
UNC MINISCHOOL PROBLEMS

(1) Show that the kernel of the resolvent (∆− λ2)−1 is given in R3 by

R0(λ) =
eiλ|x−y|

4π|x− y|
.

You can do this by Fourier inversion, directly by verifying an equa-
tion on distributions, or by Fourier transform the spherical means
kernel for the wave equation.

Check directly that this operator is L2-bounded for Imλ > 0.

(2) Check that on Rn, [∆, rDr] = (2/i)∆. Then compute [∆, Dr] while
you’re at it. (Be very careful with the latter part in low dimension,
where some wacky stuff happens owing to the fact that Dr is not a
differential operator with smooth coefficients.)

(3) (Local smoothing for Schrödinger) Let U(t) = e−it∆ denote the
Schrödinger propagator (on Euclidean space or a perturbation thereof).

We claim that T is bounded from L2 to L2(R;H1/2) (“local smooth-
ing”). We will also prove (indeed, prove first) an inhomogeneous
version of the estimate: if

(Dt + ∆)v = χf, v = 0 for t < 0,

then

(1) ‖χv‖L2(R;H1/2) . ‖χf‖L2(R;H−1/2).

(a) First prove the inhomogeneous estimate (1) by Fourier–Laplace
transforming v from t to µ+ iε (with the ε making this conver-
gent) and using the “nontrapping resolvent estimate” between
Sobolev spaces

‖χR(λ)χ‖Hs→Hs+r . 〈λ〉−1+r

on the resulting inhomogeneous Helmholtz equation, and the
Plancherel theorem.

(b) Consider the map T : f 7→ χU(t)f (the solution map for the
Schrödinger IVP). We want to show that T is bounded from L2

to L2(R;H1/2).
Begin by showing that T satisfies this bound iff TT ∗ is bounded
on L2(R;H1/2).
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(c) Compute T ∗ and then show that

(2) TT ∗f(t, •) =

∫ t

0
χU(t− s)χf(s, •) ds.

(d) Split the integral in (2) into the pieces where s ≷ t and show
that each of these pieces solves an inhomogeneous Schrödinger
equation. Conclude from our inhomogeneous estimate that TT ∗

is bounded, and hence T is.
Overall hint: in case of trouble, see Theorem 7.2 of the unpub-

lished book of Dyatlov–Zworski or N. Burq, Smoothing effect for
Schrödinger boundary value problems.

(4) On X = S1×S1 consider a sequence of eigenfunctions of the Lapla-

cian given by eimx+iny with h = (m2 + n2)−1/2. as (m,n) → ∞.
What are the possible defect measures associated to the sequence if
(m,n) = k(m0, n0) for fixed m0, n0 and k ∈ N?

(Very hard:) Do you think you can produce some sequence of
eigenfunctions with defect measure whose projection to the base is
not AC with respect to Lebesgue? Remember that there is multi-
plicity, so you can in general use combinations of the complex expo-
nentials with m2 + n2 = λ2 = h−2 fixed.

(5) Find the defect measure(s) and wavefront set of a Gaussian wavepacket
on Rn :

e(−(x−a)2/2+ix·α)/h

(6) Find the defect measure(s) and wavefront set of the family of highest
weight spherical harmonics Y m

m on S2 (with h2 equal to the reciprocal
of the eigenvalue). You may need to read up on Legendre function
asymptotics. Remark on the differences with the eigenfunctions you
investigated in Problem 4.

(7) Remember that the functional calculus for semiclassical pseudodif-
ferential operators tells us that if P = h2∆ + V is a semiclassical
Schrödinger operator on a compact manifold X, and if χ ∈ C∞c ,

χ(P ) ∈ Ψ−∞

and has principal symbol χ ◦ p (with p = |ξ|2 + V the principal
symbol of P ). Consequently, we can obtain asymptotics for Trχ(P )
by writing it as a quantization.

Finish the proof that this gives the Weyl law for the eigenvalues
Ej of P :

#{Ej ∈ [a, b]} = (2πh)−n
(

Vol(p−1([a, b]) + o(1)
)

by taking χ’s that approximate the function 1[a,b] from above and
below.
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(8) In this problem, we compute resonances (and lack thereof) in some
simple 1d problems. It’s already not so easy.
(a) Consider the semiclassical Schrödinger equation on R1 with po-

tential V = H(x), where H(x) denotes the Heaviside function:

(−h2∂2
x +H(x)− E)u = 0.

Show that for E > 1 there exist “outgoing” solutions corre-
sponding to an incident plane wave of the form:

u(x) =

{
ei
√
Ex/h +Re−i

√
Ex/h x < 0,

T ei
√
E−1x/h x ≥ 0,

for some values of R, T (compute them).
(b) What kind of solutions do we get if E ∈ (0, 1)?
(c) Show that there are no nonzero solutions of the form

u(x) =

{
Ae−i

√
Ex/h x� 0,

Be+i
√
E−1x/h x� 0,

(“outgoing solutions”), even if we let E take on complex values.
(d) Now consider the case where the potential is the indicator func-

tion of the interval [0, 1] (and again E > 1). Here you will have
to define your solution piecewise on (−∞, 0), [0, 1], and (1,∞).
Show that there do exist outgoing solutions for certain complex
values of the spectral parameter E (“resonances”). Approxi-
mately where do these lie as h ↓ 0 and E near the real axis?
(This part may be challenging—it involves an unpleasant tran-
scendental equation for E.)


