### THE TRACE OF THE GENERALIZED HARMONIC OSCILLATOR

### JARED WUNSCH

ABSTRACT. We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator

$$(0.1) (D_t + \frac{1}{2}\Delta + V)\psi = 0$$

where  $\Delta$  is the Laplace-Beltrami operator with respect to a "scattering metric" on a compact manifold M with boundary (the class of scattering metrics is a generalization of asymptotically Euclidian metrics on  $\mathbb{R}^n$ , radially compactified to the ball) and V is a perturbation of  $\frac{1}{2}\omega^2x^{-2}$ , with x a boundary defining function for M (e.g. x=1/r in the compactified Euclidian case). Using the quadratic-scattering wavefront set, a generalization of Hörmander's wavefront set that measures oscillation at  $\partial M$  as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem: let

$$S_{\omega} = \left\{ \frac{L}{\omega} : \text{there exists a closed geodesic in } \partial M \text{ of length } \pm L \right\}$$

 $\cup \left\{\frac{n\pi}{\omega}: \text{ there exists a geodesic $n$-gon in $M$ with vertices in $\partial M$}\right\} \cup \{0\}.$ 

Let  $U(t)=e^{-it(\frac{1}{2}\Delta+V)}$  be the solution operator to the the Cauchy problem for (0.1).

Then under a non-trapping assumption for the geodesic flow on M, we have

sing supp Tr 
$$U(t) \subset S_{\omega}$$
,

where  $\operatorname{Tr} U(t)$  is the distribution given by integrating the Schwartz kernel of U(t) over the diagonal in  $M\times M$  or, alternatively, by  $\sum_j e^{-it\lambda_j}$ , where  $\lambda_j$  are the eigenvalues of  $\frac{1}{2}\Delta + V$ .

Author's address:

Department of Mathematics Columbia University 2990 Broadway, Mailcode 4406 New York NY 10027 USA

 $email: \ {\tt jwunsch@math.columbia.edu}$ 

Key-words: Schrödinger equation – Harmonic oscillator – Propagation of singularities – Trace theorem – Scattering metric

 $Math.\ classification:\ 58G17-58G25-58G15-35Q40$ 

Date: October 22, 1998.

# LA TRACE DE L'OSCILLATEUR HARMONIQUE GENERALISE

### JARED WUNSCH

Précis. On étudie une généralisation géométrique de l'équation de Schrödinger dépendante du temps pour l'oscillateur harmonique

$$(0.1) (D_t + \frac{1}{2}\Delta + V)\psi = 0$$

où  $\Delta$  est l'opérateur de Laplace-Beltrami associé à une "métrique scattering" sur une variété compacte M à bord (la classe de métriques scattering est une generalisation des métriques asymptotiquement euclidiennes sur  $\mathbb{R}^n$ , compactifié radialement à la boule) et V est une perturbation de  $\frac{1}{2}\omega^2x^{-2}$ , où x est une function qui définit le bord de M (e.g. x=1/r dans le cas euclidien compactifié). En employant le front d'onde quadratique-scattering, une généralisation du front d'onde de Hörmander qui mesure l'oscillation en  $\partial M$  ainsi que les singularités, on décrit un théorème de propagation des singularités pour les solutions de (0.1). Ceci permet de démontrer le théorème de trace suivant: soit

$$S_{\omega} = \left\{ \frac{L}{\omega} : \text{ il existe une g\'eod\'esique ferm\'ee dans } \partial M \text{ de longueur } \pm L \right\}$$
 
$$\cup \left\{ \frac{n\pi}{\omega} : \text{ il existe un } n\text{-gone g\'eod\'esique dans } M \text{ dont les sommets appartiennent à } \partial M \right\} \cup \{0\}.$$

Soit  $U(t) = e^{-it(\frac{1}{2}\Delta + V)}$  l'opérateur de solution du problème de Cauchy pour (0.1). Alors sous une hypothèse de non-captivité pour le flôt géodésique sur M, on a

supp sing Tr 
$$U(t) \subset S_{\omega}$$
,

où  $\operatorname{Tr} U(t)$  est la distribution qu'on obtient en intégrant le noyau de Schwartz de U(t) sur la diagonale de  $M\times M$  où alternativement, de  $\sum_j e^{-it\lambda_j}$ , où  $\lambda_j$  sont les valeurs propres de  $\frac{1}{2}\Delta + V$ .

#### 1

#### 1. Introduction

Let M be a compact manifold with boundary endowed with a scattering metric g as defined by Melrose [9]. Thus in a neighborhood of  $\partial M$ , we can write

$$(1.1) g = \frac{dx^2}{x^4} + \frac{h}{x^2}$$

where x is a boundary defining function for  $\partial M$ , i.e. is smooth, nonnegative, and vanishes exactly at  $\partial M$  with  $dx \neq 0$  at  $\partial M$ , and where  $h \in \mathcal{C}^{\infty}(\operatorname{Sym}^2(T^*M))$  restricts to be a metric on  $\partial M$ . Scattering metrics form a class of complete, asymptotically flat metrics that includes asymptotically Euclidian metrics on  $\mathbb{R}^n$ , radially compactified to the n-ball; this class also includes metrics on  $\mathbb{R}^n$  that are not asymptotically Euclidian but that look like arbitrary, non-round metrics on the sphere at infinity (see [9] for details).

We consider a generalization of the quantum-mechanical harmonic oscillator on the manifold M: let x be a boundary-defining function for  $\partial M$  with respect to which g has the form (1.1), e.g.  $|z|^{-1}$  on flat  $\mathbb{R}^n$  (modified to be a smooth function at z=0). For any  $\omega \in \mathbb{R}_+$ , we consider the associated time-dependent Schrödinger equation

(1.2) 
$$\left(D_t + \frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v\right)\psi = 0$$

where v is a formally self-adjoint perturbation term that can include both magnetic and electric potential terms. We will take v to be an error term in a sense to be made precise later on; potentials of the form  $v \in \mathcal{C}^{\infty}(M)$  are certainly allowed. Note that for such a v,  $\frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v$  is semi-bounded, hence the Friedrichs extension gives a self-adjoint operator on  $L^2(M)$  (with respect to the metric dg). Our class of operators thus includes compactly supported metric and potential perturbations of the standard harmonic oscillator on  $\mathbb{R}^n$ .

Perturbations of the free-particle Schrödinger equation on manifolds with scattering metrics were studied in [13] using a calculus of pseudodifferential operators on manifolds with boundary called the *quadratic-scattering* (or qsc) calculus and denoted  $\Psi_{\rm qsc}(M)$ . This calculus is a microlocalization of the Lie algebra of "quadratic-scattering vector fields" on M, given by

(1.3) 
$$\mathcal{V}_{qsc}(M) = x^2 \mathcal{V}_{b}(M)$$

where

(1.4) 
$$\mathcal{V}_{\mathbf{b}}(M) = \{ \text{vector fields on } M \text{ tangent to } \partial M \}.$$

Near  $\partial M$ ,  $\mathcal{V}_{qsc}(M)$  is locally spanned over  $\mathcal{C}^{\infty}(M)$  by vector fields of the form  $x^3\partial_x$ ,  $x^2\partial_{y_j}$  where  $x, y_j$  are product-type coordinates on M near  $\partial M$ , i.e. the  $y_j$ 's are coordinates on  $\partial M$ . The Lie algebra  $\mathcal{V}_{qsc}(M)$  can be written as the space of sections of a vector bundle:

$$\mathcal{V}_{\mathrm{qsc}}(M) = \mathcal{C}^{\infty}(M; {}^{\mathrm{qsc}}TM);$$

we call  $^{\rm qsc}TM$  the quadratic scattering tangent bundle of M. Let  $^{\rm qsc}T^*M$  be the dual bundle (the quadratic scattering cotangent bundle). Let  $^{\rm qsc}\overline{T}^*M$  be the unit-ball bundle over M obtained by radially compactifying the fibers of  $^{\rm qsc}T^*M$  (see [9] or [13]). This is a manifold with corners. The principal symbols of operators in the qsc-calculus are conormal distributions on  $^{\rm qsc}\overline{T}^*M$  with respect to the boundary (a precise definition

of such distributions will be given in §2). There is an associated wavefront set,  $WF_{qsc}$ , which is a closed subset of  $\partial({}^{qsc}\overline{T}^*M)$ .

In [13], propagation of  $\widehat{\mathrm{WF}}_{\mathrm{qsc}}$  was described for perturbations of the free particle Schrödinger equation on M. In this paper, we discuss the analogous results for the harmonic oscillator, referring to [13] for all technical details. We can conclude from the propagation results that if there are no trapped geodesics on  $\widehat{M}$ , then except at a certain set of times

(1.5) 
$$S_{\omega} = \left\{ \frac{L}{\omega} : \text{there exists a closed geodesic in } \partial M \text{ of length } \pm L \right\}$$

$$\cup \left\{ \frac{n\pi}{\omega} : \text{ there exists a geodesic } n\text{-gon in } M \text{ with vertices in } \partial M \right\} \cup \{0\},$$

there is no recurrence of WF<sub>qsc</sub> for solutions to (1.2). In the above definition of  $S_{\omega}$  we adopt the convention that the sides of a geodesic n-gon in M with vertices in  $\partial M$  are maximally extended geodesics in M (which automatically have infinite length) and geodesics in  $\partial M$  of length  $\pi$ ; the latter geodesics appear naturally as limits of geodesics through M—cf. Proposition 1 of [10]. Using very general properties of the qsc calculus, in §5 we use the non-recurrence result to conclude that if U(t) is the solution operator for the Cauchy problem for (1.2) then

(1.6) 
$$\operatorname{sing supp} \operatorname{Tr} U(t) \subset S_{\omega}.$$

For example, if we have a compactly-supported potential perturbation of the standard harmonic oscillator on  $\mathbb{R}^n$ ,  $S_\omega = 2\pi\mathbb{Z}$ : if M is the radial compactification of  $\mathbb{R}^n$ ,  $\partial M$  is the unit n-1-sphere. Geodesics on M connect antipodal points on  $\partial M$  and geodesics in  $\partial M$  are great circles, hence consecutive vertices of a geodesic n-gon are antipodal points and there exist geodesic n-gons iff n is even; closed geodesics in  $\partial M$  also only occur with lengths in  $2\pi\mathbb{Z}$ . Hence for a potential perturbation of the harmonic oscillator on  $\mathbb{R}^n$ , the trace of the solution operator can only be singular at multiples of  $2\pi$ . One can deduce this easily from Mehler's formula in the unperturbed case.

The trace theorem (1.6) closely resembles a result of Chazarain [1] and Duistermaat-Guillemin [6] which says that on a compact Riemannian manifold without boundary,

sing supp 
$$\operatorname{Tr} e^{it\sqrt{\Delta}} \subset \{\text{lengths of closed geodesics}\} \cup \{0\};$$

related results of Colin de Verdière using heat kernels can be found in [3] and [4]. Chazarain [2] has also proved a semi-classical trace theorem for the time-dependent Schrödinger equation, in which the lengths of closed bicharacteristics of the total symbol appear. By contrast, the trace theorem of this paper is a non-semi-classical result, and over  $S^*M$ , the relevant bicharacteristic flow is that of the symbol  $|\xi|^2/2$  rather than the full symbol as in [2]. Results on singularities of perturbations of the harmonic oscillator have been obtained by Zelditch [15], Weinstein [12], Fujiwara [7], Yajima [14], Kapitanski-Rodnianski-Yajima [8], and Treves [11]. Periodic recurrence of singularities for perturbations of the harmonic oscillator on  $\mathbb{R}^n$  was demonstrated by Zelditch [15]

and Weinstein [12], and the trace theorem (1.6) was proven by Zelditch for perturbations of the harmonic oscillator in  $\mathbb{R}^n$  by potentials in  $\mathcal{B}(\mathbb{R}^n)$ .

The author is grateful to Richard Melrose, who supervised the Ph.D. thesis of which this work formed a part. The comments of an anonymous referee were also helpful, as was Hubert Goldschmidt's help in reducing the level of illiteracy of the French abstract. The work was supported by a fellowship from the Fanny and John Hertz Foundation.

### 2. The quadratic-scattering calculus

In this section, we briefly review the properties of the algebra  $\Psi_{\rm osc}(M)$ , which was constructed in [13], and is closely related to the "scattering algebra" of Melrose [9].

Let  $\mathcal{V}_{\rm qsc}(M)$  and  $\mathcal{V}_{\rm b}(M)$  be defined by (1.3) and (1.4), and let  ${\rm Diff}_{\rm qsc}(M)$  and  ${\rm Diff}_{\rm b}(M)$ be the order-filtered algebras of smooth linear combinations of products of elements of  $\mathcal{V}_{\rm qsc}(M)$  and  $\mathcal{V}_{\rm b}(M)$  respectively. There exists a bi-filtered star-algebra  $\Psi_{\rm qsc}(M)$ , the "quadratic-scattering calculus" of pseudodifferential operators on M such that

- $$\begin{split} \bullet \ & \mathrm{Diff}^m_{\mathrm{qsc}}(M) \subset \Psi^{m,0}_{\mathrm{qsc}}(M) \\ \bullet \ & \Psi^{m,l}_{\mathrm{qsc}}(M) = x^l \Psi^{m,0}_{\mathrm{qsc}}(M) = \Psi^{m,0}_{\mathrm{qsc}}(M) x^l \end{split}$$
- $\Psi_{\rm qsc}^{m,l}(M) \subset \Psi_{\rm qsc}^{m',l'}(M)$  if  $m \leqslant m'$  and  $l' m' \leqslant l m$ .  $\bigcap_{m,l} \Psi_{\rm qsc}^{m,l}(M) \equiv \Psi_{\rm qsc}^{-\infty,\infty}(M)$  consists of operators whose Schwartz kernels are smooth functions on  $M \times M$ , vanishing to infinite order at  $\partial(M \times M)$ .
- Elements of  $\Psi_{\rm qsc}^{0,0}(M)$  are bounded operators on  $L^2(M)$ .
- Given a sequence  $A_j \in \Psi_{\mathrm{qsc}}^{m-j,l+j}(M)$  for  $j=0,1,2,\ldots$ , there exists an "asymptotic sum"  $A \in \Psi^{m,l}_{qsc}(M)$ , uniquely determined modulo  $\Psi^{-\infty,\infty}_{qsc}(M)$ , such that  $A - \sum_{0}^{N-1} A_j \in \Psi^{m-N,l+N}_{qsc}(M)$ .

Let  $C_{\rm qsc}M = \partial({}^{\rm qsc}\overline{T}^*M)$ . Let  $\sigma$  be a boundary defining function for the boundary face  ${}^{\mathrm{qsc}}S^*M$  of  ${}^{\mathrm{qsc}}\overline{T}^*M$  created by the fiber compactification. Let x be the lift of a boundary defining function on M to  $\overset{\text{qsc}}{\overline{T}^*}M$ —thus x defines the boundary face  $\overset{\text{qsc}}{\overline{T}^*}MM$ . Let  $\dot{\mathcal{C}}^{\infty}(M)$  denote smooth functions on M vanishing to infinite order at  $\partial M$  and  $\dot{\mathcal{C}}^{-\infty}(M)$ the dual space to  $\dot{\mathcal{C}}^{\infty}(M)$ -valued densities. Following Melrose [9], we define conormal distributions on  $\operatorname{qsc} \overline{T}^*M$  with respect to  $C_{\operatorname{qsc}}M$  as follows:

$$\mathcal{A}^{p,q}({}^{\mathrm{qsc}}\overline{T}^*M) = \{u \in \mathcal{C}^{-\infty}({}^{\mathrm{qsc}}\overline{T}^*M) : \mathrm{Diff}_{\mathrm{b}}^k({}^{\mathrm{qsc}}\overline{T}^*M)u \subset \sigma^p x^q L^{\infty}({}^{\mathrm{qsc}}\overline{T}^*M) \text{ for all } k\};$$

here  $\operatorname{Diff}_{\mathsf{b}}^k$  is defined on the manifold with corners  $\operatorname{qsc} \overline{T}^*$  exactly as it was defined on manifolds with boundary: as the span of products of vector fields tangent to (all faces of) the boundary. Let

$$\mathcal{A}^{[m,l]}(C_{\operatorname{qsc}}M) = \mathcal{A}^{m,l}({}^{\operatorname{qsc}}\overline{T}^*M)/\mathcal{A}^{m-1,l+2}({}^{\operatorname{qsc}}\overline{T}^*M).$$

There exists a symbol map

$$j_{\mathrm{qsc},m,l}: \Psi^{m,l}_{\mathrm{qsc}}(M) \to \mathcal{A}^{[-m,l-m]}(C_{\mathrm{qsc}}M)$$

such that

• There is a short exact sequence

$$(2.1) 0 \to \Psi_{\mathrm{qsc}}^{m-1,l+1}(M) \to \Psi_{\mathrm{qsc}}^{m,l}(M) \xrightarrow{j_{\mathrm{qsc},m,l}} \mathcal{A}^{[-m,l-m]}(C_{\mathrm{qsc}}M) \to 0.$$

- The symbol map is multiplicative.
- The Poisson bracket extends continuously from the usual bracket defined on the interior of  $\overline{T}^*M$  to  $\mathcal{A}^{[\cdot,\cdot]}$ , and

$$j_{\mathrm{qsc},m_1+m_2-1,l_1+l_2}([P,Q]) = \frac{1}{i} \left\{ j_{\mathrm{qsc},m_1,l_1}(P), j_{\mathrm{qsc},m_2,l_2}(Q) \right\}.$$

Furthermore, if  $a \in \mathcal{A}^{m,l}({}^{\operatorname{qsc}}\overline{T}^*M)$ ,  $\{a,b\} = H_a(b)$  where  $H_a$  is the extension of the usual Hamilton vector field on the interior of  ${}^{\operatorname{qsc}}\overline{T}^*M$  to an element of  $\sigma^{-m+1}x^{l+2}\mathcal{V}_{\operatorname{b}}({}^{\operatorname{qsc}}\overline{T}^*M)$ . (We refer to the flow along  $H_a$  or  $\sigma^{m-1}x^{-l-2}H_a$  as bicharacteristic flow.)

• There exists a (non-unique) "quantization map"

$$\operatorname{Op}: \mathcal{A}^{-m,l-m}({}^{\operatorname{qsc}}\overline{T}^*M) \to \Psi^{m,l}_{\operatorname{qsc}}(M)$$

such that

$$j_{\operatorname{qsc},m,l}(\operatorname{Op}(a)) = [a] \in \mathcal{A}^{[-m,l-m]}(C_{\operatorname{qsc}}M).$$

**Definition 2.1.** An operator  $P \in \Psi^{m,l}_{qsc}(M)$  is said to be *elliptic* at a point  $p \in C_{qsc}M$  if  $j_{qsc,m,l}$  is locally invertible near p. The set of points at which P is elliptic is denoted ell P. If P is elliptic everywhere, it is simply said to be *elliptic*.

**Definition 2.2.** Let  $P \in \Psi^{m,l}_{qsc}(M)$ . A point  $p \in C_{qsc}M$  is in the complement of  $WF'_{qsc}P$  (the operator wavefront set or microsupport of P) if there exists  $Q \in \Psi^{-m,-l}_{qsc}(M)$  such that Q is elliptic at p and  $PQ \in \Psi^{-\infty,\infty}_{qsc}(M)$ .

We can now define the *qsc wavefront set* of  $u \in \mathcal{C}^{-\infty}(M)$  as the subset  $\operatorname{WF}_{qsc}u$  of  $C_{qsc}M$  such that  $p \notin \operatorname{WF}_{qsc}u$  if and only if there exists  $A \in \Psi^{0,0}_{qsc}(M)$  with  $p \in \operatorname{ell} A$  such that  $Au \in \dot{\mathcal{C}}^{\infty}(M)$ .

The gsc wavefront set and microsupport enjoy the following properties:

- $\bullet \ \ \text{For} \ A,B \in \Psi_{\rm qsc}(M), \ \ \mathrm{WF}'_{\rm qsc}AB \subset \ \ \mathrm{WF}'_{\rm qsc}A \cap \ \ \mathrm{WF}'_{\rm qsc}B \ \ \text{and} \ \ \ \mathrm{WF}'_{\rm qsc}A^* = \ \ \mathrm{WF}'_{\rm qsc}A.$
- Microlocal parametrices exist at elliptic points: if  $P \in \Psi^{m,l}_{\rm qsc}(M)$  is elliptic at  $p \in C_{\rm qsc}M$  then there exists  $Q \in \Psi^{-m,-l}_{\rm qsc}(M)$  such that

$$p \notin \mathrm{WF}'_{\mathrm{qsc}}(PQ-I)$$
 and  $p \notin \mathrm{WF}'_{\mathrm{qsc}}(QP-I)$ .

• Microlocality: let  $P \in \Psi_{\rm qsc}(M)$  and  $u \in \mathcal{C}^{-\infty}(M)$ . Then

$$WF_{qsc}Pu \subset WF'_{qsc}P \cap WF_{qsc}u.$$

• Microlocal elliptic regularity: Let  $P \in \Psi_{qsc}(M)$  and  $u \in \mathcal{C}^{-\infty}(M)$ . Then

$$WF_{qsc}(u) \subset WF_{qsc}(Pu) \cup (ell P)^c$$
.

• We can (and do) choose the map Op in such a way that

$$WF'_{asc} Op(a) \subset ess supp a$$

(ess supp a is the set of points in  $C_{\rm qsc}M$  near which a does not vanish to infinite order).

We will also require a notion of gsc wavefront set that is uniform in a parameter.

**Definition 2.3.** Let  $u \in \mathcal{C}(\mathbb{R}; \mathcal{C}^{-\infty}(M))$ . For  $S \subset \mathbb{R}$  compact, we say that  $p \notin \mathrm{WF}_{\mathrm{qsc}}^S(u)$  if there exists a smooth family  $A(t) \in \Psi_{\mathrm{qsc}}^{0,0}(M)$  such that A(t) is elliptic at p for all  $t \in S$  and  $Au \in \mathcal{C}(S; \dot{\mathcal{C}}^{\infty}(M))$ .

Associated to  $\Psi_{\rm qsc}(M)$  is a family of Sobolev spaces

$$H_{\mathrm{qsc}}^{m,l}(M) = \left\{ u \in \mathcal{C}^{-\infty}(M) : \Psi_{\mathrm{qsc}}^{m,-l}(M)u \subset L^2(M) \right\}$$

such that

• If  $A \in \Psi^{m',l'}_{\mathrm{qsc}}(M)$  then

$$A: H^{m,l}_{\mathrm{qsc}}(M) \to H^{m-m',l+l'}_{\mathrm{qsc}}(M)$$

is continuous for any m, l.

• For any  $l \in \mathbb{R}$ ,

$$\bigcap_m H^{m,l}_{\mathrm{qsc}}(M) = \dot{\mathcal{C}}^{\infty}(M)$$

and

$$\bigcup_{m} H^{m,l}_{\mathrm{qsc}}(M) = \mathcal{C}^{-\infty}(M).$$

• If  $a_n$  is a bounded sequence in  $\mathcal{A}^{-m,l-m}(M)$  and  $a_n \to a$  in some  $\mathcal{A}^{p,q}(M)$ , then  $\operatorname{Op}(a_n) \to \operatorname{Op}(a)$  in the strong operator topology on

$$\mathcal{B}\left(H_{\mathrm{qsc}}^{M,L}(M),H_{\mathrm{qsc}}^{M-m,M+l}(M)
ight)$$

for all M, L.

For details of all computations in this section, see [13], especially §11. We consider the symbol and corresponding bicharacteristic flow for the operator

$$\mathcal{H} = \frac{1}{2}\Delta + \frac{\omega^2}{2x^2} + v$$

where

$$v \in \mathrm{Diff}^{1,1}_{\mathrm{asc}}(M)$$

is formally self-adjoint and x is a boundary-defining function with respect to which g takes the form (1.1).

Let  $\lambda dx/x^3 + \mu \cdot dy/x^2$  be the canonical one-form on  ${}^{\rm qsc}T^*M$ . The joint symbol of  $\mathcal{H}$  is represented in  $\mathcal{A}^{[-2,-2]}(C_{\rm qsc}M)$  by a conormal distribution of the form

$$(3.1) \quad j_{\mathrm{qsc},2,0}(\mathcal{H}) = \frac{1}{2x^2} \left( \lambda^2 + |\mu|^2 + \omega^2 + xr(\lambda,\mu) \right);$$
$$r(\lambda,\mu) \in \lambda^2 x \, \mathcal{C}^{\infty}(x,y) + \lambda \mu \, \mathcal{C}^{\infty}(x,y) + \mu^2 \, \mathcal{C}^{\infty}(x,y)$$

where  $|\mu|$  denotes the norm of  $\mu$  with respect to the metric  $\bar{h} = h|_{\partial M}$ . Note that (3.1) shows that  $\mathcal{H}$  is an elliptic element of  $\Psi_{\rm qsc}^{2,0}(M)$ ; the perturbation v does not enter into the expression (3.1) as it has lower order than  $\frac{1}{2}\Delta + \frac{\omega^2}{2x^2}$  in both indices. The Hamilton vector field of  $\mathcal{H}$  is

$$X = \tilde{X} + P$$

where

is the Hamilton vector field for the symbol  $\frac{1}{2x^2}(\lambda^2 + |\mu|^2 + \omega^2)$ , and

$$(3.3) P = p_1 x^2 \partial_x + p_2 x \partial_y + q_1 x \partial_\lambda + q_2 x \partial_\mu$$

is the Hamilton vector field for the "error term"  $\frac{1}{2}x^{-1}r(\lambda,\mu)$ . Here we adopt the convention that  $\langle a,b\rangle=\sum a_ib_j\bar{h}^{ij}(y)$ , and  $a\cdot b=\sum a_ib_i$ . The vector field P is identically zero if h is a function of y only, and always vanishes at x=0.

Under the flow along X,

$$\frac{d}{dt}(\lambda + i|\mu|) = (\lambda + i|\mu|)^2 + \omega^2,$$

hence

(3.4) 
$$\lambda + i|\mu| = \omega \frac{\sin \omega (t - t_0) + iR\cos \omega (t - t_0)}{\cos \omega (t - t_0) - iR\sin \omega (t - t_0)}$$

for some  $R \in [0,1]$ . For R > 0, this gives a periodic orbit with period  $\pi/\omega$ . On  $\{\mu \neq 0\}$  (i.e. R > 0), we set  $\hat{\mu} = \mu/|\mu|$ , and introduce the rescaled time parameter  $s = \int |\mu| dt$  to rewrite the flow along  $\tilde{X}$  as

(3.5) 
$$\frac{dy_i}{ds} = \bar{h}^{ij}\hat{\mu}_j \qquad \qquad \frac{d\hat{\mu}_i}{ds} = -\frac{1}{2}\hat{\mu}_j\hat{\mu}_k\partial_{y_i}\bar{h}^{jk}$$

(3.6) 
$$\frac{d\lambda}{ds} = \frac{\lambda^2 - |\mu|^2}{|\mu|} + \omega^2 \qquad \frac{d|\mu|}{ds} = 2\lambda$$

(3.7) 
$$\frac{dx}{ds} = \frac{\lambda x}{|\mu|}.$$

As the set  $\mu = 0$  plays an important role in the geometry of  $\tilde{X}$ , we give it a name:

**Definition 3.1.** Let  $\mathcal{N} \subset {}^{\operatorname{qsc}}\overline{T}^*M$  be the set given in our coordinates by  $\{x = \mu = 0\}$ . Let  $\mathcal{N}_{\pm} \subset \mathcal{N}$  be the subsets on which  $\pm \lambda \geqslant 0$ . Let  $\mathcal{N}_{\pm}^c = \mathcal{N}_{\pm} \cap {}^{\operatorname{qsc}}S^*M$  (i.e.  $\mathcal{N}^c$  is the intersection of  $\mathcal{N}$  with the corner). We refer to  $\mathcal{N}$  as the "normal set," with  $\mathcal{N}_{+}$  being the "incoming normal set" and  $\mathcal{N}_{-}$  the "outgoing normal set."



FIGURE 1. Integral curves of  $\tilde{X}$ , projected onto the  $(\lambda, \mu)$  plane and radially compactified. The vertical line is the solution  $\mu = 0$ .

While  $(\lambda, |\mu|)$  are undergoing a flow described by (3.4) (see Figure 1), then provided  $R \neq 0$ , (3.5) shows that  $(y, \hat{\mu})$  are undergoing unit speed geodesic flow in  $\partial M$  with rescaled time parameter s. For R = 0,  $\mu$  is identically zero, y is constant, and  $\lambda$  blows up at  $t - t_0 = \pm \pi/2\omega$ , i.e. the flow crosses  $\mathcal{N}$  from  $\mathcal{N}_-^c$  to  $\mathcal{N}_+^c$  in time  $\pi/\omega$ . More generally the integral curve starting at  $\mu = 0$ ,  $\lambda = \lambda_0$ , reaches the corner at time  $t = \omega^{-1} \arctan(\omega/\lambda_0)$ .

Note that all terms in X are homogeneous of degree 1 in  $(\lambda, \mu)$  except the term  $\omega^2 \partial_{\lambda}$ , which is homogeneous of degree -1. If we let  $\sigma$  be the defining function for  ${}^{\operatorname{qsc}}S^*M$  in  ${}^{\operatorname{qsc}}\overline{T}^*M$  given by

$$\sigma = (\lambda^2 + |\mu|^2)^{-\frac{1}{2}}$$

and set

$$\bar{\lambda} = \sigma \lambda, \\ \bar{\mu} = \sigma \mu$$

then the vector field  $\sigma X$  is tangent to the boundary of  ${}^{\operatorname{qsc}}\overline{T}^*M$ , and we have

$$(3.8) \qquad \sigma X = \bar{\lambda}x\partial_x - |\bar{\mu}|^2\partial_{\bar{\lambda}} + \langle \bar{\mu}, \partial_y \rangle + (\bar{\lambda}\bar{\mu} - \frac{1}{2}\partial_y |\bar{\mu}|^2) \cdot \partial_{\bar{\mu}} - \bar{\lambda}\sigma\partial_{\sigma} + O(\sigma^2) + O(x)$$

where  $O(\sigma^2)$  and O(x) denote error terms of the form  $\sigma^2 Y_1$  and  $xY_2$ , with  $Y_i$  tangent to  $\partial({}^{\operatorname{qsc}}\overline{T}^*M)$ ; the  $O(\sigma^2)$  term is just  $\sigma\omega^2\partial_{\lambda}$ , while the O(x) term is what has above been denoted P.

The vector field X differs from the free-particle Hamilton vector-field  $X_{\rm fp}$  described in [13]<sup>1</sup> only in the term  $\omega^2 \partial_{\lambda}$ , hence since this term is  $O(\sigma)$ , we have

(3.9) 
$$\sigma X|_{\operatorname{qsc}S^*M} = \sigma X_{\operatorname{fp}}|_{\operatorname{qsc}S^*M}.$$

<sup>&</sup>lt;sup>1</sup>Unfortunately, this vector field is called X as well in [13].

**Definition 3.2.** A maximally extended integral curve of  $\sigma X$  on  ${}^{\operatorname{qsc}}S^*M$  is said to be non-trapped forward/backward if

$$\lim_{t \to \pm \infty} x(t) = 0.$$

A point in  ${}^{qsc}S^*M\backslash\mathcal{N}^c$  is said to be non-trapped forward/backward if the integral curve through it is non-trapped. A point in  $\mathcal{N}^c$  is said to be non-trapped forward/backward if it is not in the closure of any forward-/backward-trapped integral curves. Let  $\mathcal{T}_{\pm}$  denote the set of forward-/backward-trapped points in  ${}^{qsc}S^*M$ .

The only zeros of  $\sigma X$  on  ${}^{\operatorname{qsc}}S^*M$  are on the manifolds  $\mathcal{N}^c_-$  (attracting) and  $\mathcal{N}^c_+$  (repelling), so we can define

$$N_{\pm\infty}: {}^{\mathrm{qsc}}S^*M \setminus (\mathcal{N}_{\pm} \cup \mathcal{T}_{\pm}) \to \mathcal{N}_{\pm}^c$$

by

$$p\mapsto \lim_{t\to\pm\infty}\exp(t\sigma X)[p],$$

We extend this definition of  $N_{\pm\infty}$  to  ${}^{\mathrm{qsc}}\overline{T}^*M\setminus(\mathcal{N}_{\pm}\cup\mathcal{T}_{\pm})$  by homogeneity. We further define

$$Y_{\pm\infty}: {}^{\mathrm{qsc}}\overline{T}^*M \setminus (\mathcal{N}_{\pm} \cup \mathcal{T}_{\pm}) \to \partial M$$

to be the projection of  $N_{\pm\infty}$  to  $\partial M$ .

**Theorem 3.3.**  $N_{\pm\infty}$  and  $Y_{\pm\infty}$  are smooth maps.

If we let  $C^{\epsilon}_{\pm}$  be the submanifold of  ${}^{\operatorname{qsc}}S^*M$  given by

$$C_{\pm}^{\epsilon} = \left\{ x^2 + |\bar{\mu}|^2 = \epsilon, \bar{\lambda} \geqslant 0 \right\}$$

then for  $\epsilon$  sufficiently small,  $C^{\epsilon}_{\mp}$  is a fibration over  $\partial M$  with projection map  $Y_{\pm\infty}$ , and every integral curve of  $\sigma X$  which is not trapped forward/backward passes through  $C^{\epsilon}_{\mp}$ ;

The sets  $\mathcal{T}_{\pm} \backslash \mathcal{N}_{\pm}^c$  are closed subsets of  ${}^{qsc}S^*M \backslash \mathcal{N}_{\pm}^c$ .

By (3.9), this theorem follows from Theorem 11.6 of [13].

We can thus define the scattering relation:

**Definition 3.4.** Let  $S \subset \mathcal{N}^c_- \setminus \mathcal{T}_-$ . The scattering relation on S is

$$\mathsf{Scat}(\mathcal{S}) = N_{-\infty} \left( N_{+\infty}^{-1}(\mathcal{S}) \right) \subset \mathcal{N}_{+}^{c}.$$

It is shown in [13] that Scat takes closed sets to closed sets and Scat<sup>-1</sup> takes open sets to open sets.

Example 3.5. If M is the radial compactification of  $\mathbb{R}^n$  with an asymptotically Euclidean metric, we can identify the manifolds  $\mathcal{N}^c_{\pm}$  with  $S^{n-1}=\partial M$ . Then for  $\theta\in S^{n-1}$ ,  $\mathsf{Scat}\,\theta$  consists of all  $\theta'\in S^{n-1}$  such that there exists a geodesic  $\gamma$  in (uncompactified)  $\mathbb{R}^n$  with  $\lim_{t\to-\infty}\gamma'(t)=-\theta'$  and  $\lim_{t\to+\infty}\gamma'(t)=\theta$ . In other words,  $\mathsf{Scat}$  consists of all directions in  $\mathbb{R}^n$  that can scatter to the direction  $\theta$ . In the Euclidean case,  $\mathsf{Scat}$  is the antipodal map on  $S^{n-1}$ .

We now state theorems on propagation of  $WF_{qsc}$  that will suffice to obtain results on sing supp Tr U(t). (Slightly more sophisticated theorems, corresponding to Theorems 12.1-12.5 of [13], in fact hold here as well.)

**Theorem 3.6** (Propagation over the boundary). Let  $p \in ({}^{\operatorname{qsc}} \overline{T}_{\partial M}^* M)^{\circ}$  and assume

$$\exp(TX)[p] \in ({}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M)^{\circ}.$$

 $\textit{Then } p \notin \mathrm{WF}_{\mathrm{qsc}} \psi(0) \textit{ iff there exists } \delta > 0 \textit{ such that } \exp(TX)[p] \notin \mathrm{WF}_{\mathrm{qsc}}^{[T-\delta,T+\delta]} \psi.$ 

**Theorem 3.7** (Propagation into the interior). Let  $p \in {}^{\operatorname{qsc}}S^*M \setminus \mathcal{N}^c_-$  be non-backward-trapped and let  $T \in (0, \pi/\omega)$ . If  $\exp(-TX)[N_{-\infty}(p)] \notin \operatorname{WF}_{\operatorname{qsc}}\psi(0)$  then there exists  $\delta > 0$  such that  $p \notin \operatorname{WF}_{\operatorname{qsc}}^{[T-\delta,T+\delta]}\psi$ .

**Theorem 3.8** (Scattering across the interior). Let  $q \in \mathcal{N}_{-}^{c}$  be non-backward-trapped. If

$$\exp(-T_0X)\left[\operatorname{Scat}(q)\right] \cap \operatorname{WF}_{\operatorname{asc}}\psi(0) = \emptyset$$

for some  $T_0 \in (0, \pi/\omega)$ , then for every  $T \in (T_0, T_0 + \pi/\omega)$ , there exists  $\delta > 0$  such that  $\exp((T - T_0)X)[q] \notin WF_{qsc}^{[T - \delta, T + \delta]}\psi$ .

**Theorem 3.9** (Global propagation into the boundary). Let  $q \in \mathcal{N}_{-}^{c}$  be non-backward-trapped. If

$$\overline{N^{-1}_{+\infty}(q)} \cap \mathrm{WF}_{\mathrm{qsc}} \psi(0) = \emptyset$$

(closure taken in qsc S\*M) then for  $T \in (0, \pi/\omega)$ , there exists  $\delta > 0$  such that

$$\exp(TX)[q] \notin \mathrm{WF}_{\mathrm{osc}}^{[T-\delta,T+\delta]} \psi.$$

The proofs are by the same positive-commutator arguments used in [13] (which were in turn adapted from Craig-Kappeler-Strauss [5]), although the symbol constructions need to be slightly modified from those in [13] because the maps  $Y_{\pm\infty}$  are not exactly constant along the flow of X; we discuss these issues in an appendix.

## 4. Non-recurrence of singularities

Throughout this section, we assume that there are no trapped geodesics in  $\stackrel{\circ}{M}$ . This section is devoted proving

**Theorem 4.1.** Let  $S_{\omega}$  be defined by (1.5). For  $T \notin S_{\omega}$  and for any  $p \in C_{qsc}M$ , there exists an open neighborhood  $\mathcal{O}$  of p and  $\epsilon > 0$  such that if

$$WF_{osc}\psi(0)\subset \mathcal{O}$$

then

$$WF_{qsc}^{[T-\epsilon,T+\epsilon]}\psi \cap \mathcal{O} = \emptyset.$$

In order to deduce this theorem from Theorems 3.6–3.9, we first define a relation on  $C_{qsc}M$  which describes from what points singularities may reach a point  $p \in C_{qsc}M$ :

**Definition 4.2.** Let  $p, q \in C_{qsc}M$ . We write  $p \stackrel{t}{\sim} q$  if there exists a continuous path  $\gamma$  from p to q in  $C_{qsc}M$  that is a concatenation of maximally extended integral curves of  $\sigma X$  such that

(4.1) 
$$\sum \left( \text{lengths of integral curves in } {}^{\text{qsc}} \overline{T}_{\partial M}^* M \right) = t,$$

where we define the length of an integral curve in  ${}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M$  to be its length as an integral curve of X (and hence a finite number).

Then for  $S \subset C_{\rm qsc}M$ , let

$$\mathcal{G}_t(S) = \left\{ p \in C_{\operatorname{qsc}}M : p \stackrel{t}{\sim} q \text{ for some } q \in S \right\}.$$

If  $p \stackrel{s}{\sim} q$  and  $q \stackrel{t}{\sim} r$ , then  $q \stackrel{s+t}{\sim} r$ , hence

$$\mathcal{G}_{s+t}(S) = \mathcal{G}_s \circ \mathcal{G}_t(S).$$

We also have

$$\mathcal{G}_t(S \cup T) = \mathcal{G}_t(S) \cup \mathcal{G}_t(T).$$

The relation  $p \stackrel{t}{\sim} q$  is closed in the following sense:

**Lemma 4.3.** Let  $R \subset C_{\operatorname{qsc}}M \times C_{\operatorname{qsc}}M \times \mathbb{R}$  be defined by

$$(p,q,t) \in R \text{ iff } p \stackrel{t}{\sim} q.$$

Then R is a closed subset of  $C_{\rm qsc}M \times C_{\rm qsc}M \times \mathbb{R}$ .

*Proof.* Suppose  $p_i \to p$ ,  $q_i \to q$ , and  $t_i \to t$  as  $i \to \infty$ , and that  $(p_i, q_i, t_i) \in R$ . We will show that  $(p, q, t) \in R$ .

For simplicity, we reformulate (4.1) as follows: let k be a Riemannian metric on the manifold  $({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ$  such that the norm of X with respect to k is one. (As  $X=O(\sigma^{-1})$ , k vanishes at  ${}^{\operatorname{qsc}}S^*_{\partial M}M$ .) Let  $\theta=k(\cdot,X)\in\Omega^1(({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^\circ)$ ; extend  $\theta$  to be zero on the interior of the boundary face  ${}^{\operatorname{qsc}}S^*M$ . Then the condition (4.1) is equivalent to

Now by hypothesis there exists a sequence  $\gamma_i$  of paths as in Definition 4.2 such that  $\gamma_i(0) = p_i, \ \gamma_i(1) = q_i, \ \text{and} \ \int_{\gamma_i} \theta = t_i \ \text{for all} \ i.$  As the  $\gamma_i$  are all integral curves of  $\sigma X$ , we apply Ascoli-Arzelà to obtain a path  $\gamma$  between p and q, made up of integral curves of  $\sigma X$  with  $\int_{\gamma} \theta = t$ .

### Definition 4.4. Let

$$\mathcal{G}_t^{-1}S = \{p : \mathcal{G}_t(p) \subset S\}.$$

We now prove that  $\mathcal{G}_t$  is, in an appropriate sense, a continuous set map.

# **Lemma 4.5.** If $K \subset \mathbb{R}$ is compact then

$$\bigcup_{t \in K} \mathcal{G}_t$$

takes closed sets to closed sets, and

$$\bigcap_{t \in K} \mathcal{G}_t^{-1}$$

takes open sets to open sets.

*Proof.* Let  $\pi_L$  and  $\pi_R$  denote the projections of  $C_{\rm qsc}M \times C_{\rm qsc}M \times \mathbb{R}$  onto the "left" and "right" factors of  $C_{\rm qsc}$  and let  $\pi_t$  denote projection to  $\mathbb{R}$ . Then we can write

$$\bigcup_{t \in K} \mathcal{G}_t(S) = \pi_L(\pi_R^{-1} S \cap \pi_t^{-1} K \cap R)$$

and

$$\bigcap_{t\in K}\mathcal{G}_t^{-1}(S) = \left[\pi_R(\pi_L^{-1}(S^c)\cap\pi_t^{-1}K\cap R)\right]^c$$

hence the result follows from Lemma 4.3.

Theorems 3.6–3.9 can now be conveniently recast as

Main propagation theorem. If  $S \subset C_{asc}M$  and

$$\mathcal{G}_t(S) \cap \mathrm{WF}_{\mathrm{asc}} \psi(0) = \emptyset$$

then there exists  $\epsilon > 0$  such that

$$S \cap \mathrm{WF}_{\mathrm{asc}}^{[T-\epsilon,T+\epsilon]}\psi = \emptyset.$$

*Proof.* By (4.3), it suffices to prove the result for  $S = \{p\}$ , a single point in  $C_{\rm qsc}M$ . By (4.2), it suffices to prove the result for small t; we take  $t < \pi/\omega$  for simplicity. If

$$p \in \left({}^{\operatorname{qsc}} \overline{T}_{\partial M}^* M\right)^{\circ} \backslash \mathcal{N},$$

then for any t, as discussed in §3,  $\mathcal{G}_t(p)$  is a single point in  $({}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M)^{\circ}$ , and the result follows from Theorem 3.6.

Let  $\arctan_+$  denote the branch of arctan taking values in  $[0, \pi)$ . If  $p \in \mathcal{N}^{\circ}$ , then for  $t \in (0, \omega^{-1} \arctan_+(\lambda(p)/\omega))$ ,  $\mathcal{G}_t(p)$  is again a point in  $\mathcal{N}^{\circ}$ , and again the theorem follows from Theorem 3.6. At  $t = \omega^{-1} \arctan_+(\lambda(p)/\omega)$ ,  $\exp(-tX)[p] \in \mathcal{N}_-^c$ , and

$$\mathcal{G}_t(p) = \overline{N_{+\infty}^{-1}(\exp(-tX)[p])} \subset {}^{\mathrm{qsc}}S^*M,$$

hence Theorem 3.9 takes care of this case. For

$$\omega^{-1} \arctan_+(\lambda(p)/\omega) < t < \pi/\omega,$$

we once again have  $\mathcal{G}_t(p) \subset ({}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M)^{\circ}$ , and Theorem 3.8 finishes the proof. If, on the other hand,  $p \in {}^{\operatorname{qsc}}S^*M$ ,  $\mathcal{G}_t(p) \subset ({}^{\operatorname{qsc}}\overline{T}^*M)^{\circ}$  for  $t \in (0, \pi/\omega)$ :  $\mathcal{G}_t(p)$  is a single

If, on the other hand,  $p \in {}^{\operatorname{qsc}}S^*M$ ,  $\mathcal{G}_t(p) \subset ({}^{\operatorname{qsc}}T^*M)^{\circ}$  for  $t \in (0, \pi/\omega)$ :  $\mathcal{G}_t(p)$  is a single point if  $p \notin \mathcal{N}_+^c$ , or a whole set, given by the scattering relation, if  $p \in \mathcal{N}_+^c$ . The theorem then follows from Theorem 3.7 in the former case, and Theorem 3.8 in the latter.

The relation  $\mathcal{G}_t$  is non-recurrent except at certain times:

**Lemma 4.6.** For  $T \notin S_{\omega}$  and any  $p \in C_{qsc}M$ , there exists an open neighborhood  $\mathcal{O}$  of p and  $\epsilon > 0$  such that

$$\mathcal{G}_t(\mathcal{O}) \cap \mathcal{O} = \emptyset$$
 for all  $t \in [T - \epsilon, T + \epsilon]$ .

*Proof.* By compactness of  $\partial M$ ,  $S_{\omega}$  is closed. Hence if  $T \notin S_{\omega}$ , there exists  $\epsilon > 0$  such that

$$K = [T - \epsilon, T + \epsilon] \subset \mathbb{R} \backslash S_{\omega}.$$

By Lemma 4.5,  $\bigcup_{t \in K} \mathcal{G}_t(p)$  is closed. If this set does not contain p then we can choose an open set  $\mathcal{U}$  containing  $\bigcup_{t \in K} \mathcal{G}_t(p)$  but such that  $p \notin \overline{\mathcal{U}}$ . By Lemma 4.5, we can then set

$$\mathcal{O} = \bigcap_{t \in K} \mathcal{G}_t^{-1}(\mathcal{U}) \backslash \overline{\mathcal{U}}.$$

Thus it will suffice to prove that for  $t \notin S_{\omega}$ ,  $p \notin \mathcal{G}_t(p)$ .

First we take the case  $p \in {}^{\operatorname{qsc}}S^*M \backslash \mathcal{N}^c_-$ . Then for  $t \in (0, \pi/\omega)$ ,

$$\mathcal{G}_t(p) = \exp(-tX)[N_{-\infty}(p)] \subset ({}^{\operatorname{qsc}}\overline{T}_{\partial M}^*M)^{\circ}.$$

and this set certainly doesn't contain p. Let  $\mathcal{I}$  be the involution of  $\mathcal{N}^c$  swapping  $\mathcal{N}^c_+$  and  $\mathcal{N}^c_-$ . Then

$$\mathcal{G}_{\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ N_{-\infty}(p)},$$

and this set doesn't contain p unless  $Y_{+\infty}(p) = Y_{-\infty}(p)$ , i.e. unless p lies on a geodesic 1-gon with vertex in  $\partial M$ . For  $t \in (\pi/\omega, 2\pi/\omega)$ ,

$$\mathcal{G}_t(p) = \exp(-(t - \pi/\omega)X)[\mathsf{Scat} \circ \mathcal{I} \circ N_{-\infty}(p)],$$

again a subset of  $({}^{\rm qsc}\overline{T}^*_{\partial M}M)^{\circ}$ . The set

$$\mathcal{G}_{2\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ \mathsf{Scat} \circ \mathcal{I} \circ N_{-\infty}(p)},$$

and this set certainly does contain p. Continuing in this manner, we find that if  $t = n\pi/\omega + r$  with  $r \in (0, \pi/\omega)$  then

$$\mathcal{G}_t(p) = \exp(-rX)(\mathsf{Scat} \circ \mathcal{I})^n N_{-\infty}(p) \subset ({}^{\mathrm{qsc}}\overline{T}^*_{\partial M}M)^\circ,$$

while

$$\mathcal{G}_{n\pi/\omega}(p) = \overline{N_{+\infty}^{-1} \circ \mathcal{I} \circ (\mathsf{Scat} \circ \mathcal{I})^n \circ N_{-\infty}(p)},$$

hence  $p \in \mathcal{G}_t(\omega)$  iff there exists a geodesic n-gon passing through p with vertices in  $\partial M$  (this is always the case for n even, as we are allowed to repeat edges).

Now we take the case  $p \in ({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^{\circ}\backslash \mathcal{N}$ . The flow of X in  $({}^{\operatorname{qsc}}\overline{T}^*_{\partial M}M)^{\circ}\backslash \mathcal{N}$  is, as discussed in §3, given by unit speed geodesic flow in  $\partial M$  with time parameter  $s = \int |\mu| dt$ , while  $(\lambda, |\mu|)$  undergo the motion (3.4). The only fixed-point of the  $(\lambda, |\mu|)$  flow is given by  $\lambda = 0$ ,  $|\mu| = \omega$ ; all other orbits are periodic with period  $\pi/\omega$ . Hence if  $(\lambda(p), |\mu(p)|) \neq (0, \omega)$  and  $t \notin (\pi/\omega)\mathbb{Z}$  then  $p \notin \mathcal{G}_t(p)$ , since the  $(\lambda, |\mu|)$  coordinates distinguish between these two points. If, on the one hand,  $t = n\pi/\omega$ , we have by (3.4)

$$(4.5)$$

$$s = \int_{0}^{n\pi/\omega} |\mu| dt$$

$$= \Im \int_{0}^{n\pi/\omega} \omega \frac{\sin \omega (t - t_0) + iR \cos \omega (t - t_0)}{\cos \omega (t - t_0) - iR \sin \omega (t - t_0)} dt$$

$$= n\omega \Im \int_{-\pi/2\omega}^{\pi/2\omega} \frac{\tan \omega t - iR}{1 + iR \tan \omega t} dt$$

$$= n\pi$$



FIGURE 2. A point p on a geodesic triangle with vertices in  $\partial M$ .

(recall that R=0 only on  $\mathcal{N}$ ). Thus by (3.5), for  $(\lambda, |\mu|) \neq (0, \omega)$ ,  $p = \mathcal{G}_{n\pi/\omega}(p)$  only if there is a closed geodesic of length  $n\pi$  in  $\partial M$ . On the other hand, if  $(\lambda(p), |\mu(p)|) = (0, \omega)$ ,  $(\lambda, |\mu|)$  remains constant along the flow, so  $p = \mathcal{G}_t(p)$  only if there is a closed geodesic in  $\partial M$  of length  $\omega t$ . This proves the result for  $p \in (\mathbb{T}^*_{\partial M} M)^{\circ} \setminus \mathcal{N}$ .

The proof for  $p \in \mathcal{N}$  (including  $\mathcal{N}^c$ ) proceeds like the proof for  $p \in {}^{\operatorname{qsc}}S^*M \backslash \mathcal{N}_-$ ; certainly if  $t \notin (\pi/\omega)\mathbb{Z}$ ,  $p \notin \mathcal{G}_t(p)$ , as  $\lambda$  is constant on  $\mathcal{G}_t(p)$  at fixed t, and equals  $\lambda(p)$  only for  $t \in (\pi/\omega)\mathbb{Z}$ . The same geometrical discussion used in the proof for points in  $({}^{\operatorname{qsc}}S^*M)^\circ$  also shows that  $p \notin \mathcal{G}_{n\pi/\omega}(p)$  unless there is a geodesic n-gon with vertices in  $\partial M$ , with one vertex at y(p).

*Proof of Theorem 4.1.* The theorem follows directly from the Main Propagation Theorem and Lemma 4.6. □

From Theorem 4.1, we deduce the following, which is the key result for our trace theorem.

Corollary 4.7. Given  $T \notin S_{\omega}$ , there exists  $\epsilon > 0$ ,  $k \in \mathbb{Z}_+$ , and  $A_i \in \Psi_{qsc}^{0,0}(M)$ ,  $i = 1, \ldots, k$  such that

$$A_i U_{\omega}(t) A_i \in \mathcal{C}^{\infty}([T - \epsilon, T + \epsilon]; \Psi_{qsc}^{-\infty, \infty}(M))$$

and

$$I = \sum_{i=1}^{k} A_i^2 + R$$

(I denotes the identity operator) with  $R \in \Psi_{qsc}^{-\infty,\infty}(M)$ .

*Proof.* By Theorem 4.1, we can find a partition of unity  $(b_{1,i})^2$ , subordinate to a cover  $\mathcal{O}_i$  of  $C_{\operatorname{qsc}}M$ , such that  $\operatorname{WF}_{\operatorname{qsc}}\psi(0)\subset\mathcal{O}_i$  implies that  $\operatorname{WF}_{\operatorname{qsc}}^{[T-\epsilon,T+\epsilon]}\psi\cap\mathcal{O}_i=\emptyset$ . Extend the  $b_{1,i}$  to be smooth functions on  $\operatorname{qsc}\overline{T}^*M$  with ess  $\operatorname{supp} b_{1,i}\subset\mathcal{O}_i$ . Set  $B_{1,i}=\operatorname{Op}(b_{1,i})$ . Then

$$\sum_i B_{1,i}^2 - I = C_1 \in \Psi_{\mathrm{qsc}}^{-1,1}(M).$$

Let  $c_1$  denote a representative of the symbol of  $C_1$  in  $\mathcal{A}^{1,2}({}^{\operatorname{qsc}}\overline{T}^*M)$ . Setting  $b_{2,i} = -c_1b_{1,i}/2$  and  $B_{2,i} = \operatorname{Op}(b_{2,i})$ , we have

$$\sum_{i} (B_{1,i} + B_{2,i})^2 - I = C_2 \in \Psi_{qsc}^{-2,2}(M).$$

Now let  $c_2$  represent the symbol of  $C_2$ , set  $b_{3,i} = -c_2 b_{1,i}/2$  and  $B_{3,i} = \operatorname{Op}(b_{3,i})$ , and continue in this manner, defining  $B_{j,i}$  inductively. Then use asymptotic summation to obtain  $A_i \sim \sum_j B_{j,i}$ , with  $\operatorname{WF}'_{\operatorname{qsc}} A_i \subset \mathcal{O}_i$  and  $I = \sum_j A_i^2 + R$  with  $R \in \Psi^{-\infty,\infty}_{\operatorname{qsc}}(M)$ .

By our construction of  $\mathcal{O}_j$ , for all  $i=1,\ldots,k$  we have

$$\operatorname{WF}'_{\operatorname{qsc}} A_i \cap \operatorname{WF}^{[T-\epsilon,T+\epsilon]}_{\operatorname{qsc}} U(t) A_i \psi(0) = \emptyset$$

for  $t \in [T - \epsilon, T + \epsilon]$ , hence by microlocality,  $\operatorname{WF}_{qsc} A_i U(t) A_i \psi(0) = \emptyset$  for any  $\psi(0) \in \mathcal{C}^{-\infty}(M)$ , i.e.  $A_i U(t) A_i \in \mathcal{C}([T - \epsilon, T + \epsilon]; \Psi_{qsc}^{-\infty,\infty}(M))$ . Smoothness in t follows similarly, as

$$D_t^k A_i U(t) A_i = A_i (-\mathcal{H})^k U(t) A_i,$$

and since  $\mathcal{H} \in \Psi_{\rm qsc}(M)$ ,

$$\operatorname{WF}_{\operatorname{qsc}}^{[T-\epsilon,T+\epsilon]}(-\mathcal{H})^k U(t) A_i \psi(0) \subset \operatorname{WF}_{\operatorname{qsc}}^{[T-\epsilon,T+\epsilon]} U(t) A_i \psi(0). \quad \Box$$

We begin the study of  $\operatorname{Tr} U(t)$  by showing that it exists as a distribution:

Proposition 5.1. For  $\phi \in \mathcal{S}(\mathbb{R})$ ,

$$\int \phi(t)U(t)\,dt \in \Psi_{\rm qsc}^{-\infty,\infty}(M)$$

and

$$\phi \mapsto \operatorname{Tr} \int \phi(t) U(t) dt$$

is a tempered distribution on  $\mathbb{R}$ .

*Proof.* The structure of the argument is standard—see, for example, part II of [2]. We reproduce it only owing to the slight novelty of the Sobolev spaces involved.

Choose  $\kappa \in \mathbb{R}$  below the spectrum of  $\mathcal{H}$ . Then by ellipticity of  $\mathcal{H}$ ,

$$(\kappa + \mathcal{H})^{-k}: H^{0,0}_{\mathrm{qsc}}(M) \to H^{2k,0}_{\mathrm{qsc}}(M).$$

Since

$$U(t) = (\kappa + \mathcal{H})^k (\kappa + \mathcal{H})^{-k} U(t) = (\kappa - D_t)^k (\kappa + \mathcal{H})^{-k} U(t),$$

we can write

(5.1) 
$$\int \phi(t)U(t) dt = \int (\kappa - D_t)^k \phi(t)(\kappa + \mathcal{H})^{-k} U(t) dt.$$

U(t) is unitary on  $H_{qsc}^{0,0}(M)$ , so

$$(\kappa + \mathcal{H})^{-k}U(t): H^{0,0}_{asc}(M) \to H^{2k,0}_{asc}(M)$$

is bounded uniformly in t. Since  $\bigcap_k H^{2k,0}_{qsc}(M) = \dot{\mathcal{C}}^{\infty}(M)$ , (5.1) shows that

$$\int \phi(t)U(t)\ dt: \mathcal{C}^{-\infty}(M)\to \dot{\mathcal{C}}^{\infty}(M),$$

i.e.

$$\int \phi(t)U(t) dt \in \Psi_{\rm qsc}^{-\infty,\infty}(M).$$

Furthermore, if we take k large enough so that  $(\kappa + \mathcal{H})^{-k}U(t)$  is trace-class, we see that  $\phi \mapsto \text{Tr} \int \phi(t)U(t) dt$  is a tempered distribution of order at most k.

We are now in a position to prove our main theorem:

**Theorem 5.2.** If there are no trapped geodesics in  $\stackrel{\circ}{M}$  then

sing supp 
$$\operatorname{Tr} U(t) \subset S_{\omega}$$
.

*Proof.* Let  $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$  be 0 for x > 2 and 1 for x < 1. Set

$$W_n = \text{Op}[(1 - \phi(nx))(1 - \phi(n\sigma))] \in \Psi_{\text{qsc}}^{0,0}(M);$$

then  $W_n \to I$  strongly on  $L^2(M)$ . We regularize  $\operatorname{Tr} U(t)$  by examining instead

$$\operatorname{Tr} U(t)W_n$$
;

this is a smooth function on  $\mathbb{R}$  since  $D_t^p \operatorname{Tr} U(t)W_n = \operatorname{Tr}(-\mathcal{H})^p U(t)W_n$ . Given  $T \notin S_{\omega}$ , we choose  $A_i$ ,  $i = 1, \ldots, k$  as in Corollary 4.7, and write

$$\operatorname{Tr} U(t)W_n = \operatorname{Tr} IU(t)W_n = \sum_{i=1}^k \operatorname{Tr} A_i^2 U(t)W_n + \operatorname{Tr} RU(t)W_n.$$

 $A_iU(t)W_n$  is trace-class, so we may now rewrite

$$\operatorname{Tr} U(t)W_n = \sum_{i=1}^k \operatorname{Tr} A_i U(t)W_n A_i + \operatorname{Tr} RU(t)W_n.$$

As  $n \to \infty$ ,  $D_t^p RU(t)W_n$  converges to  $D_t^p RU(t)$  in the norm topology on operators  $H_{\rm qsc}^{m,l}(M) \to H_{\rm qsc}^{m',l'}(M)$  for any m,l,m',l', and any  $p \in \mathbb{Z}_+$ ; thus  ${\rm Tr}\, RU(t)W_n$  approaches a smooth function as  $n \to \infty$ . Thus, if we can also show that

- 1.  $\lim_{n\to\infty} \operatorname{Tr} U(t)W_n = \operatorname{Tr} U(t)$ , and
- 2.  $\lim_{n\to\infty} \operatorname{Tr} A_i U(t) W_n A_i = \operatorname{Tr} A_i U(t) A_i$  for all  $i=1,\ldots,k$ ,

in the sense of distributions, we will have  $\operatorname{Tr} U(t) \in \mathcal{C}^{\infty}([T-\epsilon, T+\epsilon])$  for some  $\epsilon > 0$ , and we will be done.

Both (1) and (2) follow from the following identity, which holds, in the distributional sense, for any  $A \in \Psi_{qsc}^{p,q}(M)$  (and any p,q):

$$\lim_{n \to \infty} \operatorname{Tr} AU(t)W_n A = \operatorname{Tr} AU(t)A.$$

To prove this, let  $\phi \in \mathcal{S}(\mathbb{R})$  be a test function, let  $\kappa$  lie below the spectrum of  $\mathcal{H}$ , and write

$$\lim_{n \to \infty} \int \phi(t) \operatorname{Tr} AU(t) W_n A dt$$

$$= \lim_{n \to \infty} \operatorname{Tr} \int \phi(t) U(t) W_n A^2 dt$$

$$= \lim_{n \to \infty} \operatorname{Tr} \int \phi(t) (\kappa - D_t)^m (\kappa + \mathcal{H})^{-m} U(t) W_n A^2 dt$$

$$= \lim_{n \to \infty} \int \left[ (\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[ (\kappa + \mathcal{H})^{-m} U(t) W_n A^2 \right] dt$$

$$= \lim_{n \to \infty} \int \left[ (\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[ A(\kappa + \mathcal{H})^{-m} U(t) W_n A \right] dt$$

$$= \int \left[ (\kappa - D_t)^m \phi(t) \right] \operatorname{Tr} \left[ A(\kappa + \mathcal{H})^{-m} U(t) A \right] dt$$

$$= \int \phi(t) \operatorname{Tr} AU(t) A dt;$$

here we take m large enough that  $(\kappa + \mathcal{H})^{-m}U(t)$  is trace-class; the penultimate equality follows from the norm convergence

$$A(\kappa + \mathcal{H})^{-m}U(t)W_nA \to A(\kappa + \mathcal{H})^{-m}U(t)A$$

as operators  $H^{0,0}_{\mathrm{qsc}}(M) \to H^{2m-2p-\epsilon,2q-\epsilon}_{\mathrm{qsc}}(M)$  for all p,q and all  $\epsilon > 0$ .

### APPENDIX: THE PROPAGATION THEOREMS

As noted above, the only obstacle to proving Theorems 3.6–3.9 in exactly the same manner as Theorems 12.1–12.5 of [13] is the fact that  $(Y_{\pm\infty})_*X \neq 0$  in the harmonic oscillator case; we merely have

$$(Y_{\pm \infty})_* X = O(\sigma).$$

This makes no difference in proving Theorems 3.6 or 3.8, but we must modify the constructions of the symbols  $a_{\pm}$  and  $\tilde{a}_{\pm}$  used to prove the other three theorems.

We modify the symbols  $a_+^{m,l}$  and  $\tilde{a}_+^{m,l}$  defined in §13 of [13] by replacing the factor  $\psi_{-\infty} = \phi(d(Y_{-\infty}(p), y_0))$  ( $\phi$  is a cutoff function) by

$$\begin{split} \tilde{\psi}_{-\infty} &= \phi(d(Y_{-\infty}(p),y_0)^2 - \epsilon \sigma). \\ \text{Since } X\sigma &= -\bar{\lambda} + O(\sigma^2) + O(x) = -1 + O(\sigma^2) + O(x) + O(|\bar{\mu}|^2) \text{ and since } (Y_{-\infty})_* X = O(\sigma), \\ &- X(\tilde{\psi}_{-\infty}) = -\phi'(d(Y_{-\infty}(p),y_0)^2 - \epsilon \sigma) \left[ O(\sigma) + \epsilon + O(\sigma^2) + O(x) + O(|\bar{\mu}|^2) \right]. \end{split}$$

The quantity in square brackets is strictly positive for  $x, \sigma, \bar{\mu}$  sufficiently small, and the constructions of  $a_+$  and  $\tilde{a}_+$  in [13] go through as before, with  $\tilde{\psi}_{-\infty}$  replacing  $\psi_{-\infty}$ , and  $b_+$  constructed so as to ensure that  $\sigma$  is small on supp  $a_+$ .

Similarly, in the construction of  $a_-$  and  $\tilde{a}_-$ , we replace  $\psi_{+\infty}(q) = \phi(d(Y_{+\infty}(q)), y_0)$  with

$$\tilde{\psi}_{+\infty}(q) = \phi(d(Y_{+\infty}(q), y_0)^2 + \epsilon \sigma).$$

#### References

- [1] Chazarain, J., Formule de Poisson pour les variétés riemanniennes, Inv. Math., 24 (1974), 65-82.
- [2] Chazarain, J., Spectre d'un Hamiltonien quantique et méchanique classique, Comm. PDE, 5 (1980), 599-644.
- [3] Colin de Verdière, Y., Spectre de laplacien et longueurs des géodésiques periodiques I, Comp. Math., 27 (1973), 83-106.
- [4] Colin de Verdière, Y., Spectre de laplacien et longueurs des géodésiques periodiques II, Comp. Math., 27 (1973), 159–184.
- [5] Craig, W., Kappeler, T., and Strauss, W., Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1995), 769-860.
- [6] Duistermaat, J. J. and Guillemin, V. W., The spectrum of positive elliptic operators and periodic bicharacteristics, *Inv. Math.*, 29 (1975), 39-79.
- [7] Fujiwara, D., Remarks on the convergence of the Feynman path integrals, *Duke Math. J.*, **47** (1980), 559–600.
- [8] Kapitanski, L., Rodnianski, I., and Yajima K., On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), 77-106.
- [9] Melrose, R. B., Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, *Spectral and scattering theory* (M. Ikawa, ed.), Marcel Dekker, 1994.
- [10] Melrose, R. B. and Zworski, M., Scattering metrics and geodesic flow at infinity, Inv. Math., 124 (1996), 389–436.
- [11] Treves, F., Parametrices for a class of Schrödinger equations, Comm. Pure Appl. Math., 48 (1995), 13-78.
- [12] Weinstein, A., A symbol class for some Schrödinger equations on  $\mathbb{R}^n$ , Amer. J. Math., 107 (1985), 1–21.
- [13] Wunsch, J., Propagation of singularities and growth for Schrödinger operators, Duke Math. J., to appear.
- [14] Yajima, K., Smoothness and non-smoothness of the fundamental solution of time-dependent Schrödinger equations, Comm. Math. Phys. 181 (1996), 605-629.
- [15] Zelditch, S., Reconstruction of singularities for solutions of Schrödinger equations, Comm. Math. Phys. 90 (1983), 1-26.

E-mail address: jwunsch@math.harvard.edu

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD St. Rm. 325, CAMBRIDGE MA