THE TRACE OF THE GENERALIZED HARMONIC OSCILLATOR

JARED WUNSCH

ABSTRACT. We study a geometric generalization of the time-dependent Schrodinger
equation for the harmonic oscillator

(0.1) (Dt+%A+V)1[):O

where A is the Laplace-Beltrami operator with respect to a “scattering metric” on a
compact manifold M with boundary (the class of scattering metrics is a generalization
of asymptotically Euclidian metrics on R"™, radially compactified to the ball) and V is
a perturbation of w’z~>, with z a boundary defining function for M (e.g. z = 1/r
in the compactified Euclidian case). Using the quadratic-scattering wavefront set, a
generalization of Hormander’s wavefront set that measures oscillation at M as well as
singularities, we describe a propagation of singularities theorem for solutions of (0.1).
This enables us to prove the following trace theorem: let

S, = {f : there exists a closed geodesic in OM of length + L}

u {TZU—TF : there exists a geodesic n-gon in M with vertices in OM } u {0}.

Let U(t) = e~ 1(3A+VY) be the solution operator to the the Cauchy problem for (0.1).
Then under a non-trapping assumption for the geodesic flow on Jlol , we have

sing supp Tr U(t) C Sw,
where Tr U(t) is the distribution given by integrating the Schwartz kernel of U(t) over

the diagonal in M x M or, alternatively, by > ; e~ where \; are the eigenvalues of
1

sA+V.
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LA TRACE DE I’OSCILLATEUR HARMONIQUE GENERALISE

JARED WUNSCH

PrEcIS. On étudie une généralisation géométrique de I’équation de Schrodinger dépen-
dante du temps pour l'oscillateur harmonique

(0.1) (Dt+%A+V)1/)=O

olt A est 'opérateur de Laplace-Beltrami associé & une “métrique scattering” sur une
variété compacte M a bord (la classe de métriques scattering est une generalisation des
métriques asymptotiquement euclidiennes sur R", compactifié radialement & la boule)
et V est une perturbation de %wzx_z, ou z est une function qui définit le bord de
M (e.g. ¢ = 1/r dans le cas euclidien compactifié). En employant le front d’onde
quadratique-scattering, une généralisation du front d’onde de Hormander qui mesure
Poscillation en OM ainsi que les singularités, on décrit un théoréme de propagation des
singularités pour les solutions de (0.1). Ceci permet de démontrer le théoréme de trace
suivant: soit

L
S, = {— : il existe une géodésique fermée dans OM de longueur =+ L}
w

U {M : il existe un n-gone géodésique dans M dont les sommets appartiennent & M } u {0}.
w

Soit U(t) = e~*(z24V) Popérateur de solution du probléme de Cauchy pour (0.1).
Alors sous une hypothése de non-captivité pour le flot géodésique sur M, on a
supp sing Tr U(t) C S.,

ou TrU(t) est la distribution qu’on obtient en intégrant le noyau de Schwartz de U(t)
sur la diagonale de M x M ou alternativement, de E]. e~ ol \; sont les valeurs
propres de %A + V.
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1. INTRODUCTION

Let M be a compact manifold with boundary endowed with a scattering metric g as
defined by Melrose [9]. Thus in a neighborhood of M, we can write
A
zt  x?
where z is a boundary defining function for M, i.e. is smooth, nonnegative, and vanishes
exactly at OM with dz # 0 at M, and where h € C®(Sym?(T*M)) restricts to be a
metric on M. Scattering metrics form a class of complete, asymptotically flat metrics
that includes asymptotically Euclidian metrics on R", radially compactified to the n-
ball; this class also includes metrics on R” that are not asymptotically Euclidian but
that look like arbitrary, non-round metrics on the sphere at infinity (see [9] for details).
We consider a generalization of the quantum-mechanical harmonic oscillator on the
manifold M: let z be a boundary-defining function for @M with respect to which g has
the form (1.1), e.g. |2| ' on flat R (modified to be a smooth function at z = 0). For
any w € Ry, we consider the associated time-dependent Schrodinger equation

(1.2) Dot ias L) p=o

' T R R

where v is a formally self-adjoint perturbation term that can include both magnetic and
electric potential terms. We will take v to be an error term in a sense to be made precise
later on; potentials of the form v € C*°(M) are certainly allowed. Note that for such a v,

(1.1) g=

%A—F 2%25 +wv is semi-bounded, hence the Friedrichs extension gives a self-adjoint operator
on L?(M) (with respect to the metric dg). Our class of operators thus includes compactly
supported metric and potential perturbations of the standard harmonic oscillator on R”.

Perturbations of the free-particle Schrodinger equation on manifolds with scattering
metrics were studied in [13] using a calculus of pseudodifferential operators on manifolds
with boundary called the quadratic-scattering (or gsc) calculus and denoted W .(M).
This calculus is a microlocalization of the Lie algebra of “quadratic-scattering vector
fields” on M, given by

where
(1.4) Vo(M) = {vector fields on M tangent to OM}.

Near OM, Vqsc(M) is locally spanned over C* (M) by vector fields of the form z29,, 220,
where z,y; are product-type coordinates on M near M, i.e. the y;’s are coordinates on
OM. The Lie algebra Vqsc(M) can be written as the space of sections of a vector bundle:

Vase(M) = C*(M; ¥T M);

we call ¥°T'M the quadratic scattering tangent bundle of M. Let ¥“T*M be the dual
bundle (the quadratic scattering cotangent bundle). Let PT* M be the unit-ball bundle
over M obtained by radially compactifying the fibers of ¥“T*M (see [9] or [13]). This
is a manifold with corners. The principal symbols of operators in the gsc-calculus are
conormal distributions on 7" M with respect to the boundary (a precise definition
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of such distributions will be given in §2). There is an associated wavefront set, WE

gsc?

which is a closed subset of d(*“T" M).
In [13], propagation of WE,. was described for perturbations of the free particle
Schrodinger equation on M. In this paper, we discuss the analogous results for the
harmonic oscillator, referring to [13] for all technical details. We can conclude from the

o]
propagation results that if there are no trapped geodesics on M, then except at a certain
set of times

L
(1.5) S, = {— : there exists a closed geodesic in M of length + L}
w

nm ) . . S
U {— : there exists a geodesic n-gon in M with vertices in OM } u {0},
w

there is no recurrence of WE. for solutions to (1.2). In the above definition of S,
we adopt the convention that the sides of a geodesic n-gon in M with vertices in OM

are maximally extended geodesics in M (which automatically have infinite length) and
geodesics in dM of length 7; the latter geodesics appear naturally as limits of geodesics

through M—cf. Proposition 1 of [10]. Using very general properties of the gsc calculus,
in §5 we use the non-recurrence result to conclude that if U(t) is the solution operator
for the Cauchy problem for (1.2) then

(1.6) sing supp Tr U (¢) C S,,.

For example, if we have a compactly-supported potential perturbation of the standard
harmonic oscillator on R*, S,, = 27Z: if M is the radial compactification of R*, dM is

[e]

the unit n — 1-sphere. Geodesics on M connect antipodal points on M and geodesics in
OM are great circles, hence consecutive vertices of a geodesic n-gon are antipodal points
and there exist geodesic n-gons iff n is even; closed geodesics in M also only occur with
lengths in 277Z. Hence for a potential perturbation of the harmonic oscillator on R, the
trace of the solution operator can only be singular at multiples of 27. One can deduce
this easily from Mehler’s formula in the unperturbed case.

The trace theorem (1.6) closely resembles a result of Chazarain [1] and Duistermaat-
Guillemin [6] which says that on a compact Riemannian manifold without boundary,

sing supp Tr etVB {lengths of closed geodesics} U {0};

related results of Colin de Verdiere using heat kernels can be found in [3] and [4].

Chazarain [2] has also proved a semi-classical trace theorem for the time-dependent

Schrodinger equation, in which the lengths of closed bicharacteristics of the total symbol

appear. By contrast, the trace theorem of this paper is a non-semi-classical result, and
o

over S*M, the relevant bicharacteristic flow is that of the symbol |¢|?/2 rather than
the full symbol as in [2]. Results on singularities of perturbations of the harmonic os-
cillator have been obtained by Zelditch [15], Weinstein [12], Fujiwara [7], Yajima [14],
Kapitanski-Rodnianski-Yajima [8], and Treves [11]. Periodic recurrence of singularities
for perturbations of the harmonic oscillator on R” was demonstrated by Zelditch [15]
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and Weinstein [12], and the trace theorem (1.6) was proven by Zelditch for perturbations
of the harmonic oscillator in R” by potentials in B(R").

The author is grateful to Richard Melrose, who supervised the Ph.D. thesis of which
this work formed a part. The comments of an anonymous referee were also helpful, as
was Hubert Goldschmidt’s help in reducing the level of illiteracy of the French abstract.
The work was supported by a fellowship from the Fanny and John Hertz Foundation.

2. THE QUADRATIC-SCATTERING CALCULUS

In this section, we briefly review the properties of the algebra ¥ . (M), which was
constructed in [13], and is closely related to the “scattering algebra” of Melrose [9].

Let Vgsc(M) and Vi, (M) be defined by (1.3) and (1.4), and let Diff ;. (M) and Diffy,(M)
be the order-filtered algebras of smooth linear combinations of products of elements of
Vagse(M) and Vy,(M) respectively. There exists a bi-filtered star-algebra ¥ (M), the
“quadratic-scattering calculus” of pseudodifferential operators on M such that

o Diff (M) C Ugd (M)

Ut (M) = 2 g (M) = U (M)z!

wml (M) \Ilgélc’l’(M) ifm<m andl' —m' <1 —m.

Mot WM = W™ (M) consists of operators whose Schwartz kernels are

smooth functions on M x M, vanishing to infinite order at d(M x M).

Elements of \Ilg’s%(M ) are bounded operators on L2(M).

e Given a sequence A; € \Ilgéc_j’lH(M) for j = 0,1,2,..., there exists an “asymp-
totic sum” A € Wi (M), uniquely determined modulo g (M), such that

A=Ay e wit VN (.

Let CyscM = A(®“T"M). Let o be a boundary defining function for the boundary face
ascS* M of ¥T" M created by the fiber compactification. Let z be the lift of a boundary
defining function on M to ‘T M —thus = defines the boundary face *“T7,, M. Let
C°°(M) denote smooth functions on M vanishing to infinite order at dM and C~°°(M)
the dual space to C°°(M)-valued densities. Following Melrose [9], we define conormal

distributions on ®*“T"M with respect to Cysc M as follows:

AP FT M) = {u € C=°(PT M) : DiffE (¥ T M)u C oPzIL®(*T" M) for all k};

here Diffﬁ is defined on the manifold with corners ®“T" exactly as it was defined on
manifolds with boundary: as the span of products of vector fields tangent to (all faces
of) the boundary. Let

A (oo M) = AT ) J AP 142 (5 1)
There exists a symbol map
quc,m,l : \Ilgé,cl (M) - A[_m’l_m](cqscM)

such that
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e There is a short exact sequence
(2.1) 0 — WLy — W (pr) 2eemdy gl=mid=ml(c M) — 0.

gsc gsc

e The symbol map is multiplicative.
e The Poisson bracket extends continuously from the usual bracket defined on the
interior of T M to Al+], and

) 1. .
]qSC,m1+mz—1,l1+l2([Pa Q) = 7 {]qSC,ml,h(P)JqSC,mz,lz(Q)}-

Furthermore, if a € A™Y YT M), {a,b} = H,(b) where H, is the extension
of the usual Hamilton vector field on the interior of ®“T"M to an element of
o L2y (FTT M), (We refer to the flow along H, or 6™ 'z~ '~2H, as bichar-
acteristic flow.)

e There exists a (non-unique) “quantization map”

Op : A™™HM(PT M) — WM

such that
Jase;m, (Op(@)) = [a] € AT™™(Coee M).

Definition 2.1. An operator P € \Ilgé’cl(M) is said to be elliptic at a point p € CyscM
if jysc,m, is locally invertible near p. The set of points at which P is elliptic is denoted
ell P. If P is elliptic everywhere, it is simply said to be elliptic.

Definition 2.2. Let P € \Ilanscl(M) A point p € CgscM is in the complement of WE{SCP

(the operator wavefront set or microsupport of P) if there exists @ € \I!(;ST’_Z(M ) such
that @ is elliptic at p and PQ € Ugee "7 (M).

We can now define the gsc wavefront set of u € C™°°(M) as the subset WE u of
CqscM such that p ¢ WE u if and only if there exists A € \Ilgg%(M ) with p € ell A such
that Au € C*°(M).

The gsc wavefront set and microsupport enjoy the following properties:

o For A, B € Uy (M), WELAB C WE, AN WEL B and WE, A* = WEL A.

e Microlocal parametrices exist at elliptic points: if P € \Ilqms’cl(M ) is elliptic at p €
CqscM then there exists Q € \PEST’_Z(M ) such that

p ¢ WF:I[ISC(PQ - I) and p ¢ WF:I[’SC(QP - I)'
¢ Microlocality: let P € W .. (M) and u € C™*°(M). Then
WE.Pu C WE, PN WE.u.

e Microlocal elliptic regularity: Let P € W..(M) and u € C~°°(M). Then
WE(u) C WEg.(Pu) U (ell P)“.



GENERALIZED HARMONIC OSCILLATOR 5

e We can (and do) choose the map Op in such a way that
WE. Op(a) C ess suppa
(ess suppa is the set of points in CgscM near which a does not vanish to infinite
order).

We will also require a notion of gsc wavefront set that is uniform in a parameter.

Definition 2.3. Let u € C(R;C~%°(M)). For S C R compact, we say that p ¢ WES. (u)
if there exists a smooth family A(t) € Wos (M) such that A(t) is elliptic at p for all ¢t € S
and Au € C(S;C®(M)).

Associated to W .. (M) is a family of Sobolev spaces

HMY(M) = {u € (M) : U (M)u C L2(M)}

gsc gsc

such that
o If A c UM (M) then

A HR (M) — HpZ™ 4 (M)

gsc qsc

is continuous for any m, .
e For any [ € R,

() H (M) = €M)

and
| Hid (M) = ¢~ (M).

e If a, is a bounded sequence in A~™!~"(M) and a, — a in some AP9(M), then
Op(an) — Op(a) in the strong operator topology on

B (Hye" (M), Hym ™+ (ar))

for all M, L.

3. THE PROPAGATION OF WK,

For details of all computations in this section, see [13], especially §11.
We consider the symbol and corresponding bicharacteristic low for the operator

1 w?
— A4 =
H 5 +2$2+v

where
v € Diffb!

gsc

(M)

is formally self-adjoint and x is a boundary-defining function with respect to which g
takes the form (1.1).
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Let Adx/x3 + p - dy/z? be the canonical one-form on 9°T* M. The joint symbol of H
is represented in Al7272(Cys. M) by a conormal distribution of the form

1

(3'1) quC5270(’H) = ﬁ

(X2 + & + or (A ) ) 5
r(\,p) € N’z C®(x,y) + M C®(x,y) + p° C(z,y)

where |u| denotes the norm of u with respect to the metric A = h|sp;. Note that (3.1)
shows that H is an elliptic element of \I!(Zl’s(é(M ); the perturbation v does not enter into

the expression (3.1) as it has lower order than %A + % in both indices. The Hamilton
vector field of H is
X=X+P
where
~ 1
(3.2) X = Xxdp + (02 — > +w?)Ox + (1, 8y) + 2 - 8, — §6y|p|2 -0y

is the Hamilton vector field for the symbol #(A2 + |u? + w?), and

(33) P= p1w28z +p2x8y + qla;a,\ + QQ.’L‘a“

is the Hamilton vector field for the “error term” %.T_IT'(A, p). Here we adopt the con-

vention that (a,b) = Y a;b;h¥(y), and a-b =Y a;b;. The vector field P is identically
zero if h is a function of y only, and always vanishes at = = 0.
Under the flow along X,

SOl = O+ ilul)? +7,

hence

sinw(t — tg) + iR cosw(t — tg)

cosw(t —tg) — iRsinw(t — tg)

for some R € [0,1]. For R > 0, this gives a periodic orbit with period 7/w. On {u # 0}
(i.e. R > 0), we set i = p/|p|, and introduce the rescaled time parameter s = [ |u|dt to
rewrite the flow along X as

(3.4) Ailul = w

dyi i~ djfi; 1.
. 2 Ry e A B
(3:5) ds K ds 2 i#0y;
ax N —[uf o, |yl
. — =" — =2
(3.6) 1 | +w I
dr Az
3.7 — =
(3.1) ds = I

As the set y = 0 plays an important role in the geometry of X, we give it a name:

Definition 3.1. Let /' C 7" M be the set given in our coordinates by {z = p = 0}.
Let N3 C N be the subsets on which +X > 0. Let N§ = NL N ¥°S*M (i.e. N¢ is the
intersection of A/ with the corner). We refer to N as the “normal set,” with N, being
the “incoming normal set” and N_ the “outgoing normal set.”
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FiGURE 1. Integral curves of X, projected onto the (A, 1) plane and
radially compactified. The vertical line is the solution y = 0.

While (A, |p|) are undergoing a flow described by (3.4) (see Figure 1), then provided
R # 0, (3.5) shows that (y, i) are undergoing unit speed geodesic flow in OM with rescaled
time parameter s. For R = 0, u is identically zero, y is constant, and A blows up at
t —tp = £7/2w, i.e. the flow crosses N from N to N in time 7/w. More generally the
integral curve starting at p = 0, A = \g, reaches the corner at time ¢t = w™! arctan(w/\o)-

Note that all terms in X are homogeneous of degree 1 in (\, i) except the term w?dy,
which is homogeneous of degree —1. If we let ¢ be the defining function for ¥°5*M in

qsCr

T M given by
2 2y—1
o= A"+ ")
and set
A =0,
p=oaop
then the vector field ¢.X is tangent to the boundary of ®“T" M, and we have

_ _ 1 _
(3.8)  oX = Xzd, — |a*d5 + (f1,0,) + (A — an|,z|2) -0 — Ad0, + O(c?) + O(z)

where O(0?) and O(z) denote error terms of the form ¢?Y; and xYs, with Y; tangent to
A(FT"M); the O(0?) term is just ow?dy, while the O(x) term is what has above been
denoted P.

The vector field X differs from the free-particle Hamilton vector-field Xg, described
in [13]! only in the term w?d), hence since this term is O(c), we have

(39) O'X‘ ascgx \f = O'Xfp| ascG* \f .

'Unfortunately, this vector field is called X as well in [13].
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Definition 3.2. A maximally extended integral curve of ¢ X on 9°S*M is said to be
non-trapped forward/backward if

lim z(t) =0.

t—+oo

A point in B¢S* M\N€ is said to be non-trapped forward/backward if the integral curve
through it is non-trapped. A point in A€ is said to be non-trapped forward/backward if
it is not in the closure of any forward-/backward-trapped integral curves. Let 71 denote
the set of forward-/backward-trapped points in ¥S*M.

The only zeros of 0 X on %°S*M are on the manifolds V¢ (attracting) and N§ (re-

pelling), so we can define

Nioo : ®S*M\(NL UTL) —» NVE
by

p = lim exp(toX)[p],

We extend this definition of Nio to T M\(Ni U T) by homogeneity. We further
define B

Vi : ®T " M\(N: UT:) = OM
to be the projection of N1, to OM.

Theorem 3.3. Niy and Yio are smooth maps.
If we let C4 be the submanifold of ¥¢S*M given by

C’i:{x2+|ﬁ|2:e,5\20}

then for € sufficiently small, CS is a fibration over OM with projection map Yioo, and
every integral curve of o X which is not trapped forward/backward passes through C%;
The sets TL\N are closed subsets of ©¢S* M\NK.

By (3.9), this theorem follows from Theorem 11.6 of [13].
We can thus define the scattering relation:

Definition 3.4. Let S C N¢\T7_. The scattering relation on S is
Scat(S) = N_oo (N7L(S)) C NE.

It is shown in [13] that Scat takes closed sets to closed sets and Scat™! takes open sets
to open sets.

Ezample 3.5. If M is the radial compactification of R® with an asymptotically Euclidian
metric, we can identify the manifolds N§ with S"~! = M. Then for § € S"~!, Scat @
consists of all # € S™~! such that there exists a geodesic v in (uncompactified) R"
with lim;_,_+'(t) = —0" and lim;_, ;7'(t) = 0. In other words, Scat consists of all
directions in R" that can scatter to the direction #. In the Euclidian case, Scat is the
antipodal map on S™ L.

We now state theorems on propagation of WE. that will suffice to obtain results
on sing supp TrU(¢). (Slightly more sophisticated theorems, corresponding to Theo-
rems 12.1-12.5 of [13], in fact hold here as well.)
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Theorem 3.6 (Propagation over the boundary). Let p € (T, M)° and assume
exp(TX)[p] € ("' TonM)°.

Then p & WE 1 (0) iff there exists § > 0 such that exp(TX)[p] ¢ WEIT 6T+6]1/)

Theorem 3.7 (Propagation into the interior). Let p € ¥¢S*M\N¢ be non-backward-

trapped and let T € (0,7/w). If exp(=TX)[N oo (p)] ¢ WE ¥(0) then there exists 6 > 0
such that p ¢ WF - JTM]I/)

Theorem 3.8 (Scattering across the interior). Let g € N¢ be non-backward-trapped. If

exp(—TpX) [Scat(q)] N WE.4(0) =0
for some Ty € (0,7/w), then for every T € (Ty, Ty + m/w), there exists § > 0 such that
exp((T' —To)X)[q] ¢ W “" .
Theorem 3.9 (Global propagation into the boundary). Let ¢ € N be non-backward-
trapped. If
N—:;o(q) N WF:I[SC,(Z)(O) =0
(closure taken in ¥°S*M) then for T € (0,7/w), there exists 6 > 0 such that
exp(TX)[q] ¢ WEL ="y,

qsc

The proofs are by the same positive-commutator arguments used in [13] (which were
in turn adapted from Craig-Kappeler-Strauss [5]), although the symbol constructions
need to be slightly modified from those in [13] because the maps Y1, are not exactly
constant along the flow of X; we discuss these issues in an appendix.

4. NON-RECURRENCE OF SINGULARITIES

o
Throughout this section, we assume that there are no trapped geodesics in M.
This section is devoted proving

Theorem 4.1. Let S, be defined by (1.5). For T ¢ S, and for any p € CyscM, there
exists an open neighborhood O of p and € > 0 such that if
WE(0) € O
then
WEL Tty n o =90.

In order to deduce this theorem from Theorems 3.6-3.9, we first define a relation on
CgscM which describes from what points singularities may reach a point p € CyscM:

Definition 4.2. Let p,q € CycM. We write pfzq if there exists a continuous path -~
from p to ¢ in CyscM that is a concatenation of maximally extended integral curves of
0X such that

(4.1) Z (lengths of integral curves in *“ T, M ) =t,
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where we define the length of an integral curve in T; M to be its length as an integral
curve of X (and hence a finite number).
Then for S C Cysc M, let

Gi(S) = {p € CyscM : pq for some g € 5} .

If pff»q and qﬂtlr, then qsrttr, hence

(42) gs—l—t(S) = gs o gt(S)
We also have
(4.3) Gi(SUT) = Gi(S)UGT).

The relation pfzq is closed in the following sense:

Lemma 4.3. Let R C CyscM X Cysc M x R be defined by

et
(p,a,t) € R iff p~q.
Then R is a closed subset of CyseM X Cqsc M X R.

Proof. Suppose p; = p, ¢; — ¢, and t; — t as i — oo, and that (p;, ¢, t;) € R. We will
show that (p,q,t) € R.

For simplicity, we reformulate (4.1) as follows: let k& be a Riemannian metric on the
manifold (**°T7,,M)° such that the norm of X with respect to k is one. (As X = O(o™ 1),

qsc 75

k vanishes at S}, M.) Let 0 = k(-, X) € Q*(( TonrM)°); extend 6 to be zero on the
interior of the boundary face *¢S*M. Then the condition (4.1) is equivalent to

(4.4) / =1

Now by hypothesis there exists a sequence y; of paths as in Definition 4.2 such that
7i(0) = ps, vi(1) = ¢;, and f%_ 0 = t; for all i. As the ~; are all integral curves of o X, we
apply Ascoli-Arzeld to obtain a path v between p and ¢, made up of integral curves of
X with f7 0=t. O

Definition 4.4. Let
G;'S={p: Gi(p) C S}.
We now prove that G; is, in an appropriate sense, a continuous set map.

Lemma 4.5. If K C R is compact then

Ugt

teK

6"

teK

takes closed sets to closed sets, and

takes open sets to open sets.
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Proof. Let g, and mg denote the projections of Cysc M X Cysc M x R onto the “left” and
“right” factors of Cgys. and let m; denote projection to R. Then we can write

U Gi(S) = T (rx'SNm, 'K N R)

teK
and
() 67(S) = [rr(=x;' (S9N 'K N R))°
teK
hence the result follows from Lemma 4.3. O

Theorems 3.6—-3.9 can now be conveniently recast as
Main propagation theorem. If S C CqscM and
G+(S) N WEe(0) = 0
then there exists € > 0 such that
SNWEL-eTHdy = .

Proof. By (4.3), it suffices to prove the result for S = {p}, a single point in CyqscM. By
(4.2), it suffices to prove the result for small ¢; we take ¢t < 7/w for simplicity. If

pe (" Tp) W,

then for any ¢, as discussed in §3, G;(p) is a single point in (**T7,,M)°, and the result
follows from Theorem 3.6.

Let arctan; denote the branch of arctan taking values in [0,7). If p € N°, then for
t € (0,w arctany (A(p)/w)), Gi(p) is again a point in V°, and again the theorem follows
from Theorem 3.6. At t = w~!arctan (A(p)/w), exp(—tX)[p] € N¢, and

Gi(p) = Nia(exp(—tX)[p]) C ¥S*M,
hence Theorem 3.9 takes care of this case. For
wlarctan, (M(p)/w) < t < 7/w,

we once again have G;(p) C (¥*Tj,,M)°, and Theorem 3.8 finishes the proof.
If, on the other hand, p € ¥°S*M, G,(p) C (qSCT*M)° fort € (0,m/w): Gi(p) is a single
point if p ¢ N¢, or a whole set, given by the scattering relation, if p € N§. The theorem

then follows from Theorem 3.7 in the former case, and Theorem 3.8 in the latter. O

The relation G; is non-recurrent except at certain times:

Lemma 4.6. For T' ¢ S, and any p € CyscM, there ezists an open neighborhood O of
p and € > 0 such that

G(O)NO =0 foralte[T—¢T+e.
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Proof. By compactness of OM, S, is closed. Hence if T ¢ S, there exists ¢ > 0 such
that

K =[T—-¢T+¢ CR\S,.
By Lemma 4.5, Usc k G¢(p) is closed. If this set does not contain p then we can choose an
open set U containing Use Gy (p) but such that p ¢ Y. By Lemma 4.5, we can then set

0=)6 "\
teK
Thus it will suffice to prove that for ¢ ¢ S, p ¢ Gi(p)-
First we take the case p € ¥S* M\N°. Then for t € (0,7/w),
Gi(p) = exp(—tX)[N-co(p)] € (*"TonM)°,
and this set certainly doesn’t contain p. Let Z be the involution of N'¢ swapping N and
NE€. Then

gvr/w(p) = N—ljolo olo N—Oo(p)’
and this set doesn’t contain p unless Y, (p) = Y_ o (p), i-e. unless p lies on a geodesic
1-gon with vertex in OM. For t € (7/w, 27 /w),

Gi(p) = exp(—(t — m/w)X)[Scat oT o N_co(p)];
again a subset of (**T7,,M)°. The set
Gor/w(p) = Nia © T o ScatoZ o N_g(p),

and this set certainly does contain p. Continuing in this manner, we find that if ¢ =
nm/w~+r with r € (0,7/w) then

Gi(p) = exp(—rX)(ScatoZ)" N-oo(p) C (* Ty M),

while

Grrfw(P) = Nige 0 Lo (ScatoZ)™ o N_oo(p),

hence p € Gi(w) iff there exists a geodesic n-gon passing through p with vertices in OM
(this is always the case for n even, as we are allowed to repeat edges).

Now we take the case p € (¥ Ty M)°\N. The flow of X in (T, M)°\N is, as
discussed in §3, given by unit speed geodesic flow in M with time parameter s = [ |ul|dt,
while (A, |u|) undergo the motion (3.4). The only fixed-point of the (A, |u|) flow is
given by A = 0, |u| = w; all other orbits are periodic with period m/w. Hence if

(Ap), |u(p)]) # (0,w) and t ¢ (w/w)Z then p ¢ Gi(p), since the (A, |u|) coordinates
distinguish between these two points. If, on the one hand, ¢ = n7/w, we have by (3.4)

nw/w
s= [ lulat
0

_ S/"”/“’ wsinw(t —to) + iR cosw(t — tp)
0 cosw(t —tg) —iRsinw(t — tp)
/“/2“’ tanwt — iR dt
—r/20 1 +iRtanwt

(4.5) di

nws

nmw
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oM
Yio (p)

Y_oo(p)

FIGURE 2. A point p on a geodesic triangle with vertices in 0 M.

(recall that R = 0 only on V). Thus by (3.5), for (X, |u]) # (0,w), p = Gpr/w(p) only if
there is a closed geodesic of length nm in M. On the other hand, if (A(p), |u(p)|) = (0,w),
(A, |]) remains constant along the flow, so p = G;(p) only if there is a closed geodesic in
OM of length wt. This proves the result for p € (* T4, M)°\N.

The proof for p € N (including N¢) proceeds like the proof for p € BCS* M\N_;
certainly if t ¢ (7/w)Z, p ¢ Gi(p), as A is constant on Gi(p) at fixed ¢, and equals A(p)
only for t € (r/w)Z. The same geometrical discussion used in the proof for points in
(95¢S*M)° also shows that p ¢ G/, (p) unless there is a geodesic n-gon with vertices in
OM, with one vertex at y(p). O

Proof of Theorem 4.1. The theorem follows directly from the Main Propagation Theo-
rem and Lemma 4.6. O

From Theorem 4.1, we deduce the following, which is the key result for our trace
theorem.

Corollary 4.7. Given T ¢ S, there exists ¢ > 0, k € Z,, and A; € \Ilg’s%(M), 1=
1,...,k such that

AiUy(t)A; € CO([T — €, T + €] ; U (M)
and

k
I= A7+R

i=1
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(I denotes the identity operator) with R € Uqge '™ (M).

Proof. By Theorem 4.1, we can find a partition of unity (b1,)?, subordinate to a cover
O; of CyscM, such that WE.1(0) C O; implies that WEI[;:%’TH% N O; = 0. Extend
the by ; to be smooth functions on BT M with ess suppbi; C O;. Set Bi; = Op(b1 ;).
Then
Y By —1=0Cie Tyt (M)
(2

Let ¢; denote a representative of the symbol of C; in AI’Q(qSCT*M). Setting by; =
—Clbl,i/z and BQ,Z' = Op(bg,i), we have

D (Biji+ Byi)? — 1= Cy € U 2% (M).

7
Now let ¢y represent the symbol of Cs, set b3; = —cob1,/2 and Bs; = Op(bs;), and
continue in this manner, defining B;; inductively. Then use asymptotic summation to
obtain A; ~ 3. Bj;, with WELA; C O;and I =Y A? + R with R € Ugee ™ (M).

QSC
By our construction of O;, for all ¢ = 1,...,k we have
WELA; N WEL=TU (£) A4(0) = 0

for t € [T' — €, T + €], hence by microlocality, WE.A;U(t)A;4(0) = @ for any (0) €
C~®(M), i.e. AU(t)A; € C([T—€,T+e€]; Ugse *°(M)). Smoothness in ¢ follows similarly,
as

DFAU(t)A; = A;(—H)FU(¢) A;,

and since H € ¥ . (M),

WEL (1) U (1) Aip(0) € WEL S IU(8) Aip(0). O

asc
5. THE TRACE
We begin the study of Tr U(¢) by showing that it exists as a distribution:
Proposition 5.1. For ¢ € S(R),

[ s e v
and
é s Tr / SOU ) dt
18 a tempered distribution on R.

Proof. The structure of the argument is standard—see, for example, part II of [2]. We
reproduce it only owing to the slight novelty of the Sobolev spaces involved.
Choose k €R below the spectrum of 7. Then by ellipticity of H,

(k4 H)7F: HOO (M) — H2EO(M).

Since
U(t) = (k+H)*(k + H)T*Ut) = (k — D)*(s + H)*U (),



GENERALIZED HARMONIC OSCILLATOR 15

we can write
(5.1) / SOU ) dt = / (5 — Dy)Fd(t) (s + H)FU (1) dt.
U(t) is unitary on HEI(M), so
(r+H)FU ) : HG(M) = Hag (M)
is bounded uniformly in ¢. Since ﬂngécc’o(M) = C(M), (5.1) shows that
/ SOU(H) dt : (M) — (M),
ie.
/ HOU(1) di € 1o (M),

Furthermore, if we take k large enough so that (k+H) ¥U(t) is trace-class, we see that
¢ — Tr [ ¢(t)U(t) dt is a tempered distribution of order at most k. O

We are now in a position to prove our main theorem:

Theorem 5.2. If there are no trapped geodesics in J\O/[ then
sing supp Tr U (¢) C S,,.
Proof. Let ¢ € C*°(R) be 0 for z > 2 and 1 for x < 1. Set
Wy = Op[(1 — ¢(nz))(1 — ¢(n0))] € Ll (M);
then W,, — I strongly on L?(M). We regularize Tr U(t) by examining instead
Tr U(t)Wh;

this is a smooth function on R since DY Tr U (¢)W,, = Tr(—H)PU (t)W,,.
Given T' ¢ S,,, we choose A;, i =1,...,k as in Corollary 4.7, and write

k
T U)W, = T IUGW,, = Y Tr AFU ()W, + Tr RU(t)W,,.
=1

A;U(t)W,, is trace-class, so we may now rewrite

k
TrU®)Wy = > Tr AU (#)Wad; + Tr RU ()W
=1

As n — oo, DYRU(t)W,, converges to DYRU(t) in the norm topology on operators
Hgslél(M) — I-Igslé’l' (M) for any m,l,m',l', and any p € Z,; thus Tr RU(t)W,, approaches
a smooth function as n— oo. Thus, if we can also show that

1. limy, oo TrU(t)W,, = Tr U(t), and

2. hmn—)oo TIAZU(t)WnAZ = TI‘AZU(t)AZ for all 7 = 1, e ,k,
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in the sense of distributions, we will have TrU(t) € C*®°([T — €,T + ¢€]) for some € > 0,
and we will be done.

Both (1) and (2) follow from the following identity, which holds, in the distributional
sense, for any A € UH(M) (and any p, q):

lim Tr AU ()W, A = Tr AU (t) A.

n—0o0

To prove this, let ¢ € S(R) be a test function, let  lie below the spectrum of H, and
write

lim [ ¢(t) Tr AU )W, A dt

n—0oQ

= lim Tr [ ¢(t)U(t)W, A dt

~ lim Tr / $(1) (5 — D)™ (s +H) U ()W, A2 dt

= Jim [ (5= D" () T [(s+ 1)U ()W A”)
= Jim [ [(5 = D" o(0) T [AGs + H) U)W A] di

_ / [(5 — D)™ (1)) Tr [A(k + H)~™U (£)A] dt

_ / (1) Tr AU () A dt;

here we take m large enough that (k4 H)~™U (t) is trace-class; the penultimate equality
follows from the norm convergence

Ak +H) "U)WRA = Ak +H) ™U(H)A
as operators HYo(M) — Heam P~%%1"€(M) for all p,q and all € > 0. O

APPENDIX: THE PROPAGATION THEOREMS

As noted above, the only obstacle to proving Theorems 3.6-3.9 in exactly the same
manner as Theorems 12.1-12.5 of [13] is the fact that (Yis)«X # 0 in the harmonic
oscillator case; we merely have

(Y:I:oo)*X == O(O’)

This makes no difference in proving Theorems 3.6 or 3.8, but we must modify the con-
structions of the symbols a1+ and a4 used to prove the other three theorems.

We modify the symbols aT’l and &T’l defined in §13 of [13] by replacing the factor
V0o = P(d(Y_o(p),%0)) (¢ is a cutoff function) by

";—oo = d)(d(Y—oo(p)’yO)2 — €0).
Since Xo = —A\+0(0%)+0(z) = —1+0(c?)+0(x)+0(|a*) and since (Vo). X = O(0),

~X(-o0) = =/ (d(Y-co(p), 40)° — €0) [0(0) +e+0(0%) + O() + O(laf) | -
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The quantity in square brackets is strictly positive for z, o, ii sufficiently small, and the
constructions of a; and a, in [13] go through as before, with 1)_, replacing 9_, and
by constructed so as to ensure that o is small on suppa,.
Similarly, in the construction of a_ and a_, we replace ¥4(q) = ¢(d(Yioo(q)),v0)
with B
Pio0(9) = H(d(Yioo (Q)ay0)2 + €0).
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