PROPAGATION OF SINGULARITIES AND GROWTH FOR
SCHRODINGER OPERATORS

JARED WUNSCH

ABSTRACT. We study the time-dependent Schrédinger equation (D + %A + Vi =
0 for the Laplacian of a scattering metric on a compact manifold with boundary.
Under a non-trapping hypothesis on the geodesics, the microlocal smoothness of P (t)
is determined by growth properties of {(0) as measured by the “quadratic-scattering”
wavefront set, a generalization of Hérmander’s wavefront set. We prove a propagation
theorem for the quadratic-scattering wavefront set which describes singularities and
growth of P (t,-) in terms of singularities and growth of (0, -).
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1. INTRODUCTION

The time-dependent Schrédinger equation is the non-relativistic quantum-mechanical
description of the motion of a particle in a potential. In appropriate units, the equation

reads
1
where D¢ = —i%, A is the (non-negative) Laplace-Beltrami operator with respect to a

Riemannian metric, and V can be a real multiplication operator or, by incorporating
a “magnetic potential term,” the sum of a multiplication operator and a first-order,
self-adjoint differential operator. The standard interpretation of this equation is that
[b(t,z) |2 is the probability density of observing the particle at the point z at time t. For
the sake of convenience, we write {(t) = U (t, ).

We are interested in the propagation of singularities for the Schrodinger equation.
The regularity of solutions is already interesting on R', with V = 0. In that case, the
fundamental solution is given by

(1.2) Ke(z,w) = (2rit) "2 etz w*/2t,

Thus,

(1) bl = [Kils w0, widw = 2rit) 1/, (2 0,m)) (2)
where F,,f = [ f(w)e ™ &dw denotes the Fourier transform in w. Equation (1.3) has
the interesting consequence that if P(0) € £'(R') then P(t) € C®(R') for all t > 0.
Conversely, however, if we start with the smooth initial data P (0) = e~ h2?/ 2 then P(t)
develops a delta-function singularity at t = A~'. These examples, while showing that
singularities do not propagate in the conventional sense of Hérmander’s theorem (see
[8]), do suggest that singularities are produced by asymptotic properties of the Cauchy
data at infinity.

We now list a few works generalizing the above observations; the reader is referred
to Craig, Kappeler, and Strauss [4] for a more complete discussion of recent work on
propagation of singularities for the Schrodinger equation.

The first work on the propagation of singularities for the Schrodinger equation with
variable-coefficient second-order terms (i.e. on curved space) seems to be that of Lascar
[14] and Boutet de Monvel [1], who prove that the singularities of a solution to (1.1),
considered as a function on spacetime, must be a union of geodesics in space, with
time fixed; in other words, singularities travel at infinite speed along geodesics. This
statement provides no information, however, about the singularities of the solution at
time t in terms of Cauchy data. It also yields no information about the singularities in
the spatial variables of the restriction of the solution to a fixed time.
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Kapitanski and Safarov [12] prove results more tailored to the Cauchy problem: in
the case in which %A + V in (1.1) is a real, variable-coefficient operator on R™ that
has constant coefficients outside a large ball, they show that the fundamental solution
is smooth for t > 0 under the assumption that there are no trapped bicharacteristics.
Craig, Kappeler, and Strauss [4] allow operators in which the coefficients of the second-
order term are asymptotically constant, and obtain conditions on the moments of {(0)
ensuring the microlocal smoothness of \P(t) at a given point for all t > 0. Conversely,
a result on the absence of dispersive smoothing effects when the metric has trapped
geodesics can be found in Doi [5].

The results of Kapitanski-Safarov and Craig-Kappeler-Strauss give smoothness for
all t > 0 under appropriate hypotheses. On the other hand, in the case of the Eu-
clidian metric, regularity results involving more interesting time-dependence have long
been known. In [30], Zelditch obtains time-dependent information on the singularities
of solutions to the harmonic-oscillator Schrédinger equation with a potential perturba-
tion; he shows that the singularities “reconstruct” periodically. He also proves global,
time-independent results on the regularity of the perturbed free-particle. Weinstein, in
a related paper [28], proposes the introduction of a generalization of the wavefront set
that measures behavior at infinity, and hence propagates well under time-evolution for
the Schrodinger equation. He introduces a candidate for this set, the metawavefront set,
and shows that if p(x,§) is a real-valued polynomial of degree < 2 then for Hamiltoni-
ans on R™ that are perturbations of p(x, D), the metawavefront set propagates nicely.
Unfortunately, the metawavefront set is not in general closed, and its absence does not
imply that a distribution is a Schwartz function.

Results on the harmonic-oscillator generalizing those of Zelditch to a broader class
of potential perturbations have been recently obtained by Kapitanski, Rodnianski, and
Yajima [11]. Another recent time-dependent result is that of Shananin [23], who proves
a microlocal regularity result for the free, constant-coefficient Schrodinger equation with
initial data of the form a(z)e'®().

Very strong tools are available in the Euclidian case which have not hitherto been
developed in the general case: parametrices for D¢ — % > ai + V have been constructed
by Treves [27] and Fujiwara [7]. Yajima [29] also uses a parametrix to obtain global
regularity results in the Euclidian case; in addition, he demonstrates lack of regularity
of the fundamental solution in the case of super-quadratic potentials.

In this paper, we generalize techniques used in [4] to prove time-dependent microlocal
regularity results for a Schrodinger operator with potential terms on a Riemannian man-
ifold. We follow the program of Weinstein [28], insofar as the results take the form of a
propagation theorem for a generalized wavefront set which includes information about
both growth and regularity. This wavefront set, which we call the “quadratic-scattering”
(or “gsc”) wavefront set, is closely related to the “scattering” wavefront set defined by
Melrose in [15]. In the case of R™, the gsc wavefront set can be thought of as a subset
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of the boundary of the manifold with corners B} x B} (where B™ is the n-dimensional
ball). We think of the first factor as the radial compactification of R} and the second as a
compactification of (a rescaled version of) (R} )*. The boundary of B} x Bf is composed
of two faces: 9B} x BE, and B} x 90Bf. The gsc wavefront set living in (B})° X 0Bf will
be the ordinary wavefront set; the qsc wavefront set in 0B} x (Bg)" is a measure of “qua-
dratic oscillation at infinity.” The wavefront set in the corner, 0B™ x 0B™, interpolates

between the two notions in a sensible way. We let WF__.u denote the gsc wavefront set

qsc
of a distribution u.

We now describe the results of this paper in the case of R* endowed with a “scattering”
metric (this class of metrics includes asymptotically Euclidian metrics) and a potential
term V that does not grow at infinity in a sense made precise in §10 (classical symbols
of order zero, for example, are acceptable; harmonic oscillator potentials are not). Let
P be a solution to (1.1). Given any point p € 3(B} x Bf) and time T > 0, there is a set
Gr(p) C 0B} x (BE)° such that if WF . p(0) N Gr(p) = (0 then p ¢ WF b(T). (The
converse also holds if we assume uniformity in T; see §12 for details.)

On 0B} x (B)°, WF
X given by rescaling geodesic flow; thus for p € 9B7 x (B{)° and T sufficiently small,
Gr(p) is the point exp(—TX)[p] € B} x (Bf)°. The vector field X blows up near the
corner 0B7 x 0BY in such a manner that certain integral curves reach in 0B} x 0B

propagates at finite speed under the flow of a vector field

in finite time at the “incoming normal points” (w,—w) with w € 0B™ = S™ 1. Let
p € B x 0BY lie along a geodesic which as t — —oo asymptotically has derivative
—w. Then Gr(p) = {exp(—TX)[(w, —w)I}. Thus “singularities” (as measured by WF )
originating in 0B} x (B¢)° can leave 0B7 x (BY)° through the corner and propagate
across (B7)° x 0BY along geodesics, with infinite speed.

Just as the flow in 0B7 x (B})° can reach the incoming normal points in the corner at
finite time, the “outgoing normal points” of the form (w, w) flow back into 9B} x (B}f)o.
Suppose exp(sX)[(w,w)] = p. Let Scat(w) denote all the points w’ € 9B™ such that
there is a geodesic that asymptotically has derivative w as t— +oo and —w' as t— —oo.
For T< s, Gr(p) = {exp(—TX)[pl}, but for T > s,

Gr(p) = {exp(—(T = s)X)[(w', —~w")] : w" € Scat(w)}

thus Scat describes the manner in which singularities scatter.

The structure of this paper is as follows. In §2 we discuss the geometric setting in which
we shall work. In §3 we construct the scattering calculus of pseudodifferential operators,
following Melrose [15]. In §4, we use the scattering calculus to define the quadratic-
scattering calculus, and in §6-§9 we discuss the properties of these two calculi. In §10
we discuss background material on the Schrédinger equation and sketch the positive
commutator arguments to be employed later. In §11 we discuss the “bicharacteristic
flow” along which the gsc wavefront set propagates. In §12 we state the main theorems
of the paper. We prove these theorems by constructing symbols of gsc pseudodifferential
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operators with specified convexity properties with respect to bicharacteristic flow (§13)
and then employing a positive-commutator argument (§14).

I am very grateful to Richard Melrose for his generous advice and encouragement.
I am also grateful to Walter Craig, Thomas Kappeler, and Walter Strauss for helpful
discussions and for the preprint of [4]. Andras Vasy taught me much about the scat-
tering calculus, and provided useful comments on the manuscript. The comments of an
anonymous referee were also extremely helpful. This work was supported by a fellowship
from the Fanny and John Hertz Foundation.

2. GEOMETRIC PRELIMINARIES

Let M be a compact manifold with boundary. We say that a function x is a boundary
defining function for M if x is a positive smooth function on M such that x = 0 exactly
on OM and dx # 0 on OM. Following Melrose [15], we define a scattering metric to be a
Riemannian metric g on M such that for some choice of boundary defining function x,
we have
dx> h
x* X2
in a neighborhood of 9M, where h € C®(Sym?(T*M)) is nondegenerate on M (i.e.
hlam is a metric).

The main motivation for considering scattering metric is that this class of metrics

includes asymptotically Euclidian ones: let RC denote the “radial compactification”
map! from R} to R™! with coordinates (to, ..., tn) = (to,t'), given by

1 z
RC:zm— (—, —) .
(z) (2)
where (z) = (1+ |7.|2)%. The image of R™ under this map is the interior of ST, the upper
hemisphere of the unit n-sphere in R**1. Note that the manifold ST is diffeomorphic to
the n-ball B™. The function

x = (RCT) (2] ) = —

(1—3)z
is a boundary defining function for S%; it is a well-defined function near 9S™ which we
can extend smoothly across z=0. We identify a neighborhood of ST with [0, c0) x sn-l

by mapping
!
t— to - t - | = (x, w).
11—tz (1-1)2

Under this identification,

@ | de?

(RCN*(dz?) = A TSz

In [15], Melrose refers to this map as “stereographic compactification” and writes it “SP.”
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where dw? is the standard “round” metric on S™'. Thus if we replace R* by its
compactification, the Euclidian metric becomes a scattering metric; the class of scattering
metrics on ST includes many metrics that are asymptotically Euclidian, as well as others
that asymptotically look like non-round metrics on S™ 1.

For the duration of this paper, M is an n-dimensional manifold with boundary
with boundary defining function x, endowed with a scattering metric g and a product-
structure near the boundary, i.e. a diffeomorphism of (Ry )+ x OM with a neighborhood
of oM. We will let y denote either a point in OM or the image of such a point in lo-
cal coordinates on OM, depending on the context. Thus, using the product structure,
X,Y1,...,Yn_1 furnish local coordinates on M near oM.

3. THE SCATTERING CALCULUS

The calculus of pseudodifferential operators best suited to the Schrodinger equation is
most easily defined in terms of the scattering calculus. On R™, the scattering calculus is
the same as that used by Craig, Kappeler, and Strauss in [4]. It has a fairly long history,
having been studied on R™ by Shubin [24], Parenti [19], and Cordes [2]; it is also the
Weyl calculus for the metric

dz? | |dE[?
Tz T+ jef
(see [10]). On manifolds it has been discussed by Schrohe [20], [21], Melrose [15], and
Melrose and Zworski [18]. We will describe the iterated blowup approach to this calculus

espoused in [15], which has the advantage of manifest coordinate invariance, and makes
the later transition to the quadratic scattering calculus reasonably natural.
The Schwartz kernels of scattering pseudodifferential operators on R™ are of the form

1 N
(31) W J el(z z') E’a(Z, E,)dE,
where a satisfies the symbol estimates
(3.2) DEDfalz, &)| < Cop (@) 1(E)™ P

Let C°(M) denote smooth functions on M vanishing to infinite order at 9M. Then
RC*(C*(S%)) = S(R™), and (RC™N)* is well-defined on S(R™) and inverts RC*.

Definition 3.1. The calculus of “scattering conormal operators”of multiorder (m, 1) on
S™, denoted wggg(sm, consists of operators C'°°(S’+‘] — C°°(51) of the form

$ = (RCTN* 0 Ao RC*(d)
where A has Schwartz kernel given by (3.1) with symbol satisfying (3.2).

Remark. The “scc” subscript stands for “scattering conormal,” as distinct from “clas-
sical” or polyhomogeneous. Since the distinction is immaterial for the purposes of this
paper, we shall not bother with distinguishing the classical subalgebra.
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The scattering calculus is designed to be a microlocalization of certain vector fields.

Definition 3.2. The Lie algebra of b-vector fields, denoted Vi, (M), is the space of vector
fields tangent to 0M. The Lie algebra of scattering vector fields is

Vsc(M) = XVb(M)

The scattering differential operators are the differential operators given by smooth linear
combinations of products of scattering vector-fields. They are filtered by their order and
denoted Diff{t(M). The b-differential operators Diff)*(M) are defined analogously. If
V is a smooth vector bundle, we can also define b- and scattering differential operators
acting on sections of V, denoted Diff{*(M; V) and Diff{} (M; V) respectively.

Remarks. 1. The space V,(M) is locally spanned over C*°(M) by x0x and 9y; Vsc(M)
is spanned by x?0, and X0y.

2. One reason for considering scattering vector-fields is that (RC™1)* takes constant
vector fields on R™ into Vi (ST}). The scattering vector fields are exactly those
smooth vector fields which have finite norm in a scattering metric, and the Laplace-
Beltrami operator for a scattering metric on M lies in Diﬁ’gc(M).

There is an invariant definition of the scattering calculus in terms of iterated blowups
that works on any manifold with boundary M. First, we need to define conormal distri-
butions on manifolds with corners:

Definition 3.3. Let X be a compact manifold with corners and Y a p-submanifold (this
means that in local coordinates, X and Y have a common decomposition as products of
half-lines and lines; see [15] or [17]) with codimY =s. Let a be a multi-index, assigning
a real number to each boundary hypersurface of X. Let x; be a defining function for
the 1’th boundary face, with x* denoting the appropriate product of powers of defining
functions. Let V be a vector bundle over X.

Let C®(X; V) denote smooth sections of V vanishing to infinite order at all boundary
hypersurfaces x; = 0. Let C~®°(X;V) = [C®(X;V* @ QX)]’, where QX is the density
bundle of X.

The space of distributions on X with values in V, conormal to the boundary of X with
index a is

A*(X; V) ={u € C®(X; V) : Difff(X; V)u € x*L®(X) for all k € Z7T}.

The space of distributions on X with values in V, conormal with respect to the bound-
ary with index a and conormal with respect to Y of order m is denoted A%T™(X,Y;V)
and consists of all distributions u € C°°(X;V) such that

1. Away from Y,

Difff(X; V)u e x*L{2,  for all k € Z7,
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FIGURE 1. The scattering double-space M2, for a one-dimensional man-
ifold M with boundary.

2. in the interior of X, u is conormal to Y of order m in the sense of Hérmander [9],
and

3. near Y N 0X, in coordinates (x,y’,y”) for X such that Y = {y’ = 0} and in a local
trivialization of V, we can write

o Jeiy"a'a(x,y”,a')da'
where a satisfies the symbol estimates

(xDx)¥(Dyn)Y(Der)Palx,y", &1)| < Coupyx (€)™ /2 M/A7IE,

Let [X; Y] denote the smooth manifold with corners X blown up along the p-submanifold
Y. We set M2 = [M?%;(d0M)?]. Let A, denote the lift to M2 of the diagonal in M?—in
other words, Ay is the closure in M% of the preimage under the blow-down map of the
interior part of the diagonal. Now set M§C = [M%; 0Ap]; let Age be the lift of the diagonal
to Mgc, and let sf denote the front face of the blowup and xg a defining function for it.

We define the “scattering half-density bundle” Q(M) = x "™"QM, where QM is the
usual density bundle. We define the “kernel density bundle”

(n+l)Q1

N

_1
KD = x 2 (M2,).

Definition 3.4 (Invariant definition of scattering calculus). The calculus of scattering
conormal operators (acting on scattering half-densities) is defined by the Schwartz kernels
of its elements, lifted from M? to M2.:

YILLM: 07 = {A € AT™(M2,, Ay;*KD?) : A = 0 at OM2 \sf}

SCC sc) C

where 1 is the conormal index at the front face sf of the blowup [M2; (aM)?].
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More generally, for any vector bundles E and F over M, we define
Vi (ME,F)
= {A €A™ (Mgc,Asc;SCKD% ® p* Hom [n;(E ®*Q 1), m(F® SCQ*%)] ) :
A =0 at amgc\sf} .

where 7; and 7g are projections of M? on left and right factors, and B : M2, — M?
is the total blow-down map. We write ‘P;‘gcvl(M;E) for ‘ngcvl(M;E,E] and ‘P;EC*I(M) for
yml(M; C).

scC

It is proven in §22 of [15] that on ST, this definition agrees with Definition 3.1.
The scattering pseudodifferential operators are a microlocalization of the Vs.(M):

Proposition 3.5. For all m,l € R,
x'Diff (M) € YTLHM).

scC

The residual space W 2>°°(M) consists of operators whose kernels are in C®(M x
M; Q).

4. THE QUADRATIC-SCATTERING CALCULUS

Craig, Kappeler, and Strauss [4] have fruitfully investigated microlocal smoothness of
solutions of the Schrédinger equation using the scattering algebra (see the remarks in
§12 for a brief discussion of the results of [4]). We will instead use a related algebra of
pseudodifferential operators that is more suited to proving time-dependent results.

Let M be the manifold obtained by changing the boundary-defining function on M to
p = x?, and hence changing the C® structure on M (q is for “quadratic”). The interiors
of M and My are canonically diffeomorphic, but the canonical diffeomorphism does not
extend smoothly to the boundary. Instead, we merely have a smooth map

®: M — M,

which is 1-1 and onto but which fails to have a smooth inverse. Note, though, that
0% : C"*®°(Mgy) — C *°(M) is an isomorphism.

The C* structure on My does depend on the choice of boundary definining function
x and the product structure near dM. For example, if we take some other choice of
defining function X, then p = x? will be a smooth function of (,/p,y), but not in general
of (p,y), hence My with defining function p and M4 with defining function p are not
canonically diffeomorphic.

Non-uniqueness of the choice of M notwithstanding, we select some M and define
\ym,l(M;E) F) —©o [\ym,(l—m)/Z(Mq; (@—] )*E, (@—] )*F)] o (@*)—] )

gsc scc

Remarks.
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1. By the homotopy property of vector bundles, the bundles E and F can be arranged
to have transition functions that are independent of x in some collar neighborhood
of OM; thus, (@ 1)*E and (©')*F are smooth vector bundles on My.

2. The reason for the apparently peculiar indexing of Wg;scl(M) is that the filtration
on ¥, .(M) is psychologically convenient: if we radially compactify R™ to ST, then
constant coefficient differential operators on R™ are mapped to scattering vector

fields. Also, by definition, |z|' becomes x .

Thus we can think of an operator
in x!'(Vsc(ST}))™ as a differential operator of order m with decay of order 1. The
filtration on Wy..(M) was chosen with this convention in mind.

On the other hand, we have @, (pzap) = %x*”ax and @, POy = Zay. These vec-
tor fields are in xV;(M), and if we wish to maintain our sensible filtration, corre-
sponding to orders of decay and differentiation on R™, we must assign to these vector
fields the order (1,1). Also, the operator of multiplication by p should manifestly
have order (0,2). Thus, we want to assign the order (m,1) to pu*m)/z(Vsc(Mq))m,
and this fixes the indexing given above for ¥ ..
3. As a result of our choice of indexing, for any 1| € R,

U vt (M) =g (M)

gsc
meR
and
) Wi M) = We22® (M) = W, 2(M)
meR
We also have W}l‘g'cl(M] C ‘l’g;gqvlﬂ (M) for all (m,1).

In the following section, we offer an invariant definition of W analogous to our

gsc?
general definition of W ..

5. INVARIANT DEFINITION OF THE QUADRATIC-SCATTERING CALCULUS

We recall from [17] or [6] that if X is a manifold with corners and Y a p-submanifold,
and if S is a subbundle of N*Y satisfying a cleanness condition, we can define the parabolic
blowup of Y in X along S, denoted [X,Y;S]. In the simplest possible case, in which X is
R™, Y is the origin, and S is a subspace of (R™")*, we can define an R* action Ms on R™
as follows: let S° C R™ be the annihilator of S, and let T be a complement of S° in R™.
Thus every v € R" can be uniquely written v = s + t. We set Mg(v) = (8%s + 6t). Now
let ff (for “front face”) be the non-round sphere (R™\0)/R;. We define the S-parabolic
blowup of 0 in R™ to be ff LU R™\0. In [6], this definition is shown to be independent of
the choice of T, and is extended successively to cover the blowup of the zero section of a
vector-bundle, of a submanifold of a manifold with boundary, and of a submanifold of a
manifold with corners.

We can now define a “gsc double-space” analogous to M2 as follows: set MZ =
[MZ%; (0M)?] and let A, denote the lift to M% of the diagonal in M2. Let S = N3a, Ab-
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We proceed as in the scattering case, but blow up parabolically instead of spherically:

Mésc = [M%;aAb,S]. We define the “gsc density bundle” ¥¢Q(M) = x1-2"QM and

the “gsc kernel density bundle”

qsc I 7%(

KD2?2 = X st

where gsf denotes the front face of the blowup [M%;aAb,S] and xgr is the defining
function for this boundary face. Let A be the lift of the diagonal to M2. .. Let ©

gsc*

denote the lift of the canonical map © : (M?)° — (7\/[%1)O to a map (Mésc)" — ((]\/lq)gc)O
Proposition 5.1. The following maps are isomorphisms:
1.
@ : %0 (Mg) — Q2 (M)
2.
(6) : “KDI((Mq)%)| ., = *KDI(ME)|
3.

(@) 1 Y™ (Mg;02) — {A € APT™ (M., Agsc; ®KD?) : A = 0 at OM2 \qsf} .

gsc

Thus we could have directly defined

(5.1) WmY(M;9cQT) = {A e A (M2

gsc gsc’

Aqsc;qSCKD%) :A =0 at OM2 \qu} )

gsc

and extended this definition to arbitrary vector bundles as above.

Proof. 1. We have @ : *T*My — ¥°T*M, and Q = |A™(*T#), 960 = |A™|(@eT*),
2. First we write out coordinates near the front faces of the two double-spaces: Let
(x,y) and (x’,y’) be the coordinates for the two factors of M in MZ. Let p = x2
and p’ = (x')2. If s = x/x’' then we can take x',s,y,y’ as coordinates near Ay
on the front face of M%. We can use p’,s,y,y’ as coordinates on the front face of
(Mq)2, where § = p/p’ =s%. Ay, is defined by s = 1, y =y’ in MZ, so on the front
face gsf of Mésc we introduce coordinates X = (s —1)/(x")? and Y = (y—y’)/(x)?;
the coordinate system for M(zlSC is now (x',X,y’,Y), with x’ defining the front face
gsf. On (Mq)%, Ay is defined by § = 1, y =y, so on the front face sf of (M4)2,
we set X = (§—1)/p’ and Y = (y —y')/p’; the coordinates for (M4)2. are now
(p',X,y",Y), with p’ defining sf. Thus (@)*X = X(1+s) and (©)*Y =Y (note that

1+ s is a smooth, nonvanishing function).
In the coordinates we have introduced, (p']*%(nﬂ)|dp'd)_(dy'd7|12 is a smooth,

1
nonvanishing section of ¥°KD2(Mg)Z,, and the above remarks show that it pulls

back to a nonvanishing multiple of (x’ )*“*17 |dx'dXdy’ dY|17.
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3. By definition, an element A € ‘i’m’l(Mq;SCQ%) can be written, in a neighborhood

scc
of Agc N'sf and using the coordinates introduced above, as

. J X Ea(p! ', £)de,

~ 2o
where &' = (&,,...,&n), w is a smooth section of scKD%, and a satisfies the symbol
estimates
(5:2) (p'Dp)*(Dy )P (De)a < Coypiy(p)(E)™ 1P

(here we are identifying the operator A and its Schwartz kernel). Thus,

XA (é)*w
(5.3) (O)A =55

Jei((1+s]X£1+Y-£']a((x')z,y', £)dE.

Since (1+s) is nonvanishing at X = 0, by classical results of Hormander [9], (5.3) is
the representation of an arbitrary conormal distribution with respect to Ags.. The
new symbol a((x')2,y’, &) satisfies (5.2) with p’ replaced by x' and with order 21
instead of L. O

2

Remark. 1t is straightforward to compute, e.g. in the coordinates used above for Mg,

and analogous ones for MZ2., that in fact

Y (M; 9 Q%) C WIR (M Q3).

gsc

This inclusion is not particularly useful, however.

For the study of Schrodinger operators, we will want a “parameter-dependent” version

of ¥_..(M), but we only require the crudest notion of parameter dependence.

gsc

Definition 5.2. A one-parameter family of operators A(t) is said to be in the algebra

1
qj‘g;(,}(M.’ qsc_o_2 )

if the Schwartz kernels of A(t) lie in

:
c>® (Rt; -Alimlm(Mésca Aqsc; PCKD?2 )))
1
where the topology on AL_mIm(MéSC, Aqgsc; ¥°KD7?) is the usual topology on conormal
spaces, given by the best constants in the conormal estimates and symbol estimates of
Definition 3.3.
(The definition can also be extended to arbitrary vector bundles in the usual manner.)
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6. SYMBOL MAPS

The symbol map on WIL'(M) has two components. One component is essentially

the same as the symbol map for pseudodifferential operators on a compact manifold.
First we define it on Vs.(M). The vector fields Vs.(M) are actually sections of a smooth
vector bundle *TM over the manifold with boundary M. TM is spanned by x?dy
and x0y near OM; in the interior of M, it is canonically isomorphic to TM. The dual
bundle to S°TM, T*M, is spanned by the differentials dx/x? and dy/x near 9M. Given
X € Vse(M) = C®(M;*TM), we write 04 1(X) = iX, where on the right-hand side, we
consider X to be an element of C*® (*“T*M), homogeneous of degree 1 in the fibers. We
can extend this symbol map to a map

Ose,m : DIffH (M) — S™(*T*M)/S™ ! (*°T*M)

where S™(5°T*M) denotes functions satisfying the usual Kohn-Nirenberg symbol esti-
mates in the fibers; the range is actually contained in the homogeneous polynomials of
order m. The map 0sc,m can be extended further to a principal symbol map on scattering
pseudodifferential operators:

Ose,m : Wi (M) — S™(T*M)/S™ ! (*T*M).
Ezample 6.1. Canonical dual coordinates «, 3 can be defined on 5¢T*M by letting
xdx/x* + B - dy/x
denote the tautological one-form. Then oy (x205) = « and Osc,1(x0y) = B.

The symbol oy, gives useful information about an operator over the interior of M but
does not provide sufficient information about its asymptotics near 0M. For asymptotic
information, we use the “normal homomorphism.” Let p € 0M. Identifying the vector-
space *“T,M with first-order constant coefficient differential operators on itself, we obtain,
for each p € M, a restriction map (obtained by “freezing coefficients”)

Nge,p 1 Vae(M) — Diff{ (*°T,M)
where the I indicates translation-invariant differential operators in the fibers. Since
Ve (M), Vec (M])] C xVsc(M),
we can extend Ng., to a map
Nse,p @ Diffge (M) — Diff"* (*T,M)

Invariant differential operators on a vector space are canonically identified with poly-
nomials on its dual by the inverse Fourier transform. Thus we have a somewhat more
convenient map

N.. : Diff (M) — S™(*TZM);



SCHRODINGER OPERATORS 15

SCS*M

SC==*

TomM

zero section

FIGURE 2. “T'M, for M a closed interval.

in fact the image is exactly the polynomials of order m in the fibers. We further extend
to a map

NL : x'DIiff™ (M) — x'S™ (T4 M).
The map N;C does have some relationship to Ogm: if P € x'Diffit(M), then ]/\I\éc(P) —
Osc,m(P) is x! times a polynomial of order (m — 1) in the fiber variables.

1

Ezample 6.2. In the coordinates used in Example 6.1, we have ﬁ;c(xHZax) = x'¢ and

N (x"*19y) = x!B.
The relationship between the symbols oy . and NSC is clearer if we compactify the

bundle on which they live:

Definition 6.3. Let *°T M be the compact manifold with corners obtained by radially
compactifying the fibers of the bundle *T*M. Let Cs(M) = 3(*T M). Let 5¢$*M
denote the boundary face of *T*M obtained by fiber compactification, and let SCTSMM
denote the other boundary face, defined by x = 0.

The maps 0y, and NSC must agree at the corner 5¢S*M N *Tyy M.
Definition 6.4. Let
AT (CeeM) = A™H T M)ZA™ P (T M),

where m is the conormal index at the boundary face 5°S*M and 1 is the conormal index
at T, M.

Remark. We employ the opposite sign convention on m from that used in §5 of [15].

Radial compactification of R™ takes symbols of order m to conormal distributions on
ST with respect to 9S} of order —m. Thus we can consider the combined symbol map,
jse.m.,1, defined on the operator P € x'Difffr(M) by

jsem1(P) = (0se,m (P), NL (P))
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as a map
X'Diff (M) — AT™Y(C M),

m,l
scc -

used here, we cannot simply define js¢ m,1(P) = (0sc,m (P), l/\\léc(P)): in order to retain full
information at the corner, we have to regard js.. as defined by the Fourier transform of
the Schwartz kernel in the normal bundle of Ag. modulo conormal distributions of higher

The map jgm,1 can be extended to all of ¥/ (Note that for the non-classical algebra

order at both boundary faces of “T'M simultaneously.) The following properties of the
resulting joint symbol map are discussed in [15].

Proposition 6.5.

1. There is a short exact sequence

0 — Wm—],l—!—] (M) N \ymyl(M) M .A{_m’l}(cscM) — 0.

scc scc

2. The symbol map is multiplicative.
3. The Poisson bracket extends continuously from the usual bracket defined on the
interior of “T'M to a Poisson bracket on AV}(T'M), and

. 1. .
)sc,mq+my—1 1 +1+1 ([P) Q]) = I {]sc,m1 b (P)) Jsc,m; 1, (Q)} .

We wish to consider symbols of quadratic scattering ¥YDO’s. If A € ‘Pg;’cl(M) then
A=0%0Po (0%

for P € ‘Jr’:cléu*m)/z(Mq). P has a joint symbol in AE™0-™/2H(C M,). A natural
approach is to pull back this symbol to M, and declare the result the gsc-symbol of P.

Definition 6.6. The quadratic scattering tangent bundle on M is the bundle ¥*‘TM
whose sections are vector fields in xV.(M). The gsc cotangent bundle, ¥°T*M, is the
dual of ®¢TM. The manifold with corners obtained by radially compactifying the fibers
of ®*T*M is denoted “*T"M, and CqseM = 3(*“T'M). Let 9¢S*M denote the boundary
face of ®*T"M obtained by fiber compactification, and let **Tyy,M denote the other
boundary face, defined by x = 0.
Let
A[m,l](CqscM) — Am,l(qscT*M)/Amf1,1+2(qSCT*M).

Thus the bundle ¥ T*M is locally spanned by p?d, = 1x39, and pd, = x?3y,.

The map (@ ")* induces a pullback map from distributions on SCT*Mq to distributions
on ®*T"M. The pullback of jse,m, (1=m),/2(P) under (@ 1)* is in AF™U(CyeeM), hence
this is the space of symbols for the gsc-calculus.

Proposition 6.7. There is a joint symbol map
quc,m,l ‘1’2;&1(7\4) — A[im'lim](cqscM)

such that
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1. There is a short exact sequence

(6.1) 0 — WL (M) ymi(p) Jeeml, glmioml e M) 0,

gsc gsc

2. The symbol map is multiplicative.
3. The Poisson bracket extends continuously from the usual bracket defined on the
interior of TT"M to A1 and

. 1. .
]qSC,'lTL1 +my—111+12 ([P) Q]) = I {)qSC,TTn A (P) ) ]qsc,mz,lz (Q)} .
This proposition follows from Proposition 6.5 by pullback.

Remark. The symbol jgsc,. is well-defined, independent of choice of boundary defining
function x; one could see this by proving the above theorem from scratch, in imitation
of the construction of the symbol map on W.

Ezample 6.8. Let A, i be canonical coordinates in ¥ T*M such that the canonical one-
form is Adx/x3 + - dy/x%. Then we have

jase,1,006° D) = A
and
jase,1,0(x*Dys) = ms.
Ezample 6.9. Again, let A, 1 be canonical coordinates in *¢T*M such that the canonical

one-form is Adx/x> + p - dy/x?. Recall that A denotes the Laplace-Beltrami operator
with respect to the scattering metric g:

n
1 .
(6.2) A=Y —D;g’*/gDx
o V9

in any coordinate system. If we take coordinates zo = x and z; =y; forj=1,... ,n—1,
we have

g% =x*+0(x°)
(6.3) g% = 0(x")
g% =x?hY + O(x3)

where h = h|an; thus, as observed in [15],

(6.4) A€ (x*Dy)? +i(n—1)x*Dy + x*Ag + x>Diff2 (M)
=x? ((7(3‘Dx)2 +inx°Dy 4+ x*Ag + x5Diﬁ%(M))
where A is Laplace-Beltrami operator for h, extended to M using the product structure

at the boundary. Actually, we can say a bit more. The only D2 term in A is g°°D2.
Thus the coefficient of DZ in A is x* + O(x®).
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Note that x°Diff2(M) C xDiff2_(M) (Diff™®.(M) consists of differential operators in
b

SC SC
Wg;;f’(M)). Since the normal symgol is deﬁnedqmodulo two orders of vanishing, this term
does contribute to the normal symbol. Since x>V, is annihilated under the normal symbol
map, the normal symbol of the term x5Diﬂ'12)(M) contributes only terms homogeneous in
the fiber variables of order two, vanishing to first order in x. By the observations in the
previous paragraph, the normal symbol of this error term is not just any homogeneous
polynomial of order two, vanishing to first order in x, but in fact can be written xr(A, 1),

with
(6.5) (A, 1) € XC® (%, Y)A? + C* (%, y)Ap + C® (x, y)1?

where the indices have been left off of u for brevity.
We have now shown that

~ 1
NG () = =5 (W + 1 +xr(A, )

where |},L|2 is the norm of p - dy with respect to the metric h, and v(A, ) is of the form
(6.5).

By the same token, we may throw out terms in (6.4) of degree lower than two and
conclude that

1
Oas2(A) = — (A + [ +xr(A, 1)) .
X

Note that the interior and normal symbols of a differential operator generally do not agree
as polynomials—the Laplacian is atypical in this respect; see the remarks following the
proof of Lemma 3 in [15].

The joint symbol of A is thus represented in A=272/(CyscM) by

. 1 .
(6.6) jqsc,2,0(A) = 2 (7\2 + |LL|2 + xr(A, u)) ;T satisfies (6.5).

For the remainder of this section, % stands for sc(c) or gsc.

Definition 6.10. An operator P € W™!(M) is said to be elliptic at a point p € C,M if
jxm1(p) is nonzero. The set of points at which P is elliptic is denoted ell, ;1 P. If P is
elliptic everywhere, it is simply said to be elliptic.

(Following convention, we shall omit the subscripts on ell; the algebra and order will
always be clear from context.)

Definition 6.11. Let P be an element of YT»'(M). A point p € C,M is in the com-
plement of WF.P (the operator wavefront set of P) if there exists Q € W;™ M) such
that Q is elliptic at p and PQ € W, °>®°(M).

Proposition 6.12. For A,B € ¥,(M), WF/AB Cc WF'A N WF/B and WF/A* =
WF!A.
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Proposition 6.13. If P € W™YM) is elliptic at p € C,M then there exists Q €
Yo=Y M) such that
p ¢ WF,(PQ—T).

This proposition can be proved in the same way as Theorem 18.1.24’ of [10].
The following proposition is a variant of Proposition 6.13 that we will use in our
positive commutator estimates.

Proposition 6.14. If C € Y™(M) is and E € W2™2Y M) with WF'E C ellC, then
there exists Q € WOO(M) such that

E—-C'QC e P, (M).
For the proof, see the analogous Lemma 5.5 of [4].

7. QUANTIZATION

We can construct a continuous, linear map

Op : A= ™®(TT"M) = w2~ (M)

gsc
with
Op: A™E ™M) — Wi (M)

qsc
as follows. Let w be the symplectic form on ®T*M. Given a € A ™V ™(FT*M), let
a denote the inverse Fourier transform of aw™ in the fiber variables; thus,

d e AV MM, 0yt (BC Q)

where 7t denotes the projection map for the bundle PCT*M and 0 denotes the zero section.

Let Tcésc,L and nésc)R denote the maps M(zlSC — M given by blowdown to M? followed
by projection onto the left or right factor. A computation in the coordinates used in
the proof of Proposition 5.1 shows that (T[ésc,L)* is an isomorphisril between NAy. and
BCTM, and induces a natural diffeomorphism between gsf and e TomM; by symmetry,
the same is true for (Tcésc,R)*' By the Tubular Neighborhood Theorem, NA. is diffeo-

2

morphic to a neighborhood of Ags. in Mg, with the zero-section mapping to Ay, and

gsc?
(NAgsc)lqst to (gsf)°. We can combine this diffeomorphism with the bundle equivalence
above to obtain a diffeomorphism j between an open neighborhood U of Ay Ugsf with an
open neighborhood V of the zero section and ®TypM in ®“TM such that moj = ﬂésc,R
on Agsc.- Now let ¢ be a smooth function on T™M equal to zero outside V and one on

a smaller neighborhood of the zero section and %> T;MM. Then we can set

Op(a) =j*(hd) € A" ™™ (M, Agse; (Toge g)* (F°Q)) = Vi (M),

Proposition 7.1. The quantization Op is a continuous linear map A=~ (¥*T"M) -
Wcolgé_oo(M) enjoying the following properties
L. jgse,m10Op: A" (M) — AWM s the natural projection map.
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2. If a,, is a bounded sequence in A%°(M) and an, — a in some AP9(M), then
Op(an) — Op(a) in the strong operator topology on B(LZ(M)).

3. WFélsc Op(a) = ess supp a, where ess supp(a), the essential support of a, is the set

of points in CyseM near which a is not in C°(* T M).
An analogous construction yields the same result for the scattering calculus (cf. [15]).

8. SOBOLEV SPACES

Let [2(M) denote functions on M that are square-integrable with respect to the
volume element defined by the scattering metric g. Let * stand for sc(c) or gsc.
The basic boundedness result is the following:

Proposition 8.1. Y9°(M) is bounded on L>(M).
This proposition follows from the proof of Hérmander’s boundedness theorem in [9].
Definition 8.2. The scattering and quadratic-scattering Sobolev spaces are defined by
M) = {u e o (M) s W (Mpu e L2(W) }.

Note the minus sign in the indexing chosen for the Sobolev spaces. As a result,
increasing indices mean increasing decay and regularity, so H™YM) € H™V (M) and
H™H M) C H™ V(M) for m’ < mand U < 1,

qsc qsc

(8.1) HZ%® (M) = HZ® (M) = C*®(M),
and

(8.2) He2 (M) = Hy ™ (M) = C®(M).

A version of Proposition 8.1 is, of course, true a bit more generally:
Proposition 8.3. Let A € ‘1’1“"1'(1\/[). Then
A HPH (M) — HPE™HY (M)
is continuous for any m, L.
Lemma 8.4. Let A € W2™=2YM) be elliptic, self-adjoint, and strictly positive. Then
(A, )% is equivalent to the norm on HM™Y(M).

The proof follows easily from Proposition 2.2.2 of [9].
An interpolation lemma, for sc Sobolev spaces will be useful.

Lemma 8.5. For all (my,11), (my, 1), and
(m,1) = (smy + (1 —s)my, sly + (1 —s)12)
with s € [0,1], there is a continuous embedding

(8.3) HMW (M) N HE22 (M) — HIWH(M)
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where the left-hand side of (8.3) is endowed with norm (||||$n1 Lt ||-||$nz,12)1/2.
The sc and gsc Sobolev space do provide comparable filtrations of C~°(M):

Proposition 8.6. For m € Z,

(8.4) HisH(M) € HIpY (M)
and
(8.5) HE™ M) N HIPY M) € HIH(M)

The proof relies on Lemma 8.5 and the observation that
XﬁZL(K + A)m

(where  is a positive constant) is an elliptic element of W2™~2{(M) and a (non-elliptic)
element of ‘Pégc‘”n(M), while
22 m
X (KX + A)
is an elliptic element of Wﬁ;’g’*ZL(M) and an element of
WO,—ZTTL—ZI(M) + WZ,—ZTTL—ZH—Z(M) 4t qum,—zl(M)-

ScC SCC SCC
9. WAVEFRONT SETS

Associated with our calculi of pseudodifferential operators is a notion of wavefront set,
measuring microlocal regularity of distributions. As before, * stands for sc(c) or gsc.

Definition 9.1. The (scattering/quadratic-scattering) wavefront set is the subset of
C.M such that p ¢ WF,u if and only if there exists A € WOO(M) with p € ellA
such that Au € C®°(M).

There are also Sobolev versions of these wavefront sets: p € C,M ¢ WF™y if and
only if there exists A € WT'(M) with p € ell A such that Au € L>(M).

(As usual, we could have used operators of any order in the definition of WF ,u.)

Both the sc and the gsc calculi reduce to the ordinary calculus of pseudodifferential
operators when cut off away from OM, so the relevant wavefront sets generalize the
traditional wavefront set introduced by Hormander:

Proposition 9.2.
WF, un (*S*M)° = WF _un (¥S*M)° = WFu.

gsc
Ezample 9.3. Let ¢(y) be a smooth function on 0M. Then

WF,.e*W)/* = graph [d (_dniy))] C *TiuM,

WEF W)/ = graph [d (@)] C FTIuM.
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On the other hand, WF .e'®(¥)/* lies in the zero section of ™ T"M and WF,el®v)/**
lies in the corner of T M.
The function e!®V)/* is an example of the “Legendre distributions” considered in [18].

The following proposition suggests that, morally speaking, the gsc wavefront set over
OM is a “blowup” of the sc wavefront set in *S§3,, M. It will not be used in the sequel.

Proposition 9.4. If u € C*®(M) and
WF, . un®*SiuM =0,

then WF _..u C 0, where 0 denotes the zero section of qSCTZM(M).

gsc

Proof. By localization, it suffices to prove the result for M = ST = RC(R™). We thus
have coordinates near 9M given by w = z/|z| € S™ ' and x = |z| '. Without loss of
generality, assume u € C*° (M) vanishes away from a small neighborhood of 0M, so that
these coordinates are valid on the support of u = u(x, w).

Let My have defining function p = x%; letting Fq4 denote Fourier transform on Mg
(identified with R* by RC™'), we have

Fqu(ﬂ) _ Ju(\/a’ w)e—iw-n/P p—n+] dpdw
=2 J ulx, w)e 1N/ 203 4y q .

To conclude that WF _..u C 0, it suffices to show that

qsc
(1—¢Mm) Ju(x, w)e W/ I3 gxdw € S(RY)

if € C° equals 1 on a neighborhood of the origin, as .7-'(;1 (1—p)FyeV¥
on an arbitrary subset of T3y, (M)\O0.
A calculation in Euclidian coordinates gives

qsc 18 elliptic

A _ 3D g e gy
j

where

. . w)? 2
r(x,w,n) = (_Z(Hi w) + 3(11X2w) + |171c—|2) .

Note that |r(x,w,n)| > |11\2/x2, so that on supp(1 — (1)),

1

Aefiw-n/xz
r(x, w,n) '

(0.1 i/ _
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Now we can apply the usual trick of integration by parts. We have
(9.2) Dy J u(x, w) eI N/ X%y =23 4y

— W x .
= Ju(x, w) %eﬂ“”‘/xz x " Bdxdw
X ||

"
= Ju(x, W) (—w)*x 232« ( ! )A) e Wn/%* dxdw

r(x,w,m
for any k € Z* by (9.1). Our assumption on u is just that u € H, °>M) for some L.
Thus, since A € W29(M), we have A*u € H >(M) for all k € Z*. This allows us to

integrate by parts in (9.2). Since r > [n|®/x2, we find that (9.2) is rapidly-decreasing in
n for any multi-index «. U

For our operators with parameter, there is a corresponding notion of wavefront set.

Definition 9.5. Let u € C(R;C *°(M)). For S C R compact, we say that p ¢ WF3(u)
if there exists a smooth family A(t) € W9°(M) such that A(t) is elliptic at p forallt € S
and Au € C(S;C®(M)).

There is a corresponding notion of Sobolev wavefront set.

Remarks.

1. Tt is perfectly possible to have u € C(R;C~°(M)) and p € $*M with p € WF3(u)
but p ¢ WF (u(t)) for any t € S. A particularly germane example is given by
the fundamental solution (1.2) to the free-particle Schrodinger equation on R: take
u = (2mit) 2e¥¥/2t on R x R, (with u = 8(z) at t = 0). Let S = [1,1]. Then
WF (u(t)) is nonzero only for t = 0, at which time it is just (0,+1). On the other
hand there must be points in WFS (1) over every point in R,, since otherwise we
would have uniform estimates on u(t) for t € S and z in some interval.

2. The scattering wavefront set is closely related to the “frequency set” used in semi-
classical analysis; see [18], §11.

10. THE SCHRODINGER EQUATION

Given a self-adjoint operator H = %A +V, with V € Diﬁ‘(]l’slc(M) (and with A the
Laplace-Beltrami operator for the metric g), we are interested in the Cauchy problem

for the time-dependent Schrodinger equation
1
Di+-A+V)Y=0
P(0) = € CTF(M).
Note that H € W20(M), with jgsc.2.0(H) = Yigse20(A).

*asc
Let Ki = e "% be the solution operator to (10.1). The spectral theorem guarantees

that K. exists as a unitary operator [2(M) — L2(M) for all t. Craig [3] uses energy
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conservation and a global commutator argument to obtain regularity of Ky in weighted
Sobolev spaces. His arguments carry through, mutatis mutandis, in our setting. A
consequence of Théoréme 14 of [3] is that for m € Z_,

Ke € L [Re BHIO(M) N HZT (M) 0+ N HE™(M))] 5

in particular, we have K : C®(M) — C®(M) and, dually, C"°(M) — C *®°(M). By
Proposition 8.6 and Lemma 8.5, we thus have

Ke € 155, [Rg BHIEO (M) N HE M), HIE (M) |, me€ 7.

qsc gsc qgsc
Since for m > 0,
H™™(M) ¢ H™O(M) N HO™ (M),

qsc gsc gsc

we obtain by duality
(10.2) Ke € L5 [Ri; BHGM (M), HGm™(M)|, m e Zy.

gsc gsc

Since UmHasTc“’o(M) =C (M), (10.2) applies (for some m) to any Py € C~°(M).

Lemma 10.1. Let \ be the solution to (10.1) with by € C®(M). For any A(t) €
Yise(M) and t >0,

]
(10.3) A0} = | (@A + 15, AT, e,

Proof. We compute

du(A, B) = (A, 1) + (A, ) + (A, )
104 = (A%, 1) + (—iAHD, ) + (A, —iH)
= (A%, 1) — UAKD, ) + UHAD, b)
= ((0¢A + i[H, A, D).
Now integrate. U

(The identity (10.4) is extremely well-known, and can be found in virtually any quantum-
mechanics text.)
Note that if A € ‘Pg;vcl(M) then (0:A +i[H,A]) € ‘Pa’g]*H] (M), and
quc,m—H,H—] (atA + i[%, A]) = (at + X)(quc,m,l(A))a
where X is the Hamilton vector field of £ (we study X in detail in Section 11).
Lemma 10.1 shows that if we make (0¢A+1i[H, A]) a negative operator (modulo lower-
order terms), elliptic in some set, we can control

’
(AW(T), (T)) and L (DA +i[H, AT))|dt
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in terms of (A{(0),{(0)), and obtain information about microlocal regularity of {(T)
in terms of microlocal regularity of {(0). This is the argument used in §14.

11. BICHARACTERISTIC FLOW

We now study the bicharacteristic flow for H on TFT*M. Let Adx/x3 + u - dy/x?
denote the canonical one-form on ®“T"M, hence the symplectic form is

W — d)\/\dx_l_du/\dy _

Ady
x3 x2 ’

x3

2udx
By (6.6),
) 1
]qsc,Z,O(H) = ﬁ

where 1 satisfies (6.5) (since V has order (1,1), it does not contribute to the principal

(7\2 + [uf? +xr(A, u))

symbol). The Hamilton vector field of jgsc.2,0(7) is given by

_ 1 2 2
~wiX,) =a| 5 (3 + x|
We split X into two pieces

X=X+P

where

- 1
(11.1) X = M0y + (A2 — [W2)0 + (11, 0y) + 2Ap- 3, — zay|u|2 -
is the Hamilton vector field for the symbol %X_ZO\Z + |u\2), and

(11.2) P =p1x?0x + P2xdy + q1xd + 42Xy

is the Hamilton vector field for the error term %xqr(?\, w). (We distinguish different
inner products by writing (a,b) = 3" a;bjh¥(y), and a-b = 3 aiby; || = (u, u)%
denotes the norm with respect to h.) The functions p; and p; in (11.2) are smooth in
X,y and are polynomials of degree one in A, u. The functions ¢ and (; are smooth in
X,y and are polynomials of degree two in A, u. There are a number of conditions on the
p’s and q’s stemming from the condition (6.5) on the error term (A, 1); the only one we
shall need below is that

(11.3) 42 € MxC®(x,1) + AuC®(x,y) + 1> C®(x, ).

We will treat P as a perturbation to X near x = 0. Thus, we begin by analyzing the
flow of the vector field X. Let t be the time-parameter for the flow. Away from {u=0}
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FIGURE 3. Integral curves of X, projected onto the (A, ) plane and ra-
dially compactified. The vertical line is the solution pn = 0.

we follow [18] by introducing coordinates {1 = u/|u| € S 2 and reparametrizing, setting
ds/dt = |u|. Then the flow along X is given by

dus diu 1. .
(11.4) ;sl =h7y dtl = — 5 1By W
2
' ds m ds
dx  Ax
11.6 -— =
(11.6) as =

Projecting onto the variables (y, 1) gives geodesic flow in the cosphere bundle of 9M.
Equation (11.5) also forms an autonomous system, which we can solve as follows: set
o« = A/|u| to obtain the Riccati equation

do

1o
ds x5
this has solution o = tan(6 — s); then
(11.7) lu| = A cos?(8 —s),
A
(11.8) A= ?sin2(9—s)

and
x = Ccos?(6 —s).
The curves (11.7), (11.8) are shown in the radially compactified (A, 1) plane in Figure 3.
Let p = (%0, Yo, Ao, Ho) and let

(x(t),y(t),At), n(t)) = exp(tX)[p]
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be the result of flowing along X starting at p for time t. Then 0 = arctan(Ao/ |uol), and
A = po +A3/uo (we take 0 € (—m/2,7/2)). Since t = fﬁﬁ, we have s — 0 — +7/2 as
t — +oo. Thus, in terms of geodesic flow for h,

_ . .
Y ioo(p) = expyyy (9 + 5) o = tgglooy(t) € 0M.

If Ap < O then arctan(Ag/|uo|) + 71/2 = —arctan(|po|/Ao), hence for Ag < 0,

Yioo(p) = expy, (—arctan(|po|/Ao)fto) .

1

u

hence Y, is a smooth function on {Ag < 0}. Similarly, Y_, is a smooth function on
{Ao > 0}

The integral curves of X obtained above exist for all t. We have, however, omitted

Since I arctanu is a smooth function of u?, arctan(|uo|/Ao)fl is smooth in py and

from discussion some special integral curves: the set {x = u = 0} is invariant under X
(and hence under X, since X/gpm = Xlom), and on this set, dA/dt = A?, i.e.

_ M

11— Aot

Thus if Ay > O then A - 4oco as t T 7\81. Put another way, the flow starting at
p € {x = u = 0} reaches the corner ®*°S3,,M in finite time A,'. This is shown in
Figure 3, in which the integral curve with u = 0 appears as a vertical line. The rest of
the integral curves, with p # 0, stay in the interior of qSCTZMM.

As the points x = u = 0 are particularly important, we describe them as follows:

Definition 11.1. Let ' C ®“T"M be the set given in our coordinates by {x = p = 0}.
Let Ny C N be the subsets on which £A > 0. Let N§ = N1 N ¥°S*M. We refer to N
as the “normal set,” with A, being the “incoming normal set” and N _ the “outgoing
normal set.”

Remarks.

1. The reason for the above terminology is as follows: under the flow of the vector field
X a point with A > 0 travels away from 0M, i.e. into the interior (or finite region,
if M was obtained as a compactification). The “c” in N§ stands for “corner.”

2. The manifolds N§ are naturally isomorphic to 9M via the projection map on
qSCT*M_

3. The definition of N does depend on our choice of boundary defining function x.
This is not a matter for concern, as the choice of a scattering metric g gives a
distinguished boundary defining function up to second-order at M (see [16] §6.1),
so that A is well-defined given g.

Since X = X on qSCTZMM, the above description of the flow of X applies to the
perturbed vector field X, restricted to x = 0. We can thus regard Y., as defined on
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qsC ==+

TomM. We now need to extend this definition to (most of) the rest of “*T M. This
is similar to the construction of “scattering coordinates” performed in [4].

As X is homogeneous of degree one in A, W, it is natural to introduce new coordinates
o= A+ |u|2)’%, A =0A, il = op, with (A, ft) € S™', and to study the vector field oX,
which is homogeneous of degree zero. We have

~ _ B B — 1 B _
(11.9) 0X = Ax0x — |i|*05 + ({,0y) + AL 0p — zaymz .95 — AGDs.

The vector field oP is x times a smooth vector field, homogeneous of degree zero in
(A, i1). Furthermore, since dfi/dy and 0fi/dA vanish at L = 0, the coefficient of Op; in
oP is given near x = L = 0 by

Oy

(11.10) x0(q2); "

+ O(xp).
Our restrictions (11.3) on the 9, term in P can be written
a2 = 0 2 (1= [AP)xC®(x,u) + BT = [A)2 C®(x,y) + B2 C(x,v))
Since dfii/dy; = o(8y; + O(?)), (11.10) is just O(x?) + O(xfi) at x = ft = 0. The upshot
is the following lemma, which is crucial for the conjugation argument we use later on.

Lemma 11.2. The linear part of oP(fL) vanishes at x = L = 0.

A vector field that is homogeneous of degree zero in o pushes forward under the
quotient to give a vector field on ¥¢S*M = ¥®°T*M/R*. Let Xg, )~(g, Ps denote the
vector fields obtained in this way from oX, oX, and oP. (In our local coordinates, the
quotient operation corresponds to dropping 0, terms.)

Proposition 11.3. In coordinates (x,y, i), the linear part of Xs in (x,fi) near N§ C
BCS*M is

+x0x = fi- 0 + ([, 0y) +xf(y) - 0y
with fi(y) € C*(0M) for all .

Proof. In coordinates (x,y, fi) near A = +1,
~ _ _ _ - 1 _
Xs = Mxdx — |[*dx + (i, 0y) + AfL- 0 — zaymlz " 0n
with A = (1 — |ﬁ|2)17 Linearizing gives
+x0y & i+ + ([, Oy).

Equation (11.2) shows that the coefficient of 9, in Ps is O(x?) and the coefficient of
0y is O(x). Lemma 11.2 shows that the coefficient of 9; vanishes to second order in

(x,i1) at x = L = 0. So the only term in Pg contributing to the linearization of Xg is
O(x)0y. O
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Among other things, Proposition 11.3 reveals that N{ is unstable and ¢ stable under
Xs.
We now investigate the long-time behavior of the flow of Xs.

Definition 11.4. A maximally extended integral curve of 6X on ®“T"M is said to be
non-trapped forward/backward if
lim x(t) =0.

t—=+o0

A point not in A is said to be non-trapped forward/backward if the integral curve
through it is non-trapped. A point in A\0 with coordinates (x =0,y =yo,0 = 0p,A =
+1,1 = 0) in Ny is said to be non-trapped forward/backward if the point (x = 0,y =
Y0,0 = 0,A = +1,{i = 0) € N is not in the closure of any forward-/backward-trapped
integral curves.

Let 71 denote the set of forward-/backward-trapped points in T M.

Definition 11.5. Let
Nioo : BT M\WE UTL) — NE

be given by
p— lim exp(toX)[p].
t—do0
Let
Yioo: T M\(NL UTL) = OM
be given by

p— lim mexp(toX)[pl,
t—+oo
where 1: ®T'"M — M is projection.

Theorem 11.6. Let X be the bicharacteristic flow on FT"™M corresponding to a Hamil-
tonian of the form

(11.11)

1
53 (P +xrw)5 T W) € XXX (%) + ARCE(x,y) + 12 €2 x, ).
Then

(i) Nioo and Yioo are smooth maps.
ii) If we let CS be the submanifold of B¢S*M given by
+

cs = {x2+|ﬁ|2:e,7\ > o}

then for € sufficiently small, C% is a fibration over OM with projection map Y too,
and every integral curve of oX which is not trapped forward/backward passes through
Cs;

(i) The sets TL\NS are closed subsets of ¥¢S*M\NE.
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Remark. The class of Hamiltonians we allow is of course designed to include scattering
metrics. On R™, it differs slightly from the principal symbols allowed in [4], which are
not required to be polyhomogeneous at 0M; the conditions on 1 in (11.11) are stronger
than those of [4] in the A? term and weaker (by an epsilon) in the other two terms.

Proof.

(i) Smoothness of N4, will follow from smoothness of Y1, as Yie = MNiw. By
homogeneity of 0X, to show smoothness of Y, it suffices to show that Y., is
smooth on ®¢S*M\ (N1 UTL). As Xs is nonsingular except at N'¢ and is odd in the
fiber variables, it suffices to prove that Y, is smooth in a neighborhood of N€.
Proposition 11.3 shows that in such a neighborhood,

Xs = —x0x — fi - 0g + ([, 8y) + O(x)dy + O(x* + {i?).

By a linearization theorem of Sternberg [26] (or really a parametrized version
of it, proven by Sell [22]) given any yo € 0M we may replace (x,fi) by smooth
coordinates (X, [t) such that for y in a neighborhood of yg and (x, i) sufficiently
small,

(11.12) Xs = —%05 — fi- 9g + (i, dy) + O(X)dy + O(¥* + )2,

with (X,ft) = (x, ) to first order at A¢. In other words, we can locally change
coordinates so as to linearize the vector field in the X, {t variables.
In the region X # 0, set 0 = [1/X, and use (X, 0,y) as coordinates. In this region,
dx/dt # 0, so we can write the integral curves of Xg with X as parameter:
dy; . - -
= =2 )8 +0(1) + O(x +6°%)

do
E—O.

Ast — oo, x — 01, so lim¢_,,y is given by a finite-time solution to the ODE

(11.13)

(11.13) (with 6 considered to be a parameter) and hence is smooth in yg, 6o, and
the initial point Xg.

At points in ¥S*M\NC where X = 0, we may without loss of generality take
[ #0. Now we set & = (2, ..., ln_1)/I1 and @ = X/[11. Rewriting the flow with
[l as parameter gives

dyy - 3 o
dz‘ — R () + 3R + O(@) + Ol @2 + fin + )
1
(11.14) 371
dd do _0
diy  dpy

Ast — oo, . = 07, so lim¢_,s Yy is given by a finite-time solution to the ODE
(11.14) (with 9, ® considered as parameters) and hence is smooth in yg, 99, @,
and the initial point (fi1)o. This proves the smoothness of Y.
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(ii) By symmetry it suffices to prove that for sufficiently small €, C€ is a fibration over
N€ and that every non-forward-trapped integral curve passes through it.
We can choose € small enough that the set {x? + |}1|2 < 2¢,A < 0} is contained in
a union of coordinate neighborhoods for ¥¢S*M near 9(%°S*M) in which (11.12)
holds and such that

- - _ 1, N
(11.15) 26 + |5 > 2 + [af? > 5 (2 + )

on each of these neighborhoods (the X and [i coordinates may be different on dif-
ferent neighborhoods). Every non-forward-trapped integral curve of Xg in ¥¢S*M
approaches N¢ as t — oo, so to show that every non-forward-trapped integral
curve passes through C¢ we need only show that every integral curve starting in
X2 + |fi|* < € passes through C€ for some t < 0. Equation (11.12) shows that for
any such curve,
4 = (%G + ig)e
(where [i> = 3", ). As hV is bounded above and below, there must exist ¢ > 0
such that
X2 4 |1 = e(x3 + |fio]*)e 2t for t < 0.
Thus by (11.15),
X2+ 1 = ¢/ (G + |io|*)e 2t for t < 0, X2 + |1 < 2e,

so every integral curve passes through C€.

To prove that Y, gives a fibration of C€ over 0M, it suffices, by compactness
of C€, to prove that Y, is a submersion (see [13], II1.5). We can check this locally
in a coordinate patch, and separately on C¢ N{x # 0} and C¢ N {fy # 0} (without
loss of generality, take i = 1). Equation (11.13) in the former case, and (11.14) in
the latter, now shows that 0Y /0y is nonsingular.

(iii) Note that if p € (¥¢S*M)\(N§ U TL), then there is a finite time T 2 0 such that

exp(TXs)[p] € {? +[a” < e, AS 0},
where € is chosen as in the construction of C§ above. Since the flow is smooth for
finite time, there is a neighborhood U of p such that
exp(TXs)[U] € (2 + | < €).

The linearization constructed above shows that 7o N {x? + |ﬁ|2 <e,AS0}=10,s0
that no point in U is trapped forward/backward, hence the complement of 7. is
open.

O

In the case of M = ST = RC(R™) with the Euclidian metric, the maps Yo, simply
take a point (z,1m) € S*R™ to the points +n € S™ . If we perturb the Euclidean metric to
an asymptotically Euclidian metric on R™, every geodesic in R" has a limiting direction
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in SV 1 as t — +o0; these limiting directions are the values of Y., in this more general
case.
The flow of Xg in ¥°S$*M leads us to consider the following “scattering relation” on

NE€.
Definition 11.7. Let S C N°\7_. The scattering relation on S is
Scat(s) =N oo (N3%(S)) € NS

In the example of R™ with an asymptotically Euclidian metric, the relation Scat takes
a set of directions to all the directions which can “scatter into the set,” i.e. all points
in S™1 which are asymptotic directions as t — —oo of geodesics which asymptotically
point in directions in S as t— 4o0. If the metric is Euclidean, the scattering relation is
particularly simple: 7t(Scat(S)) = —nt(S) (where — denotes the antipodal map).

Note that Scat(S) contains all the points in N§ that can be reached from S by geo-
desic flow at time 7t in 0M. The time-7t geodesic flow on the boundary was previously
considered by Melrose and Zworski [18], who showed that the scattering matrix for a
scattering metric is a Fourier integral operator associated to this relation. The relation
Scat is more complicated, however, as it is affected by geodesics through the interior as
well as those in the boundary.

Proposition 11.8. The relation Scat takes closed sets to closed sets, and Scat™" takes
open sets to open sets.

Proof. Let C€ be chosen as in Theorem 11.6, so that every non-forward-trapped integral
curve passes through it. Then
—1
Scat = (Nfoo|Ci) o (N+oo|Ci) )

i.e. Scat =Y o=, where Y and = are smooth with compact domain.

Let F be a closed set in N'°. Then by continuity of =, Z7'F is closed, and hence by
compactness of C€, compact. Hence by continuity of Y, ScatF is closed.

Let O be an open set in N§. Let Scat '(0) ={p : Scat(p) C O}. Then

(Scat " (0))° == (Y (0))]
By compactness of C€, ('Yq (O))C is compact, so that by continuity of Z, (Scat~'(0))¢
is compact as well. Hence Scat™'(O) is open. O
12. THE MAIN THEOREMS

We are now in a position to state the main theorems of this paper. Morally speaking,
we show that if we interpret the flow of X on ¥¢S*M as geodesic flow at infinite speed,
then the flow of X on CyscM does indeed describe the propagation of gsc wavefront set
for a solution 1 of (10.1).
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Theorem 12.1 (Propagation over the boundary). Let p € (qSCTZMM)" and assume
exp(TX)lp] € (" TopM)°.
Then exp(TX)[p] & WEub(T) iff ¢ WF e (0).

Theorem 12.2 (Propagation into the interior).

1. Letp € B¢S*M\NC be non-backward-trapped and let T > 0. Ifexp(—TX)[N_(p)] €
WF P (0) then p ¢ WF([JTS;&TM]II) for some & > 0.

2. Conversely, let q € N§. If for some neighborhood U of q in ¥°S*M and some
T>0, >0 we have

WEL ST 0 (W) NNZL (q) =0

then exp(—TX)[q] € WF . b(0).

Theorem 12.3 (Propagation into the boundary).
1. Let g € N€. If for some neighborhood U of q in ¥ S*M and some & > 0 we have

WFLS ) 0 (W) NNZL (q) =0

then exp(TX)[q] € WF (s W(T) for all T> 0.
2. Conversely, let p € ¥°S*M\NE be non-forward-trapped. If exp(TX)[Nio(p)] ¢

WF oW (T) then p & WFise™W for some & > 0.

Theorem 12.4 (Scattering across the interior). Let p € N_\{0} have coordinates (x =
0,y =yo,A=—-Ao,u=0). Let q = exp(—7\61X)[p] € N€. If q is not backward-trapped
and

exp(—(T — A7 1)X) [Scat(q)] N WF 45:p(0) = 0
for some T > 7\6] , then p & WF o (T).

Theorem 12.5 (Global propagation into the boundary). Let p € N_\{0} have coordi-
nates (x = 0,y = yo,A = —Ao, 0 = 0). Let q = exp(—Ag‘X)[p] € N¢. If q is not
backward-trapped and
N L () NWF i b(0) = 0
(closure taken in B°¢S*M) then p & WFqscll)(}\E] ).
Part 1 of Theorems 12.2 and 12.3 and Theorem 12.4 are illustrated in Figures 4-6. In

these diagrams M is two-dimensional; this means that we can only draw one dimension
of the fibers of T M.

Remarks.
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asc §* M

gsc o *
S3uM

FI1GURE 4. Theorem 12.2, Part 1.

1. As discussed in §11, if p € (qSCTzMM)O\/\ﬂL then

*

(12.1) exp(TX)[p] € (q“TaMm)°

for all T > 0; if p € NV, then (12.1) holds for T < A(p)~', hence Theorem 12.1
applies to such p, T. In Theorem 12.2, exp(—TX)[q] is defined for ¢ € N§ and T > 0:
recall that the flow on NV reaches the corner in finite (positive) time. Similarly, of
course, exp(TX)[q] in Theorem 12.3 makes sense for ¢ € N€ and T > 0.

. If there are no trapped rays, then given any T>0 and any p € CyscM, Theorems

12.1, 12.2, 12.4, and 12.5 yield a set Gr(p) C (* Ty M)° such that if WF . p(0) N
Gr(p) = 0, then p ¢ WF i W(T). For p € qSCTZMM\N_, Gr(p) is a point in
FTIMM\N . For p € ¥¢S$*M, Gr(p) is a point in V.. For p € N, Gr(p) is either
another point in N (for T < —A(p)™'), a set in ¥°S*M (for T = —A(p)~ "), or a
set in A, determined by the scattering relation (for T> —A(p)~'). In the absence
of complications due to trapped rays, Theorems 12.1-12.5 are thus a complete
propagation result for gsc wavefront set.

. The observations made in the introduction about smoothness of solutions to the

free Schrédinger equation on R' can be recovered from Theorem 12.2: we use a
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qsc g%
S3uM

F1GURE 5. Theorem 12.3, Part 1.

boundary defining function x on S} given by 1/|z| near 3S}. Then e /2 =

e—** As observed in Example 9.3,

WF, e ™ = graph }\d—:,
X

gsc

and Theorem 12.2 predicts that this Cauchy data can only result in a singularity
at time t =A~".

. One of the main results of Craig, Kappeler and Strauss [4] is that if {(0) has no
scattering wavefront set at an inward-pointing normal point in the corner of CscM,
then for all t > 0, P(t) is microlocally smooth along geodesics emanating from
that corner point. As we have seen in Proposition 9.4, gsc wavefront set is, loosely
speaking, a blowup of the sc wavefront set in the corner. In fact the hypotheses
used in [4] imply that WF . (0)N (N1 \0) = 0, hence we can recover the microlocal
smoothness result of [4] from Theorem 12.2. Note, however that significantly weaker
hypotheses on V are allowed in [4] than in this paper.

. The use of WFq”S; 8T+ i) Theorem 12.2, Part 2 and of WF([;SS ) in Theorem 12.3,
Part 1 is indispensable. The latter result, for example, is not true if we replace
WFLse ™ with WF 4 (0) see the remark in §9 following the definition of WF?.
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Scat(q) QSchMM

FI1GURE 6. Theorem 12.4.

6. Theorems 12.3 and 12.2 are trivially equivalent owing to time-reversal symmetry:

if P(t) is a solution to (10.1) then so is P(—t). It will suffice to prove only the first
part of each of these theorems.

The proofs of the above theorems will be deferred to §14. First, we must construct
the symbols of the test operators used in the proofs.

13. SYMBOL CONSTRUCTION

As discussed in §10, we aim to find gsc-operators A such that
(13.1) 0A +i[H, Al

has a symbol which is negative in regions in which we with to prove regularity. In order
to avoid difficulties with Garding inequalities, we will want (13.1) to be minus a sum of
squares plus manageable error terms.

The casual reader may wish to skip ahead to §14, in which the constructions of this
section are used to prove the main theorems, referring back to this section as necessary.

We will construct the following symbols:

1. ap for propagation within (¥**Tjy,)°

2. a4 and a, for propagation out of (qSCTZM)" and into ¥¢S*M
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3. a, and a, for propagation across ¥¢S*M
4. a_ and a_ for propagation out of ¥¢S$*M and back into N_.

The symbols a,, d,, and a_ are time-independent versions of a, a,, and a_ required
for the proof of Theorem 12.5.

First, we set some notation for the remainder of this section. Let H be the Heaviside
step function. Let ¢ be a smooth, non-increasing function on R with

1 1/2
d)(X):{’ ey

0, x>1

We will select a number of small constants €; later on; let ¢i(x) = d(x/€i). Let x(x) be
a smooth, nondecreasing approximation to the Heaviside function

0, x<0
x(x) =
1, x>ey

where €y > 0 is a small constant. We may assume that ¢, x, —¢’(x), and x'(x) are
squares of smooth functions.

Construction of ay. This symbol is the simplest to construct, as we can more or less
use the flowout of a bump-function. Given p € (qschMMjo, let 1 be a non-negative
function on ““T"M that is nonzero on a(n arbitrarily small) neighborhood of p; we may
furthermore assume that 1\ has a smooth square root. For m,1 € R, set

agt(t, q) = (14 1))" ™p(exp(—tX) [a])d1(x) € C®(Ry; ATV (CoeeM))

(this expression in local coordinates makes sense globally because of the presence of the
cutoff ¢1(x)). We use the supersript (m, 1) on ay because we will later think of aj as the
symbol of an element of ‘Jr’qsc (M); a priori, though, it could be the symbol of an element
of lyg;érk k(M) for any k. Note that ag has a square root in Ao, (l-m)/2(FET* N
We now have

-3 —X - ——+A)+0 ot

(0= X)a3 = == m) (2 +2) + 000 a3
as an element of A[+°°’1_m](CqSCM) (we have suppressed the ¢} term because it is sup-
ported away from CqscM). Given any T, we can choose |« sufficiently large and supp
sufficiently small that |o/(1 + t)| > |A| on supp ap for all t € [0, T]; if we then choose the
sign of « opposite to that of L — m and e; sufficiently small, then

(132)  (—0r —X)aft = ({222 ¢ ylrool-mlc M) for t € [0, T],

with Cgm+1)/2,(1+1)/ € ([0, T]; Ao (=m)/2l(C - M)). (As the reader has probably

(m+1)/2,(1+1)/2
0

divined, we will take c to be the symbol of an element of an element of

w(m+1)/2,(1+1)/2(M).)

gsc
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The salient features of ay are the property (13.2), and the fact that

aa(o) 7é 0 at p,
ag(T) # 0 at exp(TX)[pl.

Construction of a; and a;. This construction is trickier than that of ay because X
vanishes on N, so standard constructions do not apply.

Let p € Ny have coordinates (x = 0,y = yo,A = Ao, = 0) (and hence oy = )\51—
recall that o = (A% + |}1|2)Jf). Set

by =x(0— 00+ €2+ at)x(—o + 0o + €2 — Bt)

where &« < 1 < 3 and €2 > €; we choose « and  sufficiently close to 1 that by (t =
00,0 = 0) = 1. The function b is thus supported in a “window” moving toward o = 0
and initially centered at oy, with its leading edge moving a bit more slowly than unit
speed, and its trailing edge a bit faster. Hence

(—0¢ = X)by = (3¢ + (A + O(x))dc) b+

is non-negative for A close to 1. Thus if we choose €3 and e4 sufficiently small (the size
of e4 is dictated by  and B) then ¢3(x)ds(|it|)(—0¢ + Ads)b4 is a sum of squares of
smooth functions.

We let Vo (p’) = d5(d(Y_oo(p’),yo)) where d(-,-) is Riemannian distance in 0M,
and let

QT = 0T s () (|| b HOR)

(note that the H(A) serves only to select one of the two components of the support of
the smooth function that it multiplies). We have Xi_o, = 0, since Y_o, is constant
along integral curves. X¢3(x) = (A + O(X))oﬁlxd)é(x), which is minus a square, when
multiplied by b,. Also

Xa(lr) =o' [A] + O +O(x)| b4l

so that if €3 and €4 are sufficiently small this function times ¢3(x) is minus a square.
We further have

(13.3) X(o™™x\ ™) = o™ ™ 4 Qo™ T,
By the foregoing observations, if 1 < 0 we can write

(13.4) (=0 —X)at = (c(MFIVAHD2)2 L N7 g2

1
with
di,cq € ([0, T; AlMH1/2ME0/2 ¢ M)
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and with c; nonzero where a, is. The point of this symbol construction is that, in
addition to (13.4), we have

(1.|_(0) 7£ 0 at P,
a+(7\51) #0 at exp(7\51X)[p] e NS.
We further set
aft = o™ ™p_oob(0) b3 (x)da (| )H(A)

where

(13.5) b(o) = d(0/eq).

Thus it is not the case that (—0¢ — X)a, is a sum of squares: there will be a negative
term involving Xb(o), and we can write

~ ~ 1)/2,(1+1)/2
(—at—X)aT’l _ (CELer )/2,(1+1)/ )2 + Zd% tg
i
where suppg is contained in an arbitrarily small neighborhood of a the single point

(y=1yo,i=0,0=0) in ®T,M, and &, has the same properties as c; above.

Construction of a, and d,. The construction is again more or less standard, as we
stay away from N, where X is singular; the only issue is the conormal singularity of X
at the whole boundary face ¥*°S*M.

Suppose p € ¥*5*M is not trapped backward. Then given any ex > 0, €y > 0, and
€p > 0, there exists K > 0 such that

eXP(rO'X) [p] S {X < eX) |‘1| < €FL) d(U,Y—oo(p)) < €y}

for r<—K+1. Since 0X is nonsingular for p ¢ N, we can find coordinates (w1,..., W)
on ®T*M, valid in a neighborhood containing both p and exp(—KoX)[p], with w €
RV xRy if p € (¥S*M)° or w € R™2 x R2 if p is in the corner, and such that
w(p) =0, X =y, Wan € oC®(**T"M) is a defining function for ¥*¢S*M, and, in the
corner case, Wan 1 € XC®(™T"M) is a defining function for ®Tyy M.

If p € (B¢S*M)°, set
_ t
al™t =wiwy 4+ K)x(wr + K)x(—wr + e )x(—wi — K + €—)¢5(|(W2, e, W)
t
By choosing €5, we can keep sup o as small as we like on suppx(wi + K)x(—wq +
€ ) Ps(|(wW2,...,W2q)|) (since o is bounded by a multiple of wy,). We require €¢ > sup o;
thus

(w1 + K)x(—wi + ex)bs (| w3, ..., wan) (=81 — X)x (—m K+ ei)

=x(w1 + K)x(—=w1 + ex)ds(|(wa, ..., wan) )X’ <W1 +K— i) (07] - €§])

€t
is the square of a smooth function.
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Of the other terms in (—0; — X)a,, the only one that is not a square is that obtained
by differentiating x(w7 + K). This term, however, has the virtue of being supported in

{x < ex, || < €p,0 < €5,d(y,Y_o(P)) < €y}. The term obtained by differentiating

(K +wj) we denote (cﬁ,“‘*”/z’“*”/z)z; then c, is nonzero where a, is.

Ifpe qSCSZMM, set
_ _ t
al™t = wrMwh ™ (K +wr )x(wr + K)x(—wr + e )x(—wi — K+ e—t]¢5(|(W2, e W2n)l);

the same observations apply as in the interior case.
In either case, a,(0) =0, a, # 0 at p for t > (w; + K)e, and

(136) (_at _ X)a;n,l — (C(()TTLJrU/Z,l/Z)Z 4+ Z eiZ
+ terms supported in {x < ey, |i| < ep,0 < €5,d(y, Y_oo(P)) < €y}.

We also set

~m,l

ag” = wo (Wi + K)x(wr + K)x(—w1 + ex)ds(|(wa, ..., wam)|)

if we have chosen a point p € (¥°S*M)° and

amt =wo MWl T (K 4w )x(wr + K)x(—wr + e )ds (| (wz, ..., wan)])

ifpe qSCS;;MM. As before, we have a, # 0 at p and

(13.7) (=3 —X)amt = (@H/AV2)2 4 32
+ terms supported in {x < ey, |i| < ep,0 < €5,d(y, Y_oo(P)) < €y}.

with ¢, nonzero where a, is.

Construction of a and da . Let g € NS Set Voo(p’) = Pe(d(Yioo(p'),n(q))),
b_(t) =x(—o+yt) withy <1, and

a™! =0 ™" MPoob_d7(x)ds (| H(-A).

If 1>0 then by (13.3), (—0¢ — X)a™! contains a term (C£m+1]/2,(1+1]/2)2 with ¢_ nonzero
m,l

where a_ is. The term in (—0¢ — X)a™" containing (—0¢ — X)b_ is a square provided
€7 and eg are sufficiently small. There are several non-positive terms in (—0¢ — X)a_
obtained from differentiating ¢; and ¢g; these terms are supported in an arbitrarily
small neighborhood of ¢, but away from N©.

We also set
a™' = 0 ™" Mheob(0) b7 (x) b (| H(-A).
where b(0) is again defined by (13.5). Then
(=0, —X)amt = (VR L N g2 4 g

1
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with C_ nonzero where a_ is and with suppg contained in an arbitrarily small neigh-
borhood of the point q but away from N.

14. PROOF OF THE MAIN THEOREMS

Positive-commutator arguments of the type that we use in this section date back
to Hérmander [8], who used similar arguments in the original proof of his theorem on
propagation of singularities for operators of real principal type. Positive-commutator
methods have recently been applied to the time-dependent Schrodinger equation by
Sigal-Soffer [25] in the finite-energy setting, and by Craig, Kappeler, and Strauss [4];
further references on positive-commutator methods in scattering theory can be found in
these two papers. The arguments employed in this section are modeled on those in [4].

Recall that we need only prove part one of each of Theorems 12.2 and 12.3: the
remaining parts follow by time-reversal.

The Cauchy data (0) is in Hg;gJO(M) for some my, ly. By (10.2),

(14.1) Ke € LS, [Re; BH® (M), Hi (M)

qsc

for some (m, 1), i.e. there is a constant C such that

(14.2) (V) |,1 < ClBO) | 1,

for all t € [0,T]. Since HRd (M) C Hg;ck‘q+k(M) and Hid (M) C H‘gg‘é*k(M) for all
k > 0 and all p and q, we may assume that 1 < 0 or 1 > 0, as we please; we can also
take HToo (M) € HIMH(M).

qsc qsc
We will require smooth solutions to the Schrodinger equation in order to carry out

commutator arguments. Thus, given P (0) € H™Y (M), let

qsc
Y (0) = Op (T = $(nx))(1 — ¢(no))) Y(0)
and
P (t) = Kepn (0).
Then P (t) € C®(M) for all t, and by Proposition 7.1 and (14.1),

PYn = ¥ in L2([0, T HERHM)).

qsc

Proof of Theorem 12.1. Let p € (qscTZMM)O and assume

*

exp(TX)fp] € (*“TouM)’

and
P & WE b (0).
Counstruct a%m’m as in §13 such that

(14.3) supp a3™?'(0) N WF . (0) = 0,
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and
(14.4) aZ™?Y(T) # 0 at exp(TX)[pl.

Let A%m*ﬂ = Op((a%m’ﬂ)]i)Op((a%m’u)]?)*. Then Aj is a non-negative self-adjoint
element of Y2™2Y(M) with WF!__Aj =ell Ay = ess supp as.

qsc qgsc

We know by the symbol calculus of Proposition 6.7 that

m+4, 43 m+4, 4+

—3A — i, AF™ = (C, )*(Cy )—E
1 1 1 1 1 1
where CJ772""2 = Op(c)" %) € Wt 22 (M) and E € WAM22(M). Thus by
Lemma 10.1,
s 1.l 2
(14.5)  (A3™Mn(s), bn(s) ) +J 'c?*“*zwn(t) dt
0

= (A3 (0,0 (0)) + | (Ealt) ()t
where ||-|| is L2 norm on M. Thus,

2

1 1
Cr 22y (1) dt

(14.6) L

< —<A%m»2hpn(s),wn(s)>+<A%m’2‘wn(0),wn(0)>+j: (Epn(t), a(t)]at Vs € [0,T)

Now let V.1 be the Hilbert space of distributions with norm
2

T 2
(j )]+
0

Equations (14.6) and (14.2) imply that

14.7) [l , < €m0 i

1
melel )2
G, u(t)|| dt| .

As n— oo, the right-hand side goes to c||1|)(0)||m0’10, so the sequence {1} is bounded in

V. .1.- We extract a weakly-convergent subsequence ;. Since
2

P, — WP in L2([0, T HILH(M)),

VNS Vm+% and

2

Wiy, < elb(0)llmg 1,

with the constant ¢ independent of the choice of P(0) € HTlo(M).

qsc
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Let a%mH’Zl be constructed as in §13 with supp a%m+1,21 C (supp a%‘“'ﬂ)O but still

satisfying (14.3) and (14.4). Again applying Lemma 10.1 gives

2
m+1,1+2
dt

(14.8) (A%m“vz‘wn(s),wn(s))ﬁ: Cy " Zha(t)

S
= (A3 (0) b (0]) + | (Ebn(t) bt
where now E € ‘Pé;'c‘J’]’sz(M) is a different operator from that in (14.5), and WF/_E C

qsc
! 2m+1,21
WF! AZmH12,

We can control the E term in (14.8) by using our estimate (14.7): by Proposition 6.14,
there exists Q € W20(M) such that

gsc

1141 1141
E=(C) 27 2rQ(e ) 4R

with R € ¥ _2°(M). Thus there exists a constant ¢ (we will keep recycling the letter c

gsc
to denote uninteresting constants) such that

Yu € C®(M).

(14.9) sup |(Euw, u)| < clulfy,_

1 )
t€[0,T] +

Applying (14.9) to P, and using (14.7) shows that there is a constant ¢ such that

(14.10) || € brdlat < im0l 1 Vs € 0TI

This constant is independent of Py, (0) € C*°(M). In particular, (14.10) holds for all n.
Using (14.10), we rewrite our basic estimate (14.8) as

2

m—H,H—]j dt

(1411) (AZ12n(5) ls)) + | €3 ()

< (A2 (0), Wn (0)) + clbn (O[3, 1 Vs € 0,T1.

Now let V.11 be the Banach space with norm

1

T 1 2 2 1
([ )+ €7 )| dt) + sup (A3, u(s))
0 ’ 0<s<T
Equation (14.11) yields
1
1412 Il < ((AZ290,900) + 190, )
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This estimate allows us to keep increasing m: we can now plug A%mﬂ’n (

again with
shrunken operator wavefront set) into Lemma 10.1 and use (14.12) to control the re-

mainder term, and we get

2
dt

s 3141
m+35,l+>
G RN

(A3m224 1), b)) + |

0
< e (A 2245(0),9n (0)) + (AF™ 2 (0), 91 (0)) + [ (Ol 1, ) » Vs € 10,T],

i.e.

lly_, <c ((Aém”’”xb(m,w(m}f + (AZ™F22(0),4(0) )

N|=

2

T (0 ||m0,10) |

and so on. In general,
1

(14.13)
Wllv_ ., <c((A%m+k’21¢(0),w(0)>7+ + (A3™24(0),1(0) )

N|=

(o ||mo,1o)

where the norm on the Banach space V_ s is
2

)
(f lu(t) ||m1+\
0

The finiteness of |||,
m+

]

mEE 1] 2 : 2mak.21
ch 2u(t)| dt —I—Oiu£T<Aam+’ u(s), u(s) )
\S\

N|=

gives the desired regularity result for {: Let

k+1
2

Gy = Op(( ZTTL—Hch) )
so that A%m’Lk’ZL = GiGx. Then (14.13) shows that |Gx(T)|)? is finite, so since

exp(TX)[p] € ell Gx(T), exp(TX)p] ¢ WFqsc 2’HZII)( T) for any k, i.e. exp(TX)[p] ¢
WF s $(T), as desired.
The converse regularity statement follows by time-reversal. O

Proof of Theorem 12.2, part 1. The proof of this result comes in two parts: first,
we use the symbol a; to prove regularity in a neighborhood of a point q € N given
regularity at a point in N;. Then we use the symbol a, to prove regularity at a point
p € BES*MA\NC such that N_o (p) = q.

Suppose q € N and exp(—TX)[q] ¢ WF 0 (0). Then we can construct aim’n as
described in §13 so that WF .. (0) Nsuppa(0) = 0, and a(T) # 0 at q. For the
duration of this proof, we are assuming that 1 < 0.

Now let

A2m21 Op(( ZmZI)%) Op(( ZmZL)%) \yml(M)

qsc
Then o
i[’H,Aim’ZI] — (CT+TL+7,1+7) TTL+2>1+2 ZD D;—E
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where E € ‘Pé:g 2H2(M), 3. DID; is a finite sum of elements of ‘Pé;‘c‘+]'21+](M), and
WF/.Cy C WFL A,
Lemma 10.1 yields

gsc

m++ 7 ,H— 3
CTH a2yt

(14.14) (Aim%n(s),wn(s)>+j:

dt+2j IDin ()2t

= (AI24,10) n(0)) + | (En(0) (0t

hence

2
dt

m+;,

(14.15) J GAMERSE TS
0

< (A9, (5] )+ {AZ 2 0) o 00| [(Enlt) ), s € [0,T)

Set :
T 2\ 2
Il =<j )]s+ ) -

m+> 0

Then (14.15) and (14.2) imply that
(14.16) [Wnlly < clbn(0)mg1,-

2
Hence P € V mtd and [[$lly, | < c[[P(0)
m+
2m+1,21 g

TrL-l—z,H—2

C, u(t)

Hmo,lo'

2m+1, 21

as in §13 with supp a?

Now construct af 2m,2Lyo,

C (supp a¥’ Again applying

Lemma 10.1 gives

m+1 1+2

<Aim+]’211|)n(5))1|)n(5)> + J: ' C+ 11)11

dt+2j IDun (V)] dt

= (A2 0) b (0)) + | (Ebae) (1)t

Here the Dy’s and E are not the same as those in (14.14): DfDj; now lies in W2 22141 (M)
and E € ‘Jr’éQCH]’ZHZ(M). We can control the E term:

)
LuEwn(t),wn(tmat O,

by (14.16) and Proposition 6.14. Thus,

2
m—H H—

(14.17) (A2 2, (s),a(s)) +L 2 (1)

< (Aim“%n(own( )+ clbn(0) 2 1o
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Thus if

Iully,,.
1

2
dt) + sup (ATMIIYT), W),
0s<KT

N|—=

T m+1 1+2 2
j ()2 + [T 2w

0

(14.17) yields

0419 bl < (A0 00) 190, )
Now iterate:
Wy, 0 <0 (AT 0) 4 (A29(0),9000) + (00l )

where the norm on V__ | k41 is
mtT—

(LT b0, + '

Since by construction, (12’“ij 2YT) # 0 at q for every k, we have q ¢ WF s b(t). In

fact, since supp a4+ ;é 0 at g for some interval in s, we have q ¢ WFquc Sl

& > 0. Since exp(—TX)[q] € WF 4 (0) is an open condition on T,

1

kil g ] 2 2
Cm—I— H—Zw(t)H dt) + sup <A?|_m+k’2111)(5),11)(5)> )

N|=

0<s<T

1]) for some

q ¢ WFT 5T+5]1p

gsc

for some & > 0. This concludes the proof of regularity at q € N.
To finish off the proof, we now use a, to get regularity at time T at all points p €

BeS*M with N_o(p) = . For convenience, we shift t so that T = §/2; hence the

result just proven reads q ¢ WFqsg/ 2,38/ 2]11). Given p € N:lo(q) construct a2™?2!

§13, with epsilons chosen small enough that the non-positive error terms in (13.6) are

supported in the complement of WFqSéS /2,38/ 2]11) and so that supp a, # 0 at p for t > 8/4.

Let A™! = Op((a™ ) )*Op((a™ ) ). Then Lemma 10.1 yields

as in

m+2,

" 1+21pn

(14.19) (Aﬁm%n(s),wn(s)>+j:

dt+zj [Ecbn (1)t

S

— (AT, (0], (0)) + |

0

(B + P20y (1), n (1) )t

where C, = Op(co), E € W2H2(M), and WF/ ;F N WFRp = 0. Since A vanishes
at t =0, the term (AZ™2W),(0),(0)) is identically zero. The E term is controlled by
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the assumed regularity of 1V, so

m+ +3 2
()

S
j o (t) ||m1+'
0

(IN’ W + E ‘<F2m—+—] 2H(4), >‘dt>

2m+1.21 2m+2.21 etc. and iterate the argument to obtain

Now construct a

kel 2
Iy g )H at+ sup (AZH2p(s) p(s)

0<s<d

1)
[“ o ||m1+'
0

(||ll’ N2 +E ‘<F2m+]’21+11b(t),1p(t)>‘ L. ‘<F2m+k+1 24, >‘dt>

for all k € Z,. All terms on the right are finite for all k. Thus since a, # 0 at p for

t > 8/4, we have p ¢ WF([fS/C4’5]11), hence in our original time coordinate,

p ¢ WF(lﬁsgé/4,T+5/2]w’
as desired. 0

Proof of Theorem 12.3, part 1. It will suffice to prove that q ¢ WF . (t) for t
sufficiently small: since WF . is closed, some neighborhood of ¢ in PT3mM is then
absent from WF ,(t) as well, and in particular, exp(eX)[q] ¢ WF . b(e) for some
€ > 0; Theorem 12.1 will suffice to complete the proof.

We can take 1 > 0 for the duration of this proof.

We can construct a?™? as in §13 such that the non-positive terms in (—9; — X)a_

are supported in the complement of WF(;S ’5]11). Now let

AZle Op(( ZmZI) ) Op(( ZmZI)%)

and C_ = Op(c_). The positive commutator argument works just like the preceding
ones. U

Proof of Theorem 12.4. No further positive commutator arguments are required:
Theorem 12.4 is a corollary of Theorems 12.1, 12.2, and 12.3.

We have assumed that the corner point exp(—}\g]X)[‘p] is not backward-trapped.
Hence, by Theorem 11.6, there is a neighborhood O of this point in N° such that
O N7~ =0. By Theorem 11.6 and since WF . is closed, we can further assume that

qsc
exp(—(T — Ay 1)X) [Scat(0)] N WF 4 h(0) = 0.
Now applying the first part of Theorem 12.2 tells us that
(14.20) N~ [Scat(O)]
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1
is disjoint from WFEITSc Ao BT +5]1]) for some 6 > 0. By definition of Scat, the set
(14.20) contains N +00(O]. Thus we may apply Theorem 12.3 to conclude that p ¢

WE o b (T). O

Proof of Theorem 12.5. This proof is essentially a combination of those of Theo-
rems 12.2 and 12.3. First, let p’ be any point in Scat(q). By our wavefront assumption
and by Theorems 12.1 and 12.2, we can construct a symbol (~1T’l with dT’l # 0 at p’
and supp (11’“’1 N WF([SS’S]II) = () for some & >0 independent of the choice of p’ (recall that

Scat(q) is a closed set). Then using the same notational conventions as above, we have

(a) (AT bis)) + | i H dt+zj IDab(t)|%at

= (A2, 0),n(0)) + L (B (), (1) dt - jo (G212 Ty ) () Y,

since WF /.G is contained in the complement of WF®®h}, the [§ (G, P)dt term is finite
if s < 6, and the usual iterative argument gives

2

ds+ sup (A3 R2p(s) s) )
0<s<d

m R 4]

)
L ()2, + ' EMHE ()

< (IO 1y + (RE™520(0) (0)) + -+ + (AE™29(0),w(0))

+J5 ‘<G2m+1’21+11|)(8),1|)(8)>‘ 4. ‘<GZm+k—H 20 (s), >‘ds>
0

The <A+11)(0),1|)(0)> terms are finite by our wavefront assumption, and the (Gy,)

terms are finite since suppg N WFE’SC& ]11) = (). Thus supp ay N WFqsc IJ) = (0, hence a

neighborhood of Scat(q) in ®*°S*M is absent from WFqsc 11).

Thus given any p’ € erlo(q), since N_, (p’) € Scat(q) we can construct a symbol d,
nonzero at p such that the non-positive terms in (—9; — X)a, are contained in the com-
plement of WFqSC tl) and such that supp G, is contained in a small enough neighborhood

of N7 (q) that it does not meet WF ¥ (0). Then the same argument as used for a.

shows that supp ¢, N VVF(?SC‘5 = = (). Hence we have shown that

N7 (a) N WFDShy = .

We can now construct the symbol a_ supported in a neighborhood of q such that

suppg N WFQlsc II) (), and use the now-usual argument to obtain q ¢ WFQlsc 11) Since
WF .. is closed, Theorem 12.1 takes care of the rest. O

gsc
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