Geometric optics and its limitations

Jared Wunsch Northwestern University

MSRI Evans Lecture September 22, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Wave equation

How does a wave move? Mathematical description of waves, at least to first approximation, is the same in many different settings: The (scalar) wave equation

$$\big(\frac{\partial^2}{\partial t^2} - \Delta\big)u = 0,$$

with

$$\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}.$$

for *u* a function on \mathbb{R}^{1+n} .

This (approximately) describes sound waves, light waves (omitting polarization), water waves, etc.

A close relative is the Schrödinger wave equation

$$\frac{\hbar}{i}\frac{\partial\psi}{\partial t} - \frac{\hbar^2}{2}\Delta\psi = 0,$$

especially in the "semiclassical" regime $\hbar \downarrow 0$, \Box , $\langle B \rangle$,

Wave equation

How does a wave move? Mathematical description of waves, at least to first approximation, is the same in many different settings: The (scalar) wave equation

$$\big(\frac{\partial^2}{\partial t^2}-\Delta\big)u=0,$$

with

$$\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}.$$

for *u* a function on \mathbb{R}^{1+n} .

This (approximately) describes sound waves, light waves (omitting polarization), water waves, etc.

A close relative is the Schrödinger wave equation

$$\frac{\hbar}{i}\frac{\partial\psi}{\partial t}-\frac{\hbar^2}{2}\Delta\psi=0,$$

Question: What do solutions look like?

In one dimension, we can write explicit solutions:

$$u(t,x) = f_{+}(t-x) + f_{-}(t+x)$$

gives a solution for any functions f_{\pm} (differentiable or not!). One piece moving to the left and another to the right.

\mathbb{R}^{1+1}

Question: What do solutions *look like*? In one dimension, we can write explicit solutions:

$$u(t,x) = f_{+}(t-x) + f_{-}(t+x)$$

gives a solution for any functions f_{\pm} (differentiable or not!). One piece moving to the left and another to the right.

So waves in one dimensional space can propagate as localized objects, at unit speed: they move just like particles! This is the idea of "geometric optics:" we can understand a lot about wave propagation via particle motion.

Question: What about in higher dimension?

Answer: Not as simple as in 1D. "Wave packets" may propagate, but they *spread* as they do so.

To state a simple correspondence between particle motion and wave motion, we might try refining our question a little.

So waves in one dimensional space can propagate as localized objects, at unit speed: they move just like particles! This is the idea of "geometric optics:" we can understand a lot about wave propagation via particle motion.

Question: What about in higher dimension?

Answer: Not as simple as in 1D. "Wave packets" may propagate, but they *spread* as they do so.

To state a simple correspondence between particle motion and wave motion, we might try refining our question a little.

Wavefront set

Let f(x) be a function (or even a distribution, i.e., generalized function) on \mathbb{R}^k .

Definition

 $x_0 \in \mathbb{R}^k$ is in the *singular support* of f (sing-supp f) if there is no neighborhood of x_0 on which $f \in C^{\infty}$.

The singular support is the set of points at which a function is *not smooth*, i.e. is *singular*.

A refinement, due to Hörmander (cf. Sato in analytic case) is the wavefront set, WF f. This measures where f is singular, and in what direction:

 $WFf \subset T^*\mathbb{R}^k$,

with

$$\pi(\mathsf{WF}f) = \mathsf{sing-supp}\,f.$$

Can be explicitly characterized in terms of Fourier transform: use the fact that $g(x) \in L^2$ is smooth iff $\hat{g}(\xi)$ is rapidly decreasing, then think about isolating rapid decrease in different directions.

Studying WF of solutions to wave equation is studying high-frequency limit as need high-frequency Fourier modes to synthesize singularities.

A refinement, due to Hörmander (cf. Sato in analytic case) is the wavefront set, WF f. This measures where f is singular, and in what direction:

$$\mathsf{WF} f \subset T^* \mathbb{R}^k$$
,

with

$$\pi(\mathsf{WF}f) = \mathsf{sing-supp}\,f.$$

Can be explicitly characterized in terms of Fourier transform: use the fact that $g(x) \in L^2$ is smooth iff $\hat{g}(\xi)$ is rapidly decreasing, then think about isolating rapid decrease in different directions.

Studying WF of solutions to wave equation is studying high-frequency limit as need high-frequency Fourier modes to synthesize singularities.

A refinement, due to Hörmander (cf. Sato in analytic case) is the wavefront set, WF f. This measures where f is singular, and in what direction:

$$\mathsf{WF} f \subset T^* \mathbb{R}^k,$$

with

$$\pi(\mathsf{WF}f) = \mathsf{sing-supp}\,f.$$

Can be explicitly characterized in terms of Fourier transform: use the fact that $g(x) \in L^2$ is smooth iff $\hat{g}(\xi)$ is rapidly decreasing, then think about isolating rapid decrease in different directions.

Studying WF of solutions to wave equation is studying high-frequency limit as need high-frequency Fourier modes to synthesize singularities.

Wavefront set example

Let $f(x) = 1_{\Omega}$, the indicator function of an open set Ω with smooth boundary.

sing-supp
$$f = \partial \Omega$$
,
WF $f = N^*(\partial \Omega) = \{(x, \xi) : x \in \partial \Omega, \xi \perp T(\partial \Omega)\}$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Propagation of singularities

Theorem

For a solution u to the wave equation on \mathbb{R}^{1+n} ,

$$\blacktriangleright \mathsf{WF} u \subset \{\tau^2 = |\xi|^2\}$$

• $(t_0, x_0, \tau_0, \xi_0) \in \mathsf{WF}u$ if and only if

$(t_0 - s\tau_0, x_0 + s\xi_0, \tau_0, \xi_0) \in \mathsf{WF} u \text{ for all } s \in \mathbb{R}.$

Thus,

- Spacetime singularities lie in the "light cone."
- Wavefront set propagates as time evolves by moving in straight lines at unit speed, in direction given by ξ₀, the "momentum" variable; hence moves as a particle would.

In this form, the theorem is due to Hörmander, but in closely related forms, has a long history (cf. Lax, Ludwig).

Propagation of singularities

Theorem

For a solution u to the wave equation on \mathbb{R}^{1+n} ,

• WF
$$u \subset \{\tau^2 = |\xi|^2\}$$

• $(t_0, x_0, \tau_0, \xi_0) \in \mathsf{WF}u$ if and only if

$$(t_0 - s\tau_0, x_0 + s\xi_0, \tau_0, \xi_0) \in \mathsf{WF} u$$
 for all $s \in \mathbb{R}$.

Thus,

- Spacetime singularities lie in the "light cone."
- Wavefront set propagates as time evolves by moving in straight lines at unit speed, in direction given by ξ₀, the "momentum" variable; hence moves as a particle would.

In this form, the theorem is due to Hörmander, but in closely related forms, has a long history (cf. Lax, Ludwig).

Propagation of singularities

Theorem

For a solution u to the wave equation on \mathbb{R}^{1+n} ,

• WF
$$u \subset \{\tau^2 = |\xi|^2\}$$

• $(t_0, x_0, \tau_0, \xi_0) \in \mathsf{WF}u$ if and only if

$$(t_0 - s\tau_0, x_0 + s\xi_0, \tau_0, \xi_0) \in \mathsf{WF} u$$
 for all $s \in \mathbb{R}$.

Thus,

- Spacetime singularities lie in the "light cone."
- Wavefront set propagates as time evolves by moving in straight lines at unit speed, in direction given by ξ₀, the "momentum" variable; hence moves as a particle would.

In this form, the theorem is due to Hörmander, but in closely related forms, has a long history (cf. Lax, Ludwig).

Variable coefficients

What happens on a manifold? Let (X, g) be a Riemannian manifold. Replace Δ in the wave equation by

$$\Delta_{g} = \frac{1}{\sqrt{g}} \sum_{i,j} \frac{\partial}{\partial x_{i}} g^{ij} \sqrt{g} \frac{\partial}{\partial x_{j}}$$

with $g = \det(g_{ij})$ ("Laplace-Beltrami operator") and consider the wave equation on $\mathbb{R} \times X$.

Can also think of wave propagation in \mathbb{R}^n in an inhomogeneous, anisotropic medium (e.g. earth!).

Theorem

For a solution to the wave equation on $\mathbb{R} \times X$, WF u propagates along geodesics, lifted to $T^*(\mathbb{R} \times X)$, inside the light cone.

Variable coefficients

What happens on a manifold? Let (X, g) be a Riemannian manifold. Replace Δ in the wave equation by

$$\Delta_{g} = \frac{1}{\sqrt{g}} \sum_{i,j} \frac{\partial}{\partial x_{i}} g^{ij} \sqrt{g} \frac{\partial}{\partial x_{j}}$$

with $g = \det(g_{ij})$ ("Laplace-Beltrami operator") and consider the wave equation on $\mathbb{R} \times X$.

Can also think of wave propagation in \mathbb{R}^n in an inhomogeneous, anisotropic medium (e.g. earth!).

Theorem

For a solution to the wave equation on $\mathbb{R} \times X$, WF u propagates along geodesics, lifted to $T^*(\mathbb{R} \times X)$, inside the light cone.

A SHORT DIGRESSION INTO SPECTRAL GEOMETRY

(X,g) compact Riemannian manifold, Δ_g Laplacian. There is an orthonormal basis of $L^2(X)$ of eigenfunctions $\varphi_j(x)$ of Δ

$$\Delta \varphi_j = -\lambda_j^2 \varphi_j.$$

where eigenvalues $-\lambda_j^2 \rightarrow -\infty$.

Can construct solutions to the wave equation by separation of variables

$$u(t,x) = e^{\pm i\lambda_j t}\varphi_j(x)$$

so λ_j 's are the characteristic frequencies of vibration, or the overtone series.

Kac (1966): what can you determine about (X, g) from λ_j's?
("Can one hear the shape of a drum?")
(One can't: Milnor,..., Gordon-Wolpert-Webb.)

A SHORT DIGRESSION INTO SPECTRAL GEOMETRY

(X,g) compact Riemannian manifold, Δ_g Laplacian. There is an orthonormal basis of $L^2(X)$ of eigenfunctions $\varphi_j(x)$ of Δ

$$\Delta \varphi_j = -\lambda_j^2 \varphi_j.$$

where eigenvalues $-\lambda_j^2 \rightarrow -\infty$.

Can construct solutions to the wave equation by separation of variables

$$u(t,x) = e^{\pm i\lambda_j t}\varphi_j(x)$$

so $\lambda_j{\,}'{\rm s}$ are the characteristic frequencies of vibration, or the overtone series.

Kac (1966): what can you determine about (X,g) from λ_j's? ("Can one hear the shape of a drum?") (One can't: Milnor,..., Gordon-Wolpert-Webb.)

A SHORT DIGRESSION INTO SPECTRAL GEOMETRY

(X,g) compact Riemannian manifold, Δ_g Laplacian. There is an orthonormal basis of $L^2(X)$ of eigenfunctions $\varphi_j(x)$ of Δ

$$\Delta \varphi_j = -\lambda_j^2 \varphi_j.$$

where eigenvalues $-\lambda_j^2 \rightarrow -\infty$.

Can construct solutions to the wave equation by separation of variables

$$u(t,x) = e^{\pm i\lambda_j t}\varphi_j(x)$$

so λ_j 's are the characteristic frequencies of vibration, or the overtone series.

Kac (1966): what can you determine about (X, g) from λ_j 's? ("Can one hear the shape of a drum?") (One can't: Milnor,..., Gordon-Wolpert-Webb.)

A SHORT DIGRESSION INTO SPECTRAL GEOMETRY

(X,g) compact Riemannian manifold, Δ_g Laplacian. There is an orthonormal basis of $L^2(X)$ of eigenfunctions $\varphi_j(x)$ of Δ

$$\Delta \varphi_j = -\lambda_j^2 \varphi_j.$$

where eigenvalues $-\lambda_j^2 \rightarrow -\infty$.

Can construct solutions to the wave equation by separation of variables

$$u(t,x) = e^{\pm i\lambda_j t}\varphi_j(x)$$

so λ_j 's are the characteristic frequencies of vibration, or the overtone series.

Kac (1966): what can you determine about (X, g) from λ_j 's? ("Can one hear the shape of a drum?") (One can't: Milnor,..., Gordon-Wolpert-Webb.)

Wave trace

Consider the family of operators $U(t) = \cos t \sqrt{-\Delta}$ i.e., the operator acting on φ_j by

$$U(t)\varphi_j=\cos(\lambda_j t)\varphi_j.$$

u(t,x) = U(t)f solves the wave equation with initial data

$$u(0,x) = f(x), \quad u_t(0,x) = 0,$$

i.e. U(t) is the solution operator.

Consider

$$\operatorname{Tr} U(t) = \sum \cos(\lambda_j t).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is a distribution in t, and a spectral invariant!

Wave trace

Consider the family of operators $U(t) = \cos t \sqrt{-\Delta}$ i.e., the operator acting on φ_j by

$$U(t)\varphi_j = \cos(\lambda_j t)\varphi_j.$$

u(t,x) = U(t)f solves the wave equation with initial data

$$u(0,x) = f(x), \quad u_t(0,x) = 0,$$

i.e. U(t) is the solution operator.

Consider

$$\operatorname{Tr} U(t) = \sum \cos(\lambda_j t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is a distribution in t, and a spectral invariant!

Wave trace

Consider the family of operators $U(t) = \cos t \sqrt{-\Delta}$ i.e., the operator acting on φ_j by

$$U(t)\varphi_j = \cos(\lambda_j t)\varphi_j.$$

u(t,x) = U(t)f solves the wave equation with initial data

$$u(0,x) = f(x), \quad u_t(0,x) = 0,$$

i.e. U(t) is the solution operator.

Consider

$$\mathsf{Tr} \ U(t) = \sum \cos(\lambda_j t).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is a distribution in t, and a spectral invariant!

Using the propagation of singularities theorem, it is not hard to prove "Poisson relation:"

Theorem (Chazarain, Duistermaat-Guillemin, '74) sing-supp Tr $U(t) \subset \{0\} \cup \{ \pm \text{ lengths of closed geodesics on } X \}$.

More or less: you can "hear" lengths of closed geodesics.

- Much harder: there is a considerably deeper trace theorem of Duistermaat-Guillemin, giving the leading-order description of the singularities of the wave trace (cf. Selberg on quotients of symmetric spaces). Gives subtler dynamical information.
- Applications of these ideas include theorem of Zelditch: Isospectral convex analytic domains in R² with an axis of symmetry are isometric. (This involves...)

Using the propagation of singularities theorem, it is not hard to prove "Poisson relation:"

Theorem (Chazarain, Duistermaat-Guillemin, '74) sing-supp Tr $U(t) \subset \{0\} \cup \{ \pm \text{ lengths of closed geodesics on } X \}$.

- More or less: you can "hear" lengths of closed geodesics.
- Much harder: there is a considerably deeper trace theorem of Duistermaat-Guillemin, giving the leading-order description of the singularities of the wave trace (cf. Selberg on quotients of symmetric spaces). Gives subtler dynamical information.
- Applications of these ideas include theorem of Zelditch: Isospectral convex analytic domains in R² with an axis of symmetry are isometric. (This involves...)

Using the propagation of singularities theorem, it is not hard to prove "Poisson relation:"

Theorem (Chazarain, Duistermaat-Guillemin, '74) sing-supp Tr $U(t) \subset \{0\} \cup \{ \pm \text{ lengths of closed geodesics on } X \}$.

- More or less: you can "hear" lengths of closed geodesics.
- Much harder: there is a considerably deeper trace theorem of Duistermaat-Guillemin, giving the leading-order description of the singularities of the wave trace (cf. Selberg on quotients of symmetric spaces). Gives subtler dynamical information.
- Applications of these ideas include theorem of Zelditch: Isospectral convex analytic domains in R² with an axis of symmetry are isometric. (This involves...)

Using the propagation of singularities theorem, it is not hard to prove "Poisson relation:"

Theorem (Chazarain, Duistermaat-Guillemin, '74) sing-supp Tr $U(t) \subset \{0\} \cup \{ \pm \text{ lengths of closed geodesics on } X \}$.

- More or less: you can "hear" lengths of closed geodesics.
- Much harder: there is a considerably deeper trace theorem of Duistermaat-Guillemin, giving the leading-order description of the singularities of the wave trace (cf. Selberg on quotients of symmetric spaces). Gives subtler dynamical information.
- Applications of these ideas include theorem of Zelditch: Isospectral convex analytic domains in R² with an axis of symmetry are isometric. (This involves...)

Boundaries

Say we impose Dirichlet boundary conditions on wave equation. What happens to wavefront set that reaches the boundary of an obstacle?

Case 1: transverse reflection. Reflects according to "angle of incidence equals angle of reflection," just like a billiard ball.

More precisely: energy and momentum tangent to obstacle are conserved; normal momentum jumps.

Boundaries

Say we impose Dirichlet boundary conditions on wave equation. What happens to wavefront set that reaches the boundary of an obstacle?

Case 1: transverse reflection. Reflects according to "angle of incidence equals angle of reflection," just like a billiard ball.

More precisely: energy and momentum tangent to obstacle are conserved; normal momentum jumps.

Diffraction?

Case 2: tangency to a convex obstacle

The question here is as follows: can a ray carrying WF tangent to a convex obstacle stick to it and rerelease in the "shadow region," or does it simply pass on by?

Theorem (Melrose, Taylor, 1975)

No propagation into "shadow region."

If we measure *analytic* singularities instead, this theorem becomes false!

Diffraction?

Case 2: tangency to a convex obstacle

The question here is as follows: can a ray carrying WF tangent to a convex obstacle stick to it and rerelease in the "shadow region," or does it simply pass on by?

Theorem (Melrose, Taylor, 1975)

No propagation into "shadow region."

If we measure *analytic* singularities instead, this theorem becomes false!

Diffraction?

Case 2: tangency to a convex obstacle

The question here is as follows: can a ray carrying WF tangent to a convex obstacle stick to it and rerelease in the "shadow region," or does it simply pass on by?

Theorem (Melrose, Taylor, 1975)

No propagation into "shadow region."

If we measure *analytic* singularities instead, this theorem becomes false!

Glancing

Case 3: tangency, no convexity

In this case, if the ray has infinite order tangency with the boundary, even deciding what should constitute the continuation of a ray striking the boundary is difficult.

Example of Taylor (1976) of many possible continuations of a given ray that hits boundary with infinite-order tangency.

Theorem on propagation on appropriate "generalized geodesics" (Melrose-Sjöstrand, 1982).

Glancing

Case 3: tangency, no convexity

In this case, if the ray has infinite order tangency with the boundary, even deciding what should constitute the continuation of a ray striking the boundary is difficult.

Example of Taylor (1976) of many possible continuations of a given ray that hits boundary with infinite-order tangency.

Theorem on propagation on appropriate "generalized geodesics" (Melrose-Sjöstrand, 1982).

Glancing

Case 3: tangency, no convexity

In this case, if the ray has infinite order tangency with the boundary, even deciding what should constitute the continuation of a ray striking the boundary is difficult.

Example of Taylor (1976) of many possible continuations of a given ray that hits boundary with infinite-order tangency.

Theorem on propagation on appropriate "generalized geodesics" (Melrose-Sjöstrand, 1982).

The rules of geometric optics are no longer so simple (!) when we are not on a manifold with smooth boundary. Singularities may indeed go into the shadow region.

Diffraction studied (and named) first by Grimaldi, 1665—led to wave theory of light. Cf. Huygens, Newton; also Fresnel, Poisson, Arago, 1818. The rules of geometric optics are no longer so simple (!) when we are not on a manifold with smooth boundary. Singularities may indeed go into the shadow region.

Diffraction studied (and named) first by Grimaldi, 1665—led to wave theory of light. Cf. Huygens, Newton; also Fresnel, Poisson, Arago, 1818.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fundamental solutions

As an example, consider the fundamental solution to the wave equation, i.e. the solution with initial data

$$u(0,x) = 0, \quad u_t(0,x) = \delta(x).$$

Wavefront set is initially just $(0, \xi)$ for all ξ (δ is singular at the origin, in every direction).

On \mathbb{R}^n , singularities spread outward in an expanding sphere.

Fundamental solutions

As an example, consider the fundamental solution to the wave equation, i.e. the solution with initial data

$$u(0,x) = 0, \quad u_t(0,x) = \delta(x).$$

Wavefront set is initially just $(0, \xi)$ for all ξ (δ is singular at the origin, in every direction).

On \mathbb{R}^n , singularities spread outward in an expanding sphere.

In an exterior domain, there is a reflected wave of singularities as well, but of course still nothing on the far side of the obstacle, by Melrose-Taylor.

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Sommerfeld

But Sommerfeld (1896) explicitly solved the following example, showing there are singularities in the shadow region: A spherical wave of singularities is emitted by the wedge tip at the time the wavefront strikes it:

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの

(Figure from F.G. Friedlander, Sound Pulses.)

(日)

æ

æ

(日)

æ

(日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

æ

æ

・ロト ・聞ト ・ヨト ・ヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Other geometries

- A wedge is, of course, rather special. Sommerfeld was able to employ separation of variables, and deep knowledge of Bessel functions.
- More generally, we might consider something like a singularity striking an edge, a corner, or a cone point—some singular structure in our space. The laws of geometric optics have to be modified to allow diffraction by interaction with these structures:
- E.g. a singularity hitting a cone point creates a whole spherical wave of "vertex diffracted" singularities in every direction from the cone tip.

Other geometries

- A wedge is, of course, rather special. Sommerfeld was able to employ separation of variables, and deep knowledge of Bessel functions.
- More generally, we might consider something like a singularity striking an edge, a corner, or a cone point—some singular structure in our space. The laws of geometric optics have to be modified to allow diffraction by interaction with these structures:
- E.g. a singularity hitting a cone point creates a whole spherical wave of "vertex diffracted" singularities in every direction from the cone tip.

Other geometries

- A wedge is, of course, rather special. Sommerfeld was able to employ separation of variables, and deep knowledge of Bessel functions.
- More generally, we might consider something like a singularity striking an edge, a corner, or a cone point—some singular structure in our space. The laws of geometric optics have to be modified to allow diffraction by interaction with these structures:
- E.g. a singularity hitting a cone point creates a whole spherical wave of "vertex diffracted" singularities in every direction from the cone tip.

Diffracted front from a cone tip

(Keller: "it's not much of a law, but at least it's democratic.")

Edges

Geometry is a bit more interesting for edges or corners. E.g. a singularity hitting an edge between two walls can create a whole cone of outgoing singularities. Specular reflection holds to the degree that it makes sense, i.e. energy and tangential momentum are conserved:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

A number of theorems substantiate this:

- Keller, extensive heuristics—"geometric theory of diffraction"
- Cheeger-Taylor, exact cones (1982)
- Lebeau, manifolds with corners (analytic setting) (1997)
- Melrose-W., manifolds with conic singularities (2004)
- Vasy, manifolds with corners (2008)
- Melrose-Vasy-W., manifolds with edge singularities (2008)

Measure strength of singularities by what *Sobolev space* they lie in. Recall that for $k \in \mathbb{N}$,

$$H^k(X) = \{u(x) : u, Du, \ldots, D^k u \in L^2(X)\},$$

and this can be generalized to $k \in \mathbb{R}$, using interpolation and duality or Fourier analysis.

For k > 0, $H^{-k}(X)$ consists of (generalized) functions that can be as singular as "k derivatives of an L^2 function." $(H^0(X) = L^2(X).)$

Regularity of fundamental solution

Regularity of the fundamental solution to the wave equation above: direct and reflected fronts are in H^{-0} while diffracted front is in $H^{1/2-0}$. I.e., half a derivative of smoothing of diffractive wave relative to main one.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: Is the diffracted wave always smoother?

Regularity of fundamental solution

Regularity of the fundamental solution to the wave equation above: direct and reflected fronts are in H^{-0} while diffracted front is in $H^{1/2-0}$. I.e., half a derivative of smoothing of diffractive wave relative to main one.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: Is the diffracted wave always smoother?

Nonfocusing

It turns that the diffracted wavefront is **not** always weaker: if the incident wave is *focused* on (say) a cone point or corner, it is just as strong as the main singularity!

Nonfocusing hypothesis ensures otherwise; holds for fundamental solution.

Theorem

Let U(t) be the fundamental solution to the wave equation. The diffracted front is smoother than the main front by f/2 derivatives where f is

- ▶ *n* − 1 if *X* is an *n*-manifold with conic singularities
- ► d 1 if X is a cone bundle ("edge manifold") with fiber dimension d

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► c - 1 if X is a manifold with corners, and the wave is diffracted by a corner of codimension c.

Nonfocusing

It turns that the diffracted wavefront is **not** always weaker: if the incident wave is *focused* on (say) a cone point or corner, it is just as strong as the main singularity!

Nonfocusing hypothesis ensures otherwise; holds for fundamental solution.

Theorem

Let U(t) be the fundamental solution to the wave equation. The diffracted front is smoother than the main front by f/2 derivatives where f is

- ▶ *n* − 1 if *X* is an *n*-manifold with conic singularities
- ► d 1 if X is a cone bundle ("edge manifold") with fiber dimension d
- ► c 1 if X is a manifold with corners, and the wave is diffracted by a corner of codimension c.

Loosely speaking, then, diffraction off a singular stratum of higher codimension produces more regular diffracted wave.

- Cheeger-Taylor, exact cones (1982)
- Gérard-Lebeau, planar angles in analytic setting (1993)
- Melrose-W., conic manifolds (2004)
- Melrose-Vasy-W., manifolds with edge singularities (2008)

Melrose-Vasy-W., manifolds with corners, (?)

Poisson relation

On a conic manifold we have two kind of geodesics: Let diffractive geodesics enter and leave a boundary component on any pair of rays, while geometric geodesics enter and leave on geodesics that are limits of geodesics missing cone point. Let

 $\mathsf{DIFF} = \{\pm \text{ lengths of closed diffractive geodesics}\} \cup \{0\}$

and

 $\mathsf{GEOM} = \{ \pm \text{ lengths of closed geometric geodesics} \} \cup \{0\}.$

Theorem Tr cos $t\sqrt{-\Delta} \in \mathcal{C}^{-n-0}(\mathbb{R}) \cap \mathcal{C}^{-1-0}(\mathbb{R}\setminus \mathsf{GEOM}) \cap \mathcal{C}^{\infty}(\mathbb{R}\setminus \mathsf{DIFF}).$

Flat surfaces with conic singularities

Hillairet has proved an actual *trace formula* on flat surfaces with conic singularities. Allows us to know, among other things, that these *possible* singularities will (usually) actually exist.

Consequence: spectral rigidity of triangles, since we can "hear" the length of the shortest altitude (originally proved by Durso). (Area and perimeter can be "heard" using Tr $e^{t\Delta}$ —cf. Kac.)

(Note that a triangle can be "doubled" across the edges to make a flat surface with three cone points.)

Flat surfaces with conic singularities

Hillairet has proved an actual *trace formula* on flat surfaces with conic singularities. Allows us to know, among other things, that these *possible* singularities will (usually) actually exist. *Consequence:* spectral rigidity of triangles, since we can "hear" the length of the shortest altitude (originally proved by Durso). (Area and perimeter can be "heard" using Tr $e^{t\Delta}$ —cf. Kac.)

(Note that a triangle can be "doubled" across the edges to make a flat surface with three cone points.)

Future directions

- More general singular spaces (e.g. to encompass complex projective varieties?). Use some kind of iterated cone/edge construction?
- Trace theorems.
- Spectral theorem/inverse spectral problems on singular manifolds.

Future directions

- More general singular spaces (e.g. to encompass complex projective varieties?). Use some kind of iterated cone/edge construction?
- Trace theorems.
- Spectral theorem/inverse spectral problems on singular manifolds.

Future directions

- More general singular spaces (e.g. to encompass complex projective varieties?). Use some kind of iterated cone/edge construction?
- Trace theorems.
- Spectral theorem/inverse spectral problems on singular manifolds.