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ABSTRACT. We consider Dirichlet eigenfunctions uy of the Bunimovich sta-
dium S, satisfying (A — A2)uy = 0. Write S = RU W where R is the central
rectangle and W denotes the “wings,” i.e. the two semicircular regions. It is
a topic of current interest in quantum theory to know whether eigenfunctions
can concentrate in R as A — co. We obtain a lower bound CA~2 on the L?
mass of uy in W, assuming that uy itself is L2-normalized; in other words,
the L2 norm of wy is controlled by A2 times the L? norm in W. Moreover, if
uy is a o(A72) quasimode, the same result holds, while for a o(1) quasimode
we prove that L2 norm of uy is controlled by A% times the L2 norm in W.
We also show that the L2 norm of uy may be controlled by the integral of
w\aNu|2 along 9SNW, where w is a smooth factor on W vanishing at RNW.
These results complement recent work of Burg-Zworski which shows that the
L? norm of uy is controlled by the L2 norm in any pair of strips contained in
R, but adjacent to W.

1. INTRODUCTION

The Bunimovich stadium S is a planar domain given by the union of a rectangle
R={(z,y) |z € [—a,q], y € [-5, 0]} with two “wings,” i.e. the two semicircular
regions centered at (+a,0) with radius # which lie outside R. Geodesic flow in S
(obeying the law of reflection at the boundary) was proved to be ergodic by Buni-
movich [1]. Work of Gérard-Leichtnam [5], later generalized by Zelditch-Zworski
[10], shows that as a consequence the stadium is quantum ergodic. This means that
there is a density one sequence of Dirichlet eigenfunctions which becomes uniformly
distributed; in particular, along this density one sequence the weak limit of the L?
mass distribution becomes uniform. (Quantum ergodicity on boundaryless mani-
folds whose geodesic flow is ergodic was known earlier, by results of Schnirelman
[8], Zelditch [9] and Colin de Verdiere [3].) One can ask whether the entire se-
quence of eigenfunctions becomes uniformly distributed; if so, the domain is called
quantum unique ergodic (QUE). It has been conjectured by Rudnick and Sarnak
that complete surfaces with negative curvature which are classically ergodic are
QUE; this has been proved recently by Lindenstrauss [7] for arithmetic surfaces.!
The Bunimovich stadium, by contrast, is generally believed to be non-QUE; it is

1991 Mathematics Subject Classification. 35Pxx, 58Jxx.

Key words and phrases. Eigenfunctions, quasimodes, stadium, concentration, quantum chaos.

This research was partially supported by a Discovery Grant from the Australian Research
Council (AH) and National Science Foundation grants DMS-0323021 and DMS-0401323 (JW).
NB and JW gratefully acknowledge the hospitality of the Mathematical Sciences Institute of the
Australian National University.

1With one slight caveat, that the eigenfunctions are also eigenfunctions of the Hecke operators.

1



2 NICOLAS BURQ, ANDREW HASSELL, AND JARED WUNSCH

thought that there is a sequence of eigenfunctions that concentrates in the rectan-
gle R. Little is currently understood about the way in which such eigenfunctions
would concentrate, however. For example their (hypothetical) rate of decay outside
R is unclear. The result in the present paper is intended to shed some light on
this question: we show that any sequence of eigenfunctions (or quasimodes) cannot
concentrate very rapidly inside R, by obtaining lower bounds (tending to zero as
A — 00, but only polynomially) on the L? mass inside the wings W.

Let A = —82 — 02 denote the (nonnegative) Laplacian on S with Dirichlet
boundary conditions. We denote by ||| the norm in L?(S), and by dx ¢ the outward
pointing normal derivative of g at 9S. We consider a o(1) Dirichlet quasimode u
for A, by which we mean that we have a sequence A\ = A\, — oo of real numbers
and a corresponding sequence uy € H?(S) satisfying

(A = N)ux = fi,
(1) ux las =0,
uall =1,
where
(2) [fxll = o(1) as A — oc.

We more generally define a O(A~7) or o(A™7) quasimode by modifying the right-
hand side of (2) accordingly. Of course a sequence of eigenfunctions is a o(A~7)
quasimode for any j.

It is easy to see that a O(1) quasimode can be localized to a small rectangle of
the form [v,d] x [—0, 5], where [v, d] is an arbitrary subinterval of [—a, «]; indeed
the family wu(,41/2)x/8 = ¢(x)cos((n + 1/2)wy/B) is (after normalization) such
a quasimode, where ¢ is any nonzero smooth function supported in [v,d]. By
constrast, an o(1) quasimode cannot be so localized: Burqg-Zworski [2] have shown
that the L? norm of uy is controlled by (that is, bounded above by a constant times)
its L2 norm in the union of any two rectangles of the form ([—a,v1] x [—3,3]) U
([v2, @] x [=,0]). In particular, for a o(1) quasimode, the L? mass cannot shrink
to a closed region disjoint from the wings of the stadium as A — oo.

Although the stadium is classically ergodic, there is a codimension one invariant
set for the classical flow, consisting of vertical “bouncing ball” orbits parallel to the
y-axis and within the rectangle R, and the union of these orbits is the most likely
place where localization of eigenfunctions, or more generally o(1) quasimodes, can
occur?. There is a rather convincing plausibility argument in the physics literature
due to Heller and O’Connor [6] which indicates that a density-zero sequence of
eigenfunctions, with eigenvalues ((n + 1/2)7/3)? + O(1), does concentrate to some
extent at these bouncing-ball orbits. The rigorous essence of this argument has
been developed by Donnelly [4] who showed that there are sequences of functions
lying in the range of spectral projectors Ej, (A), where I,, are intervals of the form
[(n+1/2)7/B)? — C,((n + 1/2)7/B3)% + C] which concentrate at the bouncing-
ball orbits.®> On the other hand, the result of Burg-Zworski [2] shows that such
localization cannot be too extreme: the control region must extend to the boundary
of the rectangle.

2The explicit quasimode in the paragraph above concentrates along a subset of these orbits
3This was shown for surfaces without boundary containing a flat cylinder, but the arguments
go through for the stadium.
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Our main result here is that we may in fact push our control region outside the
rectangle altogether and into the wings, in return for a loss, either from restriction
to the boundary, or of powers of A. To state this concisely, it is convenient to
introduce an auxiliary coordinate in the wings given by w = |z| — «; thus w is
nonnegative on the wings and vanishes exactly on the vertical lines RN W.

Theorem 1.1. There is a C > 0, depending only on «/3, such that any family uy
satisfying (1) obeys the estimates

(3) ||fA|\2+/ wloyusPdl > C
oSNW

(4) 1312 + A uallF 2y > €

and

(5) NIl + A sl 20y > C.

Therefore, if uy is a o(1) quasimode, we have for sufficiently large \
1
lw2dnullL2(asnw) > C,
lull 2wy = €A™

(6)

while if uy is a o(A™2) quasimode (e.g. an eigenfunction),
(7) [uall 2wy = CA™2

Note that the results of Theorem 1.1 still leave open the possibility of quasimodes
concentrated along bouncing-ball orbits in the rectangle with o(1) mass in the
wings. They also do not rule out the possibility that all the energy in the wings
may asymptotically concentrate in a boundary layer near R.

2. PRELIMINARIES TO L? ESTIMATES

Our main tool is positive commutator estimates, which we use in the following
form:

Lemma 2.1. Let u be real, equal to zero at 9S, and satisfy (A — A\?*)u = f, where
f is smooth. Then for any real vector field A,

(8) (u, [A = X2, AJu) = ((2Au + (div A)u, f) + /85(3NU)Au dl.

Proof. We integrate twice by parts, using the Dirichlet boundary conditions in the
first instance, to write

(u,[A = N, AJu) = (f, Au) + OnuAudl — (u, Af).
as

Applying Green’s Theorem to the last term now gives two terms: (Au, f)+((div A)u, f).

Since u and [ are real this yields the desired identity. O

We also record here an inequality that will be of use in estimating derivative
terms.

Lemma 2.2. Let u, f be as in Lemma 2.1.
Then for all s > 0, for \ sufficiently large,

IVall* < Co™ > ul|* + A ||£%).
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Proof. We compute

||vu||2=/u§+u§dA
S
:/(Au)udA
S
S

Applying Cauchy-Schwarz to (f,u) gives the estimate. O

3. PROOF OF (3)

It suffices to prove (3) under the assumption that uy, and hence fy, are real, since
we can treat the real and imaginary parts separately. We make this assumption
from now on.

We begin with the standard commutator [A,zd,] = —202. Applying (8) with
A = z0,, and dropping the subscript on uy, we have

(g, ) = —(02u,u) = ([A — X, 20, ]u, u)

9
9) :/ xaxuaNudl+/(2Iazu+U)fdA;
oS

in the last equation we integrated twice by parts, using for a second time the fact
that (A—\2?)u = f as well as the fact that u satisfies Dirichlet boundary conditions,
hence integration by parts produces boundary terms only where derivatives land
on both factors of u.

Now at every boundary point we may decompose x0x into pd; + q0n where 0; is
differentiation tangent to the boundary. Of course J; annihilates u. Now since 0, is
tangent to the upper and bottom sides of the rectangle we find that the boundary
integral in (9) is only over 9SNW. Moreover, as 9, is tangent to the top and bottom
of the circles forming the boundaries of the wings, we have ¢ = O(w) on 9S N W.
Hence we have shown that

(10) || g/ O(w)|aNu|2dz+e/(u2+u§)dA+c/f2 dA.
oSNWwW

We may absorb the €||u,||? term, then apply the Poincaré inequality, and absorb
the €||u||? to obtain

(1) sy <C [ wlowul @+ Clsf
aSNW
which is the first part of our theorem, as we took u to be L?-normalized.

4. PROOF OF (4)

To prove this estimate we start from
12) [wl? <€ [ wilowuldi+Cls®
as

which follows directly from the considerations of the previous section, and estimate
the boundary integral term. We shall obtain upper bounds of the form

2 [ waas s
w
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—

FIGURE 1. The three regions of interest in W.

and
)\4/ u? dA + N[ f||?,
w

thus proving (4) and (5).

We shall perform this estimate in three separate regions in the wing. Region I
is the near-rectangular region, in a boundary layer where w < §A~2. Region II will
be outside the boundary layer, where JA=2 < w < (3/2. Region III will be the far
outer region w > 3/2.

We begin with Region III, far away from the rectangle. In this case we employ
Lemma 2.1 where A is the operator ¢(x)d,, where ¢ is supported where w > 3/4,
say, equal to 1 where w > (3/2, and with d,¢ > 0. Then (8) gives us, with
P=[A,A],

. $OzuOnu < [(Pu, w)| + (o f, u)| + 2(dua, f).
Note that P = —2¢,02, — ¢410,. Thus the LHS is bounded (Ve > 0) by

(= otz )| + ellual® + Cllull 2wy + 1F1)

(where of course C' depends on €). We can add the positive term [g ¢, (9yu)? to
this estimate. Integrating by parts in y gives us

(b (—ttaw = uyy)s u)l + ellusl|* + Clul T2y + I1F17)-

Using the positivity of the integrand, we thus obtain an estimate

(13)

/85 IH¢>3zuaNudl = C9\2”“”%2(W) + C|IfI1? + ellus|?
n

with C' depending on € > 0.

Now we work on Region I, within a O(A~2) boundary layer along the rectangle.
We again apply Lemma 2.1, this time with A = 20, + yd,. Since A is a tangential
vector plus a positive multiple of Oy all along S we obtain

[ @ di < [fu. 18 = X2, Aj)| + 2w, £)]+ 21w, ).
as
Using [A — A2, A] = 2A and Cauchy-Schwarz this becomes

[ 1ol @t < xRl + L 4ul® + €1
oS
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Restricting to S N1 in the integrand, we can estimate w in L by 6A~2, and this
gives

(14) /BS Iw+|<9zvu|2 di < 6C(full® + A2 (11 + [ Aull®)).
n

Using Lemma 2.2, we may estimate ||Aul|* by C(A2||ul|* + ||f]|*). Hence we may
finally write

(15) [ wslowuP @t < sCallulP + 5032 1
oSNt

note that in the above construction, Cy can in fact be chosen independent of 4.
Finally, we estimate in Region II. To begin with, we note that for w > JA=2, we
can estimate wy by 6 ' A\?w?, so we have

/ w|Onu|®dl < C61 Nw? x(y)Oyu Oy dl;

asNIT asNIT

here we take x supported in |y| > (5/20, and equal to —1 for y < —3/10 and +1 for
y > /10, so that x(y)0, is a positive multiple of On plus a tangential component
on 0S5 NII. To estimate further, we employ Lemma 2.1 with the commutant

A= Nwix(y)0,.
The point of this commutant is that we have given ourselves two powers of w which
will “absorb” two integrations by parts in x without any boundary terms at w = 0;
this is crucial since we know of no way to deal with such boundary terms. (On the
other hand, we pay the price of additional powers of A with this gambit.) Thus we
obtain, setting Q = [A, 4],

(16) /BS A2w? x(y)0,u dnudA < ‘(Qu, u)‘ A2 +2(Au, )]

/ w? xy(y)uf
S

We can estimate the second term on the RHS by )\4||u||L2(W +C| £l
Now consider the terms involving the operator (). This is given by
Q=) ( — dwy X0, 0y — 207 X0z, — 2H (w)x0, — wixyy(?y)

where H(-) is the Heaviside step-function, H(w) = 0 for w < 0 and 1 for w > 0.
To treat the terms involving one derivative, e.g. the third term above, we integrate
by parts:

—2)\2/H y) 0 uu—)\Q/H )Xy (y) u?

which is therefore estimated by A?||u/|3 . (- The fourth term is estimated in exactly
the same way.
Thus we are left to estimate

(17) N2 (= 4wy X ()02, 0, w) = 2w, ()02, 0, 0))

Integrating the first term by parts in o and the second term by parts in y gives us
two principal terms

(18) 4)2 (( 1/28 u wi/28yu> <wixy8yu,8yu>)
together with two other terms

4N? (<H(w)au“= u) + <wixyy(y)3yu, “>)
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which are estimated in the same way as the first order terms above. We apply
Cauchy-Schwarz to the first term in (18), while in the second term, which is positive,
we replace wi by w4 (which is larger, up to a constant multiple) and then integrate
by parts again, getting (up to another first-order term estimated as above) an upper
bound for (18) of the form

(19) C’)\Q/Sw+|8mu|2 + wy |9,ul? dA.
Now we integrate by parts again, getting
(20) ON2 /S (w+(_um —wyy)u+ H(w)u uw) dA.
Writing —ug. — uyy = Au + f, we can estimate the integrand of (20) by
M ul + Nowy fu+ X H(w)uug
< Nwy u]* + %()\4w+u2 +wy f?) + CANH (w)u® + eu?.
Hence we may estimate (18), by as

2 2 2
CN 2wy + elluall” + CIIF.

The term 2|(Au, f)| is bounded in a similar manner: By Cauchy-Schwarz we
may estimate it by

CIFIIP + CX wsuy||®
or by
CN2|| 11 + ON? w1,

as we prefer. Our estimate for (19) turns the latter estimate into
2 2 2
CASI + Nl + ella”
On the other hand, treating )\4||w+uy||2 in the same manner gives a bound by
2 2 2
CIAI™ + CNlull e oy + elluall”

On the support of x and at the boundary, x(y)u, is a positive multiple of Onu.
So the upshot is that (16) now gives

(21) /8 ) Nwd x () (Onw)® < CX[ullFs gy + ellus]® + CIL £
and
(22) /8 ) N w? x(y)(@Onu)® < CXullf2w) + elluzl® + CN| £,

At last we can estimate the boundary integral term in (12) by a combination of
(13), (15), and (21)/(22), obtaining

/8 w|onul? dl < 6Col|ull® + CNS|ulZay, + 2eluall” + CIL£IP.
S

and

/é)s w O ul® dl < 5Co|ul® + CA|[ullZa gy + 2elual® + A fII*.
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Here C' depends on €, § but Cy is independent of §. We now combine this with (12).
Absorbing the |ju,|* and |Ju]|® terms on the LHS by taking § and e sufficiently
small, we obtain (4), (5).

5. CONCLUDING REMARKS

The estimates presented here are certainly not optimal. The powers of A appear-
ing in Theorem 1.1 can probably be improved using refinements of the methods used
here, but it seems unlikely that one could achieve an optimal result with them. We
have not, therefore, attempted to obtain the best possible powers of A, but have
rather tried to present a poynomial lower bound on |lux || 2wy with a simple proof.

It would be of great interest to obtain a polynomial lower bound on the L? mass
of uy in a subregion of W which is a positive distance from R (i.e. region III of the
previous section). We do not know whether such a bound holds, but it does not
seem to be obtainable using the methods of this paper; possibly it might yield to
the use of more sophisticated tools from microlocal analysis.
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