NICE MINICOURSE: WKB SOLUTIONS AND
PROPAGATION OF SINGULARITIES

JARED WUNSCH

We consider the Helmholtz equation with variable sound speed
(A + £V (2))u = fo
and do a semiclassical rescaling to turn this equation into
(1) (—h*A+ V()= f

with f = k72fy = h?fy. This is already quite interesting with f = 0 on
a compact domain (with boundary conditions), especially if we make the
modification to

(2) (—=h’A+V(z) — E)u =0,

which is the (stationary) Schrodinger equation. Note that we always consider
a family of solutions, hence for each h € (0,1) (or for a discrete sequence of
values of this parameter) we have a discrete set of £ = E;(h) for which this
inhomogeneous equation should have a solution (we appeal here to standard
elliptic regularity theory). Another very interesting special case: consider
(1) with f = d,, (i.e. we seek a fundamental solution). Or take f to have
small support, and study solutions to homogeneous equation away from
support of f. Or homogeneous solution with data “at infinity” (scattering:
see Martin Vogel).

Semiclassical microlocal analysis has two faces: it allows us both to con-
struct solutions, or approximate solutions, to PDE problems like (2); and it
allows us to analyze the asymptotic regularity of solutions to these equations
via energy estimates. The former approach has the virtue of being more ex-
plicit: we produce a formula for the solution. The latter has the virtue of
being more flexible and adaptable, as well as dealing more directly with L?
or Sobolev estimates which may or may not be apparent from a complicated
formula. These lectures will deal with both approaches in turn. The first,
on WKB methods, will just touch the tip of the iceberg of the constructive
(“parametrix”) methods that make up the modern theory of Lagrangian dis-
tributions, a.k.a. Fourier integral operators. The second will deal with the
analysis of semiclassical wavefront sets and their close relative, microlocal
defect measure; we will prove a propagation of singularities result based just
on L? estimates rather than on knowing a solution explicitly—this is really
a way of thinking about energy estimates for our equation in phase space.
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1. LEcTURE 1: WKB
Let’s discuss a nice way to try to locally construct solutions to!
(3) (=h*A +V(z))u = 0.

Seek h-dependent family of solutions v = w(z;h), but in notation we often
suppress the h.
Trivial example

(=h?0? —E)u=0onR:

solutions
e:l:i\/Ex /h

Note rapid oscillation as h | 0; frequency is v E/h. More generally try an
Ansatz

(4) u(x; h) = a(x; h)e @)/,

Here a should depends on (z,h) € R™ x [0,1) and will ultimately have
(formal) asymptotic expansion in powers of h with smooth coefficients:

(5) a(z;h) ~ ap(x) + hai(z) + ..., aj(x) € C°(R"),

and ¢ is independent of h.? So asymptotic oscillation ezactly known and
amplitude can be Borel summed to be smooth in h. We will settle for
approximate solutions (say mod O(h®®). This is called the WKB (Wentzel-
Kramers—Brillouin) method (or maybe BKW; vive la France). Or the method
of geometric optics.

Try Ansatz (4) in (3). We get, grouping terms in which the derivatives
fall on @ and €'/ and dropping an overall factor of e*®/"

(6) —h*Aa+Va—2hiVe-Va+ |Vé|>a — hiAda = 0.
The largest terms here, in terms of powers of h, are the two O(1) terms
(7) Vo(@)[*a+V(x)a;

thus, unless @ = O(h) (which would be a problem for e.g. having L? nor-
malized solutions) the only way to solve our equation is to take

(8) IVo(x)]> + V(z) = 0.

This is called the eikonal equation (or Hamilton-Jacobi equation). How
might we solve it? This is an interesting (and long) story, and to make the
logical flow clear, we’ll do this in a separate subsection.

lyou might want to consider a spectral parameter E, but we can absorb it into V for
these purposes. It’s useful to keep in mind, in order to have useful examples, that V' does
not have fixed sign.

2We could of course take ¢ also to be a power series in h but the exponential of O(h)
terms can just be lumped back into a without loss of generality.
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1.1. Eikonal equation. Idea: seek not ¢ but rather the graph d¢ (so re-
cover ¢ up to constant). Thus, set

A ={(z,d¢(z): z € R"} C T*R"

The notation d¢ = Y (9¢/dz;)dz’ is for our purposes just a more invariant
way to think of V. T*R"™ denotes the cotangent bundle, which you can just
take to be R7 x Rg. In this notation, A lies inside the energy surface

€ +V(e)=0

But this energy surface has codimension 1 and A has codimension n (so
much smaller in general). The submanifold A is defined by £ = V¢(x) of
course.

Now consider the vector field®

H=2¢-0, —VV(x)- 0
on T*R™. Since A is defined by &; — 0;¢(x) = 0 for j = 1,...,n, applying
this vector field to the j’th defining function gives

Since
on A, this yields by the chain rule just

00, VoI = 03V (@),

and this vanishes on Al
Where did this crazy vector field come from? It’s the Hamilton vector

field, the generator of classical dynamics via the equations for its flow, which
read simply .

i=2g, €=-VV.
Plugging one into the other gives the second order equation

= —-2VV,

which is simply Newton’s law in the potential V', up to a pesky factor of 2
that we haven’t bothered with.* The equations for (x,¢) jointly are Hamil-
ton’s equations of motion, with & = (1/2)4 representing the momentum
along the classical flow.

3We will use the geometers’ notation for vector fields that identifies a vector field with
the directional derivative along it; hence in R? with coordinates 1, ..., yq, instead of
writing a vector as
U1

we identify it with the first order operators »v;0,, or v - V.
4The operator really ought to have been —(1/2)h?A 4 V to make this work out.
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We’ve thus showed

Proposition 1. If ¢ is a smooth solution to the eikonal equation (8) then
the Hamilton vector field H is tangent to A = graph(dg).

(This is the basic fact of what’s called Hamilton—Jacobi theory.) Thus
integral curves of H that start in A stay in A.%

Now secretly, (3) is a hyperbolic equation in the sense of semiclassical
asymptotics. (Stuff propagates.) So we’ll try to solve from one side of a
hypersurface:® split x = (z1,2") and specify a, ¢ for 1 < 0; we'll try to
extend the solution across the hypersurface by solving for 1 > 0. The
above proposition allows us to try to extend our solution for ¢ as long as
the flow direction of H is transverse to x1 = 0, i.e. & = 0z, ¢ # 0 at the
points in question. We are given

A}Ilzo = Ao,

Suppose WLOG that 0,,¢ > 0 along z1 = 0 so that H points to the right.
We simply now define, over 1 > 0

A ={expiy(p) : p € Ao, t <€}

Proposition 2. For e > 0 sufficiently small, this A continues to be a man-
ifold that projects diffeomorphically to RY; there exists a smooth ¢ such that

A = graph(do)
and ¢ solves (8).

Ezercise 1. Prove this! Note that you’ll have to prove that when we write
¢ = E(x), exhibiting A as a graph over the x variables, we have

d(Z(z) - dx) =0,

so that Z(x) - dz = d¢ for some ¢. (If you prefer, this is just the compability
condition 0Z;/0z; = 0Z;/0x;.)" You'll also have to check that the resulting
¢, provided it makes sense, satisfies (8). For this, it’s important to note that

H(E2 +V) =0.

5You're getting the abbreviated version here, of course. The language and methods
of symplectic geometry make this all less crazy. A is a Lagrangian submanifold of the
symplectic manifold T*R"™ lying inside the set where p = |€|2 + V vanishes. It’s then an
important (and easy) general theorem that the Hamilton vector field of p (generating the
dynamics of p as a classical Hamiltonian) is tangent to A.

SReally it would be better to think about solving the Cauchy problem starting with
data on the hypersurface, but we’ll leave this for you as an exercise as you have to think
about what the right data should be.

TA hint to the hint, since this is a substantial problem, is that if you know some
geometry of differential forms, you can check that the time derivative along the H-flow of
> d€; A dzx; restricted to A is zero, by using Cartan’s formula, and then to note that the
vanishing of this quantity is locally equivalent to A projecting diffeomorphically to the
base variables x, by the Poincaré lemma.
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Ezercise 2. Do this construction explicitly for V' = —F a constant and with
p=0a-x.

Note that we cannot expect to continue this process forever—it’s only
local. The trouble is that eventually A may fold over and cease to continue
to be a graph over R?. And then it gets really fun: this is the general theory
of Lagrangian distributions, a.k.a. FIOs (see, e.g., Hormander FIO1).

1.2. Transport equations. Finally, let’s return to our proposal for solving
the Helmholtz equation. All that work solving (8), and we’ve only solved our
equation mod O(h) terms. Let’s now return to the equation (6), which now
with the eikonal equation satisfied reads (after dropping an overall factor of
h)

9) —hAa —2iV¢-Va —ilApa = 0.

Since there are two different powers of h involved here, we’ll necessarily have
to deal with it (in general) by solving iteratively as a formal power series in
h. Recalling the expansion (5), we now group like powers of h. Here is the
h® term (after taking out a constant factor):

V- Vag + %(A@ag — 0.

This one is easy to solve by integration: Remember that by assumption,
Oz, ¢ # 0 at z; = 0, so we can think of this as an ODE along the integral
curves of the vector field V¢, which are transverse to x; = 0.

Ezercise 3. Solve the inital value problem for this with data at 1 = 0 in
terms of the flow of the vector field V¢ by using an integrating factor.

How about the next one? The h' equation reads
—Aag — 2iV¢ - Vay —iApag = 0.
Rewriting this as .
V- Vay + %(Aqﬁ)al - %Aao

we note that it is again an equation, this time for, a; along the vector field
V¢, but this time with nonvanishing RHS determined by our previous step;
again we can solve by integration! (A so-called transport equation.)

Subsequent equations are of the same form, and can be solved by integra-
tion along the v.f. V¢ in the same manner.

1.3. Taking stock. Proceeding in this manner, we can for any N find
ao, . ..,an so that if Gy = ag + hai + - -- + hNay then
(—h2A + V) (aye’) = O(hN+?).

If we prefer, we can in fact Borel sum to a ~ ag+ hay+... to solve the very
accurate “quasimode equation”

(=h2A + V) (ae™/m) = O(h™).
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Ezercise 4. Understand Borel summation, and why it’s related to the cal-
culus lemma that any sequence of numbers at all are the Taylor coefficients
of some smooth function on R.

This is pretty good, but it’s as far as we’re going to get without further
input. How can we get rid of an O(h*°) error? If we have some kind of
estimate for the inverse of (—h?A + V') then maybe we can do this, but such
an estimate isn’t always available. See Martin’s lecture.

Takeaway for next time: remember that A, the graph of d¢, gets prop-
agated in T*R" along the flow of H, a.k.a. classical trajectories in phase
space. The support of a comes along for the ride, since it propagates along
V-9, = &-9; on A; this is the expression for H when we use x as coordinates
for A.

2. LECTURES 2—-10: PROPAGATION OF SINGULARITIES

Let us try to use our knowledge of PsiDOs to understand how solutions to
the Helmholtz equation (1) may concentrate. Remember that last time we
managed to produce (approximate) solutions we associated to a submanifold
of phase space graph d¢p where ¢ satisfied the eikonal equation. Keep this
class of examples in the back of your mind for this second lecture.

A first approximation to the question of concentration is: as h | 0, for
which z is u(z; h) not decaying to zero? But it turns out to be very pro-
ductive to ask for more: we will identify where u lives in phase space, which
is to say where is it localized in z, and to what degree is it asymptotically
oscillating like the solutions that we considered yesterday, which look more
or less like e’*/h? We'd like to recover a sensible &, even if u(z; h) did not
arise as an explicit WKB solution.

I offer you two options for making these measurements, each with their
own virtues and applications. I'll focus on the latter (defect measure).

2.1. Wavefront set. (Recap of Melissa’s lecture.) As always, u depends on
both = and h with the (crucial!) latter dependence suppressed in notation.

Definition 3. Let (xo,&) € T*R™. Then (x,&) ¢ WF},(u) if there is a(z, )
with a(zo, &) # 0, and so that

Opy,(a)u = O(h™).

We have thus defined the complement of the wavefront set: this point
is mot in it if we can localize in phase space by applying a PsiDO that’s
nontrivial at this point, and we get something trivial (O(h*°)) out. For
purposes of comparison, you might like to define ess-supp u, the essential
support, by xo ¢ ess-suppu if there exists ¥ € C®(R"), ¥(zg) # 0, Yu =
O(h®). This just measures where u is nontrivial in position, while our
definition above does more (it gets momentum too).

Exercise 5. Let u have compact support. Show that ess-suppu = ( iff
u = O(h™) globally.
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Proposition 4. Let 7 denote the projection T*R"™ — R™. Then® n(WF), u) =
esS-Supp u.

So in particular there is no WF in the fiber over a single point iff u =
O(h®) near that point.

Let’s take the special case of testing by A = Op,(¢(z)1(£))* where ¢ and
1) localize near x = xg resp. £ = . This gives

Au = Fy p(€) Fr(d(x)u),
with Fj, the semiclassical FT.
FEzercise 6. There exists A as above with Au = O(h™) iff Fp,(¢(z)u) =
O(h*) in a nbd. of &.
This special family of operators in fact turns out to be general enough to
use for testing for WF, and we obtain the following handy local definition:

Proposition 5. A point (xg,&p) is not in WFy u iff there is a cutoff ¢ near
To so that
Fn(pu) = O(h™) in a neighborhood of &.

Ezercise 7. Compute WEF}, e**/h WF), a(z) (with a smooth and indepen-
dent of h).

Proposition 6. WFj u is coordinate invariant as a subset of T*R™.

Ezercise 8. Understand what this means, if you’ve never grappled with T*R"
before.

Ezercise 9. Assume that ¢ has no critical points, and compute
WF), cio(@)/h

Hint: change coordinates locally to make ¢ linear! Alternatively, think
about the fact that u = ¢*®)/" gatisfies the equations

(hDj — djp)u = 0.
Theorem 7. Let A € U,(R™). Then
WF), Au C WFp, u.

Moreover
Au = O(h*) = WF u;, C {os(A) = 0}.

The first statement is that PsiDOs are microlocal: they don’t move WF
around. The second (which follows easily from the defintion) is that a fam-
ily w satisfying an equation must be concentrating in phase space at the
characteristic set of the equation.

8This result is important in getting intuition for WF, but there is a serious swindle in
this statement that I should confess to: in order for it to be true, you have to make an
appropriate extension of WF to “fiber infinity.” The enemy is, e.g., a distribution like
e””/hg7 which is oscillating faster than ¢**/" for any finite ov. If e.g. u solves an equation
like (h*A 4V — E)u = 0, this is automatically ok owing to ellipticity of A and you don’t
have to worry about this extra piece of WF.
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2.2. Defect Measure. Let u(z;h) be a semiclassical family of distribu-
tions. For technical reasons, we will assume throughout this lecture that
the family w(-, k) is locally uniformly bounded® in L? as h | 0.

We will start with a non-microlocal notion, measuring concentration in
position space. For a given a(x) € C°(R™), consider

(au,u) = /a(x)\u(x,h)]Qda:,

as a function of A | 0. (In QM this is the expectation value of the observable
a(x) on the quantum wavefunction u.) These numbers are bounded (by the
locally uniformly L? hypothesis), but not in general convergent; we can of
course extract a sequence of decreasing h; | 0 so they converge. Let’s do so.
Indeed, by extracting successive subsequences, we can make

(agu, u)

converge for any sequence of ay, that we like. By further extracting a diagonal
subsequence we may assume that they all converge for a specific subsequence
u(x; hj). Let’s do this where we have chosen ay, be set of functions that are
dense with respect to sup norm in smooth functions supported in every
compact set in R™. Then for any other f € C°(R"™), we can easily check
that (fu,u) converges too, by density!

Ezercise 10. Check this.
Now given a € C2°(R"™) let
pu(a) = lim (a(@)u(@; hy), u(z; hj)).

j—00
This is nonnegative if a is, of course. By Cauchy—Schwarz
|/L(G;)‘ S S%p ||'LL(., h)HLQ(suppa) - sup ‘a|

Thus by Riesz, v is a (positive) Radon measure! We say u is a semiclassical
defect measure for the family u. It is by no means unique in general: recall
we built it by extracting nested subsequences to make good things happen.
We say that u is a pure sequence if it has only one defect measure.

Ezercise 11. Find all defect measures associated to the family h=1/2¢=2*/2h

in R.
Ezercise 12. Find all defect measures associated to the family ¢(z —1/h) in

R, where ¢ is a fixed L?-normalized function.

Ezercise 13. Show that if u is a pure sequence with defect measure p then
xo ¢ supp p iff there is a neighborhood of xp on which u = oy2(1) as h | 0.
(Contrast this with the notions of WF and essential support, which measure
where u lives mod O(h*).)

91t suffices to the family to be h-tempered—see Dyatlov—Zworski Section E.3.
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Now we do the same in phase space! We just replace a(x) with A =
Op(a(x,§), the quantization of a symbol a € S(R™). We say u, a measure
on T*R", is a (semiclassical) microlocal defect measure for a family wu if
along some subsequence,

(Op(a)u(e, hy), u(e, b)) — / o dy

Defect measures exist for any sequence by the same kind of diagonalization

and density argument as we used above or the special case of A = a(x).
Ezercise 14. Show that the only defect measure for the sequence e#/ ig
Lebesgue measure on the set {z € R", { = a}.

Exercise 15. Show that the family of functions on R?

w/h {h'} € [0,1/2)
e
, ; h — ) ) Y Y
w4 ) {ew/h, {h'} e (1/2,1)
(stupidly) has more than one defect measure. (Here {e} denotes fractional
part.)

Ezercise 16. Let u(z, h) be the sequence of all solutions to (h2A—1)u = 0 on
the standard 2-torus, hence we are considering a discrete sequence of values
of h with h=2 = m? + n?, m,n € Z. (Le., we are studying eigenfunctions of
the Laplacian.) What defect measures can you produce along subsequences?

Ezercise 17. What defect measures does the sequence e/ " have?

Proposition 8. Defect measure is coordinate invariant in T*R™.

Proposition 9. Let P € U,(RY). If Pu = o;2(1) and p is any defect
measure of u then
supp pu C {op(P) =0} = X.

Proof. Let p = (x0,&) ¢ X. By use of a microlocal elliptic parametriz, if we
choose B = Opy,(b) with b > 0, b(p) > 0 and suppbN X = ), we can factor
B =GP+ h*™R for G, R € ¥;,(R™). (The crucial point is that b is divisible
by o (P).) Then
(Bu,u) = (GPu,u) + h*(Ru,u) = o(1)

(since G is uniformly L?-bounded). Hence [bdu = 0, which yields p ¢
Supp p. U
Ezercise 18. Prove the existence of the factorization used above, e.g. by

an iterative construction such as was used in constructing the inverse of an
elliptic operator in the “Tools of semiclassical analysis” lectures.

Let’s study the sequence u = b(z)e'®@/ familiar from our previous
lecture. For suppa Nsuppb = 0,

(au,u) =0
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so certainly this shows that!® [ a(z) dp = 0, hence the support of y is within
suppb. Note that since [(z)dy = lim [|u|*de = [[b]*dz # 0 for a
bump function ¢ of space variables only supported in the interior of supp b,
it has a nontrivial defect measure over every point in suppb, and indeed,
the same holds upon localizing near any point in supp b, hence there is some
point in the support of the defect measure over any point in suppb. Now
we note
(hDj — 9j¢)u = Opz(h),

since this operator annihilates the oscillating term, while derivatives hitting
b are O(h). Hence Proposition 9 shows that for any defect measure p,

supp p C graph(dg).
Since we knew there was some point in the defect measure over each point,
this is it: we’ve found that the support of the defect measure is graph(d¢) C
T*R"™.

Let’s take stock of this result: remember that A = graph(d¢) was exactly
the important submanifold of T*R™ that arose in solving the eikonal equation
last time! So for our WKB solutions, the locus of concentration in phase
space, as measured by the defect measure, is exactly this crucial manifold.

Now recall that we could solve for WKB solutions across a hypersurface:
once we knew a piece of A, flowing it out along the Hamilton vector field
H gave more of it. This tells us that the support of the defect measures in
the special case of WKB solutions are propagated along the Hamilton flow.
This fact is the tip of a beautiful iceberg.

Theorem 10. Let P € U, (R™) be a self-adjoint operator, with Pu = oy2(h)
(and u locally uniformly L?). Let u be any defect measure for u. Then

supp pu C {on(P) = 0}
and p is invariant under the Hamilton flow of P.

Note that the statement supp u C {o(P) = 0} is just a repeat of what
we said before in Proposition 9.

I’ve stated this pretty generally, so should explain notation. For a general
P with symbol p, the Hamilton vector field is defined as

_op o
P ¢ Ox
This is in fact invariantly defined on the (symplectic) manifold T*R", if you
want to get fancy, by

X 0y — 2L 5.

tH,w = —dp

where w = d¢ A dx is the symplectic form.

FEzercise 19. (For the geometric sophisticates.) Show these definitions coin-
cide.

1OConfessing a cheat: a is not actually a Schwartz symbol. It’s ok.
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Ezercise 20. (Easy, essentially discussed yesterday:) Check that Hamilton’s
equations for p = (1/2)|¢]* + V (z) give Newton’s law for motion in a poten-
tial.

Remember that it’s nice to define the Poisson bracket of two smooth
functions by

{a7 b} = Ha(b)7

and an important property of Hamilton vector fields is that this operation
is anticommutative:

{a,b} = —{b,a}.

Exercise 21. Check not just that the Poisson bracket is anticommutative,
but that it also satisfies the Jacobi identity

{{a’ b}> C} + {{b7 C}?a} + {{Cv a}v b} =0,

thereby making smooth functions on phase space into a Lie algebra.

The flow along the Hamilton vector field is just the transformation of
phase space given by evolving according to Hamilton’s equations of motion
with Hamiltonian p. In other words, it’s classical dynamics. The Poisson
bracket of a and b is the derivative of the classical observable b under the
time-evolution for the system in which we regard a as the Hamiltonian (a.k.a.
energy function); the anti-symmetry is, from this point of view, perhaps
rather surprising.

What does it mean for p to be invariant, as in the statement of the
theorem? Let

CI’t = expth
denote the time-t flow. We can evolve a test function a to ®ja = a o &,

(thus pulling back the function, in geometric terminology). So we can,
dually, regard this as pushing forward the measure:

(©)2n(a) = p(@j) = [ aobidp.

(Here we also use the analysts’ notation p(f) = [ fdup.) Invariance is then
the statement that (). = u, i.e., that for any a,

(10) /aofbtduz/ad,u.

So our punchline is that the main concentration in phase space of u is on a
set invariant under the classical dynamics!

What will it take to prove (10)? Since the RHS is exactly the LHS at
t = 0, it will of course suffice to show the time derivative is zero. What’s
the derivative? We get exactly

d

pr ao@tdu—/Hp(aofbt)du,



12 JARED WUNSCH

hence it will suffice to show that
/ Hp(a)dp =0

for all functions a.

Let’s now prove this invariance statement; it’s surprisingly easy given the
tools we now have available. For any A = Op(a), with a real, let’s write the
pairing of the commutator of P with A with the function u:

i
h
since P is self-adjoint, and since Pu = or2(h).

On the other hand, remember the very important relationship between
commutators of operators and Poisson brackets of symbols:

QPHMUJQ::%(QMMPU>—<PUMFU»::oﬂ)

i
h

for some remainder R € ¥,(R™). So putting together what we know, we
find that

[P, A] = Op{p,a} + hR = Op(Hp(a)) + hR

(Op(Hp(a))u, u) + h{(Ru,u) = o(1),
hence
(Op(Hp(a))u, u) = o(1).
But the LHS is converging to p(Hp(a)), hence
pu(Hp(a)) =0

for all a. This completes our proof of invariance of defect measure.

Optional extra: it would be nice to know that defect measures were
nonzero in some circumstances. This turns out to correspond to a require-
ment that mass not escape to infinity in either space or frequency, and is
guaranteed if u satisfies an equation where the characteristic set is compact;
imagine, e.g., the harmonic oscillator eigenfunctions, given by

(WA + |z* = E)u = 0.

Proposition 11. Let P = Op(p) € V1,(R") with ¥ = {p = 0} compact and
p bounded below near infinity.' Suppose ||u(e, h)|| =1 for all b and that

Pu = o(1).
Then every defect measure of u is a probability measure.

The proof is roughly as follows: pick a € C°(T*R"™) with a = 1 on a
neighborhood of ¥. Then we can factor

(I - A)=QP +hR

11Say, elliptic in an appropriate sense; I'm being intentionally vague.
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by microlocal elliptic regularity. Thus for each h,
1= (u,u)

= (Au,u) + (QPu,u) + h(Ru, u)

= (Au,u) + o(1),
and the RHS thus approaches p(a). Hence p(a) = 1. But since supppu C X
and a = 1 on X, this gives

/ ldp =1
as desired.
A final word on what we haven’t said for lack of time: we can also consider

propagation of wavefront set. It satisfies similar properties to the defect
measure: if Pu = 0 then the set WFj, u lies in the characteristic set of P

and is invariant under the Hamilton flow. The proof of this is a little more
involved than the defect measure statement, but similar in flavor.



