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Abstract. We study scattering and evolution aspects of linear internal waves in a

two dimensional channel with subcritical bottom topography. We define the scat-

tering matrix for the stationary problem and use it to show a limiting absorption

principle for the internal wave operator. As a result of the limiting absorption prin-

ciple, we show the leading profile of the internal wave in the long time evolution is a

standing wave whose spatial component is outgoing.

1. Introduction

Linear internal waves with periodic forcing in a 2D domain Ω are described by the

following Poincaré equation:

(∂2
t∆+ ∂2

x2
)u(t, x) = f(x) cosλt, u|∂Ω = 0, u|t=0 = ∂tu|t=0 = 0, (1.1)

where λ ∈ (0, 1) is the time frequency of the forcing, and f is a compactly supported

forcing profile. Here u is the stream function of the fluid such that the velocity of the

fluid is given by (∂x2u,−∂x1u). For the derivation of (1.1), we refer to [Sob54, Ral73,

MBSL97, Bro16, DJOV18, CdVSR20]. The evolution of internal waves in a bounded

domain has been investigated in recent works [DWZ21, Li23, CdVL24, Li24] in various

settings.

Figure 1. Scattering of a low-frequency incoming wave (traveling from

left to right in both figures) by smooth bottom bumps (black). Colors

represent the velocity of the internal waves. Left: the topography is

subcritical. Right: the topography is supercritical. Figure from [MCP14]

(reproduced with permission).
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Here we study 2D internal waves in a channel with flat and horizontal ends. That

is, we consider

Ω := {x ∈ R2 | G(x1) < x2 < 0} with G ∈ C∞(R;R), G < 0, G|R\[−R0,R0] = −π

for some R0 > 0. When the bottom topography given by G is subcritical (see Defini-

tion 1.1), we have the following about the evolution.

Theorem 1. Suppose Ω is subcritical for λ ∈ (0, 1). Then for any f ∈ H̄1(Ω), the

solution u(t, x) to (1.1) has the following decomposition

u(t) = Re
(
eiλtu+

)
+ b(t) + e(t), t > 0

where u+, e(t) ∈ Ḣ1
loc(Ω), b(t) ∈ Ḣ1(Ω) satisfy

lim
t→+∞

∥χe(t)∥H1 = 0 for all χ ∈ C∞
c (Ω), and sup

t>0
∥b(t)∥H1 < ∞.

Moreover, u+ = R(λ)f is the unique outgoing solution to (1.9) (see Theorem 3).

To solve the evolution problem (1.1) using spectral theory, we rewrite it as

(∂2
t + P )w(t, x) = f(x) cos(λt), w|t=0 = ∂tw|t=0 = 0 (1.2)

where w = ∆u and

P := ∂2
x2
∆−1

Ω : H̄−1(Ω) → H̄−1(Ω) (1.3)

and ∆−1
Ω : H̄−1(Ω) → Ḣ1(Ω) is the inverse of ∆ with Dirichlet boundary condition (see

§4.2 for more details). Later we show that P is a self-adjoint operator with spectrum

Spec(P ) = [0, 1]. We can then solve (1.2) as

w(t) = Re
(
eiλtWt,λ(P )f

)
with

Wt,λ(z) :=

∫ t

0

sin(s
√
z)√

z
e−iλsds =

∑
±

1− e−it(λ±
√
z)

2
√
z(
√
z ± λ)

.

Notice that Wt,λ(z) has a distributional limit (z − λ2 + i0)−1 as t → +∞. Therefore

if the spectral measure of P applied to f is smooth in the spectral parameter, then

Wt,λ(P )f converges to (P − λ2 + i0)−1f as t → ∞. This motivates us to study the

limiting absorption principle of P . That is, we let wω solve the stationary equation

(P − ω2)wω = f, ω = λ− iε, ε > 0

and would like to understand the limit of wω as ε → 0+. We rewrite the stationary

equation in terms of uω := ∆−1
Ω wω:

P (ω)uω = f, uω|∂Ω = 0 (1.4)

with

P (ω) := −ω2∂2
x1

+ (1− ω2)∂2
x2
.
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In [DWZ21, Li23, Li24], (1.4) is approached by boundary reduction and fine mi-

crolocal analysis of the single layer potentials. Here we take advantage of the simple

classical dynamics associated with (1.4) and prove a limiting absorption principle for

P using the scattering matrix for P (λ) when λ ∈ (0, 1) is subcritical. To explain the

idea more precisely, let us introduce some notations and definitions.

For ω = λ ∈ (0, 1), (1.4) is a (1 + 1)-dimensional wave equation with Dirichlet

boundary condition. The characteristic lines of P (λ) are level sets of ℓ±λ : Ω → R
where

ℓ±λ (x) := ±x1

λ
+

x2√
1− λ2

.

These characteristic lines have constant slopes ±c(λ) with

c(λ) :=

√
1− λ2

λ
. (1.5)

Definition 1.1. We say a channel Ω is subcritical for time frequency λ if max |G′| <
c(λ); we say Ω is supercritical for λ if max |G′| > c(λ).

We emphasize that subcriticality is an open condition, meaning if λ ∈ (0, 1) is

subcritical, then there exists an open interval I ⊂ (0, 1) containing λ such that Ω is

subcritical with respect to λ′ for all λ′ ∈ I.
If Ω is subcritical for λ, then each characteristic line of P (λ) intersects each of the

upper domain boundary

∂Ω↑ := {(x1, 0) | x1 ∈ R}
and the lower domain boundary

∂Ω↓ := {(x1, G(x1)) | x1 ∈ R}

precisely once. Therefore, there exist unique involutions γ±
λ : ∂Ω → ∂Ω that satisfy

ℓ±λ (x) = ℓ±λ (γ
±
λ (x)), γ±

λ (∂Ω↑) = ∂Ω↓.

Composing the two involutions, we define the single bounce chess billiard map

bλ := γ−
λ ◦ γ+

λ : ∂Ω↑ → ∂Ω↑.

See Figure 2. In the following we usually identify ∂Ω↑ with R through (x1, 0) 7→ x1.

Then bλ can be regarded as an orientation preserving diffeomorphism on R. Let M >

R + 3π/c(λ). Then a direct computation shows that

bλ(x1) = x1 +
2π

c(λ)
when |x1| ≥ M.

Moreover, there exist open intervals JL,JR ⊂ ∂Ω↑ such that

JL ⊂ (−∞,−M), JR ⊂ (M,∞), |JL| = |JR| =
2π

c(λ)
, JR = bN(JL), N ∈ N. (1.6)
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Figure 2. Diagram of Ω. Level lines of ℓ+λ are in red and level lines of

ℓ−λ are in blue. For a point θ ∈ ∂Ω↑, the location of γ±(θ) and b(θ) are

indicated. A choice of fundamental intervals JL and JR is also labeled.

In the following we fix JL, JR and call them left fundamental interval and right fun-

damental interval respectively. Later we identify JL, JR with torus Tλ := R/( 2π
c(λ)

Z).
We also denote

bλ := bNλ : ∂Ω↑ → ∂Ω↑

where N is the same as in (1.6), and call it multi-bounce chess billiard map. Clearly

bλ : JL → JR.

Let us first consider the homogeneous stationary problem

P (λ)u(x) = 0, u|∂Ω = 0, λ ∈ (0, 1) subcritical. (1.7)

Near flat ends of the channel, solutions to (1.7) can be expanded as Fourier sine series

in x2. One can then split the solutions into incoming waves traveling toward the

bottom topography and outgoing waves traveling against the bottom topography. Both

incoming and outgoing waves can be described in terms of the Neumann data of u on

JL and JR. We can then define the scattering matrix that maps the incoming waves

to the outgoing waves. More precisely, we show the following. Let L̊2(Tλ) consist

of L2 functions on the torus Tλ with zero mean value and let Π± be the projections

onto the positive (+) or negative (−) Fourier modes of such a function. We denote

H̊
1
2 (Tλ;T

∗Tλ) the homogeneous Sobolev space of order 1
2
, consisting of one-forms of

mean zero with norms defined by

∥g∥
H̊

1
2 (Tλ)

=
∑
k∈Z

|k||ĝ(k)|2, ĝ(k) :=
c(λ)

2π

∫
Tλ

e−ic(λ)kθg(θ).

See §1.2 for a brief discussion of the notation used for all the Sobolev spaces used in

this paper.

Theorem 2. Suppose Ω is subcritical for λ ∈ (0, 1). Then for any gi ∈ L̊2(Tλ), there

exist unique go ∈ L̊2(Tλ) and u ∈ Ḣ1
loc(Ω) such that

P (λ)u = 0, ∂x2u|JL
= Π+gi +Π−go, ∂x2u|JR

= Π−gi +Π+go.
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The resulting map

S(λ) : L̊2(Tλ;T
∗Tλ) → L̊2(Tλ;T

∗Tλ), gidx1 7→ godx1,

is called the scattering matrix for P (λ) in Ω. Moreover, there exists a smoothing

operator R : D′(Tλ;T
∗Tλ) → C∞(Tλ;T

∗Tλ) such that

S(λ) = Π+b∗
λΠ

+ +Π−(b−1
λ )∗Π− +R.

Furthermore, S(λ) has the improved mapping property

S(λ) : H̊s(Tλ;T
∗Tλ) → H̊s(Tλ;T

∗Tλ) (1.8)

for all s ∈ R and is in fact a unitary operator on H̊
1
2 (Tλ).

Using the scattering matrix constructed in Theorem 2, one can find purely outgoing

solutions (see Definition 1.2 below) to the inhomogeneous stationary problem

P (λ)u(x) = f(x), u|∂Ω = 0, λ ∈ (0, 1) subcritical (1.9)

for given f ∈ L2
comp, supp f ⊂ Ω∩{|x1| ≤ M}. Here L2

comp(Ω) is the space of compactly

supported L2 functions on Ω. Note that we may always choose M sufficiently large so

that this is the same M as in the definition of JL and JR in (1.6).

Theorem 3. Suppose Ω is subcritical for λ ∈ (0, 1). Then there exists a map

R(λ) : L2
comp(Ω) → Ḣ1

loc(Ω)

such that for any f ∈ L2
comp(Ω), the function u := R(λ)f is the unique solution to (1.9)

satisfying

Π+(∂x2u|JL
) = Π−(∂x2u|JR

) = 0.

Moreover,

R(λ) : H̄s
comp(Ω) → Ḣ1

loc(Ω) ∩ H̄s+1
loc (ω), s ≥ 0,

and for any δ > 0, if f ∈ H̄δ(Ω) and uλ−iε solves (1.4) with ω = λ − iε, ε > 0, then

for any χ ∈ C∞
c (Ω),

χuλ−iε → χR(λ)f in H̄1(Ω) as ε → 0 + .

Wemake the following definition for incoming and outgoing solutions. This definition

is analogous to incoming an outgoing solutions in Euclidean scattering in view of the

limiting absorption principle that we will establish in Proposition 4.5.

Definition 1.2. A solution to (1.9) satisfying conditions in Theorem 3 is called out-

going. A solution u to (1.9) is called incoming if

Π−(∂x2u|JL
) = Π+(∂x2u|JR

) = 0.
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The Poincaré problem (1.1) will be analyzed with the help of Theorems 2 and 3. In

particular, we show in Theorem 1 that the leading profile in the long time evolution is

a standing wave whose spatial component is precisely R(λ)f constructed in Theorem

3.

1.1. Relation to the oceanographic literature. The oceanographic literature con-

tains some explorations of the scattering problem as discussed here (it is of consider-

able importance, e.g., in the study of mixing in the ocean [ML00b]). Longuet-Higgins

[LH69], for example, considers the approximation to the scattering given by ray-tracing,

as motivated by WKB solutions. This was clearly understood as a high-frequency ap-

proximation: Müller–Liu [ML00a, §5c] note that “One expects reflection theory to do

the worst for low incident modenumbers. This is indeed the case.” Indeed, Baines

[Bai71] performed a more refined analysis of plane-wave scattering that involved a

Fredholm integral operator correcting the ray tracing approximation, which he too

noted is inaccurate, especially at low wavenumbers. Baines worked in an ocean with

no surface, however, rather than the finite channel under consideration here. Our ap-

proach is morally similar, but involves rigorous discussion of uniqueness of outgoing

solutions, the derivation of the limiting absorption principle, and an analysis of the

consequences of the spectral analysis for the time-domain forced problem. Our results

on the scattering matrix quantitatively justify the assertion that the reflection theory

approximates the scattering matrix, by showing that the error in this approximation

is rapidly decaying in the wavenumber parameter.

1.2. Some Sobolev spaces. Before moving on, we quickly fix the notation for various

Sobolev spaces on manifolds with boundary. If F ⊂ D′(R2) is a closed linear subspace

of Schwartz distributions, we denote by Ḟ (Ω) ⊂ F the subspace of F supported on Ω,

and F̄ (Ω) = F/Ḟ (R2 \ Ω) the space of extendable distributions on Ω. For instance,

Ḣ1(Ω) denotes the set of functions in H1(R2) whose support lies in Ω. In particular,

Ḣ1(Ω) ≃ H1
0 (Ω), where H

1
0 (Ω) denotes the usual space of trace-free H

1 functions on Ω.

We also remark that L̇2(Ω) = L̄2(Ω) = L2(Ω). For more details, see [Hör85, Appendix

B]. We will also use the subscripts loc or comp to denote local and compactly supported

Sobolev spaces respectively. Finally, we denote by H̊s(T;T ∗T) to be the subset of

distributional one-forms v ∈ Hs(T;T ∗T) such that
∫
v = 0.

Acknowledgments. The authors would like to thank Semyon Dyatlov for helpful

discussions. J. Wunsch acknowledges partial support from NSF grant DMS–2054424

and from Simons Foundation Grant MPS-TSM-00007464. Z. Li acknowledges partial

support from Semyon Dyatlov’s NSF grant DMS–2400090.
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2. Solutions to the stationary problem

We study the stationary problem (1.9) in this section. Let us start by introducing

coordinates y± := ℓ±λ (x), where ℓ± were defined in (1). In these coordinates, we have

P (λ) = 1
4
∂y+∂y− .

The upper boundary is given by

∂Ω↑ = {(y+, y−) | y+ + y− = 0}

and we parametrize ∂Ω↑ by

y : R → ∂Ω↑, θ 7→
(

θ√
1− λ2

,− θ√
1− λ2

)
.

Note that under this parametrization, there existsM > 0 depending on the topography

G such that

bλ(θ) = θ + 2π for all |θ| ≥ M.

We use J± to denote the pre-image of the left/right fundamental intervals defined in

§1 when there is no ambiguity.

2.1. Compactly supported inhomogeneity. Working in (y+, y−) coordinates, we

see that (1.9) becomes

∂y+∂y−u = 4f, u|∂Ω = 0.

We define

U0(y+, y−) := 4

∫ y+

−∞

∫ y−

−∞
f(s+, s−)ds+ds−.

Since f ∈ L2
comp(Ω), we know U0 is defined for all (y+, y−) ∈ Ω. Moreover,

P (λ)U0 = f, U0 ∈ H1
comp(Ω), U0|∂Ω↓ = 0, g := U0|∂Ω↑ ∈ H1

comp(∂Ω↑). (2.1)

Note that a priori, restricting U0 to boundary should only yield an L2 function on the

boundary. However, we deduce from (2.1) that in fact the restriction to boundary lies

in H1(R). Furthermore, observe that if u ∈ H̄s
comp(Ω), s ≥ 0, then U0 ∈ H̄s+1

comp(Ω),

which means g ∈ Hs
comp(∂Ω↑).

Now to solve u in (1.9), one only needs to solve for w := U0 − u that satisfies the

homogeneous boundary value equation

∂y+∂y−w = 0, w|∂Ω↓ = 0, w|∂Ω↑ = g ∈ H1
comp(∂Ω↑) (2.2)

Lemma 2.1. Suppose Ω is subcritical for λ ∈ (0, 1) and w ∈ Ḣ1
loc(Ω) solves (2.2).

Then there exist w± ∈ Ḣ1
loc(R) such that

w(y+, y−) = w+(y+) + w−(y−).
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Proof. Define w1
+ := ∂y+w. Then we know

w1
+ ∈ L2

loc(Ω), ∂y−w
1
+ = 0.

The second equation together with the assumption that Ω is subcritical shows that

w1
+ depends only on y+. Since y+ can take any value in R, we know w1

+ defines a

function on R. For every a > 0, there exists δ > 0 such that the parallelogram

Ωa,δ := {(y+, y−) | |y+| ≤ a, −y+ − δ ≤ y− ≤ −y+} is a subset of Ω. Thus we see that

∥w1
+∥2L2([−a,a]) ≤ δ−1∥∂y+w∥2L2(Ωa,δ)

≤ δ−1∥w∥2H1(Ωa,δ)
< ∞.

This shows that w1
+ ∈ L2

loc(R). Define

w+(y+) :=

∫ y+

0

w1
+(s)ds.

Then w+ satisfies

w+ ∈ H1
loc(R), ∂y+(w(y+, y−)− w+(y+)) = 0.

This shows that w− := w−w+ is a function depending only on y−. Moreover, ∂y−w− =

∂y−w. Similar argument as above shows that w− ∈ H1
loc(R). □

By abuse of notation, we also denote the pullbacks y∗±w± by w±, where y∗± denote

projections (y+, y−) 7→ y±, so that w± can be viewed as elements of H̄1
loc(Ω). In this

sense, w± can be restricted to ∂Ω, and the restrictions lie in H1
loc(∂Ω). Note that

w±|∂Ω = (γ±)∗(w±|∂Ω)

by (1). Applying the boundary conditions in (2.2) we have

w+|∂Ω↑ + w−|∂Ω↑ = g, w+|∂Ω↓ + w−|∂Ω↓ = 0.

Therefore, using the y parametrization (2) of ∂Ω↑, we have

w±|∂Ω↑(θ) =w±|∂Ω↓(γ
±(θ)) = −w∓|∂Ω↓(γ

±(θ)) = −w∓|∂Ω↑(γ
∓ ◦ γ±(θ))

=− w∓|∂Ω↑(b
±1(θ)) = w±|∂Ω↑(b

±1(θ))− g(b±1(θ)).

That is,

w±|∂Ω↑ − (b±1)∗(w±|∂Ω↑) = −(b±1)∗g. (2.3)

Iterate (2.3) N times, restrict w+ to the left/right fundamental intervals JL, JR (see

§1), then differentiate both sides, and we find

vL − b∗vR = g.
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Here b = bNλ is the multi-bounce chess billiard map defined in §1 (we now suppress the

λ subscript) and

v• :=dw+|J• ∈ L̊2(J•;T
∗J•), • = L,R,

g :=−
N∑
k=1

(bk)∗dg|JL
∈ L̊2(JL;T

∗JL).
(2.4)

Let us take a step back and interpret all the new objects we have defined. We

claim that vL and vR are essentially the Neumann data of the solution u on JL, JR

respectively.

Lemma 2.2. Suppose u ∈ Ḣ1
loc satisfies the stationary internal wave equation (1.9).

Then

v↑ := j∗(∂y+u dy+)

is well-defined in L2
comp(∂Ω↑;T

∗∂Ω↑), where j : ∂Ω↑ → R2 is the canonical embedding.

Furthermore,

v• = −v↑|J• , • = L,R

where vL and vR are as defined in (2.4).

Remark. It is easy to check that in the x1 coordinates on ∂Ω, v↑ is given by

v↑ =
1
2
∂x2u|∂Ω↑dx1.

Therefore, vL and vR are simply a multiple of the Neumann data.

Proof. Recall that

u = U0 − (w+ + w−)

where w± depends only on y±. Therefore,

∂y+u(y+, y−)dy+ = ∂y+U0(y+, y−)dy+ − dw+.

Since U0 ∈ H1
comp(Ω), it follows that v↑ is well-defined in L2

comp. The relationship to vL

and vR follows from the fact that U0 vanishes in a neighborhood of JL ∪ JR. □

Motivated by the above lemma, we call vL and vR the Neumann data at left and

right infinity respectively. Next, we retrace our steps and verify that if (2.1) is satisfied,

we indeed have a solution with the given Neumann data.

Lemma 2.3. Assume that f ∈ H̄s
comp for some s ≥ 0. Let vL ∈ H̊s(JL;T

∗JL) and

vR ∈ H̊s(JR;T
∗JR). If vL and vR satisfies (2.1), then there exists u ∈ Ḣ1

loc(Ω) ∩
H̄s+1

loc (Ω) that satisfies (1.9) with vL and vR as the Neumann data on the left and the

right fundamental intervals respectively.
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Proof. Let U0 and g be as defined in (2.1) and (2.1). Let JL = [θ0, θ0 + 2π) be the

left fundamental interval defined in (1.6) using the parametrization y defined in (2).

Notice that bk(JL), k ∈ Z, tiles ∂Ω↑. Then we can define a function ω on ∂Ω↑ by

ω|JL
(θ) :=

∫ θ

θ0

vL,

ω|bk(JL) :=(b−k)∗(ω|JL
),

ω|b−k(JL) :=(bk)∗(ω|JL
)−

k∑
n=1

(bn)∗g|b−k(JL), k ≥ 1.

(2.5)

One can check that ω satisfies

ω − b∗ω = −b∗g. (2.6)

Note that since f ∈ H̄s
comp, we have g ∈ Hs+1

comp(∂Ω↑). Combined with the assumption

that
∫
vL = 0, it follows that ω is in fact continuous on the circle, as well as lying in

Hs+1
loc (∂Ω↑). Observe that there exist unique w± ∈ H̄s+1

loc (Ω) such that for (y+, y−) ∈ Ω,

w+(y+, y−) := ω(θ), when y+ = y+(θ),

w−(y+, y−) := g(θ)− ω(θ), when y− = y−(θ)
(2.7)

where y(θ) = (y+(θ), y−(θ)). We claim that

u := U0 − (w+ + w−)

is our desired solution. Clearly, P (λ)u = f , u ∈ H̄1
loc(Ω), and u|∂Ω↑ = 0. Since

(γ+)∗w+(y+) = w+(y+),

while

(γ+)∗w−(y−) = w−(y− ◦ γ+) = w−(y− ◦ γ− ◦ γ+) = b∗w−(y−),

the relations (2.7) together with (2.6) yield

(γ+)∗(u|∂Ω↓) = 0− (ω + (b∗g − b∗ω)) = 0.

Since (γ+)2 = Id, we conclude that u|∂Ω↓ = 0. Thus we have u ∈ Ḣ1
loc(Ω) ∩ H̄s+1

loc (Ω).

Finally, by the second equation in (2.5) with k = N , the right Neumann data of the

solution u is precisely given by vR satisfying the relation (2.1). □

2.2. Schwartz class inhomogeneity. To obtain a limiting absorption principle later

in §4.2, it turns out that we also need to consider (1.9) with the right-hand-side in

Schwartz class rather than having compact support. More explicitly, we study

P (λ)u(x) = f(x), u|∂Ω = 0, f ∈ S (Ω). (2.8)
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Again working in (y+, y−) coordinates, we see that the reduction to a homogeneous

boundary value problem in (2.1)-(2.1) holds identically for f ∈ S (Ω). Then the

corresponding modification of (2.2) for the Schwartz inhomogeneity (2.8) is given by

∂y+∂y−w = 0, w|∂Ω↓ = 0, w|∂Ω↑ = g ∈ S (∂Ω↑), (2.9)

with the only change being the regularity of g. One can readily check that Lemma 2.1

holds for (2.9) instead of (2.2).

The primary modification that needs to be made to §2.1 to the Schwartz inhomo-

geneity case is in the definition of vL, vR, and g. The reason is that g is no longer

compactly supported and its effects extend out to left and right infinity, so simply

restricting to the left and right fundamental intervals no longer captures the Neumann

data near left and right infinity. However, since g is Schwartz, its effects near infinity

are very weak. The adjustment we will make simply pulls back data at left and right

infinity to the left and right fundamental intervals. Define

vL := lim
k→∞

((b−k)∗dw+)|JL
∈ L̊2(JL;T

∗JL),

vR := lim
k→∞

((bk)∗dw+)|JR
∈ L̊2(JR;T

∗JR),

g :=
∑
k∈Z

((bk)∗dg)|IL ∈ C̊∞(JL;T
∗JL).

(2.10)

The limits exist since g ∈ S (∂Ω↑). Note that if g ∈ L2
comp, then the definitions in (2.10)

coincide with (2.4). Furthermore, it is easy to verify that (2.1) still holds with the new

definitions in (2.10). Now we have the following analogue of Lemma 2.3.

Lemma 2.4. Assume that f ∈ S (Ω). Let vL ∈ H̊s(JL;T
∗JL) and vR ∈ H̊s(JR;T

∗JR)

for some s ≥ 0. If vL and vR satisfies (2.1), then there exists u ∈ Ḣ1
loc ∩ H̄s+1

loc

that satisfies (1.9) with vL and vR as the Neumann data on the left and the right

fundamental intervals respectively.

Proof. We simply need to take into account the mild effects of g near left and right

infinity in the proof of Lemma 2.3. In particular, we modify the definition of ω in (2.5),

and define instead

ω|JL
(θ) :=−

∞∑
n=0

((b−n)∗g)|JL
(θ) +

∫ θ

θ0

vL,

ω|bk(JL) :=(b−k)∗(ω|JL
) +

k−1∑
n=0

(b−n)∗g|bk(JL), k ≥ 1,

ω|b−k(JL) :=(bk)∗(ω|JL
)−

k∑
n=1

(bn)∗g|b−k(JL), k ≥ 1.

The rest of the proof of Lemma 2.3 holds verbatim. □
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We define the analogue to Definition 1.2 for incoming and outgoing solution to the

case of Schwartz inhomogeneity.

Definition 2.5. Let u be a solution to (2.8) and let vL and vR be the Neumann data

near left and right infinity defined in (2.10). Then we call

(Π−vL,Π
+vR)

the outgoing data, and

(Π+vL,Π
−vL)

the incoming data. u is called outgoing if the incoming data vanishes, and incoming if

the outgoing data vanishes.

Note that these definitions are consistent with Definition 1.2, in the sense that the

two definitions agree if u is a solution to (1.9).

3. Scattering matrix

We now consider the homogeneous stationary internal wave equation (1.7) (or (2.8)

for Schwartz inhomogeneity). Then the left and right Neumann data defined in (2.4)

(or (2.10) for Schwartz inhomogeneity) satisfies

vL − b∗vR = 0.

Using the parametrization y in §2, we can identify JL and JR with S1 = R/2πZ so

that vL,vR ∈ L̊2(S1;T ∗S1) and b ∈ C∞(S1;S1). Then taking the positive and negative

Fourier projectors Π±, the outgoing data can be expressed as(
Π−vL

Π+vR

)
=

(
Π−b∗vR

Π+b−∗vL

)
=

(
0 Π+b∗Π−

Π−b∗Π+ 0

)(
Π−vL

Π+vR

)
+

(
Π−b∗Π− 0

0 Π+b−∗Π+

)(
Π−vR

Π+vL

)
where b−∗ := (b−1)∗. We rewrite the equation as(

Id −Π+b∗Π−

−Π−b∗Π+ Id

)(
Π−vL

Π+vR

)
=

(
Π−b∗Π− 0

0 Π+b−∗Π+

)(
Π−vR

Π+vL

)
. (3.1)

Our goal is to recover the outgoing data

(
Π−vL

Π+vR

)
in terms of the incoming data(

Π−vR

Π+vL

)
, so it suffices to invert

T : Π−L2(S1;T ∗S1)× Π+L2(S1;T ∗S1) → Π−L2(S1;T ∗S1)× Π+L2(S1;T ∗S1),

T :=

(
Id −Π−b∗Π+

−Π+b−∗Π− Id

)
.
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To do so, we need the following lemma.

Lemma 3.1. Let φ be an orientation-preserving diffeomorphism of S1 and let v ∈
L2(S1;T ∗S1). Then

Π−φ∗Π−v = 0 implies Π−v = 0.

Proof. Assume for the sake of contradiction that Π−v ̸= 0 and

Π−φ∗Π−v = 0,

hence

φ∗Π−v = (I − Π−)φ∗Π−v. (3.2)

The operator on the right-hand-side of (3.2) is a smoothing operator (by the calculus

of wavefront sets, using the fact that φ is orientation-preserving), hence φ∗Π−v ∈
C∞(S1;T ∗S1). Thus also Π−v ∈ C∞(S1;T ∗S1).

Note that
∫
Π−v = 0. We can then define the function

w(θ) =

∫ θ

0

Π−v ∈ C∞(S1).

Clearly, ŵ(k) := 1
2π

∫
S1 e

−ikθw(θ) dθ = 0 for all k > 0. Therefore,

F(w) :=
1

i

∫
S1
wdw = 2π

∑
k≤0

k|ŵ(k)|2 < 0.

Note that F(w) = F(φ∗w). Therefore, there exist k− < 0 such that φ̂∗w(k−) ̸= 0.

Since

φ∗Π−v = dφ∗w

it follows that φ̂∗Π−v(k−) ̸= 0, which contradicts Π−φ∗Π−v = 0. Therefore we must

have Π−v = 0. □

Now it follows that T is invertible.

Lemma 3.2. The nullspace of T on Π−L2(S1;T ∗S1)× Π+L2(S1;T ∗S1) is trivial.

Proof. Let

(
v−
v+

)
∈ Π−L2(S1;T ∗S1)×Π+L2(S1;T ∗S1) be such that T

(
v−
v+

)
= 0. Then

we must have

v− = Π−b∗Π+b−∗Π−v−.

Let v := b−∗Π−v−. Then v− = Π−b∗Π+v, from which we see that

Π−b∗v = Π−b∗(b−∗Π−v−) = Π−v− = Π−b∗Π+v. (3.3)

Note that the zeroth Fourier coefficient of v vanishes since b∗ is the pullback on 1-forms,

so v − Π+v = Π−v. Then it follows from (3.3) that

Π−b∗Π−v = 0.
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By Lemma 3.1, it follows that Π−v = 0. In particular, this means that Π−b−∗Π−v− =

0. Apply Lemma 3.1 again, and we see that v− = Π−v− = 0. A similar argument

shows that v+ = 0, so the nullspace is indeed trivial. □

Let us now complete the proof of Theorem 2.

Proof. Suppose gi ∈ L̊2(Tλ). We regard gi as an element in Π−L2(S1;T ∗S1)×Π+L2(S1;T ∗S1)

through

gi 7→ (y∗(Π−gidx1),y
∗(Π+gidx1)) =: (gi

R,g
i
L).

By Lemma 3.2, we can define (go
L,g

o
R) and go such that(

go
L

go
R

)
:= T−1

(
Π−b∗Π− 0

0 Π+b−∗Π+

)(
gi
R

gi
L

)
, go := go

L + go
R.

Define

vL := gi
L + go

L, vR := gi
R + go

R.

Then a direct computation shows that

Π−v = 0, Π+b−∗v = 0 where v := vL − b∗vR ∈ L2(S1;T ∗S1).

Notice that both vL, vR have zero mean value, thus v also has zero mean value. Let

us now assume v = vdθ and consider the quantum flux of v:

F(v) =
1

i

∫
S1
vdv.

On the one hand, Π−v = 0 implies F(v) ≥ 0. On the other hand, Π+b−∗v = 0 implies

F(b−∗v) ≤ 0. Since the quantum flux is invariant under the pullback by b−∗, that is,

F(v) = F(b−∗v), we know F(v) = 0. This implies that v = 0. As a result, we have

vL − b∗vR = 0.

Now we apply Lemma 2.3 and conclude the existence and uniqueness of u ∈ Ḣ1
loc such

that u solves the homogeneous equation (1.7) and vL, vR as the Neumann data on JL,

JR respectively.

Thus, we can solve (3.1) for the outgoing scattering data Π−vL,Π
+vR and add these

pieces together to get gi dx1; we consequently define the scattering matrix S by

S =
(
Id Id

)
T−1

(
Π−b∗Π−

Π+b−∗Π+

)
. (3.4)

To see the microlocal structure of S, note that by the calculus of wavefront sets

on S1, T is of the form Id + R with R a (vector-valued) smoothing operator. Since

smoothing operators form an ideal, the inverse must then be of the same form. Hence

the form of the scattering matrix as well as the mapping property (1.8) follows from

the definition (3.4).
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Let us now show that S is unitary on H̊
1
2 . For that we compute the quantum flux

of v• where v• = v•dθ, • = L,R. A direct computation shows that

F(v•) = 2π
∑

k∈Z,k ̸=0

k|v̂•(k)|2 = 2π
(
∥Π+v•∥2

H̊
1
2
− ∥Π−v•∥2

H̊
1
2

)
, • = L,R.

Since vL = b∗vR, we must have F(vL) = F(vR). Thus,

∥Π+vL∥2
H̊

1
2
+ ∥Π−vR∥2

H̊
1
2
= ∥Π+vR∥2

H̊
1
2
+ ∥Π−vL∥2

H̊
1
2
.

This shows that S is unitary on H̊
1
2 . □

4. Outgoing resolvent and limiting absorption principle

4.1. Outgoing solutions. Let us now construct outgoing solutions to the inhomoge-

neous problem (1.9). In view of Lemma 2.3, it suffices to study (2.1) and show the

following:

Lemma 4.1. Suppose g ∈ L̊2(S1;T ∗S1). Then there exist vL,vR ∈ L̊2(S1;T ∗S1) such

that (2.1) holds and

Π+vL +Π−vR = 0.

Proof. By Theorem 2, there exist unique (v0
L,v

0
R) such that v0

L − b∗v0
R = 0 with

incoming and outgoing data

Π+v0
L +Π−v0

R = −Π+g, Π−v0
L +Π+v0

R = −SΠ+g.

One can check now that (vL,vR) := (v0
L + g,v0

R) satisfies the conditions. □

Together with Lemma 2.3, we have now established the existence and uniqueness

assertions of Theorem 3, and it remains to prove the part of the theorem concerning

the limit of the resolvent from the lower half-space.

4.2. Limiting absorption principle. Recall that because the domain Ω lies between

a pair of parallel lines in R2, a Poincaré–Wirtinger inequality holds:

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω), u ∈ Ḣ1(Ω)

(see, e.g., [DFF22, Section 2]). Consequently,

⟨∆Ωu, u⟩ ≥ C∥u∥2, u ∈ Ḣ1(Ω),

which implies that

∆Ω : Ḣ1(Ω) → H̄−1(Ω) (4.1)

is invertible.
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Thus we may let ∆−1
Ω : H̄−1(Ω) → H1

0 (Ω) denote the inverse of Laplacian on Ω with

Dirichlet boundary conditions. We recall the internal wave operator

P = ∂2
x2
∆−1

Ω : H̄−1(Ω) → H̄−1(Ω).

Lemma 4.2. The operator P is bounded and self-adjoint with Spec(P ) = [0, 1].

Proof. Self-adjointness follows by employing the isomorphism (4.1) and employing the

homogeneous inner product on Ḣ1 to observe that we may use the following inner

product on H̄−1:

⟨u, v⟩H̄−1(Ω) := ⟨∇∆−1
Ω u,∇∆−1

Ω v⟩L2 .

Finally, the fact that the spectrum equals to [0, 1] follows via the same proof as in

[Ral73, Theorem 2]. □

Lemma 4.3. For ε > 0 and λ ∈ (0, 1), let P (λ − iε)−1 : H̄−1(Ω) → Ḣ1(Ω) be the

inverse to the Dirichlet problem (1.4) with ω = λ − iε. Then for any s ≥ −1, there

exists Cs > 0 such that

∥P (λ− iε)−1∥Hs→Hs+2 ≤ Csε
−1.

Proof. 1. s = −1. Recall that

P (λ− iε) = (P − (λ− iε)2)∆.

Therefore, it follows from the spectral theorem and Lemma 4.2 that

∥P (λ− iε)−1∥H̄−1→Ḣ1 = ε−1.

2. Now we proceed by induction. Suppose the lemma holds for s = k−1. Now assume

f ∈ H̄k(Ω) ⊂ H̄−1(Ω) and u ∈ Ḣ1 solves

P (λ− iε)u = f, u|∂Ω = 0.

Then u ∈ Hk+1 by the induction hypothesis. Let Vb ∈ C∞(Ω;TΩ) be of unit length

and tangent to ∂Ω. We further assume that

Vb(x1, x2) = ∂x1 for |x1| > R and ⟨Vb, ∂x1⟩ − λ ≥ δ > 0.

Indeed, we can take explicitly

Vb(x1, x2) :=

(
1 +

∣∣∣∣x2G
′(x1)

G(x1)

∣∣∣∣2
)− 1

2 (
∂x1 +

x2G
′(x1)

G(x1)
∂x2

)
.

Define the difference quotient

DVb,hu :=
u(φh(x))− u(x)

h
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where φh is the time h flow generated by Vb. Note that DVb,hV
k
b u ∈ Ḣ1(Ω), and it

solves the equation

P (λ− iε)(DVb,hV
k
b u) = [P (λ− iε), DVb,h]V

k
b u+DVb,h[P (λ− iε), V k

b ]u+DVb,hV
k
b f

The difference quotient satisfies

∥[DVb,h, P (λ− iε)]V k
b u∥H̄−1 ≤ C∥V k

b u∥Ḣ1 .

Therefore, by the induction hypothesis,

∥DVb,hV
k
b u∥Ḣ1 ≤ C

(
∥DVb,hV

k
b f∥H̄−1 + ∥u∥Hk+1

)
≤ Cε−1∥f∥Hk .

Since DVb,hV
k
b u → V k+1

b u in distributions as h → 0+, it follows that

∥V k+1
b u∥Ḣ1 ≤ Cε−1∥f∥Hk . (4.2)

3. Now we recover derivatives in the normal direction using the equation and the

tangential regularity from (4.2). Again, we proceed by induction. The base case is

covered by (4.2), from which we note that

∥∂x2V
k+1
b u∥L2 ≤ Cε−1∥f∥Hk .

Now assume for the sake of induction that

∥∂n
x2
V k+2−n
b u∥L2 ≤ Cε−1∥f∥Hk for all n ≤ ℓ. (4.3)

Note that using the induction hypothesis from Step 2, we may freely commute ∂x2 and

V k
b on the left-hand-side of (4.3) and the inequality would still hold (with a possibly

different constant).

Substitute ∂x1 = (Vb − ⟨Vb, ∂x2⟩)/⟨Vb, ∂x1⟩ in the operator P (λ− iε), and we find(
1− (λ− iε)2

⟨Vb, ∂x1⟩2

)
∂2
x2
(V k−ℓ−1

b ∂ℓ−1
x2

u)

+
∑

|β|≤2, β ̸=(2,0)

cβ(x)∂
β1
x2
V β2

b (V k−ℓ−1
b ∂ℓ−1

x2
u) = ∂α

x f + [P, V k−ℓ−1
b ∂ℓ−1

x2
]u.

with |cβ| uniformly bounded for ε sufficiently small. Furthermore, the coefficient for

the ∂2
x2
∂α
xu term is uniformly bounded from below by (4.2) for all sufficiently small ε.

Therefore, using the induction hypthesis (4.3), we see that

∥∂2
x2
V

k−(ℓ+1)
b ∂ℓ−1

x2
u∥L2

≤ C
(
∥f∥Hk + ∥u∥Hk+1 + ∥∂x2V

k−ℓ
b ∂ℓ−1

x2
u∥L2 + ∥V k−(ℓ−1)

b ∂ℓ−1
x2

u∥L2

)
≤ Cε−1∥f∥Hk .

This completes the induction, and we see that

∥∂ℓ
x2
V s+2−ℓ
b u∥L2 ≤ Cε−1∥f∥Hs
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for all s ∈ N0 and ℓ ≤ s. Therefore,

∥u∥Hs+2 ≤ Cε−1∥f∥Hs

for all s ∈ N0. Interpolating recovers the inequality for all s ≥ −1. □

In order to solve the forced internal wave equation using spectral theory, one needs to

understand the limiting absorption principle for P (λ± iε), as ε → 0+. More precisely,

for ε > 0, f ∈ C∞
c (Ω), let uε be the unique solution in S (Ω) to

P (λ− iε)uε = f, uε|∂Ω = 0. (4.4)

Here S (Ω) is the space of Schwartz functions on Ω. We would like to study the

distributional limit of uε as ε → 0+. Indeed, we will show that uε converges to

the outgoing solution to (1.9) constructed in Theorem 3. Establishing the following

proposition will thus conclude the proof of Theorem 3.

Proposition 4.4. Suppose ε > 0 and f ∈ H̄1
comp(Ω). Let uε be the solutions to the

Dirichlet problem (4.4). Then for every χ ∈ C∞
c (Ω), there exists C > 0 such that

∥χuε∥H̄2(Ω) ≤ C.

In other words, uε ∈ H̄2
loc(Ω) ∩ Ḣ1

loc(Ω) uniformly in ε > 0.

Remarks. 1. From the proof, it will also be clear that if f ∈ L2
comp(Ω), then

uε ∈ Ḣ1
loc(Ω) uniformly in ε > 0. If f has higher regularity, one can differentiate the

stationary internal waves equation to access higher regularity of uε. For the purposes of

this paper, in particular in proving Lipschitz regularity of the spectral measure in §5.1,
we do not need any higher regularity, so we only present the theorem for f ∈ H̄1

comp(Ω)

for the sake of clarity.

2. Recall that subcriticality is an open condition. From the proof of Proposition 4.4,

it is easy to see that there exists an open interval I ⊂ (0, 1) containing λ such that

Proposion 4.4 holds uniformly for all λ′ ∈ I.

Proof. The strategy is to compare uε to R(λ)f ∈ Ḣ1
loc(Ω) ∩ H̄2

loc(Ω), which is the

outgoing solution constructed in Theorem 3. Define

wε := R(λ)f − uε.

It suffices to show that wε is locally bounded in H̄2(Ω) ∩ Ḣ1(Ω) on a neighborhood

of suppχ, uniformly in ε > 0. We accomplish this in three steps, and first remark

that we already know from Lemma 4.3 and the mapping properties of R(λ) that wε ∈
H̄2

loc(Ω) ∩ Ḣ1
loc(Ω). The goal here is to establish uniformity in ε.

1. Observe that wε satisfies the equation

P (λ)wε = (−2λiε+ ε2)∆uε. (4.5)
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Take R > 0 large enough so that supp f∪suppG′ ⊂ {|x1| ≤ R−1}. Let χ0 ∈ C∞
c (Ω) be

a function of x1 only, such that χ0(x1) = 1 for |x1| ≤ R, and suppχ ⊂ {|x1| ≤ R+ 1}.
There exist χ± ∈ C∞(Ω) such that suppχ± ⊂ {±x1 ≥ R}, and χ0 + χ+ + χ− = 1.

Observe that by Lemma 4.3,

(−2λiε+ ε2)∆uε ∈ H̄1(Ω) uniformly in ε > 0. (4.6)

Furthermore, for fixed ε > 0

χ±∆uε ∈ S (Ω),

(albeit this does not hold uniformly in ε > 0). Therefore, for fixed ε > 0, wε is the

unique outgoing solution to (4.5), and we can split wε into three parts

wε = w0,ε + w+,ε + w−,ε

by setting

w0,ε := (−2λiε+ ε2)R(λ)χ0∆uε, w±,ε := (−2λiε+ ε2)R(λ)χ±∆uε.

Note that (−2λiε + ε2)χ0∆uε ∈ H̄1
comp(Ω) uniformly in ε. Therefore, by Theorem 3,

w0,ε ∈ Ḣ1
loc(Ω) ∩ H̄2

loc(Ω) uniformly in ε.

2. Now we must analyze w+ = w+,ε. To do so, we first characterize ∆uε when x1 ≥ R.

Note that to the right of the topography and the support of f , uε solves the equation

(−(λ− iε)2∂2
x1
+(1− (λ− iε)2)∂x2)uε(x1, x2) = 0 when (x1, x2) ∈ [R− 1,∞)× [−π, 0).

We also have uniform L2(Ω) boundedness of 1l{x1>R−1}(−2λiε+ ε2)χ+∆uε from (4.6).

Then there exist (implicitly ε-dependent) coefficients {ak}k∈N uniformly in ε > 0 such

that

(−2λiε+ ε2) 1l{x1>R−1}∆uε(x1, x2) = 1l{x1>R−1}
∑
k∈N

(εk)
1
2ake

icεk(x1−R+1) sin(kx2),

where

c2ε :=
1− (λ− iε)2

(λ− iε)2
, Re cε > 0, Im cε > 0.

Note that Im cε = σε+O(ε2) for some σ > 0. Therefore,

∥(−2λiε+ ε2) 1l{x1>R−1}∆uε∥2L2 =
∑
k∈N

εk|ak|2∥ 1l{x1>R−1} e
icεk(x1−R+1)∥2L2

x1

= C
∑
k∈N

|ak|2

Hence uniform L2 boundedness from (4.6) implies that
∑

k∈N |ak|2 < C where the

constant C is independent of ε. Put

g+(x1, x2) := (−2λiε+ ε2)χ+∆uε(x1, x2) = χ+(x1)
∑
k∈N

(εk)
1
2ake

icεk(x1−R+1) sin(kx2).
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3. Now we solve for the unique solution w+ ∈ Ḣ1
loc to

P (λ)w+ = g+, w+ outgoing. (4.7)

Taking the Fourier series in x2 on both sides, we have

−(λ2∂2
x1

+ (1− λ2)k2)ŵ+(x1; k) = χ+(x1)(εk)
1
2ake

icεk(x1−R+1),

i.e.,

(∂2
x1

+ c2k2)ŵ+(x1; k) = −λ−2χ+(x1)(εk)
1
2ake

icεk(x1−R+1)

where c = c(λ) is the “speed of light” defined in (1.5).

To construct the outgoing solution, we first consider the auxiliary problem

P (λ)w̃+ = g+, w+ ∈ Ḣ1
loc, suppw+ ⊂ {x1 ≥ R} (4.8)

We can solve for w̃+ in Fourier series, and find that

ˆ̃w+(x1; k) =− ε
1
2ak

ck
1
2λ2

∫ x1

R

sin(ck(x1 − s))χ+(s)e
icεk(s−R+1) ds

=− ε
1
2ak

ck
1
2λ2

eickx1

∫ x1

R

χ+(s)e
i(cε−c)kse−icεk(R−1) ds

+
ε

1
2ak

ck
1
2λ2

e−ickx1

∫ x1

R

χ+(s)e
i(cε+c)kse−icεk(R−1) ds.

While w̃+ solves (4.8), it is not necessarily outgoing. Our task is now to correct w̃+

to an outgoing solution that solves (4.7). Therefore, we must look for whom ∈ Ḣ1
loc(Ω)

such that

P (λ)whom = 0, whom and w̃+ have the same incoming data,

the existence of which is guaranteed by Theorem 2. Indeed, this will yield

w+ = w̃+ − whom

that solves (4.7). Note that the incoming data of w̃+ in the sense of Definition 2.5 is

given by (0, w̃idx1) where

w̃i(x1) = −
∑
k∈N

(εk)
1
2ak

2cλ2
e−ickx1

∫ ∞

R

χ+(s)e
i(cε+c)kse−icεk(R−1) ds

We see that the Fourier coefficients of w̃i are estimated by∣∣∣∣∣(εk)
1
2ak

2cλ2

∫ ∞

R

χ+(s)e
i(cε+c)kse−icεk(R−1) ds

∣∣∣∣∣ ≤ Cε
1
2k− 1

2 e−εk|ak| ≤ Ck−1|ak|.

Using the scattering matrix, it follows from Theorem 2 that for any χ̃ ∈ C∞
c (Ω) there

exists C > 0 such that

∥χ̃whom∥H̄2 ≤ C.
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Fixing χ1 ∈ C∞
c (Ω) with χχ1 = χ and suppχ1 ⊂ {x1 ∈ (−R,R)}, we note that

χ1w+ = χ1whom. Therefore, ∥χ1w+∥H̄2(Ω) ≤ εC. By a similar argument on the left side

of the domain Ω, we conclude that

∥χ1w±∥H̄2(Ω) ≤ C.

Combining this with estimates on w0 from Part 1, this establishes the local uniform

estimate

∥χ1wε∥H̄2(Ω) ≤ C. (4.9)

Since we can take R > 0 to be arbitrarily large, the estimate (4.9) in fact holds for all

χ ∈ C
∞
c (Ω) (for different constants depending on the cutoff but not on ε). Therefore,

we see that wε ∈ H̄2
loc(Ω) ∩ Ḣ1

loc(Ω). □

With uniform boundedness in place, we can now prove a limiting absorption prin-

ciple. This will eventually allow us to use Stone’s formula to characterize the spectral

measure of the self-adjoint operator P defined in (1.3).

Proposition 4.5. Assume that f ∈ H̄δ(Ω) for some δ > 0, then for every χ ∈ C∞
c (Ω),

∥χ(R(λ)f − uε)∥Ḣ1(Ω) → 0 as ε → 0

where R(λ)f ∈ Ḣ1
loc is the outgoing solution constructed in Theorem 3.

Proof. We use the local uniform boundedness from Proposition 4.4. Again put wε :=

R(λ)f − uε. Since

uε = R(λ)f − wε,

it follows from (4.9) and the L2 → H1
loc boundedness of R(λ) that

∥χ1uε∥Ḣ1 ≤ C

as well. Consequently,

∥(−2λiε+ ε2)χ∆uε∥H̄−1 → 0 as ε → 0.

On the other hand, by Lemma 4.3, f ∈ H̄δ
comp(Ω) implies that

∥(−2λiε+ ε2)χ∆uε∥Hδ ≤ C

for all sufficiently small ε. Therefore, {(−2λiε+ε2)χ∆uε}0<ε<ε0 is a precompact subset

of L2. If this family failed to L2-converge to 0 as ε ↓ 0, it would be bounded away from

0 along some sequence εj ↓ 0. But extracting an L2 convergent subsequence would

then yield a sequence strongly converging to a nonzero limit and weakly converging to

zero, a contradiction.

Therefore,

∥(−2λiε+ ε2)χ∆uε∥L2(Ω) → 0 as ε → 0,

which means

∥χwε∥Ḣ1(Ω) → 0 as ε → 0
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for arbitrarily chosen χ ∈ C∞
c (Ω), which concludes the proof. □

Even though the uniform boundedness from Proposition 4.4 holds uniformly in a

small neighborhood of λ, we cannot deduce uniform rate of convergence from Proposi-

tion 4.5. This will be developed in §5.1.

5. Long time evolution

Let us now study the evolution problem (1.1). Recall the solution to (1.1) can be

written as

u(t) = ∆−1
Ω w(t), w(t) = Re(eiλtWt,λ(P )f)

with

Wt,λ(z) =
1− e−it(λ+

√
z)

2
√
z(
√
z + λ)

+
1− e−it(λ−

√
z)

2
√
z(
√
z − λ)

.

Let a > 0 be sufficiently small (to be specified later), and let

φ ∈ C∞(R; [0, 1]), suppφ ⊂ (λ− 2a, λ+ 2a) ⊂ (0, 1),

φ(z) = 1 for z ∈ [λ− a, λ+ a], φ(z − λ) is an even function.
(5.1)

We denote

w1(t) :=Wt,λ(P )φ(
√
P )f, b1(t) := Re(eiλtWt,λ(P )(1− φ(

√
P ))f).

Notice that

b1(t) =
cosλt− cos t

√
P

P − λ2
(1− φ(

√
P ))f.

Since Spec(P ) = [0, 1] and 1 − φ(
√
z) is supported away from z = λ2, we know there

exists C > 0 such that ∥b1(t)∥H̄−1(Ω) ≤ C for all t > 0. We write

w1(t) = w1,−(t) + b2(t),

w1,−(t) :=
1− e−it(λ−

√
P )

2
√
P (

√
P − λ)

φ(
√
P )f, b2(t) :=

1− e−it(λ+
√
P )

2
√
P (

√
P + λ)

φ(
√
P )f.

A similar argument to that for b1 shows that ∥b2(t)∥H̄−1(Ω) is bounded uniformly in t.

Let us focus on w1,−(t) now and write it as

∆−1
Ω w1,−(t) =

∫ ∞

−∞

1− e−it(λ−ζ)

ζ − λ
φ(ζ)µf (ζ)dζ

where

µf (ζ) :=
1

πi
∆−1

Ω

(
(P − ζ2 − i0)−1 − (P − ζ2 + i0)−1

)
f.

To guarantee the convergence of the integral for w1,−, it suffices to show z 7→ µf (z) is

sufficiently regular near λ.
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5.1. Regularity of spectral measure. Let ω = λ− iε for ε > 0. It follows from the

spectral theorem that uω := P (ω)−1f with f ∈ H−1(Ω) is a meromorphic family in ω

for ω ∈ I − i(0, ε0) valued in Ḣ1. To emphasize the dependence on ω, we rewrite (4.4)

as

P (ω)uω = f, uω|∂Ω = 0. (5.2)

Lemma 5.1. Let f ∈ H̄1
comp and assume that Ω is subcritical with respect to λ ∈ (0, 1).

Then there exists an interval I ⊂ (0, 1) containing λ and ε0 > 0 such that for any

k ∈ N,
∂ωuω ∈ Ḣ1

loc(Ω) uniformly for ω ∈ I − i(0, ε0)

for any s ∈ R.

Remark. Note that we require more regularity on f than in Proposition 4.5. Indeed,

by Proposition 4.5, the resolvent (P −ω2)−1 = ∆ΩP (ω)−1 loses a derivative in the limit

as ω approaches the real line, so we should expect the derivative of the resolvent to

lose two derivatives.

Proof. Differentiating (5.2) in ω, we find that ∂ωuω is the unique Ḣ1(Ω) solution to the

equation

P (ω)(∂ωuω) = 2ω∆uω. (5.3)

We know that uω, ∂ωuω ∈ Ḣ1(Ω), so decomposition into Fourier sine series away

from the topography makes sense. In particular, uω is the unique Ḣ1(Ω) solution

to P (ω)uω = f ∈ H̄1
comp, so by Proposition 4.4 and the remarks following the propo-

sition, there exists I ⊂ (0, 1) containing λ and ε0 > 0 such that uω ∈ Ḣ1(Ω) ∩ H̄2(ω)

uniformly for ω ∈ I − i(0, ε0). So there exists (implicitly ω-dependent) coefficients

ak, bk ∈ C, k ∈ N, such that(
(1− ω2)k2 + ω2∂2

x1
)
)
(∂̂ωuω)(x1, k) =

{
ake

icωk(x1−R), x1 ≥ R,

bke
−icωk(x1+R), x1 ≤ −R,

where R ≫ 1 is such that supp f ⊂ {|x1| < R − 1} and suppG ⊂ (−R + 1, R − 1).

Since ∆uω ∈ L2
loc, we know that (ak), (bk) ∈ ℓ2(N) uniformly in ω ∈ I − i(0, ε0).

Let χ+ ∈ C∞(R) be such that χ+(x1) = 1 for x1 ≥ R+1 and χ+(x1) = 0 for x1 ≤ R.

Define

w+(x1, x2) = χ+(x1)
∑
k∈N

1

2icωω2
k−1akx1e

icωk(x1−R) sin(kx2).

Note that w+ ∈ Ḣ1
loc(Ω) uniformly, and

P (ω)w+ = χ+∂ωuω + [P (ω), χ+]
∑
k∈N

1

2icωω2
k−1akx1e

icωk(x1−R) sin(kx2). (5.4)

In particular w+ solves (5.3) far away from the topography and the support of f ,

and the and the second term on the right-hand-side of (5.4) lies in L2
loc uniformly in
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ω ∈ I − i(0, ε0). Similarly, we can construct w− to the left of the topography and f .

Then

P (ω)(∂ωuω − w+ − w−) ∈ L2
comp(Ω)

uniformly in ω. Then by Proposition 4.4, we see that ∂ωuω ∈ Ḣ1
loc. □

The boundedness of the derivatives from Lemma 5.1 essentially tells us that the rate

of convergence in the limiting absorption of Proposition 4.5 is uniform for λ ∈ I. We

then obtain the following lemma on the regularity of the spectral measure.

Lemma 5.2. Let f ∈ H̄1
comp and assume that Ω is subcritical with respect to λ ∈ (0, 1).

Then there exists an interval I ⊂ (0, 1) containing λ such that µf ∈ Lip(I; Ḣ1
loc(Ω)).

Proof. Let uω denote the unique Ḣ1(Ω) solution to P (ω)uω = 0, Imω ̸= 0. By Propo-

sition 4.5, we know that

µf,ε(ζ) :=
1

πi
(uζ+iε − uζ−iε) ∈ C∞(I; Ḣ1

loc(Ω))

converges for each ζ ∈ I as ε → 0 and is uniformly bounded in L∞(I; Ḣ1
loc(Ω)).

Moreover, from Lemma 5.1, we have

∂ζµf,ε(ζ) ∈ L∞(I; Ḣ1
loc(Ω)) uniformly in ε ∈ (0, ε0) (5.5)

for some sufficiently small ε0 > 0. By Arzela–Ascoli, we see that µf,ε(ζ) converges in

L∞(I; Ḣ1
loc(Ω)). Since µf,ε(ζ) is uniformly Lipschitz in ε by (5.5), we conclude that

µf = lim
ε→0

µf,ε ∈ Lip(I; Ḣ1
loc(Ω)),

as desired. □

5.2. Proof of Theorem 1. It suffices to show that ∆−1
Ω w1(t) has the decomposition

of Theorem 1, since

ut − Re(eiλt∆−1
Ω w1,−) ∈ Ḣ1(Ω)

uniformly for all t > 0.

Since µf is Lipschitz, there exists ν ∈ L1(I; Ḣ1
loc(Ω)) such that

µf (ζ) = µf (λ) + (ζ − λ)ν(ζ).

Note that
1− eit(λ−ζ)

ζ − λ
→ (ζ − λ+ i0)−1 in D′(R)

as t → ∞. Let φ be as in (5.1), and assume that a is sufficiently small so that

suppφ ⊂ I. Then,∫ ∞

−∞

1− eit(λ−ζ)

ζ − λ
φ(ζ)µf (λ) dζ → −iπ

∫
µf (λ)δ0(ζ) dζ in Ḣ1

loc(Ω) (5.6)
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On the other hand, ∫ ∞

−∞
eit(λ−ζ)φ(ζ)ν(ζ) dζ → 0 in Ḣ1

loc(Ω)

by Riemann–Lebesgue, and finally,∫ ∞

−∞
φ(ζ)ν(ζ) dζ =

∫ ∞

−∞
φ(ζ)p.v.

1

ζ − λ
µf (ζ) dλ. (5.7)

Combining (5.6)-(5.7), we find that

∆−1
Ω w1,−(t) = e(t) +

∫ ∞

−∞

(
p.v.

1

ζ − λ
− iπδ0(ζ)

)
φ(ζ)µf (ζ) dλ

where e(t) → 0 in Ḣ1
loc(Ω). Finally, it follows from the spectral theorem that

R(λ)f −
∫ ∞

−∞

(
p.v.

1

ζ − λ
− iπδ0(ζ)

)
φ(ζ)µf (ζ) dλ ∈ Ḣ1(Ω),

which completes the proof.

References

[Bai71] P. G. Baines. The reflexion of internal/inertial waves from bumpy surfaces. Journal of

Fluid Mechanics, 46(2):273–291, 1971.

[Bro16] C. Brouzet. Internal wave attractors: from geometrical focusing to non-linear energy cas-

cade and mixing. PhD thesis, Université de Lyon,, 2016.
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