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Schrödinger equation

Consider the Schrödinger equation

(
1

i
∂t + (1/2)∆ + V )ψ = 0

ψ|t=0 = ψ0 ∈ L2(X ).

on R× X , where (X , g) is a Riemannian manifold, V is
real-valued, and

∆ = ∆g = d∗d

is (nonnnegative) Laplace-Beltrami operator on X .
Describes (nonrelativistic) quantum evolution of a particle moving
on X .
Question: how do geometry of X and behavior of V influence
qualitative behavior of solutions? (Will focus mostly on V = 0.)
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Rn

To see that global geometry plays a strong role, consider the
fundamental solution in two settings. Easy to write down
fundamental solution on Rn :

KRn(t, x , y) = (2πit)−n/2e i(x−y)2/2t .

Some obvious observations:

K is in C∞ for t > 0.

K is oscillatory for t > 0 at spatial infinity.

Less obvious:

Hs and Lp mapping properties in spacetime

propagation of singularities
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S1

By contrast, consider fundamental solution on S1 :

KS1(t, x , y) =
1√
2π

∞∑
−∞

e2π2in2t+2πin(x−y) = ϑ(x − y ; 2πt)

i.e. Jacobi theta function evaluated on boundary of halfplane of
definition (ϑ(z ; τ) analytic on Im τ > 0).

Not smooth in spacetime anywhere; neither is restriction to
diagonal x = y .
Cf. Kapitanski-Rodnianski, 1997 Does a quantum particle know
the time? for subtle changes in Besov regularity of restrictions to
different times.

One moral of this story: compact manifolds are harder than
noncompact, and in particular, trapped geodesics are hard.
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Maybe can hope to generalize some of what we know on Euclidean
space to other manifolds. A candidate situation might be
scattering or asymptotically conic manifolds.

Introduced by Melrose in context of geometric scattering theory.

Noncompact manifold X with compactification X , ends that look
like large ends of cones:
Neighborhood of ∂X is parametrized by (r0,∞)r × ∂X with metric

g = dr2 + r2h(r−1, θ, dθ)

θ are coordinates in ∂X , h a smooth family of metrics on ∂X .

Includes asymptotically Euclidean space (r = |x |, θ ∈ Sn−1)! Also
allows Rn with a metric that’s asymptotically non-round on
“sphere at infinity.”
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Trapping

Since S1 seemed a bit pathological, probably we don’t like closed
geodesics.

More generally, let γ be a geodesic.

Definition

γ is forward/backward trapped if limt→±∞ r ◦ γ(t) 6= ∞.
γ is trapped if it is both forward and backward trapped.
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Estimates

On any manifold, of course,

‖ψ‖L2(X )

is conserved under evolution.

More generally, for A a “reasonable” operator,

∂t〈Aψ,ψ〉 =
〈
Aψ̇, ψ

〉
+

〈
Aψ, ψ̇

〉
= 〈A(−i/2)∆ψ,ψ〉+ 〈Aψ, (−i/2)∆ψ〉
= (i/2)〈[∆,A]ψ,ψ〉

(“Heisenberg equation” for time-evolution of expected value of A.)
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Heisenberg, continued

∂t〈Aψ,ψ〉 = (i/2)〈[∆,A]ψ,ψ〉

With A = 1, this gives norm conservation. A = ∆s gives
conservation of norm in Ḣs .

Can also use if know we control 〈Aψ,ψ〉 to get

(1/2)

∣∣∣∣∫ T

0
〈[∆,A]ψ,ψ〉 dt

∣∣∣∣ ≤ |〈Aψ,ψ〉T |+ |〈Aψ,ψ〉0|
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Flat space Morawetz

On Rn (say, with n > 3) use test operator A = ∆−1/4Dr∆
−1/4

(with Dr = i−1∂r ):
Write

∆ ≈ D2
r +

∆θ

r2

So compute

i [∆,Dr ] = 2
∆θ

r3
+ lower order

Main term is positive operator!
Hence

〈Aψ,ψ〉|T0 =

∫ T

0

∥∥∥r−3/2∆
1/2
θ (∆−1/4ψ)

∥∥∥2
dt + error terms.
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Morawetz continued

Let ∇/ψ = r−1∇θ.

Since A is of order 0, 〈Aψ,ψ〉 is controlled by ‖ψ0‖2, so we obtain∫ T

0

∥∥∥r−1/2∇/ (∆−1/4ψ)
∥∥∥2

dt . ‖ψ0‖2.

(Cf. Morawetz (1968) for analogous identity for Klein-Gordon.)
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Local smoothing, etc.

By translation invariance, any derivative is a tangential derivative
(locally)!
So in fact for any W b Rn,∫ T

0
‖ψ‖2

H1/2(W ) dt . ‖ψ0‖2.

(Cf. Kato—“local smoothing estimate” for KdV; for Schrödinger,
Constantin-Saut, Sjölin, Vega.)

To put it concisely,

ψ0 ∈ L2 =⇒ ψ ∈ L2
locH

1/2
loc .

Note in particular, that ψ must be in H
1/2
loc for almost every t, but

certainly not for every t!
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More robust

For a global H1/2 estimate, and for a more robust proof, have to
work harder:

Note that the symbolic version of the above computation is:

{(1/2)|ξ|2, σ(A)} ≥ 0

since H(1/2)|ξ|2 = ξ · ∂x , with a = ξ̂ · x̂ , we find that the Poisson
bracket is exactly

|ξ|
|x |

(1− (ξ̂ · x̂)2)

which is (barely) nonnegative, vanishing on radial set.

This is of course geometrically delicate!
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Smoothing on manifolds

More robust: for ε > 0,

{(1/2)|ξ|2, |x |−ε(ξ̂ · x̂)}

has a mixed sign, but is positive on incoming set where ξ̂ · x̂ ≈ −1.

It turns out that we can microlocalize this argument on the
incoming set, and then propagate it across to outgoing.

Theorem (Craig-Kappeler-Strauss, 1995)

On asymptotically Euclidean manifolds, microlocally away from
trapped rays, ∫ T

0

∥∥∥〈r〉−1/2−ε∆1/4ψ
∥∥∥2

dt . ‖ψ0‖2.

Also holds in asymptotically conic setting.
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Other geometric settings

Theorem (Doi, 1996)

Local smoothing holds on nontrapping manifolds with a wide
variety of end structures, including asymptotically hyperbolic
manifolds. But L2H1/2 local smoothing fails microlocally near any
trapped ray, i.e.

ψ /∈ L2
locH

1/2
loc there.

Of course, on a compact manifold, we cannot be in L2Hs for any
s > 0 with L2 initial data.

What happens, e.g., on asymptotically Euclidean space with mild
trapping? Do we get some intermediate L2Hs estimate?
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Trapping

Theorem (Burq, 2003)

Let Ω ⊂ Rn be union of two strictly convex obstacles. Let ψ solve
the Schrödinger equation with Dirichlet boundary conditions in
Rn\Ω. Then ∫ T

0
‖ψ‖

H
1/2−ε
loc

≤ C‖ψ0‖2.

i.e. local smoothing holds with epsilon derivative loss. (Can do
several obstacles, with some extra hypotheses guaranteeing
hyperbolicity of flow.) Proof uses cut-off resolvent estimate of
Ikawa.
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Theorem (Christianson, 2007)

Same holds on asymptotically Euclidean space with a single
trapped hyperbolic orbit. Also weighted estimate (〈r〉−1/2−ε weight
as before).
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More complicated trapping

Consider now more complicated trapping situation: assume (X , g)
is asymptotically Euclidean, analytic near ∞, and assume that the
geodesic flow is hyperbolic on the energy surface, and that the
topological pressure P(1/2) is negative.
Hypotheses tell us that trapped set is a rather filamentary fractal.
In the case n = 2, P(1/2) < 0 ⇐⇒the Hausdorff dimension of the
fixed-energy trapped set is less than 3.

Theorem (Christianson (+others), 2007)

Then there is still L2H1/2−ε local smoothing for the Schrödinger
equation.

Main ingredient is a resolvent estimate of Nonnenmacher-Zworski,
following techniques of Anantharaman and
Anantharaman-Nonnenmacher developed for studying entropy of
limit measures (quantum chaos).
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Global in time

Global in time (Tataru, Rodnianski-Tao): if have compactly
supported smooth, nontrapping perturbation of Rn, and V = 0,
then ∫ ∞

−∞

∥∥∥〈r〉−1/2−ε∇ψ
∥∥∥2

+
∥∥∥〈r〉−3/2−εψ

∥∥∥2
dt . ‖ψ0‖Ḣ1/2 .

Uses absence of resonance/eigenvalue at zero for ∆ (which leads to
a Poincaré inequality), as well as absence of imbedded eigenvalues.
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Sharp weights

Sharp weights (Sugimoto, Hassell-Tao-Wunsch). Remember that∫ T

0

∥∥∥r−1/2∇/ψ
∥∥∥2

dt . ‖ψ0‖2
H1/2 ;

but if we want radial derivatives (globally) then need weight
r−1/2−ε.

Can do a bit better though. On asymptotically conic manifold, for
each i , j , ∫ T

0

〈
r−1/2∇/ iψ, r

−1/2∇jψ
〉

dt . ‖ψ0‖2
H1/2 ;
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Inverse square potentials, spatial weights

On Rn, V = r−2a(θ) has same scaling of ∆, and cannot be
regarded as a perturbation. (Is, among other things, a simplified
model of what happens on conic manifolds; expect diffractive
effects.)

Theorem (Burq-Planchon-Stalker-Tavildar-Zadeh)

Assume inf a > −(n − 2)2/4; take Friedrichs extension of
(1/2)∆ + V . Then usual local smoothing estimate holds.

Also, the authors observe that∫ T

0

∥∥r−1ψ
∥∥2

L2
loc

dt . ‖ψ0‖2

(i.e. we are permitted singular weight at origin).
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Generalizations

Generalization to manifolds with no trapping, single cone point
(Planchon-Stalker-Wunsch).

Several poles (Duyckaerts). Involves new ideas, as there are
trapped rays, undergoing successive diffractive interactions with
the poles.

Questions:

How to generalize to other singular spaces, hence deal with
significant diffractive effects in non-Euclidean background?

When is L2Hs with s ∈ (0, 1/2) sharp? (I.e. a real,
non-epsilonic loss). Use a thicker trapped set?
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The Strichartz estimates

Original proofs due to Strichartz on Rn were via restriction
theorems (1977 for wave equation).
Work in Rn, n > 2. Exponents (q, p) are admissible if

2

q
= n

(
1

2
− 1

p

)
and

p ∈ [2, 2n/(n − 2)].

Then a solution to homogeneous Schrödinger equation satisfies, for
(q, p) admissible,

‖ψ‖Lq(Rt ;Lp(Rn)) . ‖ψ0‖L2 .
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q = ∞, p = 2 is conservation of norm.

q = 2, p = 2n/(n − 2) is called the “endpoint” and this
estimate is due to Keel-Tao (1998), and is false in n = 2.

Inhomogeneous version: (i∂t + (1/2)∆ψ)u = f with zero
initial data implies

‖ψ‖LqLp . ‖f ‖Ls′Lr′

if (q, p) and (s, r) admissible.
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Proof of inhomogeneous estimate with (q, p) = (s, r)

Let U(t) denote the solution operator to the homogeneous problem

(U(t)ψ0)(x) =

∫
K (t, x , y)ψ0(y) dy

and T (t) the inhomogeneous

T (t)f =

∫
s<t

U(t − s)f (s) ds =

∫
s<t

∫
K (t − s, x , y)f (s, y) dy ds.

We have U(t) : L2 → L2 and L1 → t−n/2L∞ so by interpolation,
for p ∈ [2,∞],

U(t) : Lp′ → t−
2
q Lp.
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Proof (continued)

Then

‖Tf (t)‖Lp(Rn) ≤
∫

s<t
‖U(t − s)f (s)‖p ds

.
∫
|t − s|−

2
q ‖f (s)‖p′ ds

= |t|−
2
q ∗ ‖f (t)‖p′ .

Now Hardy-Littlewood-Sobolev says: convolution with |t|−
2
q maps

Lq′(R) → Lq(R) provided q′ < q
(i.e. on p < 2n/(n − 2), i.e. off of endpoint!).
Hence

‖Tf ‖LqLp . ‖f ‖Lq′Lp′

(Ginibre-Velo, 1985).
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Remarks

Homogeneous estimates follow via a duality argument.

Note that all we used about the propagator was:

Uniform L2 → L2 bound.

L1 → L∞ estimate, i.e. sup bound on K

|K (t, x , y)| . t−n/2.
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Application to NLS

Immediate applications to nonlinear Schrödinger equations (which
arise in nonlinear optics; superconductivity; quantum field theory)

The equation
∂tψ = −i∆ψ + λ|ψ|p−1ψ

is locally wellposed in Hs with

s ≥ max(0, n/2− 2/(p − 1))

and p odd or ≥ bsc+ 1. (cf. Cazenave-Weissler, 1990).
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So ingredients for Strichartz estimate (including endpoint) are
L∞L2 estimate, plus “dispersive” estimate K ∈ t−n/2L∞.

But Strichartz may still hold when the latter fails!
On asymptotically Euclidean space, for instance,
K /∈ t−n/2L∞ due to existence of conjugate points: near
diagonal, the propagator has form

t−n/2ae id(x ,y)2/2t

(cf. Hassell-Wunsch, 2005) but when x , y are conjugate to
each other, takes on a more complicated oscillatory integral
form, with phase variables and correspondingly more negative
power of t (focusing effect).

Nevertheless: (local-in-time) Strichartz still holds on
asymptotically conic spaces as long as there are no trapped
rays. (Cf. Staffilani-Tataru, Burq, Hassell-Tao-Wunsch,
Robbiano-Zuily, Bouclet-Tzvetkov.)
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Relationship to local smoothing

If have a parametrix for Schrödinger equation in some small set,
satisfying L2 → L2 and L1 → t−n/2L∞ estimates, local smoothing
allows us to localize our problem and get a local Strichartz
estimate.
Say G (t) is a local parametrix (i.e. approximation for U(t) in some
region Ω). Let ϕ be a cutoff in Ω.
Then

(i∂t + (1/2)∆)(ϕψ) = [(1/2)∆, ϕ]ψ

Hence by Duhamel

ϕψ(t) =

∫ t

0
U(t − s)[(−i/2)∆, ϕ]ψ(s) ds

= U(t)

∫ t

0
U(−s)[(−i/2)∆, ϕ]ψ(s) ds

≈ G (t)

∫ t

0
U(−s)[(−i/2)∆, ϕ]ψ(s) ds
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Strichartz and smoothing continued

Local smoothing: ψ(s) ∈ L2H
1/2
loc .

So
[(−i/2)∆, ϕ]ψ(s) ∈ L2H−1/2

i.e. for each t0,∫ T

t0

U(−s)[(−i/2)∆, ϕ]ψ(s) ds ∈ L2

(by local smooothing again and duality argument).

If we know that G : L2 → LqLp and that can control error terms in
parametrix, we get local Strichartz, i.e. estimate on ‖ϕψ‖LqLp . (We
have used Christ-Kiselev Lemma here!)
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Geometric Strichartz results

The sensitivity of Strichartz to geometry (in particular, to trapping)
is considerably more mysterious than that of local smoothing.

Theorem (Burq-Gérard-Tzvetkov, 2002)

If X is a compact manifold of dimension n, and (q, p) are
admissible,

‖ψ‖Lq
locL

p(X ) . ‖ψ0‖
H

1
q (X )

(i.e. Strichartz hold with derivative loss).

Proof uses parametrix for semiclassical Strichartz
ih∂t + (1/2)h2∆ (i.e., in parametrix for very short times,
decreasing with frequency).

Known to be sharp on the sphere.

Better estimates by Bourgain on flat tori, e.g.
‖ψ‖L4

locL
4 . ‖ψ0‖Hε on T 2.
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Geometric Strichartz, continued

On asymptotically Euclidean space with hyperbolic trapped
set, negative pressure: Strichartz with epsilon derivative loss
(Christianson, 2007).

Long times (various results on nontrapping asymptotically
Euclidean spaces; cf. Rodnianski-Tao, Tataru).

Inverse-square potentials: Strichartz with no loss
(Burq-Planchon-Stalker-Tavildar-Zadeh, 2006).

Multiple poles, likewise (Duyckaerts). (Recall this is a
trapping situation.)

In 1D, step functions with finite number of jumps in “metric”
(Banica 2003), no loss. (This is also a kind of trapping.)
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Hyperbolic spaces

Get full estimates on hyperbolic spaces (Banica, 2004; cf. Tataru
for wave equation).

For radial solutions, there are improved estimates (Banica, 2004):
follows since dispersive estimate (L1 → L∞ bound) has improved
weight at infinity.
Various geometric generalizations in radially symmetric spaces by
Banica, Banica-Duyckaerts, Pierfelice (all to radial data, in this
strong sense).
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Open questions

Is the B-G-T estimate optimal on compact manifolds of
negative curvature, or do the semiclassical propagator
estimates of Anantharaman, Anantharaman-Nonnenmacher
allow some kind of improvement?

B-G-T also observe that defocusing NLS enjoys global strong
existence with data in H1 on T 3, S1 × S2, and S3, but in
some sense for different reasons in each case! (Fourier
analysis on T 3, bilinear Strichartz on S3, bilinear plus trilinear
on S1 × S2.)

What about singular spaces? Symmetric spaces of higher
rank?
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Propagation of singularities

Consider fixed-time restriction of solution ψ(t).
Question: How is WFψ(t) determined by ψ0?

Fundamental solution on Rn shows that smooth ψ0 may later
develop singularities, and conversely singular ψ0 may become
smoothed. The trick is to track the “missing” singularities.
Craig-Kappeler-Strauss: for t > 0, the regularity of ψ(t) at
(x , ξ̂) ∈ S∗X is determined by the behavior in a conic
neighborhood of the backward geodesic through this point.

Theorem (Hassell-Wunsch, 2003)

On an asymptotically conic space X , WFψ(t) is determined by
oscillatory behavior of ψ0, and in particular by WFsc(e

ir2/2tψ0).

WFsc is “scattering WF set” (Melrose).
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Scattering wavefront set

Consider X = Rn, with compactification Bn.
Measure behavior at infinity (= Sn−1) with scattering wavefront
set.

Lives in scT ∗
∂X

X ≈ Sn−1 × Rn, the (rescaled) cotangent bundle
over the boundary at infinity.

Scattering WF (Melrose): on Rn, let a(x), φ(x) ∼ φ0(x̂) + . . . be
symbols of order 0. Then (x̂0, ξ0) ∈ WFsca(x)e irφ(x) iff

x̂0 is in cone support of a,

ξ0 = φ0(x̂0)x̂0 +∇φ0(x̂0).

(SC Wavefront set is graph of (φ0, dφ0) over support of a on
sphere at infinity.)
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Euclidean fundamental solution

Example

On R1, solution (t − 1)−1/2e i(x−x0)2/2(t−1) (1D fundamental
solution, shifted in space and time).

ψ0 = Ce−ix2/2+ix ·x0

WFsc(e
ix2/2tψ0) is infinite unless t = 1 owing to quadratic

oscillation in phase, i.e. form e iαx2
.

WFsc(e
ix2/2ψ0) = WFsc(Ce ix ·x0) = {(±1,±x0)}.

Correspondingly ψ(t) ∈ C∞ unless t = 1;
WFψ(1) = N∗{x = x0}. Can recover these data from
WFsc(e

ix2/2ψ0).
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Sojourn relation

Define a map S∗Rn = Rn × Sn−1 → Sn−1 × Rn as follows:
Given (x , ξ̂) ∈ Rn × Sn−1 let γ be the unit-speed geodesic through
(x , ξ̂).
Set

S(x , ξ̂) = (θ, ζ) ∈ Sn−1 × Rn, with ζ = λθ + µ,

θ = lim
t→−∞

γ(t)

|γ(t)|
,

λ = lim
t→−∞

−(t − |γ(t)|)

µ = lim
t→−∞

−|γ(t)|
(
θ − γ(t)

|γ(t)|

)
.

θ : asymptotic direction; −λ : “sojourn time” (cf. Guillemin,
Majda). On Euclidean space, −λ = x · ξ̂.

S is a contact diffeomorphism: S∗(X ◦) → scT ∗
∂X

(X )
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Given (x , ξ̂) ∈ Rn × Sn−1 let γ be the unit-speed geodesic through
(x , ξ̂).
Set

S(x , ξ̂) = (θ, ζ) ∈ Sn−1 × Rn, with ζ = λθ + µ,

θ = lim
t→−∞

γ(t)

|γ(t)|
,

λ = lim
t→−∞

−(t − |γ(t)|)

µ = lim
t→−∞

−|γ(t)|
(
θ − γ(t)

|γ(t)|

)
.

θ : asymptotic direction; −λ : “sojourn time” (cf. Guillemin,
Majda). On Euclidean space, −λ = x · ξ̂.

S is a contact diffeomorphism: S∗(X ◦) → scT ∗
∂X

(X )
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Propagation of nonuniform WF

Theorem (Hassell-W., 2003)

(x , ξ̂) ∈ WFψ(T )

iff
1

T
S(x , ξ̂) ∈ WFsc(e

ir2/2Tψ0).
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Proof relies on parametrix construction in category of
“scattering fibered Legendrians” (cf. Melrose-Zworski,
Hassell-Vasy). Show that for x ∈ K b X ◦ and (r , θ) near ∂X ,
can write

e−ir2/2tK (t, (r , θ), x) ≈ t−
n
2
− k

2

∫
UbRk

a(. . . )e iφ(r−1,θ,x ,v)r/t dv

Can regard RHS as a “scattering FIO” taking scattering
wavefront set to ordinary wavefront set via sojourn relation
(parametrized by φ).
In simple nondegenerate case, no integral necessary, and phase
is just −rt−1 times “sojourn time” λ from above.

More recent work of Nakamura gives alternative proof of same
theorem, phrased in terms of “isotropic WF” and includes
long-range case.

Different (slightly cruder) story for uniform-in-time WF; cf.
Lascar, Wunsch, Robbiano-Zuily, Martinez-Nakamura-Sordoni,
Ito, Szeftel.
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Harmonic oscillator

Theorem (Zelditch, 1983)

On flat Rn, let V = (1/2)r2 + e(x) with e(x) ∈ S0(Rn).
Then WF(ψ(nπ)) = (−1)nWF(ψ0).

Theorem (Doi, 2004)

If e(x) ∈ S1(Rn) there is a finite-speed-of-propagation relationship
between WF(ψ(nπ)) and WF(ψ0) depending on e(x).

Can also prove a trace theorem (see below).
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Geometric harmonic oscillator

Let X be an asymptotically conic manifold with no trapped rays.
Let V = r2/2 + O(r−1).

Let

S = {±L : there exists a closed geodesic in ∂X of length L}
∪{nπ : there exists a geodesic n-gon in X with vertices in ∂X}∪{0}.

Then
singsuppTr U(t) ⊂ S ,

(This is a spectral quantity: Tr U(t) =
∑

e iλj t , sum over
eigenvalues.)

Question: Is there a trace formula à la Duistermaat-Guillemin in
this case or the 1-symbol perturbation of Euclidean case?
Can we hear the geometry of a harmonic oscillator?
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