 0 under blowup) along bicharacteristics, above some
threshold regularity dictated by the weight in r

(2) Across ∂M along bicharacteristics, from incoming radial points to
antipodal outgoing radial points (instantaneously)

(3) From outgoing radial points back into the interior of M , up to some
threshold regularity dictated by the weight in r.

Owing to the limits in regularity in the outgoing part of the theorem (which
is typical in radial point problems—cf. [35]), this result does not in fact say
that regularity arrives at the boundary, propagates across it, and leaves, at
any given Sobolev order. Obtaining regularity (and, ultimately, conormal-
ity) at the outgoing wavefront will require subtler arguments involving Dθ

and R regularity, hence the need for these factors to propagate through our
estimates as well.

Proof. The proof is the same as that of Theorem 8.1 of [33]. We sketch
the first part here in order to verify that the passage to a slightly different
class of operators under consideration here (with cross term involving r−1∂t,
inverse square potential terms, a principally scalar system with a large anti-
self-adjoint 0’th order term) do not vitiate the arguments used there.
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Let p = IC±(t0, θ0). We will begin by sketching the proof of the following
propagation result, which gives the first part of the theorem up to the factors
in of ∆k

θ

Propagation Estimate 1. If m′ > l′ + 1/2, u ∈ H−∞,l
′

e (M), p /∈ WFm
′,l′

e (u),

and FI(p) ∩WFm
′+1/2 u = ∅, then p /∈WF

m′+1/2,l′
e u.

To establish Propagation Estimate 1 we choose A ∈ Ψ
m′,l′+1/2
e such that

(41) P ∗A∗A−A∗AP = ±(A′)∗(A′)±
∑

B∗jBj + E +K + F,

where

(1) A, A′ are microsupported near p.

(2) A′ ∈ Ψ
m′+1/2,l′+3/2
e with σe(A

′) = σe(A) · (±(m′ + l′ + 1/2)ξ)1/2

(3) E ∈ Ψ2m′+1,2l′+3
e and WF′E is in an arbitrarily small neighborhood

of a single point in FI(p).
(4) K ∈ Ψ2m′+1,2l′+3

e and WF′K ∩ Σ = ∅
(5) F is of lower order, lying in Ψ2m′,2l′+3

e . (Note that it is only the
pseudodifferential order that is lower, not the weight.)

Notwithstanding that our convention for b-Sobolev spaces is to base them
on L2

b , the adjoints above are all taken with respect to the inner product
on L2

g, as we will use this inner product (with respect to which P is mostly
self-adjoint) in making a pairing argument below.

The operator A is constructed roughly as follows: if m + l > 0, then
H(λmrl) = (m + l)ξλmrl, so that if χ(s) ≡ 0 for s < 0 and χ(s) ≡ 1
for s ≥ 1, H

(
χ(±λ)χ(±ξ)(±λ)mrl

)
has the same sign as ξ (the ± used

here). We can localize in the θ variable as in the more general treatment
in [33, Section 6] by using a function given, in our blown-down Euclidean

coordinates (x, ξ) ∈ T ∗R3 by cutting off −ξ̂ to lie in a small neighborhood of
any desired θ0; such a cutoff manifestly commutes with the Hamilton flow,
and is shown in [33] to lift to be a smooth symbol on bT ∗M. If a geodesic
arrives at the origin, then since it is oriented radially, its angle of arrival
θ ∈ S2 is manifestly −ξ̂, hence we have achieved an angular localization.
Finally, a cutoff in |ζ|/|λ| has the same sign as the signed terms listed above.
Thus, the product of these cutoffs localizing in θ, ζ with χ(±λ)χ(±ξ)(±λ)mrl

may be quantized to give an A with the desired properties – see Lemma 7.1
of [33] for details.

We remark that the system under consideration here may be treated
as a scalar equation from the point of view of the positive commutator
argument because the principal symbol of P in the edge calculus is scalar.
In particular, the anti-self-adjoint term in P ,

−i Z
r2

(
0 σr
σr 0

)
,
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which is large enough to disrupt commutator arguments in the b-calculus,
lies in Ψ0,2

e , hence in the twisted commutator P ∗A∗A− A∗AP gives rise to
a term in Ψ2m′,2l′+3 which may be included in the lower-order error term F
above.

Now the propagation argument follows by pairing the equation (41) with
u, using the metric inner product r2 dr dθ. The left-hand-side is zero, by
integration by parts. Technically, in fact, we require an approximation of

A by operators in Ψ
−∞,l′+1/2
e in order to justify this integration by parts—

see [33] for details of this approximation process, which involve a family of
smoothing operators Aδ with a further parameter approximating A as δ ↓ 0.

The terms of the right hand side of the pairing are then as follows. The
term ‖A′u‖2L2

g
is precisely what we need to control: note that in terms of the

b/edge-volume form dr/r dt dθ = r−3dVg, this term is of the form∥∥∥r3/2A′∥∥∥2
L2
e

,

hence controls WF
m′+1/2,l′
e u. The terms ‖Bu‖2 have the same sign, and

hence may be dropped. The term with E is controlled by our incoming
wavefront set hypothesis. The term with K is controlled by microlocal
elliptic regularity. And the term with F is controlled by our assumption
p /∈WFm

′,l′
e u. This concludes our proof of Propagation Estimate 1.

Now we can employ Propagation Estimate 1 iteratively to obtain the first

part of the theorem, in the case k = 0. We know a priori that u ∈ Hq,l
e for

some q; if q > l+ 1/2 we may immediately iterate the propagation estimate
to obtain the result of the theorem. If not, we must artificially lower our l
to some l′ < q−1/2 in order to start the iteration. In this case, however, an
interpolation argument still recovers the result but ends up with l′ = l − ε
for any desired ε > 0—see Figure 1 of [33] and related discussion.

To include the module regularity in the first part of the theorem, we pro-
ceed inductively, employing the same commutant as above and considering
the twisted product

(42)

P ∗∆k
θA
∗A∆k

θ −∆k
θA
∗A∆k

θP

= [P ∗,∆k
θ ]A
∗A∆k

θ −∆k
θA
∗A[∆k

θ , P ]

+ ∆k
θ (P ∗A∗A−A∗AP ) ∆k

θ .

The last term gives rise to similar terms as in the propagation estimate

(with u replaced by ∆k
θu) and so allow us to control WF

m′+1/2,l′
e ∆k

θu. In-
deed, together with terms that are finite by induction, this term controls∑
|α|≤2k ‖Dα

θA
′u‖2 with A′ as before. The first two terms on the RHS of

(42) can then be absorbed into this main term (modulo inductively finite
terms); here we use the fact that while having the same order, these error
terms have a smaller r weight.
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are controlled by the induction hypothesis (together with the description
of [P,∆θ] given by Lemma 41).

The remaining parts of the theorem follow in an essentially identical way
to those of Theorem 8.1 of [33], and similar to the arguments given above.

�

6.2. Global propagation of coisotropic regularity. Our aim in this
section is to apply Theorem 42 to the solution of (i/∂A − m)u = 0 with
initial condition ψ0δy and verify that the diffracted wavefront is 1−0 orders
smoother than the propagated one.

The sketch of the proof is as follows: For each time, the solution is a
distribution u of Sobolev order −3/2 − 0. An angularly smoothed version

of the solution, 〈∆θ〉−Mu (for M � 0) is, by contrast, a distribution of
order −1/2− 0. (In the language below, u has global nonfocusing regularity
of order −1/2 − 0). Additionally, at a point on the diffracted front away
from the propagated light cone, Theorem 42 shows that u has infinite order
coisotropic regularity with respect to a weaker Sobolev norm, i.e., Dα

θ u ∈ Hk

for all α, with k fixed. Interpolation of the coisotropic regularity with the an-
gular smoothing effect then shows that in fact u has infinite order coisotropic
regularity with respect to the better space (up to an ε loss) and therefore
is locally a distribution of Sobolev order −1/2− 0 enjoying coisotropic reg-
ularity. Additionally propagating powers of R = tDt + rDr through the
evolution then suffices to show that u enjoys Lagrangian regularity with
respect to H−1/2−0 along the diffracted wave, as desired.

Definition 43. Fix a Hilbert space H and a set K ⊂ bS∗(M).
A distribution on R×X enjoys coisotropic regularity (of order 2N) with

respect to H on K if there exists a properly supported operator A ∈ Ψ0
b(M),

elliptic on K, such that

(Id +∆θ)
NAu ∈ H.

A distribution on M is nonfocusing with respect to H on K if there exists
a properly supported operator A ∈ Ψ0

b(M), elliptic on K and there exists
N ∈ N such that

Au = (Id +∆θ)
Nu′, u′ ∈ H.

We also make analogous definitions at the level of Cauchy data, i.e., distri-
butions on X: if H′ is a Hilbert space of distributions on X, and K ⊂ bS∗X,
a distribution on X enjoys coisotropic regularity (of order 2N) with respect
to H on K if there exists a properly supported operator A ∈ Ψ0

b(X), elliptic
on K, such that

(Id +∆θ)
NAu ∈ H.

A distribution on X is nonfocusing with respect to H′ on K if there exists
a properly supported operator A ∈ Ψ0

b(M), elliptic on K and there exists
N ∈ N such that

Au = (Id +∆θ)
Nu′, u′ ∈ H′.
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One could of course refine the nonfocusing definition by specifying in the
terminology the power N for which it holds, but in practice we will be
concerned with the union of this nonfocusing condition over all possible N.
In this paper, moreover, we will mainly be concerned with localizing over a
particular set in the t variable, but will neither localize in other variables
nor microlocalize, hence the subtleties of microlocalizing in the b-calculus
are moot.

In practice, it is convenient to take H to be L2
loc(R;Ds) (where we will

drop the “loc” from now on as global estimates in time play no role here).
This formulation is convenient for duality arguments owing to the sensible
behavior of these spaces near the origin, but away from the origin, we remark
that nonfocusing with respect to Ds is in fact equivalent to nonfocusing with
respect to Hs.

Note also that we may equivalently test for coisotropic regularity with
powers of Dirac’s angular operator K instead of powers of ∆θ : Since

K2 − βK = ∆θ,

regularity under powers of K up to 2N yields regularity under (Id +∆θ)
N ;

conversely, regularity under (Id +∆θ)
N yields K-regularity by ellipticity of

∆θ in the angular variables. Likewise the condition of nonfocusing can be
recast as lying in the range of sums of powers of K, and we will use this
alternative version below.

Lemma 44. Let

(i/∂A −m)u = 0.

If for some ε > 0, u enjoys coisotropic regularity of order N with respect to
L2
loc(R;Ds) on (−ε, ε)t ×X then u enjoys coisotropic regularity of order N

with respect to L2
loc(R;Ds) globally on M.

If for some ε > 0, u enjoys the nonfocusing condition with respect to
L2
loc(R;Ds) on (−ε, ε)t × X then u enjoys the nonfocusing condition with

respect to L2
loc(R;Ds) globally on M.

The conditions of coisotropic regularity resp. nonfocusing w.r.t. L2
loc(R;Ds)

are moreover equivalent to the conditions of coisotropic regularity resp. non-
focusing of the Cauchy data u(t0) (for any t0) w.r.t Ds.

Proof. We begin with coisotropic regularity. By Lemma 16,

(43)
d

dt

∥∥Kju
∥∥2
Ds .

∣∣〈[Kj ,B]u,Kju〉Ds

∣∣.
By Lemma 38 [B,Kj ] is a linear combination of terms of the formKj′BKj−1−j′ ,
where j′ = 0, 1, . . . , j − 1 and B ∈ Diff1

b only differentiates in the angular
variables. Thus by Lemma 40 and the following discussion, we may bound∣∣∣〈Kj′BKj−1−j′u,Kju

〉
Ds

∣∣∣ .∑
j′≤j

∥∥∥Kj′u
∥∥∥2
Ds
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Thus by Cauchy–Schwarz and Gronwall, (43) yields inductively for all T ,
j,

j∑
j′=0

∥∥∥Kj′u(t)
∥∥∥
Ds
≤ CT,j

j∑
j′=0

∥∥∥Kj′u(0)
∥∥∥
Ds
, |t| ≤ T.

This shows that coisotropic regularity of the Cauchy data propagates, and
moreover that coisotropic regularity of the Cauchy data implies L∞loc(R;Ds)
coisotropic regularity of the spacetime solution. Conversely, knowing merely
L2Ds coisotropic regularity of the spacetimes solution implies that for a.e.
t, the Cauchy data u(t) enjoys coisotropic regularity, which then in turn
propagates to yield L∞loc(R;Ds) spacetime regularity. This finishes the proof
of the lemma for coisotropic regularity.

We now turn to nonfocusing. We note that by the coisotropic results,
applied backwards in time, if we let H denote the Hilbert space with squared
norm

(44)

j∑
j′=0

∥∥∥Kj′u
∥∥∥2
Ds
,

then we have estimated

(45) U(t)H → L∞loc(R;H).

In particular, for fixed t, U(−t) is bounded H → H. Thus (by unitarity on
Ds,) U(−t) = U(t)∗ : H∗ → H∗, with dual spaces taken with respect to Ds
inner product. By the Riesz lemma,

(46) H∗ =

j∑
j′=0

Kj′Ds.

This is just the space of Cauchy data nonfocusing with respect to Ds, hence
the nonfocusing of Cauchy data is preserved under propagation. Moreover,
uniformity in t of the mapsH → H show the uniformity in t of the dual maps,
hence yield the equivalence with nonfocusing with respect to L2

loc(R;Ds) as
above in the coisotropic regularity case. �

In order to show conormal regularity of the diffracted wavefront, it is
useful to have a refinement of Lemma 44 that additionally allows powers of
the scaling operator R.

Lemma 45. Let

(i/∂A −m)u = 0.

Fix k ∈ N. If for some ε > 0, u, Ru, . . . , Rku enjoy coisotropic regularity
of order N with respect to L2

loc(R;Ds) on (−ε, ε)t ×X then u,Ru, . . . , Rku
enjoy coisotropic regularity of order N with respect to L2

loc(R;Ds) globally
on M.
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If for some ε > 0, u, . . . , Rku enjoy the nonfocusing condition with re-
spect to L2

loc(R;Ds) on (−ε, ε)t ×X then u, . . . , Rku enjoy the nonfocusing
condition with respect to L2

loc(R;Ds) globally on M.
The conditions of coisotropic regularity resp. nonfocusing w.r.t. L2

loc(R;Ds)
for Rju are moreover equivalent to the conditions of coisotropic regularity

resp. nonfocusing of the Cauchy data R̃ju(t0), where R̃ = −tB + rDr (for
any t ∈ R) w.r.t Ds.

Proof. To obtain the propagation of coisotropic regularity of order N , we
recall from Lemma 38 that

(47) ðRku =
k−1∑
k′=0

C∞Rk′u

(with the C∞ terms non-scalar). Thus, if H is defined as in (44), and if we
inductively assume that u, . . . , Rj−1u enjoy coisotropic regularity, i.e., lie in
L∞loc(R;H), then

ðRju =

j−1∑
j′=0

C∞Rj′u ∈ L∞(R;H).

Moreover if we assume that Rju has coisotropic regularity initially, then it
has initial data in H. Duhamel’s theorem (employed with values in H) and
(45) then imply that

Rju ∈ L∞(R;H)

as well; this inductively shows propagation of coisotropic regularity for Rju.
The equivalence with the Cauchy data statement simply follows from the

fact that
Ru = R̃u

for solutions of the Dirac equation.
To obtain the propagation of nonfocusing for Rju, where we have to du-

alize in powers of K but not in powers of R, we apply the same argument
as above but with solutions in L∞(R;H∗) rather than L∞(R;H) : we induc-
tively show that Rju ∈ L∞loc(R;H∗) for each j ∈ N.

�

Lemma 46. Fix a 4–spinor ψ0 and a point x0 ∈ R3. Then the solution u
to the Dirac equation with initial data

δ(x− x0)ψ0

is in C(R;D−3/2−0), and enjoys nonfocusing (on all of M◦) with respect to

D−1/2−0.

Proof. This is essentially a vector-valued version of [33, Lemma 16.1, Propo-
sition 16.2]. We first note that by energy conservation (see §4.2), u ∈
C(R;D−3/2−0) since δ ∈ H−3/2−0. On the other hand, given any k, for N
large,

(Id +∆θ)
−Nδ(r − r0)δ(θ − θ0) ∈ Ck(S2;H−1/2−0(R+)),
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hence taking k � 0 yields

(Id +∆θ)
−Nu(0) ∈ D−1/2−0.

This suffices to establish nonfocusing at t = 0 and hence globally in time,
by Lemma 44. �

Finally, we consider the regularity of the solution on the strictly diffracted
wavefront D\G. Let u denote the solution with initial data δ(x − x0)ψ0,
where x0 = (r0, θ0) in polar coordinates. For t0 > r0, consider any point
(r = t0 − r0, θ) with θ 6= −θ0 and let U be a neighborhood of this point
in X◦ disjoint from π(G) = {|x− x0| = t} for t ∈ I ≡ (t0 − ε, t0 + ε). By
Lemma 46, u is nonfocusing in T ∗(I × U) (or, indeed, globally) relative to

L2D−1/2−0. On the other hand, we now apply the edge propagation theorem
(Theorem 42) to the solution Θ−3/2+εu, which lies in C0(R;D0), hence in

particular, say, in L2
loc(M). Thus the edge regularity hypotheses of the edge

propagation theorem are satisfied (with l = 0), and we conclude, also using
Proposition 20 for propagation into r > 0, that for some fixed M, for all
k ∈ N, WFM (∆k

θΘ−3/2−εu)∩T ∗(M◦) is disjoint from the strictly diffractive
flowout from the origin

N∗{r = t− r0} ∩ {θ 6= −θ0}.

In particular, then, since no points in T ∗(I×U) are geometrically related to
the initial singularity, u (which differs from Θ3/2+ε(Θ−3/2−εu) by a smooth
error) enjoys coisotropic regularity of every order relative to some Sobolev

space HM ′ on I×U. By an interpolation argument [31, Section 13], a distri-
bution that is nonfocusing relative to Hs and enjoys infinite order coisotropic
regularity relative to some fixed Hk in fact lies in Hs−0, hence u enjoys this
regularity over I ×U (and it moreover also enjoys iterated regularity under
K relative to these spaces). This proves that the fundamental solution u lies

in H−1/2−0 near D\G and moreover that ∆k
θu enjoys the same regularity for

all k.
Finally, we show that the diffracted wave is a conormal singularity. To

begin, we further analyze the singularity of the fundamental solution for
short time: since Pu = 0 with P = � modulo lower order terms, we
have energy estimates for u for short time, and the parametrix construction
[22, Theorem 29.1.1] applies, and shows that u ∈ C(R;D−3/2−0) is conormal
to |x− x0| = |t| whenever |t| < |x0|. (Beyond this range of times, the sup-
port reaches the singularity of the potential, which cannot be treated as a
perturbation any longer). Consequently, as N →∞, the angular smoothing
of u,

(Id +∆θ)
−Nu,

approximates a sum of conormal distributions in H−1/2−0 at the hypersur-
faces r = r0 ± t. Since R ≡ (t − r0)Dt + rDr is tangent to {r = r0 − t},
for t ∈ (0, r0) the regularity of this latter piece of the solution is unaffected
by the iterated application of R. Thus for each j ∈ N, Rju satisfies the
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nonfocusing condition relative to D−1/2−0 for t ∈ (0, r0), microlocally away
from the outgoing spherical wave N∗{r = r0 + t}. (See [33, Lemma 16.1]
for details of this computation.) Note that we may microlocalize our solu-
tion away from the outgoing spherical wave without changing the diffracted
wave (by the b propagation theorem), hence we may ignore this part of the
solution.

By Lemma 45, the nonfocusing condition persists for all t ∈ R. On the
other hand, Theorem 42 implies that along the strictly diffracted wavefront
(and for r small), for every j ∈ N, Rju enjoys coisotropic regularity with

respect to some fixed (but j-dependent) Sobolev space H−M(j). Once again,

by interpolation, we then have Rju ∈ H−1/2−0 along the strictly diffracted
wavefront for every j, and this, along with the coisotropic regularity and
the equation Pu = 0, establishes conormal regularity along the Lagrangian
D = N∗{r = t− r0} at points θ 6= −θ0 (i.e., away from G).
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[8] Federico Cacciafesta and Éric Séré, Local smoothing estimates for the massless Dirac-
Coulomb equation in 2 and 3 dimensions, J. Funct. Anal. 271 (2016), no. 8, 2339–
2358. MR3539356

[9] Jeff Cheeger and Michael Taylor, On the diffraction of waves by conical singularities.
I, Comm. Pure Appl. Math. 35 (1982), no. 3, 275–331. MR84h:35091a

[10] , On the diffraction of waves by conical singularities. II, Comm. Pure Appl.
Math. 35 (1982), no. 4, 487–529. MR84h:35091b

[11] Piero D’Ancona and Luca Fanelli, Decay estimates for the wave and Dirac equa-
tions with a magnetic potential, Comm. Pure Appl. Math. 60 (2007), no. 3, 357–392.
MR2284214

[12] Charles Galton Darwin, The wave equations of the electron, Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical
Character 118 (1928), no. 780, 654–680.



52 DEAN BASKIN AND JARED WUNSCH
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Astérisque 351 (2013), vi+135. MR3100155

[33] Richard Melrose and Jared Wunsch, Propagation of singularities for the wave equa-
tion on conic manifolds, Invent. Math. 156 (2004), no. 2, 235–299. MR2052609
(2005e:58048)



DIFFRACTION FOR THE DIRAC-COULOMB PROPAGATOR 53

[34] Richard B Melrose, The Atiyah–Patodi–Singer index theorem, Vol. 4, AK Peters
Wellesley, 1993.

[35] Richard B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically
Euclidian spaces, Spectral and scattering theory (sanda, 1992), 1994, pp. 85–130.
MR95k:58168

[36] Randy Qian, Diffractive theorems for the wave equation with inverse square potential,
2009. Northwestern University Ph.D. thesis, 2009.

[37] Morris Edgar Rose, Relativistic electron theory, Wiley, 1961.
[38] A. Sommerfeld, Mathematische theorie der diffraktion, Math. Annalen 47 (1896),

317–374.
[39] Rados law Szmytkowski, Recurrence and differential relations for spherical spinors,

Journal of Mathematical Chemistry 42 (2007), no. 3, 397–413.
[40] Siu-Hung Tang and Maciej Zworski, Resonance expansions of scattered waves, Comm.

Pure Appl. Math. 53 (2000), no. 10, 1305–1334. MR1768812 (2001f:35306)
[41] M.E. Taylor, Grazing rays and reflection of singularities to wave equations, Comm.

Pure Appl. Math. 29 (1978), 1–38.
[42] B. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and

Breach, New York, 1988.
[43] András Vasy, Propagation of singularities for the wave equation on manifolds with

corners, Ann. of Math. (2) 168 (2008), no. 3, 749–812. MR2456883
[44] , Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces

(with an appendix by Semyon Dyatlov), Invent. Math. 194 (2013), no. 2, 381–513.
MR3117526

[45] Joachim Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgle-
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