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Maas (2011) showed that for an oscillating two-dimensional barotropic tide flowing over
sub-critical topography of compact support, some topographic forms existed that produced
non-radiating baroclinic disturbances. The problem is related to “stealth” and “cloaking”
problems. Here Maas’s result is derived using a simpler approach, not involving complicated
mappings, but formally restricted to perturbation topography. Wider results come from
the discussion of nearly-compact support topographic disturbances provided by Schwartz
functions with weak high-wavenumber radiation and by exploiting both a known functional
equation formulation and Fourier methods. The problem is extended to disturbances on
uniform slopes. A variety of non-radiating topographies can be found, although they are
mathematically delicate and unlikely to be found in nature. Topography with weak radiation
at high wavenumber is a much wider class of structures. Application of these solutions
would lie with the ability to estimate dissipation over and near the topography from motions
observed at a distance.

1. Introduction
Early interest in the conversion of the barotropic tide into baroclinic (linear inviscid internal
wave) modes can be found in the papers of Cox and Sandstrom (1962) and Baines (1973).
Garrett andKunze (2007) reviewedwork to that date, themajor progress having come after the
global detection of internal tides in altimetric data (Ray andMitchum, 1997). Numerous later
papers have dealt with various methods, topographies, and physics including nonlinearities.
Morozov (2018) is a monograph on the subject with a focus on in situ observations. The
importance of the problem arises from the major tidal contribution to the energy budget
controlling ocean mixing and evolution of the lunar orbit.
Maas (2011) (cf. also Magaard (1962)) showed, surprisingly, that two-dimensional bottom

topography shapes existed in which zero conversion occurred, as though the bottom
topography were transparent to an incoming barotropic flow (and see the commentary by
Llewellyn Smith, 2011). Earlier, Sandstrom (1975), using a different approach, had shown
the existence of such configurations (his Table 1). Some care is required concerning the
assertion in the previous sentences because a disturbance, trapped to the topography, does
exist and it will be dissipative and non-linearly radiating, but no radiating baroclinic flow
occurs in the linear problem.
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This present note arose initially from an attempt to formulate an inverse theory perspective,
for which two interesting, if hypothetical, questions emerge: (1) Can measurement of near- or
far-fields of internal waves be used to reconstruct the generating topography? (2) How does
a non-radiating topography emerge as a solution in an inverse calculation (a null space)? The
problem is reminiscent of the one called ‘Can you hear the shape of a drum?’ (Kac, 1966,
Gordon and Webb, 1996) directed at determining an unknown boundary shape.
More familiar, analogous, problems are thewave scattering and antenna radiation problems

of physics and radio engineering. With the structure of an antenna known, the near-field
radiation can be extremely complicated. But as the distance to the antenna increases, much
of the complexity vanishes, being trapped in the near-field, and distant patterns are often
simplified into dipole andmulti-pole patterns. The crucial feature is that much of the structure
in the near-field is non-propagating, and so the far-field is simplified (e.g. Stratton, 1941, p.
435). On the other hand, measurements in the far-field then cannot be used to reconstruct
the near-field pattern, a desirable feature in the problem of radar cross-section reduction in
“stealth” technology (e.g. Bahret, 1993) or in the wider field of “cloaking” (Kadec et al.,
2015).
Maas (2011, hereafterM11) andMaas andHarlander (2011) used an analogue of conformal

mapping for solving the hyperbolic-in-space equation governing the internal wave field.
The resulting transformation does not have a physically obvious interpretation even in
the linearized case, and the main point of this present note is to show that a more direct
mathematical approach suffices in the case of perturbative topography considered here.
Sandstrom’s (1975) solution in terms of characteristics is also physically more accessible.
The general problem of understanding the effectiveness of baroclinic tidal generation for any
given topographic structure here remains the central theme.
A partial differential equation hyperbolic in space (Eq. 1 below) generates a number of

fascinating mathematical problems including extreme sensitivity to the boundary conditions
describing the topography. From a physical standpoint however, many of the mathematical
issues are likely irrelevant, at least on some scales: the hyperbolic character in this problem
arises from the reduction in the order of the equation from a system including viscosity
and diffusion. These processes raise the order of the system and suppress the hyperbolic
characteristic curves of the reduced system in the high-wavenumber regime. Wunsch (1969)
included a brief discussion of the boundary-layer on a uniform slope in the fourth-order
frictional system. Unlike some other problems, strong dissipative properties are not restricted
to boundary layers at walls—the existence of discontinuous interior (super-critical) solutions
to Eq. (1) below implies that those processes can act intensely throughout the fluid volume.
The existence of fluid interior as well as boundary dissipation suggests that a modal approach
will bemore robust thanmethod-of-characteristics solutions. Reduction into lowmodes in the
far-field is consistent with ocean observations (e.g., Zhao et al. 2016), whereas long-distance
propagation of identifiable characteristics is not; admittedly, however, the currently available
satellite data is not well adapted to observation of transient, high-wavenumber phenomena.

2. Governing Equation
In Cartesian coordinates, the equation governing the stream function, 𝜓(𝑥, 𝑧), for inviscid,
two-dimensional, linear internal wave propagation of frequency 𝜔 in a uniformly stratified
fluid (constant buoyancy frequency, 𝑁 , and Coriolis frequency, 𝑓0 < 𝑁) is the hyperbolic-
in-space Poincaré or Poincaré-Sobolev equation ,

1
𝑐2

𝜕2𝜓

𝜕𝑥2
− 𝜕2𝜓

𝜕𝑧2
= 0, 𝑐2 =

𝜔2 − 𝑓 20
𝑁2 − 𝜔2

> 0, 𝑐 > 0 (2.1)
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in a channel of depth ℎ(𝑥) as here, or in an infinitely deep ocean, −∞ < 𝑧 6 ℎ. A factor
exp(−𝑖𝜔𝑡) is implicit. The velocity field, u =(𝑢, 𝑤),

𝑢 =
𝜕𝜓

𝜕𝑧
, 𝑤 = −𝜕𝜓

𝜕𝑥
,

is subject to a top boundary condition of 𝑤 = 0 and a bottom boundary condition of
u·∇(ℎ − 𝑧) = 0, i.e. no normal flow. If 𝑐2 < 0, that is, 𝜔2 > 𝑁2 or 𝜔2 < 𝑓 20 , the
nature of the equation changes from hyperbolic to elliptic. This latter regime, particularly
important for diurnal and longer period tidal forcing poleward of about 30◦ latitude, is of
considerable oceanographic interest, but is not discussed here.When𝜔2/𝑁2 → 0, the system
is hydrostatic. Llewellyn Smith and Young (2006) described the important role of a finite,
reflective, upper boundary relative to an infinitely deep ocean.
Eq. (2.1) has been written so that if 𝑡 (time) is substituted for 𝑥, the equation has the same

form as an ordinary one-dimensional wave equation with wave speed 𝑐. In such problems,
a boundary that moves faster than 𝑐 would generate a shock, or be physically impossible if
𝑐 is the speed of light (see, e.g., Balazs, 1961 or Greenspan, 1963). These problems require
causality in the 𝑥, 𝑡 domain, but no such causality is required in 𝑥, 𝑧 where information can
flow ‘backwards’ in 𝑥. As is well-known, the internal wave problem can be divided into
regimes according to the topographic slope. Here we consider the regime with slopes 𝛾 that
are sufficiently shallow ( 𝛾 < 𝑐) that no non-causal characteristics are generated by reflection
of causal characteristics off the topography. Such slopes are labelled ‘transmissive’ or ‘sub-
critical’ meaning that energy (information) is not returned in the direction in 𝑥 fromwhich the
disturbance originated. By contrast, when slopes are sufficiently large (𝛾 > 𝑐), non-causal
characteristics can exist; these slopes are ‘reflective’ or ‘super-critical.’ Poincaré (1885)
discussed the corresponding spatially hyperbolic equation for the interior of an unstratified,
𝑁 = 0, but strongly rotating, fluid container. As a ‘critical’ slope, 𝛾 = 𝑐, is approached, the
characteristic curves become tangent to the boundary, and solution infinities are generated.
What follows is restricted to the transmissive, subcritical, case.
From here, the notation differs slightly from that in M11: the 𝑧−coordinate origin is taken

at constant reference depth, ℎ, so that the upper rigid lid is at 𝑧 = ℎ. The most natural
spatial scale comes from the water depth, so that a non-dimensional vertical coordinate, 𝑧∗
is defined as 𝑧 = ℎ𝑧∗ and the non-dimensional horizontal coordinate is defined as 𝑥 = ℎ𝑥∗/𝑐.
The upper lid is at 𝑧∗ = 1 and the disturbance to the seafloor about 𝑧 = 0 is 𝑧 = ℎ1(𝑥/ℎ) or
𝑧∗ = ℎ1(𝑥∗/𝑐)/ℎ � 1. Eq. (2.1) becomes,

𝜕2𝜓∗

𝑐
∗2𝜕𝑥

∗2 −
𝜕2𝜓∗

𝜕𝑧
∗2 = 0, 𝑐∗ = 1; (2.2)

𝑐∗ is retained as a mnemonic device. With a flat bottom, the dimensional forced oscillatory
solution to Eq. (2.1) consists of a uniform horizontal flow,

𝜓0(𝑧) = 𝑈𝑧, (2.3)

and non-dimensional 𝜓 is defined from 𝜓 = (𝑈ℎ)𝜓∗. Flow is left-to-right when 𝑈 > 0,
although oscillating in direction with 𝑡. Choose𝑈 = 1.
At this point, the ∗ will be dropped, all variables being non-dimensional. The role of 𝑐 is

as a reminder that the horizontal scale will change with the frequency of oscillation. With a
flat bottom, in addition to 𝜓0, an infinite set of internal wave modes exists,

𝜓𝑖𝑤 =

∞∑︁
𝑚=−∞

𝐴𝑚𝑒
𝜋𝑖𝑚𝑐𝑥 sin(𝑚𝜋𝑧), (2.4)

all satisfying the two Dirichlet boundary conditions 𝜓(𝑧 = 0, 𝑧 = 1) = 0, and which radiate
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to and from infinity in ±𝑥. Periodicity in 𝑐𝑥 is 2. For these vertically-standing modes, zonal
phase and group velocities are in the same direction.
Assume now that a non-zero value of 𝜓0 = 𝑧 is imposed in the channel with a perturbation

ℎ1(𝑐𝑥) to the bottom boundary, so that the non-dimensional bottom boundary condition is
linearized about 𝑧 = 0 with𝑈 = 1:

(𝑢, 𝑤) · ∇(ℎ − 𝑧) = 𝜕ℎ1
𝜕 (𝑐𝑥) − 𝑤(𝑧 = 0) = 0. (2.5)

Balmforth et al. (2002), Pétrélis et al. (2006) and a number of other authors provided
examples of what is considered the ‘forward’ or ‘direct’ problem for 𝜓, given ℎ1(𝑐𝑥).When
𝜕ℎ1(𝑐𝑥)/𝜕 (𝑐𝑥) < 1, the slope is subcritical. In an infinite channel as discussed here, radiation
conditions must usually be imposed as |𝑐𝑥 | → ∞. (A finite amplitude case is considered
briefly at the end.)

3. Simplified Solution
Consider, in non-dimensional space, subcritical, transmissive, topography, ℎ1(𝑐𝑥), with the
boundary condition linearized about 𝑧 = 0. Let

𝜓 = 𝑓 (𝑐𝑥 − 𝑧 + 𝛼1) + 𝑔(𝑐𝑥 + 𝑧 + 𝛼2)

𝑓 , 𝑔 are arbitrary, but twice differentiable, solutions to Eq. (2.2), where 𝛼𝑖 are constants. On
𝑧 = 1, 𝑓 (𝑐𝑥 − 1 + 𝛼1) = −𝑔(𝑐𝑥 + 1 + 𝛼2), and choosing 𝛼1 = 1, 𝛼2 = −1 (in effect, using the
method of images), 𝑔(𝑞) = − 𝑓 (𝑞). Then,

𝜓(𝑐𝑥, 𝑧) = 𝑓 (𝑐𝑥 − 𝑧 + 1) − 𝑓 (𝑐𝑥 + 𝑧 − 1), −∞ 6 𝑥 6 ∞, (3.1)

satisfying the upper boundary condition, 𝜓(𝑧 = 1) = 0 (seeManton andMysak, 1971; Bühler
and Holmes Cerfon, 2011).
If the difference in Eq. (3.1) is non-zero only inside some interval 𝑃, effectively vanishing

outside 𝑥 ∈ 𝑃, then no far-field radiation will be generated. Following mathematical practice,
functions with that confined support will be called ‘rapidly decreasing functions’ (RDF); see
Cheney (2001). If no far-field disturbance occurs, then radiation conditions (RC) become
irrelevant.
The perturbation vertical velocity is,

𝑤(𝑐𝑥, 𝑧) = − 𝜕𝜓

𝜕 (𝑐𝑥) = − 𝑓 ′(𝑐𝑥 − 𝑧 + 1) + 𝑓 ′(𝑐𝑥 + 𝑧 − 1), (3.2)

and setting

𝑤(𝑐𝑥, 0) = − 𝑓 ′(𝑐𝑥 + 1) + 𝑓 ′(𝑐𝑥 − 1) = 𝜕ℎ1
𝜕 (𝑐𝑥) , (3.3)

or
− 𝑓 (𝑐𝑥 + 1) + 𝑓 (𝑐𝑥 − 1) = ℎ1(𝑐𝑥) + 𝐻, (3.4)

with 𝐻 arbitrary and set to zero. ℎ1(𝑐𝑥) will be RDF if the difference in Eq. (3.4) is RDF even
if 𝑓 (𝑐𝑥) is not itself RDF. Any 𝑓 (𝑐𝑥) of period 2 (the usual non-RDF Eq. (2.4) flat-bottom
radiating free modes) can be added to the solution 𝑓 , without necessitating a change in ℎ1.

Note that nonradiating examples are easy to come by: we may freely specify 𝑓 a function
of rapid decrease, and then simply set

ℎ1(𝑐𝑥) = 𝑓 (𝑐𝑥 − 1) − 𝑓 (𝑐𝑥 + 1) (3.5)

Focus on Fluids articles must not exceed this page length
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Figure 1: Topography (upper panel) and its derivative (dashed line) and the solution
(lower panel), 𝜓(𝑥, 𝑧) in Eq. 3.8. Here 𝑐 = 1, 𝜀 = 0.1. No far-field radiation occurs.

to obtain the topography, and recover 𝜓 from (3.1), which inherits rapid decay (in 𝑥) from 𝑓 .

An explicit example of this construction is as follows:
Let

𝑓 (𝑐𝑥) = 𝜀 sech(𝜋𝑐𝑥) (3.6)
𝑓 ′(𝑐𝑥) = −𝜋𝜀 sech(𝜋𝑐𝑥) tanh(𝑐𝜋𝑥), (3.7)

then

𝜓 = 𝜀 [sech 𝜋(𝑐𝑥 − 𝑧 + 1) − sech 𝜋(𝑐𝑥 + 𝑧 − 1)] (3.8)
which is exponentially confined to the topography with no radiation. Here and elsewhere, 𝜀
is a small parameter. Also,

𝑤 = 𝜋𝜀 [sech 𝜋(𝑐𝑥 − 𝑧 + 1) tanh 𝜋(𝑐𝑥 − 𝑧 + 1) − sech 𝜋(𝑐𝑥 + 𝑧 − 1) tanh 𝜋(𝑐𝑥 + 𝑧 − 1)]
(3.9)

ℎ1(𝑐𝑥) = 𝜀 [− sech(𝜋(𝑐𝑥 + 1)) + sech 𝜋(𝑐𝑥 − 1)] (3.10)
ℎ′1(𝑐𝑥) = 𝜋𝜀 [sech(𝜋(𝑐𝑥 + 1)) tanh(𝜋(𝑐𝑥 + 1)) − sech 𝜋(𝑐𝑥 − 1) tanh 𝜋(𝑐𝑥 − 1)] (3.11)

is the corresponding topography determined inversely from the solution. The flow and
topography for 𝜀 = 0.1 can be seen in Fig. 1, 2 where ℎ1(𝑐𝑥) becomes constant and hence
non-radiating.
This ‘non-converting’ or ‘non-radiating’ field was called, in M11, the ‘non-hydrostatic

barotropic’ flow. But given the numerous conflicting definitions of ‘barotropic’ in the
literature, the terminology is avoided here.
In an oceanographic context, the possible existence of such trapped solutions implies

a relatively high shear, and hence strong mixing over topographic features. A far-field
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Figure 2: 𝑤(𝑥, 𝑧 = 1/2) = −𝜕𝜓/𝜕𝑥, for the double sech bottom profile.

measurement of the resulting disturbance would vanish, and no information about the shear
would be recoverable directly. (Indirect estimates might be possible through the influence of
a strong mixing region on the larger-scale flow field.)

4. Some Generalization
The label ‘compact support’ implies a function that is identically zero outside an interval
𝑃. Such functions 𝑓 , or topographies, ℎ1, do not exist in the real world unless entire ocean
basins are considered, and then lateral boundary conditions intrude. Within the class of RDF,
‘bump’ functions are identically zero outside 𝑃, and the ‘Schwartz functions’† are RDF
but are also perfectly smooth (infinitely differentiable), with all derivatives also enjoying
rapid decay. For what follows, the most important characteristic of Schwartz functions in
wavenumber space is that their Fourier transforms are also Schwartz functions. Rapidity of
decay is still subject to the uncertainty principle, however, so that bandwidth in one domain
is inversely proportional to that in the other.
To the extent that the wavenumber decay is proportional to a power of 𝑘−𝑝, and viscous

decay is proportional of ∇2(𝑢, 𝑣, 𝑤), the value 𝑝 will determine the relative importance of
high wavenumber dissipation. Thus if 𝑝 = 2, dissipation is uniform in 𝑘; and larger values
of 𝑝 will tend to minimize high wavenumber contributions to dissipation.
As above, given 𝑓 (𝑐𝑥) from a known 𝜓(𝑐𝑥, 𝑧), then in a simple formal inverse problem,

ℎ1(𝑐𝑥) is easily determined: the solution is known, and the boundary shape, ℎ1(𝑐𝑥), is
found by subtraction. The Appendix briefly summarizes a situation of practical observations,
including noise.
Here the conventional wave generation ‘forward’ problem: for given ℎ1(𝑐𝑥), find 𝑓 ′(𝑐𝑥),

is more interesting, both with and without an RDF requirement. Eq. (3.4) is an innocuous-
seeming functional equation examined by Manton and Mysak (1971) and more recently
by Beckebanze and Keady (2016), the latter emphasizing closed containers without RC.‡
Hazewinkel et al. (2010) discuss the application of wave attractors to similar problems.
Colin de Verdière and Saint-Raymond (2020) and Dyatlov and Zworski (2019) have
recently revisited the analysis of attractors via methods of microlocal analysis. If the RDF
requirement is abandoned, Eq. (3.4) provides a general relationship between any perturbation
topography and a function 𝑓 , but only insofar as RC are satisfied—and which is not so easily
accomplished in general. On the other hand, if 𝜓 has compact support, radiation conditions
are irrelevant.

† "Good” functions in the terminology of Lighthill (1958) and others.
‡ Aczél (1966) is a general discussion of functional equations.
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4.1. Functional Equation by Operator Inversion
As a linear inverse model, Eq. (3.4) is a very simple one for determining ℎ1(𝑐𝑥) from
𝜓(𝑐𝑥, 𝑧). In practice, the most common measurement would be of the density/temperature,
which is in the linear internal wave theory proportional to 𝜕𝜓/𝜕 (𝑐𝑥) for any value of 𝑐𝑥, 𝑧.
For any full formulation, sufficient measurements would need to be available to determine
not only the trapped components, but also the propagating mode amplitudes.
Here we address the slightly more challenging forward problem of determining 𝜓(𝑐𝑥, 𝑧)

given topography ℎ1. One form of the ill-posed forward problem solution that complements
the above can be described as follows, at least formally.Define the unit backward displacement
operator and its inverse,

D1(𝑔(𝑥)) = 𝑔(𝑥 − 1) (4.1)
D−1
1 (𝑔(𝑥)) = 𝑔(𝑥 + 1) (4.2)

Then Eq. (3.3) is

D1 𝑓 ′(𝑐𝑥) − D−1
1 𝑓 ′(𝑐𝑥) = ℎ′1(𝑐𝑥) (4.3)

or

(D21 − 1) 𝑓
′(𝑐𝑥) = D1ℎ′1(𝑐𝑥), and (4.4)

(1 − D−2
1 ) 𝑓 ′(𝑐𝑥) = D−1

1 ℎ′1(𝑐𝑥)

Adding the two forms in Eq. (4.4) and by formal inversion of the operators (1−D21 ), (1−D
−2
1 )

𝑓 ′(𝑐𝑥) = −1
2
(D1 + D31 + D51 + D71 + ....)ℎ′1(𝑐𝑥) (4.5)

+ 1
2
(D−1
1 + D−3

1 + D−5
1 + D−7

1 + ....)ℎ′1(𝑐𝑥)

=
1
2

∞∑︁
𝑗=0

(ℎ′1(𝑐𝑥 + 2 𝑗 + 1) − ℎ′1(𝑐𝑥 − 2 𝑗 − 1)), (4.6)

a sum of the slopes at distances 2 which converges provided |ℎ′1(𝑐𝑥) | 6 𝐶/|𝑥 |1+𝜖 for
some 𝜀 > 0, and producing an explicit solution to the forward problem. The operators
(D21 − 1), (1 − D−2

1 ) have a null space of any period-2 function in 𝑐𝑥, hence the solution 𝑓 ′

obtained here is certainly not unique. Note that if the topography is symmetric about 𝑥 = 0
then ℎ′1(2 𝑗 + 1) = −ℎ′

1(−2 𝑗 − 1).
From this perspective if we revisit the construction of nonradiating examples by first

specifying 𝑓 (decaying or compactly supported) and then obtaining ℎ1 by (3.5), we see that
we obtain cancellations in the series (4.5). In particular, let 𝑝(𝑥) be any function of compact
support. Setting

ℎ′1(𝑐𝑥) = 𝑝(𝑐𝑥 + 1) − 𝑝(𝑐𝑥 − 1), (4.7)

then the 𝑓 ′ series telescopes, with the sum thus having compact support, and the topography
is again seen to be non-radiating. Eq. (4.5) provides an especially convenient characterization
of the statistics of 𝑓 (𝑐𝑥) should the topographic slopes be treated as a random process. We
remark that while our derivation by operator inversion was purely formal, the resulting
manifestly solves the functional equation ex post facto, whenever it converges (either
pointwise or in the sense of generalized functions).



8

4.2. Functional Equation By Fourier Methods
We may alternatively give formal solutions to the forward problem of obtaining 𝑓 from ℎ1
by Fourier methods. Suppose, in Eq. (3.4), ℎ1(𝑐𝑥) is RDF. Let

ℎ1(𝑐𝑥) =
∫ ∞

−∞
ℎ̂1(𝑘) exp(2𝜋𝑖𝑘𝑐𝑥)𝑑𝑘, 𝑓 (𝑐𝑥) =

∫ ∞

−∞
𝑓 (𝑘) exp(2𝜋𝑖𝑘𝑐𝑥)𝑑𝑘 (4.8)

using the conventions of Bracewell (1978). Then,∫ ∞

−∞
𝑓 (𝑘) exp(2𝜋𝑖𝑘 (𝑐𝑥 + 1)) − 𝑓 (𝑘) exp(2𝜋𝑖𝑘 (𝑐𝑥 − 1))𝑑𝑘 =

∫ ∞

−∞
ℎ̂1(𝑘) exp(2𝜋𝑖𝑘𝑐𝑥)𝑑𝑘

(4.9)
That is, there is a solution 𝑓 given by

𝑓 (𝑘) = 𝑖ℎ̂1(𝑘)
2 sin(2𝜋𝑘) , (4.10)

provided the quotient on the right is appropriately interpreted in the sense of the theory of
distributions. In general, we thus obtain poles of 𝑓 on the real axis at all 𝑘 = 𝑛/2, i.e. at half-
integers. Now assume analyticity of ℎ̂1(𝑘) in the upper-half-plane together with appropriate
decay to close the contour of integration; moreover, let us make sense of the quotient by
regularizing the resulting integral across the poles of 𝑓 arising in the formal inverse Fourier
transform by treating it as a principal value integral at each pole. Thus when inverting for
𝑓 (𝑐𝑥) we thus obtain the sum of half the corresponding residues, hence formally

𝑓 (𝑥) = −𝜋
∞∑︁

𝑛=−∞
ℎ̂1(𝑛/2) exp(−𝑖𝑛𝜋𝑐𝑥). (4.11)

𝜓(𝑥, 𝑧) = 𝜋

∞∑︁
𝑛=−∞

ℎ̂1(𝑛/2)
(−1)𝑛 [− exp(−𝑖𝑛𝜋(𝑐𝑥 − 𝑧 + 1)) + exp(−𝑖𝑛𝜋(𝑐𝑥 + 𝑧 − 1))] (4.12)

These generate propagating modes in a Fourier series periodic with period 𝑐𝑥 = 2 that are not
generally RDF . For the example (3.10), ℎ̂(𝑛𝜋) is exponentially small with increasing 𝑛 with
measurable radiation only for the lowest modes. Note that in this example, the topography is a
Schwartz function. Ambiguities appear to arise from the regularization of ℎ̂1(𝑘)/sin(2𝜋𝑘) at
half-integers, where the use of the principal value is only one choice amongmany. The results
could differ by linear combinations of 𝛿(𝑘 − 𝑛/2), producing terms of the form exp(𝜋𝑖𝑛𝑐𝑥)
in the inverse Fourier transforms, but such contributions in 𝜓 are precluded by the upper
boundary condition.
The question then remains as to whether any RDF solution 𝜓 will exist for an arbitrary

compactly supported ℎ1(𝑥)? By way of example, consider the even simpler topography,
ℎ1(𝑐𝑥) = 𝜀 sech(𝜋𝑐𝑥), a Schwartz function, whose transform is also a Schwartz function,

ℎ̂1(𝑘) = 𝜀 sech(𝜋𝑘) (4.13)

(Bracewell, 1978) and which, when substituted into Eq. (4.10), gives a radiating field in 𝑓 ,
although one that again diminishes rapidly with 𝑘. Evidently, to avoid radiation (as discussed
briefly byM11), a necessary condition is that ℎ̂1(𝑘) must have zeros at the pole positions—an
artificial construct that surely does not occur in nature. Another, more likely, possibility is
that ℎ̂1(𝑘) has diminished effectively to zero by the position of the smallest non-zero pole
at 𝑘 = 1/2, which, consistent with the uncertainty principle, would produce a relatively
broad ℎ1(𝑐𝑥). Such profiles are weakly radiating of high wavenumbers—a wider class than
non-radiating solutions, and mainly the lowest modes will be seen in the far-field.
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Figure 3: The triangle function 𝜖Λ(𝑐𝑥).

5. Corners
Asymptotics
Alternative, and more general, descriptions of topographic influence can be inferred from

the Fourier transform asymptotics described e.g., by Lighthill (1958). Those asymptotics
can be used to show that most topographies manifesting themselves as a corner, i.e., an
abrupt change in slope, (with �̂�(𝑘) diminishing as 𝑘−2 for large 𝑘), or more rapidly for any
higher derivative discontinuity, would in general be radiating. Apart from the abyssal plains,
oceanic topographic features short compared to the internal tide-frequency wavelengths—
corner-like—are nearly ubiquitous and will thus necessarily be radiators. These will be
superimposed upon both perturbation and finite amplitude topographies.

A nonradiating“Corner”
Horizontal wavelengths of low-mode internal tides are tens of kilometers and longer, long

compared to numerous topographic features. That configuration raises the question of the
effect of a “corner” on a tidal flow, i.e., a point of derivative dicontinuity in the topography.
Here we consider a corner in which the slopes are subcritical (cf. Hurley, 1972). Consider
a non-Schwartz topography ℎ1(𝑐𝑥) proportional to the triangle function (Fig. 3 and see
particularly, Pétrélis et al., 2006),

Λ(𝑐𝑥/𝑎) =
{
0,

�� 𝑐𝑥
𝑎

�� > 1
1 −

�� 𝑐𝑥
𝑎

��, �� 𝑐𝑥
𝑎

�� 6 1 (𝑎 > 0)

which has compact support. The Fourier transform is

Λ̂(𝑘) = 𝑎 sinc2(𝑘𝑎) = 𝑎
(sin 𝜋𝑘𝑎)2
(𝜋𝑘𝑎)2

.

If 𝑎 = 2, with a bottom perturbation of order 𝜀 � 1, the inverse Fourier transform of 𝑓
takes the form

𝑓 (𝑐𝑥) = 4𝑖𝜀
∫ ∞

−∞
exp(2𝑖𝜋𝑘𝑐𝑥) sin(2𝜋𝑘)

(2𝜋𝑘)2
𝑑𝑘 (5.1)

with 𝜀 a small parameter, vanishing at all the poles at wavenumbers, 𝑘 = 𝑛/2, an accident
of the width, and none of the propagating modes is excited. See Fig. 4. Again issues of
regularization at 𝑘 = 0 potentially arise, but are generally irrelevant because of the boundary
conditions on 𝜓.
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Figure 4: Stream function 𝜓(𝑥, 𝑧) for the triangle function of width 2 (upper panel). 𝑢, 𝑤 at
two depths for the triangle function (lower panel).

Alternatively, define a simple ramp as

𝐺 (𝑥) = −1, 𝑥 6 −1/2 (5.2)
= 2𝑥, −1/2 6 𝑥 6 1/2
= 1, 1/2 6 𝑥

and put,

𝑓 (𝑐𝑥) = 𝜀

8
𝐺 ( 𝑐𝑥
2
) (5.3)

Then, from Eq. (3.1),

𝜓(𝑐𝑥, 𝑧) = 𝜀

8
(−𝐺 ( 𝑐𝑥 − 𝑧 + 1

2
) + 𝐺 ( 𝑐𝑥 + 𝑧 − 1

2
)) (5.4)

confined over the region of the ridge but with derivative, and hence velocity, discontinuities
at the ramp edges. These would be sites of intense dissipation with corner radiation.
More generally, a corner will typically have asymptotic wavenumber contribution di-

minishing with 𝑘−2 in the far-field. The stream function in the vicinity of the corner will
be complicated and of high shear. Related numerical solutions are Nie et al. (2019) who
computed the solution for the critical case, and Liang and Wunsch (2015) who computed the
nonlinear interactions for a double exponential sub-critical ridge in a rotating system.

Rapids articles must not exceed this page length
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Figure 5: 𝜓𝑤𝑒𝑑𝑔𝑒 from Eq. (5.5) and a constant slope 𝛾 = 0.4 (dashed red line).
Contouring near the singularity at 𝑐𝑥 = 0, 𝑧 = 1 and along the critical slope 𝑧 = 𝑐𝑥 is
incomplete. Solution, also shown, would be appropriate below the critical line although

not oceanographically interesting there.

5.1. Finite Topography-Uniform Slope
M11 noticed that for finite amplitude sub-critical slopes, Eq. (2.2) has a non-RDF, solution
when forced by a vertically uniform horizontal flow,

𝜓𝑤𝑒𝑑𝑔𝑒 (𝑐𝑥, 𝑧) = ln(
𝑐𝑥 − 𝑧 + 1
𝑐𝑥 + 𝑧 − 1 ) = ln(𝑐𝑥 − 𝑧 + 1) − ln(𝑐𝑥 + 𝑧 − 1), 0 6 𝑧 6 1, 𝑥 > 0 (5.5)

in the present notation, vanishing on 𝑧 = 1 as required and also conserving volume flux in
the externally imposed oscillating flow 𝑈. 𝜓𝑤𝑒𝑑𝑔𝑒 must be a constant, along a slope, such
that,

𝑐𝑥 − 𝑧 + 1
𝑐𝑥 + 𝑧 − 1 = 𝛽,

where 𝛽 is a constant or,

𝑧 = 𝛾𝑐𝑥 + 1, 𝛾 = ( 1 − 𝛽

1 + 𝛽
) < 𝑐, 𝑥 > 0

with a zero-depth corner at 𝑥 = 0, 𝑧 = 1 (Fig. 5) where the equations fail.
This solution is valid for finite amplitude subcritical topography, under an imposed

oscillating flow with magnitude increasing monotonically as the zero-depth corner is
approached from 𝑥 < 0. No radiating linear waves are generated, albeit if the slope region is
finite—as is physically necessary—then the transitions to a flat bottom in both deep water and
prior to the corner would have 𝜕ℎ1/𝜕 (𝑐𝑥) discontinuous. A radiated far-field, with Fourier
transform again falling as 𝑘−2, will be generated there. Solutions (5.5) might have some
applicability over the large-scale sloping abyssal plains.
A topographic perturbation to a uniform slope can be dealt with in a form analogous

to that done for perturbations to a flat bottom (cf. the treatment in M11 via coordinate
transformation). Let ℎ = ℎ0+ℎ1,where ℎ0 = 𝛾𝑐𝑥+1 and ℎ1 is a perturbation. Let u =(𝑢, 𝑤) =
u0 + u1, where u0 corresponds to the undisturbed stream function Eq. (5.5). Then to lowest
order the boundary condition becomes,

u·∇(ℎ − 𝑧) |𝑧=𝛾𝑥+1 ≈ u0 |𝑧=𝛾𝑥+1 ·∇ℎ1 + u1 |𝑧=𝛾𝑥+1 ·∇(ℎ0 − 𝑧) = 0 (5.6)

Letting u1 = (𝜕𝜓1/𝜕𝑧,−𝜕𝜓1/𝜕𝑥), 𝜓1 must satisfy the same governing hyperbolic equation
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as 𝜓.With ∇(ℎ0 − 𝑧) = (𝛾,−1), hence with 𝑓1 as in (3.1), the boundary condition is

(1 − 𝛾) 𝑓 ′1 ((1 − 𝛾)𝑐𝑥)−(1 + 𝛾) 𝑓 ′1 ((1 + 𝛾)𝑐𝑥) = − u0 |𝑧=𝛾𝑥+1 ·∇ℎ1 = 𝑄 ′(𝑐𝑥) (5.7)

In the limit 𝛾 → 0, the slope coincides with the upper boundary.
The natural integral transform for wedge-geometries is the Mellin transform (Sneddon,

1972) and thus defining

𝑓
′(Mln)
1 (𝑠)= M( 𝑓 ′1 ) (𝑠) =

∫ ∞

0
𝑞𝑠−1 𝑓 ′1 (𝑞)𝑑𝑞 (5.8)

with inverse transform,

𝑓 ′1 (𝑐𝑥) =
1
2𝜋𝑖

∫ 𝛽+𝑖∞

𝛽−𝑖∞
𝑓
′(Mln)
1 (𝑠) (𝑐𝑥)−𝑠𝑑𝑠 (5.9)

for some constant 𝛽, and with corollary,

M( 𝑓 ′1 ) (𝛼𝑥)) = 𝛼−𝑠 𝑓 ′(Mln)1 (𝑠). (5.10)

ApplyingM(.) to Eq. (5.7)
1

(1 − 𝛾)𝑠−1
𝑓
′(Mln)
1 (𝑠)− 1

(1 + 𝛾)𝑠−1
𝑓
′(Mln)
1 (𝑠) = M(𝑄 ′(𝑐𝑥)) (5.11)

𝑓
′(Mln)
1 (𝑠) = (1 − 𝛾)𝑠−1(1 + 𝛾)𝑠−1

(1 + 𝛾)𝑠−1−(1 − 𝛾)𝑠−1
M(𝑄 ′(𝑐𝑥))

for any Mellin transformable 𝑄 ′(𝑐𝑥). The logarithmic singularity implicit here means that
there is no equivalent of the Schwartz function solutions. These topographies are not pursued
further here. The free propagating modes in this finite slope configuration (Wunsch, 1969)
can be added with arbitrary amplitudes.

6. Summary
The determination of subcritical topography without ‘tidal conversion,’ discussed by Maas
(2011), can be found from a formulation in the linearized case not involving conformal-
mapping analogues. As with his solutions, choice of a rapidly decaying stream function
leads readily to a determination of a corresponding bottom topography, ℎ1(𝑐𝑥) in an inverse
problem. All solutions over the topography can be intense, with quantitative implications
for ocean mixing, whether the topography is a radiating one or not. Direct solution of a
governing functional equation (Manton and Mysak, 1971) permits generation of an infinite
number of non-radiating topographies for a tidal disturbance at a fixed frequency. The wider
class of Schwartz function topographies are poor radiators of high wavenumber fields.
Constraints on non-radiating topography are so great however, that their appearance outside

the laboratory or the computer seems very unlikely. One useful interpretation is that a solution
at one non-radiating tidal frequency𝜔will, if the forcing is changed to another tidal frequency,
generally produce radiation. Thus in moving from the period of the principal lunar tide, 𝑀2
at 12.42 hours to that of the principal solar tide, 𝑆2 at 12.0 hours (e.g., Zhao, 2017), the 𝑀2
null space will vanish.
The inverse problem of determining ℎ1(𝑐𝑥) from far-field measurements will be non-

unique up to topographic structures that are non-radiating (or below noise levels); see the
Appendix. Primary concern will be less the inability to determine those structures, and more
the necessity of observations to estimate mixing confined closely to the topography itself.
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The class of non-converting topographies appears to be extremely fragile and unlikely to be
found in oceanographic practice.
Practical utility aside, numerous interesting theoretical extensions of this problem remain:

general finite amplitude topography, super-critical-reflective slopes and corners, three-
dimensions with rotation, non-constant 𝑁 (𝑧), non-linear interactions, shear flows, diffusion,
dissipation, transient establishment, and stochastic forms of topography and values of𝑈, all
remain to be explored.

Appendix A. Inversion with Observations
The inverse problem with observations has a different flavor from the purely theoretical
discussion above. As an example, let 𝑤 (Eq. 3.2) be measured at 𝑀 positions 𝑥𝑖 , 𝑧𝑖 with
some error 𝑛𝑖 with known first and second moments. (𝑤 would likely be inferred from a
measurement of temperature, with the mean vertical temperature gradient being used to
calculate the vertical displacement through time.) Put 𝑟𝑖 = 𝑐𝑥𝑖 − 𝑧𝑖 +1, 𝑠𝑖 = 𝑐𝑥𝑖 + 𝑧𝑖 −1. Then
measure 𝑤(𝑥𝑖 , 𝑧𝑖), defined as 𝑦𝑖 = 𝑤𝑖 + 𝑛𝑖 where 𝑛𝑖 is the noise. Eqs. (4.5) are a set of linear
equations for the slopes and whose solutions ℎ′1(𝑟𝑖), ℎ

′

1(𝑠𝑖) can be estimated by conventional
linear algebraic methods for 𝑀-equations in 2𝑚 + 1-unknowns. To the degree the problem
is underdetermined, a null-space in the elements ℎ′1(𝑞𝑖) will result. From an estimate of ℎ

′
1,

ℎ1 itself can be estimated with computable uncertainty.
In practice, other procedures may be more convenient. For example, scale the domain

consisting of min(𝑟𝑖 , 𝑠𝑖) 6 {𝑟𝑖 , 𝑠𝑖} 6 max(𝑟𝑖 , 𝑠𝑖) to lie between −1 6
{
𝑟 ′
𝑖
, 𝑠′

𝑖

}
6 1, and

expand the unknown,

𝑓 (𝑟 ′𝑖 ) =
𝑀∑︁
𝑚=1

𝑎𝑚𝑇𝑚(𝑟 ′𝑖 ) (A 1)

where, somewhat arbitrarily, the 𝑇𝑚 are the ordinary Chebyshev polynomials . Then

𝑦𝑖 = 𝑤𝑖 (𝑥 ′𝑖 , 𝑧′𝑖) + 𝑛𝑖 = − 𝑓 ′(𝑟 ′𝑖 ) + 𝑓 ′(𝑠′𝑖) (A 2)

=

𝑀∑︁
𝑚=1

𝑎𝑚(𝑇𝑚(𝑠′𝑖) − 𝑇𝑚(𝑟 ′𝑖 ))

and which is readily solved by conventional least-squares/Gauss-Markov methods for esti-
mates of 𝑎𝑚 with values dependent upon the statistics of 𝑛𝑖 . Evidently, any complete set of
functions can be used. (Note that as written, the 𝑇𝑚 are not orthogonalized over the present
data interval.)
The result for 𝑓 ′(𝑥) from using 𝑇𝑚, 𝑚 = 1, ..., 30 and a 10% added white noise at each

point can be seen in Fig. 6. In practice, one would likely control the ripple by use of a prior
structure on 𝑓 ′, but this artificial example is not further pursued here as the principle is clear.
An estimate of 𝑓 ′ leads to a corresponding estimate of ℎ′(𝑐𝑥), compared to the true value
in Fig. 7. The full analysis yields uncertainty estimates for ℎ′ as well as resolution estimates
both on the individual data points and on the Chebyshev coefficients—not shown.
Eq. (4.5) implies that slope contributions from infinitely distant points contribute to the

local measurement—a plausible result only for a purely inviscid situation. Should such an
inverse problem be attempted in practice, a prior estimate of ℎ′1 with some estimate of its
uncertainty would normally be available, along with an estimate of the extent to which distant
contributions would be dissipated. Although the inverse machinery permits understanding
of the error covariances and the resolution of the solution and of the different data positions,
further exploration of this hypothetical problem is omitted here. In fully radiating situations,
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Figure 6: (Upper panel) Exact 𝑤 at 𝑧 = 0.5 for the same topography as in Fig. 1 and the
result of inverting it with "data" having standard deviation of 10% of the Chebyshev
polynomials for an expansion using 𝑚 = 1, ..., 30. Assumption is of white noise. (Lower
panel). Inferred and correct value of 𝑓 (𝑥) from using 𝑤(𝑥, 𝑧 = 0.5) . Error bars are one

standard deviation. Correct value of 𝑓 is shown as a solid line.

the existence of a ‘near-field’ over the topography is of intense oceanographic interest for
its implications about large-scale mixing. Note only that the effective null space of the
topography in this formulation consists of the higher wavenumber Chebyshev polynomials.
Linear in situ array measurements of baroclinic tidal amplitudes are rare. Much more

common are global estimates of surface elevation, 𝜁, owing primarily, but not wholly, to the
first baroclinic mode (Zhao et al. 2016). Surface pressure, 𝑝(𝑥, 𝑧 = 1) = 𝑔𝜌𝜁 (𝑥), (exerted
against the rigid lid), is related to the stream function through the dimensional equations,

−𝜕𝑝

𝜕𝑥
=
𝜔2 − 𝑓 2

𝑖𝜔

𝜕𝜓

𝜕𝑧
(A 3a)

−𝜕𝑝

𝜕𝑧
=

𝑁2 − 𝜔2

𝑖𝜔

𝜕𝜓

𝜕𝑥
(A 3b)

and this opens the novel possibility of inferring generating topography from altimetric data.
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Figure 7: Estimated topography slope using a rank 𝑀 = 30 Chebyshev polynomial
expansion with noise. Error estimate (not shown) accounts for the covariance in the errors

of 𝑓 ′(𝑥 + 1) and 𝑓 ′(𝑥 − 1).
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