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Wave equation

How does a wave move? Mathematical description of waves, at
least to first approximation, is the same in many different settings:
The (scalar) wave equation
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with
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j

.

for u a function on R1+n.
This (approximately) describes sound waves, light waves (omitting
polarization), water waves, etc.
A close relative is the Schrödinger wave equation
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∆ψ = 0,

especially in the “semiclassical” regime ~ ↓ 0.
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R1+1

Question: What do solutions look like?
In one dimension, we can write explicit solutions:

u(t, x) = f+(t − x) + f−(t + x)

gives a solution for any functions f± (differentiable or not!).
One piece moving to the left and another to the right.
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So waves in one dimensional space can propagate as localized
objects, at unit speed: they move just like particles! This is the
idea of “geometric optics:” we can understand a lot about wave
propagation via particle motion.

Question: What about in higher dimension?

Answer: Not as simple as in 1D. “Wave packets” may propagate,
but they spread as they do so.

To state a simple correspondence between particle motion and
wave motion, we might try refining our question a little.
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Wavefront set

Let f (x) be a function (or even a distribution, i.e., generalized
function) on Rk .

Definition
x0 ∈ Rk is in the singular support of f (sing-supp f ) if there is no
neighborhood of x0 on which f ∈ C∞.
The singular support is the set of points at which a function is not
smooth, i.e. is singular.



A refinement, due to Hörmander (cf. Sato in analytic case) is the
wavefront set, WFf . This measures where f is singular, and in
what direction:

WFf ⊂ T ∗Rk ,

with
π(WFf ) = sing-supp f .

Can be explicitly characterized in terms of Fourier transform: use
the fact that g(x) ∈ L2 is smooth iff ĝ(ξ) is rapidly decreasing,
then think about isolating rapid decrease in different directions.

Studying WF of solutions to wave equation is studying
high-frequency limit as need high-frequency Fourier modes to
synthesize singularities.
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A refinement, due to Hörmander (cf. Sato in analytic case) is the
wavefront set, WFf . This measures where f is singular, and in
what direction:

WFf ⊂ T ∗Rk ,

with
π(WFf ) = sing-supp f .

Can be explicitly characterized in terms of Fourier transform: use
the fact that g(x) ∈ L2 is smooth iff ĝ(ξ) is rapidly decreasing,
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Wavefront set example

Let f (x) = 1Ω, the indicator function of an open set Ω with
smooth boundary.

sing-supp f = ∂Ω,

WFf = N∗(∂Ω) = {(x , ξ) : x ∈ ∂Ω, ξ ⊥ T (∂Ω)}



Propagation of singularities

Theorem
For a solution u to the wave equation on R1+n,

I WFu ⊂ {τ2 = |ξ|2}
I (t0, x0, τ0, ξ0) ∈ WFu if and only if

(t0 − sτ0, x0 + sξ0, τ0, ξ0) ∈ WFu for all s ∈ R.

Thus,

I Spacetime singularities lie in the “light cone.”

I Wavefront set propagates as time evolves by moving in
straight lines at unit speed, in direction given by ξ0, the
“momentum” variable; hence moves as a particle would.

In this form, the theorem is due to Hörmander, but in closely
related forms, has a long history (cf. Lax, Ludwig).
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Variable coefficients

What happens on a manifold? Let (X , g) be a Riemannian
manifold. Replace ∆ in the wave equation by

∆g =
1
√

g

∑
i ,j

∂

∂xi
g ij√g

∂

∂xj

with g = det(gij) (“Laplace-Beltrami operator”) and consider the
wave equation on R× X .

Can also think of wave propagation in Rn in an inhomogeneous,
anisotropic medium (e.g. earth!).

Theorem
For a solution to the wave equation on R× X , WFu propagates
along geodesics, lifted to T ∗(R× X ), inside the light cone.



Variable coefficients

What happens on a manifold? Let (X , g) be a Riemannian
manifold. Replace ∆ in the wave equation by

∆g =
1
√

g

∑
i ,j

∂

∂xi
g ij√g

∂

∂xj

with g = det(gij) (“Laplace-Beltrami operator”) and consider the
wave equation on R× X .

Can also think of wave propagation in Rn in an inhomogeneous,
anisotropic medium (e.g. earth!).

Theorem
For a solution to the wave equation on R× X , WFu propagates
along geodesics, lifted to T ∗(R× X ), inside the light cone.



Spectral geometry

A short digression into spectral geometry

(X , g) compact Riemannian manifold, ∆g Laplacian. There is an
orthonormal basis of L2(X ) of eigenfunctions ϕj(x) of ∆

∆ϕj = −λ2
j ϕj .

where eigenvalues −λ2
j → −∞.

Can construct solutions to the wave equation by separation of
variables

u(t, x) = e±iλj tϕj(x)

so λj ’s are the characteristic frequencies of vibration, or the
overtone series.

Kac (1966): what can you determine about (X , g) from λj ’s?
(“Can one hear the shape of a drum?”)
(One can’t: Milnor,. . . , Gordon-Wolpert-Webb.)
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Wave trace

Consider the family of operators U(t) = cos t
√
−∆

i.e., the operator acting on ϕj by

U(t)ϕj = cos(λj t)ϕj .

u(t, x) = U(t)f solves the wave equation with initial data

u(0, x) = f (x), ut(0, x) = 0,

i.e. U(t) is the solution operator.

Consider
Tr U(t) =

∑
cos(λj t).

This is a distribution in t, and a spectral invariant!



Wave trace

Consider the family of operators U(t) = cos t
√
−∆

i.e., the operator acting on ϕj by

U(t)ϕj = cos(λj t)ϕj .

u(t, x) = U(t)f solves the wave equation with initial data

u(0, x) = f (x), ut(0, x) = 0,

i.e. U(t) is the solution operator.

Consider
Tr U(t) =

∑
cos(λj t).

This is a distribution in t, and a spectral invariant!



Wave trace

Consider the family of operators U(t) = cos t
√
−∆

i.e., the operator acting on ϕj by

U(t)ϕj = cos(λj t)ϕj .

u(t, x) = U(t)f solves the wave equation with initial data

u(0, x) = f (x), ut(0, x) = 0,

i.e. U(t) is the solution operator.

Consider
Tr U(t) =

∑
cos(λj t).

This is a distribution in t, and a spectral invariant!



Singularities of the wave trace

Using the propagation of singularities theorem, it is not hard to
prove “Poisson relation:”

Theorem (Chazarain, Duistermaat-Guillemin, ’74)

sing-suppTr U(t) ⊂ {0} ∪
{
± lengths of closed geodesics on X

}
.

I More or less: you can “hear” lengths of closed geodesics.

I Much harder: there is a considerably deeper trace theorem of
Duistermaat-Guillemin, giving the leading-order description of
the singularities of the wave trace (cf. Selberg on quotients of
symmetric spaces). Gives subtler dynamical information.

I Applications of these ideas include theorem of Zelditch:
Isospectral convex analytic domains in R2 with an axis of
symmetry are isometric. (This involves. . . )
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Boundaries

Say we impose Dirichlet boundary conditions on wave equation.
What happens to wavefront set that reaches the boundary of an
obstacle?
Case 1: transverse reflection. Reflects according to “angle of
incidence equals angle of reflection,” just like a billiard ball.

More precisely: energy and momentum tangent to obstacle are
conserved; normal momentum jumps.
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Diffraction?

Case 2: tangency to a convex obstacle
The question here is as follows: can a ray carrying WF tangent to
a convex obstacle stick to it and rerelease in the “shadow region,”
or does it simply pass on by?

Theorem (Melrose, Taylor, 1975)

No propagation into “shadow region.”

If we measure analytic singularities instead, this theorem becomes
false!
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Glancing

Case 3: tangency, no convexity
In this case, if the ray has infinite order tangency with the
boundary, even deciding what should constitute the continuation of
a ray striking the boundary is difficult.
Example of Taylor (1976) of many possible continuations of a
given ray that hits boundary with infinite-order tangency.

Theorem on propagation on appropriate “generalized geodesics”
(Melrose-Sjöstrand, 1982).
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Diffraction exists!

The rules of geometric optics are no longer so simple (!) when we
are not on a manifold with smooth boundary. Singularities may
indeed go into the shadow region.

Diffraction studied (and named) first by Grimaldi, 1665—led to
wave theory of light. Cf. Huygens, Newton; also Fresnel, Poisson,
Arago, 1818.
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Fundamental solutions

As an example, consider the fundamental solution to the wave
equation, i.e. the solution with initial data

u(0, x) = 0, ut(0, x) = δ(x).

Wavefront set is initially just (0, ξ) for all ξ (δ is singular at the
origin, in every direction).
On Rn, singularities spread outward in an expanding sphere.
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In an exterior domain, there is a reflected wave of singularities as
well, but of course still nothing on the far side of the obstacle, by
Melrose-Taylor.



Sommerfeld

But Sommerfeld (1896) explicitly solved the following example,
showing there are singularities in the shadow region: A spherical
wave of singularities is emitted by the wedge tip at the time the
wavefront strikes it:

(Figure from F.G. Friedlander, Sound Pulses.)



















Other geometries

I A wedge is, of course, rather special. Sommerfeld was able to
employ separation of variables, and deep knowledge of Bessel
functions.

I More generally, we might consider something like a singularity
striking an edge, a corner, or a cone point—some singular
structure in our space. The laws of geometric optics have to
be modified to allow diffraction by interaction with these
structures:

I E.g. a singularity hitting a cone point creates a whole
spherical wave of “vertex diffracted” singularities in every
direction from the cone tip.
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Diffracted front from a cone tip

(Keller: “it’s not much of a law, but at least it’s democratic.”)



Edges

Geometry is a bit more interesting for edges or corners. E.g. a
singularity hitting an edge between two walls can create a whole
cone of outgoing singularities. Specular reflection holds to the
degree that it makes sense, i.e. energy and tangential momentum
are conserved:



A number of theorems substantiate this:

I Keller, extensive heuristics—”geometric theory of diffraction”

I Cheeger-Taylor, exact cones (1982)

I Lebeau, manifolds with corners (analytic setting) (1997)

I Melrose-W., manifolds with conic singularities (2004)

I Vasy, manifolds with corners (2008)

I Melrose-Vasy-W., manifolds with edge singularities (2008)



Sobolev regularity

Measure strength of singularities by what Sobolev space they lie in.
Recall that for k ∈ N,

Hk(X ) = {u(x) : u,Du, . . . ,Dku ∈ L2(X )},

and this can be generalized to k ∈ R, using interpolation and
duality or Fourier analysis.

For k > 0, H−k(X ) consists of (generalized) functions that can be
as singular as “k derivatives of an L2 function.” (H0(X ) = L2(X ).)



Regularity of fundamental solution

Regularity of the fundamental solution to the wave equation
above: direct and reflected fronts are in H−0 while diffracted front
is in H1/2−0.
I.e., half a derivative of smoothing of diffractive wave relative to
main one.

Question: Is the diffracted wave always smoother?
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Nonfocusing

It turns that the diffracted wavefront is not always weaker: if the
incident wave is focused on (say) a cone point or corner, it is just
as strong as the main singularity!

Nonfocusing hypothesis ensures otherwise; holds for fundamental
solution.

Theorem
Let U(t) be the fundamental solution to the wave equation. The
diffracted front is smoother than the main front by f /2 derivatives
where f is

I n − 1 if X is an n-manifold with conic singularities

I d − 1 if X is a cone bundle (“edge manifold”) with fiber
dimension d

I c − 1 if X is a manifold with corners, and the wave is
diffracted by a corner of codimension c .
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Loosely speaking, then, diffraction off a singular stratum of higher
codimension produces more regular diffracted wave.

I Cheeger-Taylor, exact cones (1982)

I Gérard-Lebeau, planar angles in analytic setting (1993)

I Melrose-W., conic manifolds (2004)

I Melrose-Vasy-W., manifolds with edge singularities (2008)

I Melrose-Vasy-W., manifolds with corners, (?)



Poisson relation

On a conic manifold we have two kind of geodesics: Let diffractive
geodesics enter and leave a boundary component on any pair of
rays, while geometric geodesics enter and leave on geodesics that
are limits of geodesics missing cone point.
Let

DIFF = {± lengths of closed diffractive geodesics} ∪ {0}

and

GEOM = {± lengths of closed geometric geodesics} ∪ {0}.

Theorem
Tr cos t

√
−∆ ∈ C−n−0(R) ∩ C−1−0(R\GEOM) ∩ C∞(R\DIFF).



Flat surfaces with conic singularities

Hillairet has proved an actual trace formula on flat surfaces with
conic singularities. Allows us to know, among other things, that
these possible singularities will (usually) actually exist.
Consequence: spectral rigidity of triangles, since we can “hear” the
length of the shortest altitude (originally proved by Durso). (Area
and perimeter can be “heard” using Tr et∆—cf. Kac.)

(Note that a triangle can be “doubled” across the edges to make a
flat surface with three cone points.)
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Future directions

I More general singular spaces (e.g. to encompass complex
projective varieties?). Use some kind of iterated cone/edge
construction?

I Trace theorems.

I Spectral theorem/inverse spectral problems on singular
manifolds.
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