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Abstract

For any set A of natural numbers with positive upper Banach density and any k > 1, we show
the existence of an infinite set B ⊂ N and a shift t > 0 such that A− t contains all sums of
m distinct elements from B for all m ∈ {1, . . . , k}. This can be viewed as a density analog of
Hindman’s finite sums theorem. Our proof reveals the natural relationships among infinite
sumsets, the dynamics underpinning arithmetic progressions, and homogeneous spaces of
nilpotent Lie groups.
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1. Introduction

1.1. Infinite sumsets

In 1927, van der Waerden [32] proved a classic result in Ramsey theory: no matter how
one partitions the natural numbers N = {1, 2, 3, . . .} into finitely many pieces, some piece
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contains arbitrarily long arithmetic progressions. Settling a long standing conjecture of Erdős
and Turán, Szemerédi [30] proved in 1975 a density version of van der Waerden’s theorem.
Namely, he showed that any set A ⊂ N whose upper Banach density, meaning

d∗(A) := lim
N→∞

sup

{
|A ∩ {M + 1, . . . ,M +N}|

N
: M ∈ N

}
,

is positive contains arbitrarily long arithmetic progressions.
Around the same time, in a major breakthrough, Hindman [13] settled a conjecture of

Graham and Rothschild showing that no matter how one partitions the natural numbers
into finitely many pieces, some piece always contains an IP-set (also called a finite sums set){

b(i1) + · · ·+ b(im) : m ∈ N, i1 < · · · < im ∈ N
}

(1.1)

for some strictly increasing sequence b : N → N. Erdős [5] then tried to find the underlying
behavior connecting these two results, writing “I have tried to formulate a conjecture which
would be in the same relation to Hindman’s theorem as Szemerédi’s theorem is to van der
Waerden’s.” We believe that our main theorem comes as close as is possible to giving a
density version.

Theorem 1.1. If A ⊂ N has positive upper Banach density then for every k ∈ N there is a
strictly increasing sequence b : N→ N and an integer t ≥ 0 such that{

b(i1) + · · ·+ b(im) : 1 ≤ m ≤ k, i1 < · · · < im ∈ N
}

(1.2)

is a subset of A− t.

The shift is in general necessary: for example, the odd numbers do not contain a con-
figuration of the form (1.2) when k ≥ 2. Furthermore, an example of Straus (published by
others, see for example [14]) exhibits a set with density arbitrarily close to 1 that contains
no shift of an IP-set, explaining the need to curtail m.

The k = 2 case of Theorem 1.1 was proved in our previous work [24]. The methods
used there do not generalize to the setting of Theorem 1.1, which was conjectured in [24,
Conjecture 1.5] and [25, Conjecture 2.4]. Apart from the initial translation of Theorem 1.1
into a dynamical statement (Theorem 1.2), our proof of Theorem 1.1 is new even in the case
k = 2 and gives, in particular, a simpler proof of the main result in [24].

Theorem 1.1 follows a long history of results on infinite sumset configurations in large
subsets of the integers, initiated by various conjectures of Erdős from the late 1970s and
early 1980s (see [8, p. 85], [5, p. 305], [6, pp. 57–58], and [7, p. 105]). Hindman [14, 15] gave
various examples and provided reformulations and refinements of some of these conjectures.
Early results include the existence [29] of sumsets B + C with B ⊂ N infinite and C ⊂ N
finite but arbitrarily large, and the existence [1] of restricted sumset configurations {b + c :
b ∈ B, c ∈ C, b < c} where B and C are infinite. In [4], it was proved that any set of
density strictly greater than 1/2 contains B + C with both B and C infinite. In [28], the
weakest of Erdős’s conjectures was resolved. A more streamlined proof [17] simplified many
of the technical arguments in [28]. The generalization to k-fold sumsets B1 + · · ·+ Bk with
B1, . . . , Bk ⊂ N infinite was proved by the authors in [23]. Recent related results include
work on analogues of Erdős’s conjectures in more general groups [3], work on unrestricted
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sumsets [22, 21], and work on sumsets in the primes [31]. We refer to our survey [25] for
further references and variations.

Our proof of Theorem 1.1 relies on ergodic theory: the first step is to reduce the combi-
natorial problem to a dynamical statement, following Furstenberg’s framework for recasting
combinatorial questions in terms of properties of orbits in a measure preserving system.
Our main dynamical theorem, from which we derive Theorem 1.1 in Section 2, states the
following.

Theorem 1.2. Let T be a homeomorphism of a compact metric space X and let µ be a
T -invariant Borel probability measure on X. For every point a ∈ X with

µ({T na : n ∈ N}) = 1,

for every k ∈ N, and for every open set E ⊂ X with µ(E) > 0, there exist an integer t ≥ 0,
points x1, . . . , xk ∈ X, and a strictly increasing sequence c : N→ N such that

lim
n→∞

T c(n)a = x1, lim
n→∞

T c(n)x1 = x2, . . . , lim
n→∞

T c(n)xk−1 = xk, (1.3)

all hold, and xi ∈ T−tE for all i = 1, . . . , k.

The proof that Theorem 1.2 implies Theorem 1.1 is contained in Section 2 and uses by
now well-understood techniques. The proof of Theorem 1.2 then occupies the rest of the
paper.

1.2. Outline of the proof of Theorem 1.2

We describe the strategy used to prove Theorem 1.2, referring as needed to terminology and
notation introduced later in the paper.

We start by introducing a new class of measures on Xk+1 defined by a recurrence property
which we call progressive (Definition 3.1). We show that if a measure on Xk+1 is progressive,
then any open set U ⊂ Xk+1 with positive measure contains a point (a, x1, . . . , xk) satisfy-
ing (1.3) – we call such points Erdős progressions (Definition 2.1). Thus every progressive
measure is supported on the closure of the set of Erdős progressions.

Our goal, then, is to associate to each system (X,µ, T ) a measure σ on Xk+1 that is
progressive. In the extreme case when the system is a rotation on a compact abelian group,
there is a concise algebraic description of the set of Erdős progressions, which allows for a
simple and explicit construction of a progressive measure (see Example 4.1). More generally,
if X is a nilmanifold and (X,µ, T ) is a nilsystem (see Definition 4.3), we employ a similar
strategy to get an explicit description of a progressive measure as the Haar measure on a
suitable sub-nilmanifold. In the opposite case of weakly mixing systems, we can easily show
that the product measure is progressive due to the randomness inherent in such a system
(see Example 4.2).

Merging ideas from these two contrasting examples, for any system we construct a mea-
sure σ that is a combination of a structured component stemming from its nilfactor, and
a random component which can be controlled using uniformity norms (see Definition 4.5).
Our proof that σ is progressive, which occupies Section 6, includes a novel extension of
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Furstenberg’s multiple recurrence theorem (Theorem 6.3) and leverages unique ergodicity in
nilsystems. Unlike most results in ergodic Ramsey theory, the main difficulty is in reducing
the analysis to the case of nilsystems.
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2. Translation to measure preserving systems

In this section, we show that Theorem 1.1 follows from Theorem 1.2.
By a topological system we mean a pair (X,T ) where X is a compact metric space and

T : X → X is a homeomorphism. Given a compact metric space Y , let M(Y ) denote the
set of all Borel probability measures on Y . By a measure preserving system we mean a tuple
(X,µ, T ) where (X,T ) is a topological system and µ ∈ M(X) is invariant under T . All
spaces are implicitly endowed with their Borel σ-algebras and so we do not include the σ-
algebras in our notation. A measure preserving system is said to be ergodic if any T -invariant
Borel subset of X has either measure 0 or measure 1.

Building on Furstenberg’s dynamical approach to combinatorial problems [12], in our
earlier work [24] we established a connection between sumsets in N of the form (1.2) for
k = 2 and “Erdős progressions” in topological systems. We extend that definition to handle
sumsets of the form (1.2).

Definition 2.1 (cf. [24, Definition 2.1]). Given a topological system (X,T ) and k ∈ N, a
point

(x0, x1, . . . , xk−1, xk) ∈ Xk+1

is a (k + 1)-term Erdős progression if there exists a strictly increasing sequence c : N → N
such that

T c(n)x0 → x1, T c(n)x1 → x2, . . . T c(n)xk−1 → xk (2.1)

as n→∞.

The next lemma demonstrates the connection between (k + 1)-term Erdős progressions
and sumsets.

Lemma 2.2. Fix k ∈ N, a topological system (X,T ), and open sets U1, . . . , Uk ⊂ X. If
there exists an Erdős progression (x0, . . . , xk) ∈ Xk+1 with xj ∈ Uj for j = 1, . . . , k, then
there exists a strictly increasing sequence b : N→ N such that{

b(i1) + · · ·+ b(im) : i1 < · · · < im ∈ N
}
⊂ {n ∈ N : T nx0 ∈ Um}
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for m = 1, . . . , k.

Proof. The special case k = 2 was established in [24, Theorem 2.2], and the proof of the
general case is essentially the same, with only slightly more complicated notation.

Let c : N → N be a strictly increasing sequence such that (2.1) holds as n → ∞. Set
Uj,0 = Uj for all 1 ≤ j ≤ k.

Each Uj,0 is a neighborhood of xj, and so there exists n1 ∈ N such that b(1) := c(n1)
satisfies T b(1)xj−1 ∈ Uj,0 for j = 1, . . . , k. Set Uj,1 := Uj,0 ∩ T−b(1)Uj+1,0 for each j =
1, . . . , k − 1 and set Uk,1 := Uk.

Note that Uj,1 is an open set that contains xj for j = 1, . . . , k and so there exists n2 > n1

such that b(2) := c(n2) satisfies T b(2)xj−1 ∈ Uj,1 for j = 1, . . . , k. We then set Uj,2 :=
Uj,1 ∩ T−b(2)Uj+1,1 for each j = 1, . . . , k − 1 and set Uk,2 := Uk.

We continue inductively, noting that for each i ∈ N and j = 1, . . . , k the open set Uj,i
contains xj, so that we can find some ni > ni−1 such that b(i) := c(ni) satisfies T b(i)xj−1 ∈
Uj,i−1 for j = 1, . . . , k. We then let Uj,i := Uj,i−1 ∩ T−b(i)Uj+1,i−1 for each j = 1, . . . , k − 1
and set Uk,i := Uk.

Let m 6 k and fix i1 < · · · < im in N. We need to verify that T b(i1)+···+b(im)x0 ∈ Um. We
have

T b(im)x0 ∈ U1,im−1 ⊂ U1,im−1

because im − 1 ≥ im−1. Noting that, from the construction, U1,im−1 ⊂ T−b(im−1)U2,im−1−1,
and since im−1 − 1 ≥ im−2, we have

T b(im−1)+b(im)x0 ∈ T b(im−1)U1,im−1 ⊂ U2,im−1−1 ⊂ U2,im−2 .

Proceeding in this manner, we deduce that

T b(im−h)+···+b(im−1)+b(im)x0 ∈ Uh+1,im−h−1

for h = 0, . . . ,m− 1. As Um,0 = Um, the desired result is the case h = m− 1.

To connect Lemma 2.2 to Theorem 1.1, we use a version of Furstenberg’s correspondence
principle.

Theorem 2.3 (Correspondence principle, cf. [11, 12]). Given a set A ⊂ N with positive
upper Banach density, there exists a measure preserving system (X,µ, T ), a point a ∈ X
with µ({T na : n ∈ N}) = 1, and an open set E ⊂ X such that A = {n ∈ N : T na ∈ E} and
µ(E) > 0.

Throughout we work with invertible measure preserving transformations, but for our com-
binatorial conclusions, we need the measure to be supported on the forward orbit closure
of a. This explains the slight differences in the formulation of the correspondence princi-
ple from those used to prove density regularity of finite configurations, such as arithmetic
progressions.

Using Theorem 2.3 and Lemma 2.2, we can quickly derive Theorem 1.1 from Theorem 1.2.

Proof that Theorem 1.2 implies Theorem 1.1. Suppose A ⊂ N has positive upper Banach
density. Invoking Theorem 2.3, we find a system (X,µ, T ), a point a ∈ X, and a open set
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E ⊂ X with µ(E) > 0 and such that A = {n ∈ N : T na ∈ E} and µ({T na : n ∈ N}) = 1.
Fix k ∈ N. Theorem 1.2 gives an integer t ≥ 0, points x1, . . . , xk ∈ X with T txi ∈ E
for each i = 1, . . . , k, and a strictly increasing sequence c : N → N such that (1.3) holds,
which is equivalent to the assertion that (a, x1, . . . , xk) forms an Erdős progression. Setting
Uj = T−tE for all 1 ≤ j ≤ k, the desired conclusion then follows from Lemma 2.2.

We are left with establishing Theorem 1.2. We end this section with a standard argu-
ment reducing Theorem 1.2 to the statement in Theorem 2.4. We start by recalling some
definitions. A Følner sequence in N is a sequence Φ = (ΦN)N∈N of finite nonempty subsets
of N satisfying

lim
N→∞

|(ΦN + 1) ∩ ΦN |
|ΦN |

= 1.

Note that, throughout, although we work with homeomorphisms we only use Følner se-
quences on N. We restrict to such Følner sequences because we must be able to conclude
that the sequence (b(n))n∈N that we construct is a sequence in N and not just in Z. This
necessitates our assumption in Theorems 1.2 and 2.3 that the forward orbit closure of the
point a have full measure. Recall that whenever A ⊂ N has positive upper Banach density,
there is a Følner sequence Φ = (ΦN)N∈N such that the limit

lim
N→∞

|A ∩ ΦN |
|ΦN |

exists and is positive.
Given a measure preserving system (X,µ, T ), a point a ∈ X is generic for µ along a

Følner sequence Φ = (ΦN)N∈N, written a ∈ gen(µ,Φ), if

µ = lim
N→∞

1

|ΦN |
∑
n∈ΦN

δTna,

where δx is the Dirac measure at the point x ∈ X and the limit is taken in the weak*
topology.

Theorem 2.4. Let (X,µ, T ) be an ergodic measure preserving system. For every k ∈ N,
every Følner sequence Φ, every a ∈ gen(µ,Φ), and every open set E ⊂ X with µ(E) > 0,
there exists an integer t ≥ 0 and an Erdős progression of the form (a, x1, . . . , xk) with
xi ∈ T−tE for i = 1, . . . , k.

Proof that Theorem 2.4 implies Theorem 1.2. Suppose X,T, a, µ, E are as in Theorem 1.2.
Using ergodic decomposition of the measure µ, we can find a T -invariant ergodic measure µ̃
such that µ̃(E) > µ(E) and µ̃({T na : n ∈ N}) = 1. It follows from [12, Proposition 3.9] that
there exists a Følner sequence Φ in N such that a ∈ gen(µ̃,Φ).

By Theorem 2.4, for each k ∈ N there exist an Erdős progression (a, x1, . . . , xk) and
an integer t ≥ 0 such that xi ∈ T−tE for i = 1, . . . , k. Therefore, there exists a strictly
increasing sequence c : N→ N such that (1.3) holds.

The proof of Theorem 2.4 occupies the rest of the paper.
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3. A variation on recurrence in Xk+1

Starting with this section, we depart significantly from earlier approaches [28, 17, 23, 24] to
similar problems.

Fix a topological system (X,T ). If (a, x1, . . . , xk) is an Erdős progression and Uj is
a neighborhood of xj for 1 ≤ j ≤ k, then there is n ∈ N such that a ∈ T−nU1 and
xj ∈ Uj ∩ T−nUj+1 for 1 ≤ j ≤ k − 1. In Xk+1, we can write this as

(a, x1, . . . , xk−1, xk) ∈ (X × U1 × · · · × Uk−1 × Uk) ∩ T−n∆
(U1 × U2 × · · · × Uk ×X)

where

T∆ = T × T × . . .× T︸ ︷︷ ︸
k+1 times

denotes the product transformation. This leads us to consider when the intersection

(X × U1 × · · · × Uk−1 × Uk) ∩ T−n∆
(U1 × U2 × · · · × Uk ×X)

is nonempty, motivating our next definition.

Definition 3.1. Let (X,T ) be a topological system and k ∈ N. We say that a probability
measure τ ∈M(Xk+1) is progressive if for all open sets U1, . . . , Uk ⊂ X with

τ(X × U1 × · · · × Uk) > 0

there exist infinitely many n ∈ N such that

τ
(
(X × U1 × · · · × Uk−1 × Uk) ∩ T−n∆

(U1 × U2 × · · · × Uk ×X)
)
> 0. (3.1)

The notion of a measure being progressive depends on the value of k but we omit this
from our terminology.

Though we view this as a form of recurrence, it differs from standard notions in several
ways. For example, the measure τ is not assumed to be T∆ invariant, and (3.1) is not of the
form µ(B ∩ S−nB). While usually there is no distinction between requiring a single return
to the set and infinitely many returns, in our setting of distinct sets Ui, one can construct
choices of the sets showing that the two notions are different.

The next proposition shows that a progressive probability measure produces Erdős pro-
gressions.

Proposition 3.2. Fix k ∈ N and let (X,T ) be a topological system. Let a ∈ X, let
U1, . . . , Uk ⊂ X be open sets, and let τ ∈ M(Xk+1) be a progressive measure satisfying
τ({a}×Xk) = 1. If τ(X×U1×· · ·×Uk) > 0, then there is an Erdős progression (a, x1, . . . , xk)
with xj ∈ Uj for all 1 ≤ j ≤ k.

Proof. Let V = U1 × · · · × Uk. Using the assumption that τ is progressive, we can find
c(1) ∈ N such that

τ
(
(X × V ) ∩ T−c(1)

∆
(V ×X)

)
> 0.

Since V is open, it follows that the intersection above contains some point (v0, v1, . . . , vk)
in the support of τ . From the assumption that the closed set {a} × Xk has full measure,
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it follows that v0 = a. Letting V1 ⊂ Xk be an open ball centered at (v1, . . . , vk) with a
sufficiently small radius, we have all the following properties.
• τ({a} × V1) > 0
• diam(V1) ≤ 1

2
diam(V )

• {a} × V1 ⊂ ({a} × V ) ∩ T−c(1)
∆ (V ×X)

We proceed inductively, setting V0 = V and constructing, for each n ∈ N, an open set
Vn ⊂ Xk and a recurrence time c(n) ∈ N satisfying the following properties:

(i) Vn ⊂ Vn−1 and diam(Vn) ≤ 1

2
diam(Vn−1);

(ii) τ(X × Vn) > 0;

(iii) {a} × Vn ⊂ T
−c(n)

∆ (Vn−1 ×X);
(iv) c(n+ 1) > c(n).

The case n = 1 is already established. The inductive step is the same: using (ii) and the
hypotheses on τ we can find c(n+ 1) > c(n) for which

({a} × Vn) ∩ T−c(n+1)
∆

(Vn ×X)

has positive τ measure. Since Vn is open, it follows that there exists a point in this intersection
that belongs to the support of τ . By intersecting a small ball around that point with {a}×Xk,
we can find an open set Vn+1 ⊂ Xk satisfying properties (i)–(iii).

We now produce the desired Erdős progression. Using property (i), the intersection

∞⋂
n=1

{a} × Vn

is a singleton. Calling this point (a, x1, . . . , xk), then property (iii) gives that

T c(n)
∆

(a, x1, . . . , xk−1) ∈ Vn−1

for all n ∈ N. It thus follows that

lim
n→∞

T c(n)
∆

(a, x1, . . . , xk−1) = (x1, x2, . . . , xk),

as desired.

We remark that the Erdős progression found in the proof of Proposition 3.2 is in the
support of τ . Therefore it follows that the support of τ contains a dense set of Erdős pro-
gressions. In our earlier work [24] we constructed a measure which was not only progressive,
but had the property that almost every x ∈ X3 is an Erdős progression. Due to the reliance
on Proposition 3.2 in the current work, we do not know if the measure we produce has this
stronger property. It would be interesting to know whether the conclusion of Proposition 3.2
can be strengthened to match earlier work.

Using Proposition 3.2, we can now derive Theorem 2.4 from the following result.

Theorem 3.3. Let (X,µ, T ) be an ergodic measure preserving system. For every k ∈ N,
every Følner sequence Φ, every a ∈ gen(µ,Φ), and every open set E ⊂ X with µ(E) > 0,
there exists an integer t ≥ 0 and a progressive measure σ ∈M(Xk+1) such that

σ(X × T−tE × · · · × T−tE) > 0 (3.2)
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and σ({a} ×Xk) = 1.

Proof that Theorem 3.3 implies Theorem 2.4. We apply Proposition 3.2 with Uj = T−tE
for all 1 ≤ j ≤ k and τ = σ. The hypotheses of Theorem 3.3 allow us to conclude from
Proposition 3.2 that there is an Erdős progression (a, x1, . . . , xk) with xj ∈ Uj for all 1 ≤
j ≤ k.

4. Constructing a progressive measure

4.1. Two motivating examples

To motivate our approach to constructing a progressive measure, we consider two special
cases that represent complementary behaviors: irrational rotations and weakly mixing sys-
tems.

Example 4.1. Let X = T = R/Z be the unit circle and let α ∈ R be irrational. The map
T : X → X given by Tx = x+ α mod 1 is ergodic with respect to the Haar measure on T.
In this case, (a, x1, . . . , xk) is an Erdős progression if and only it is an arithmetic progression
in T, meaning that

(a, x1, . . . , xk) = (a, a+ β, . . . , a+ kβ)

for some β ∈ T. In particular, the set of all Erdős progressions starting at a is a subtorus of
Tk+1. Writing σ for the Haar measure on this subtorus, we can describe σ dynamically via
the formula

σ = lim
N→∞

1

N

N∑
n=1

δa × δTna × · · · × δTkna

with the limit taken in the weak* topology. Open sets U1, . . . , Uk ⊂ T satisfy

σ(T× U1 × · · · × Uk) > 0

precisely when there exists β ∈ T with a + iβ ∈ Ui for i = 1, . . . , k. In this case, choosing
an integer n such that nα ≈ β, we have that a+ iβ ∈ Ui ∩ T−nUi+1 for all i = 1, . . . , k − 1.
This in turn implies that

σ
((

T× U1 × · · · × Uk
)
∩ T−n

∆

(
U1 × · · · × Uk × T

))
> 0

showing that σ is progressive.

In view of this example, a natural candidate for σ in the general setting is

σ = lim
N→∞

1

|ΦN |
∑
n∈ΦN

δa × δTna × · · · × δTkna (4.1)

where one would pass to a subsequence of (ΦN)N∈N if necessary to guarantee the existence
of the limit. Unfortunately, even in the complementary case of weakly mixing systems, we
are unable to prove that the measure defined by (4.1) is progressive. It would be interesting
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to know whether it always is. This makes it necessary for us to take a different approach for
weakly mixing systems, illustrated by the following example.

Example 4.2. If (X,µ, T ) is weakly mixing, then we can take σ to be the product measure
σ = δa × µ × · · · × µ ∈ M(Xk+1). To verify that σ is progressive, fix U1, . . . , Uk ⊂ X with
µ(Ui) > 0 for each i. Weak mixing implies each of the sets {n ∈ N : µ(Ui∩T−nUi+1) > 0} has
full density with respect to every Følner sequence. Setting U0 = Uk+1 := X for convenience,
we conclude that{

n ∈ N : σ
(
(U0 × · · · × Uk) ∩ T−n∆

(U1 × · · · × Uk+1)
)
> 0
}

⊃
k⋂
i=0

{n ∈ N : µ(Ui ∩ T−nUi+1) > 0}

has full density with respect to every Følner sequence. This shows that σ is progressive and
hence satisfies the conclusion of Theorem 3.3. In fact, one can prove that for µ × · · · × µ-
almost every (x1, . . . , xk) ∈ Xk the point (a, x1, . . . , xk) is an Erdős progression; when µ is
weakly mixing with respect to T , it follows that µ×· · ·×µ is ergodic with respect to T∆ and
hence almost every point is both generic for and in the support of this measure.

To define σ in general, we construct a measure that combines structured behavior, like
that of Example 4.1, with mixing behavior, like that of Example 4.2. To make this precise,
we use the notion of pronilfactors.

4.2. Pronilfactors

Let (X,µ, T ) and (Y, ν, S) be measure preserving systems. We say that (Y, ν, S) is a factor
of (X,µ, T ) if there exists an almost surely defined and measurable map π : X → Y called
the factor map such that π ◦T = S ◦π holds µ-almost everywhere and πµ = ν. Of particular
importance for us are the factors which are nilsystems.

Definition 4.3 (Nilsystems, pronilsystems). Let G be an s-step nilpotent Lie group and let
Γ ⊂ G be a discrete and cocompact subgroup. The compact manifold X = G/Γ is an s-step
nilmanifold.

The groupG acts onX by left translation, and there is a unique Borel probability measure
µ on X that is invariant under this action, the Haar measure on X. Letting T : X → X
denote left translation by a fixed element of G, the resulting measure preserving system
(X,µ, T ) is called an s-step nilsystem (as usual endowed with the Borel σ-algebra).

An inverse limit of s-step nilsystems is called an s-step pronilsystem.

We note that we can view the inverse limit in the category of measure preserving systems
or in the category of topological dynamical systems, as both describe the same system.

A topological system (X,T ) is uniquely ergodic if there is a unique T -invariant measure. A
pronilsystem is uniquely ergodic if and only if every point is generic for µ along every Følner
sequence. It is a classical result that for all s-step pronilsystems (X,µ, T ) the properties
(i) minimal; (ii) transitive; (iii) ergodic; (iv) uniquely ergodic; are equivalent. (See [20,
Theorem 11, Chapter 11] for a summary and discussion.) Moreover, every orbit closure in a
pronilsystem supports a unique invariant measure (see [27, 26]).
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For each s ∈ N, every ergodic system (X,µ, T ) has a maximal factor that is isomorphic
to an s-step pronilsystem (see [20, Chapter 16]); this system is called the s-step pronilfactor
of (X,µ, T ) and is denoted (Zs,ms, T ). By a standard abuse of notation we use T to denote
the transformation not only in the system but also in the pronilfactor.

4.3. Constructing the measure σ

We are now ready to construct the probability measure σ on Xk+1 that we later show to be
progressive. This is carried out in two steps: first we define a progressive measure on Zk+1

k−1

where (Zk−1,mk−1, T ) is the (k−1)-step pronilfactor of the given system (X,µ, T ), and then
we lift this to a measure on Xk+1.

For the first step, when (X,µ, T ) is a pronilsystem, the measure σ described in (4.1) is
progressive; this follows from Theorem 4.9 below but a direct proof is more involved than
the special case in Example 4.1 of a rotation.

For the second step, we need need to overcome the obstacle that the definition of σ
in (4.1) depends on the single point a ∈ gen(µ,Φ), but the map πs : X → Zs to the s-step
pronilfactor is, a priori, only a measurable map and only defined almost everywhere. To
remedy this issue, we restrict attention to systems where the map π is continuous.

Definition 4.4. We say that (X,µ, T ) has topological pronilfactors if for every s ∈ N, there
is a continuous factor map πs : X → Zs, where (Zs,ms, T ) denotes the s-step pronilfactor of
(X,µ, T ).

Fortunately, it is possible to reduce Theorem 3.3 to the case when (X,µ, T ) has topological
pronilfactors. This maneuver has been used in related situations, such as [19], and was first
adapted to this setting by Host [17]. See [23, Section 5] for a more complete discussion. The
reduction of Theorem 3.3 to the case of topological pronilfactors is proven in the next section

If (Y, ν, S) is a factor of (X,µ, T ) with factor map π : X → Y , then the conditional
expectation of a function of f ∈ L2(µ) onto Y , denoted E(f | Y ), is the unique function in
L2(ν) such that ∫

π−1(B)

f dµ =

∫
B

E(f | Y ) dν

for all Borel measurable sets B ⊂ Y .
Using this, we can define the measure σ.

Definition 4.5. Let (X,µ, T ) be an ergodic system with topological pronilfactors and fix
k ∈ N. Let (Zk−1,mk−1, T ) denote the (k−1)-step pronilfactor of (X,µ, T ) and let πk−1 : X →
Zk−1 denote the corresponding continuous factor map. Given a Følner sequence (ΦN)N∈N
and a ∈ gen(µ,Φ) define the measure ξ ∈M(Zk

k−1) by setting

ξ = lim
N→∞

1

|ΦN |
∑
n∈ΦN

δTn(πk−1a) ⊗ δT 2n(πk−1a) ⊗ · · · ⊗ δTkn(πk−1a). (4.2)
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We then define the measure σ ∈M(Xk+1) via the formula∫
Xk+1

f0 ⊗ f1 ⊗ · · · ⊗ fk dσ = f0(a)

∫
Zk
k−1

E(f1 | Zk−1)⊗ · · · ⊗ E(fk | Zk−1) dξ (4.3)

for all continuous functions f0, f1, . . . , fk : X → C.

The limit in (4.2) exists and is in fact independent of Φ, since (Zk
k−1, T × T 2 × · · · × T k)

is a topological pronilsystem and hence uniquely ergodic. It follows from this that ξ is the
unique measure on M(Zk

k−1) such that (πk−1(a), . . . , πk−1(a)) is a generic point (along Φ)
with respect to the transformation T × T 2 × · · · × T k

We stress that the measures ξ and σ depend on the choice of the point a, as well as the
system (X,µ, T ) and the positive integer k. For ease of reading, we omit these dependencies
from the notation. Note also that while ξ is defined on a k-fold product space indexed by
{1, . . . , k}, the measure σ is defined on a (k+ 1)-fold product space indexed by {0, 1, . . . , k}
and distinguishes the zeroth coordinate.

For a measure τ ∈M(Xk) and each i = 1, . . . , k, we let τi denote the i-th marginal of τ ,
meaning the projection of τ onto the i-th coordinate. Given two measures τ, τ ′ defined on
the same space, we say that τ 6 τ ′ if τ(A) 6 τ ′(A) for all measurable sets A.

Lemma 4.6. Fix an ergodic system (X,µ, T ) with topological pronilfactors, an integer
k ∈ N, a Følner sequence (ΦN)N∈N, and a point a ∈ gen(µ,Φ). For every 1 ≤ i ≤ k, the i-th
marginal σi of the measure σ in Definition 4.5 satisfies σi ≤ iµ.

Proof. Note that ξi, the i-th marginal of the measure ξ from (4.2), is T i-invariant. Since the
system (Zk−1, T ) is uniquely ergodic, we have that ξi 6 imZk−1

and hence∫
Zk−1

g dξi 6 i

∫
Zk−1

g dmZk−1
(4.4)

whenever g : Zk−1 → [0, 1] is Borel measurable. Therefore, for any Borel set A ⊂ X, we have

σi(A) =

∫
Zk−1

E(1A | Zk−1) dξi 6 i

∫
Zk−1

E(1A | Zk−1) dmZk−1
= iµ(A).

We also record the following which follows directly from the definition.

Lemma 4.7. The measure σ defined in Definition 4.5 is invariant under Id×T×T 2×· · ·×T k.

4.4. Outlining the proof of Theorem 3.3

To prove Theorem 3.3, we need to verify that σ has the required properties, which are
captured by the following two theorems.

Theorem 4.8. Fix an ergodic system (X,µ, T ) with topological pronilfactors. Let k ∈ N,
let (ΦN)N∈N be a Følner sequence, let a ∈ gen(µ,Φ), and let σ be the measure described in
Definition 4.5. Then for every E ⊂ X with µ(E) > 0, there is an integer t ≥ 0 such that
σ(X × T−tE × · · · × T−tE) > 0.
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Theorem 4.9. Fix an ergodic system (X,µ, T ) with topological pronilfactors. Let k ∈ N,
let (ΦN)N∈N be a Følner sequence, and let a ∈ gen(µ,Φ). Then the measure σ described in
Definition 4.5 is progressive.

These ingredients, together with the ability to pass to an extension with topological
pronilfactors, combine to give a quick proof of Theorem 3.3.

Proof that Theorems 4.8 and 4.9 together imply Theorem 3.3. Fix an ergodic system (X,µ, T ),
a Følner sequence (ΦN)N∈N, a point a ∈ gen(µ,Φ), and an open set E ⊂ X with µ(E) > 0.
By [23, Proposition 5.7 and Lemma 5.8], there exist an ergodic system (X̃, µ̃, T̃ ) with topo-
logical pronilfactors and a continuous factor map π : X̃ → X such that (X,µ, T ) is a factor of
(X̃, µ̃, T̃ ). Moreover, there is a Følner sequence (Φ̃N)N∈N and ã ∈ gen(µ̃, Φ̃) such that π(ã) =
a. Let σ̃ denote the measure on (X̃)k+1 defined by (4.3) and let Ẽ := π−1(E). Applying
Theorems 4.8 and 4.9 to σ̃, it follows that σ̃ is a progressive measure, that σ̃({ã}×Xk) = 1,
and that there exists an integer t ≥ 0 satisfying σ̃(X̃ × T̃−tẼ × · · · × T̃−tẼ) > 0.

Letting σ to be the push-forward of σ̃ under the map π × π × · · · × π, it follows that σ
satisfies the conclusion of Theorem 3.3.

5. Proof of Theorem 4.8

We are left with proving Theorems 4.8 and 4.9. The proof of the former is given in this
section, whereas the proof of the latter is in Section 6. In both proofs we relate certain
dynamical averages of σ to the Furstenberg joining of (X,µ, T ).

Definition 5.1 (The Furstenberg joining). Given a measure preserving system (X,µ, T )
and k ∈ N, let λ be the Borel probability measure on Xk+1 uniquely determined by∫

Xk+1

f0 ⊗ f1 ⊗ · · · ⊗ fk dλ = lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
X

f0 · T nf1 · · ·T knfk dµ (5.1)

for all f0, f1, . . . , fk ∈ L∞(µ). The measure λ determined this way is called the Furstenberg
joining of (X,µ, T ).

This joining is well defined, as it is shown in [18] that the limit exists and is independent
of the choice of Følner sequence Φ = (ΦN)N∈N.

Theorem 4.8 follows quite quickly from the following theorem and Furstenberg’s multiple
recurrence theorem. In fact, we are able to conclude that

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

σ(X ∩ T−nE ∩ · · · ∩ T−nE) > 0

for every Følner sequence.

Theorem 5.2. Fix an ergodic measure preserving system (X,µ, T ) with topological pronil-
factors, k ∈ N, a Følner sequence (ΦN)N∈N and a ∈ gen(µ,Φ). Let σ be the measure
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described in Definition 4.5. For any g1, . . . , gk ∈ C(X) we have

lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Xk+1

T n
∆

(1⊗ g1 ⊗ · · · ⊗ gk) dσ =

∫
Xk+1

1⊗ g1 ⊗ · · · ⊗ gk dλ (5.2)

where λ is the Furstenberg joining.

Proof that Theorem 5.2 implies Theorem 4.8. Since E ⊂ X is an open set with positive
measure and µ is a Borel measure on the compact metric space X, there exists g ∈ C(X)
with

∫
g dµ > 0 and 0 ≤ g ≤ 1E. Thus∫

Xk+1

T n
∆

(1⊗ 1E ⊗ · · · ⊗ 1E) dσ ≥
∫
Xk+1

T n
∆

(1⊗ g × · · · × g) dσ

for all n ∈ N. Combining this observation with Theorem 5.2 gives that

lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Xk+1

T n
∆

(1⊗ 1E × · · · × 1E) dσ >
∫

1⊗ g ⊗ · · · ⊗ g dλ.

By the definition of λ, this last expression is equal to

lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
X

T ng · · ·T kng dµ

and this is positive by Furstenberg’s multiple recurrence theorem [11, Theorem 11.13].

It remains to prove Theorem 5.2.

Proof of Theorem 5.2. Fix g1, . . . , gk ∈ C(X). Our goal is to establish (5.2). It follows
from [18, Theorem 12.1] that∫

g1 ⊗ · · · ⊗ gk dλ = lim
L→∞

1

|ΦL|
∑
`∈ΦL

∫
Zk−1

T `E(g1 | Zk−1) · · ·T k`E(gk | Zk−1) dmk−1

where (Zk−1,mk−1, T ) is the (k − 1)-step pronilfactor of (X,µ, T ). Combined with (4.3) it
follows that, in order to establish (5.2), it suffices to prove

lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Zk
k−1

T nh1 ⊗ · · · ⊗ T nhk dξ = lim
L→∞

1

|ΦL|
∑
`∈ΦL

∫
Zk−1

T `h1 · · ·T k`hk dmk−1

whenever h1, . . . , hk : Zk−1 → C are bounded and measurable. By a standard approximation
argument and Lemma 4.6 it suffices to establish this when the functions h1, . . . , hk are
continuous, which we henceforth assume. Writing ã = πk−1(a) we have the following from
the definition of ξ.

lim
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Zk
k−1

T nh1 ⊗ · · · ⊗ T nhk dξ

= lim
N→∞

lim
L→∞

1

|ΦN |
∑
n∈ΦN

1

|ΦL|
∑
`∈ΦL

h1(T n+`ã) · · ·hk(T n+k`ã)

(5.3)
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On the other hand, ergodicity of (X,µ, T ) gives ergodicity, and hence unique ergodicity, of
the pronilfactor (Zk−1,mk−1, T ).

lim
L→∞

1

L

L∑
`=1

∫
Zk−1

T `h1 · · ·T k`hk dmk−1

= lim
L→∞

lim
N→∞

1

|ΦL|
∑
`∈ΦL

1

|ΦN |
∑
n∈ΦN

h1(T `+nã) · · ·hk(T k`+nã)

(5.4)

Consider now the commuting nilrotations

S = T × T × · · · × T
R = T × T 2 × · · · × T k

on (Zk−1)k. Together they induce an action of Z2 on Zk
k−1. Set

Y := {SnR`(ã, . . . , ã) : n, ` ∈ Z} ⊂ Zk
k−1

to be the orbit closure of (ã, . . . , ã) ∈ Zkk−1 under S and R. Since (Zk−1,mk−1, T ) is a
pronilsystem, the Z2-system (Y, S,R) is also a pronilsystem and hence is uniquely ergodic [20,
Theorem 17, Chapter 11]. Therefore, there is a unique invariant mean for these averages,
which implies (see for example [2, Lemma 1.1]) that the expressions in (5.3) and (5.4)
coincide, finishing the proof.

6. Proof of Theorem 4.9

6.1. Ingredients in the proof of Theorem 4.9

We are left with proving Theorem 4.9. The main ingredients are the following two theo-
rems. The first – a consequence of Furstenberg’s multiple recurrence theorem – is proved in
Section 6.2. The second is proved in Section 6.4 and uses material about uniformity norms
covered in Section 6.3.

Theorem 6.1. Let (X,T ) be a topological system, let Φ = (ΦN)N∈N be a Følner sequence
in N, and let ν ∈ M(Xk) be T × T 2 × · · · × T k invariant. If G : Xk → [0, 1] is continuous
and satisfies

∫
Xk G dν > 0, then

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Xk

G · T n
∆
G dν > 0.

Theorem 6.2. Fix an ergodic measure preserving system (X,µ, T ) with topological pronil-
factors, k ∈ N, a Følner sequence (ΦN)N∈N, and a point a ∈ gen(µ,Φ). Let σ be the measure
given in Definition 4.5. For any continuous function G : Xk → C we have

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

T n
∆

(G⊗ 1) − 1

|ΦN |
∑
n∈ΦN

T n
∆

(1⊗G)

∥∥∥∥
L2(σ)

= 0.

Using these two theorems we can quickly prove Theorem 4.9.
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Proof that Theorems 6.1 and 6.2 imply Theorem 4.9. Our goal is to show that the measure
σ defined in Definition 4.5 is progressive. Fix open sets U1, . . . , Uk with

σ(X × U1 × · · · × Uk) > 0

and set V = U1 × · · · × Uk. Since V is open and σ(X × V ) > 0, there exists a continuous
function G ∈ C(Xk) such that 0 6 G 6 1V and∫

Xk+1

1⊗G dσ > 0.

Applying Theorem 6.2, we obtain

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

σ
(
(X × V ) ∩ T−n

∆
(V ×X)

)
> lim inf

N→∞

1

|ΦN |
∑
n∈ΦN

∫
Xk+1

(
1⊗G

)
· T n

∆

(
G⊗ 1

)
dσ

= lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

∫
Xk+1

(
1⊗G

)
· T n

∆

(
1⊗G

)
dσ.

Let ν ∈M(Xk) denote the projection of σ to the last k coordinates. In view of Lemma 4.7,
ν is invariant under T × T 2 × · · · × T k and hence we can use Theorem 6.1 to conclude that
the last expression is positive. This shows that σ is progressive and completes the proof.

6.2. An extension of Furstenberg’s multiple recurrence theorem

We derive Theorem 6.1 from the following more general result, which is an extension of
Furstenberg’s multiple recurrence theorem that may be of independent interest.

Given a vector v = (v1, . . . , vk) ∈ Nk, we write Tv = T v1 × · · · × T vk .

Theorem 6.3. Let (X,T ) be a topological system, let u, v ∈ Nk, and let Φ = (ΦN)N∈N be
a Følner-sequence in N. If ν ∈ M(Xk) is Tv-invariant and A1, . . . , Ak ⊂ X are such that
A = A1 × · · · × Ak ⊂ Xk satisfies ν(A) > 0, then

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

ν(A ∩ T−nu A) > 0. (6.1)

When u = v, the conclusion of Theorem 6.3 follows quickly from the mean ergodic
theorem.

The next example shows that in general one cannot drop the assumption that A is a
product set in Theorem 6.3.

Example 6.4. Let T : T→ T be an irrational rotation T : x 7→ x + α and let ν denote the
Haar measure on the subtorus H := {(x, 2x) : x ∈ T} ⊂ T2. With v = (1, 2) and u = (2, 1)
we have that ν is Tv-invariant, but T−nu H = H+ (0, 3nα) is disjoint from H for every n ∈ N.
In particular (6.1) does not hold with A = H.

Consider the case that (X,µ, T ) is a measure preserving system, u = (1, . . . , k), v =
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(1, . . . , 1), and ν is the diagonal measure on Xk, meaning that ν is the push-forward of µ
under the diagonal embedding x 7→ (x, x, . . . , x) of X into Xk. Taking A = B × · · · × B in
the theorem specializes (6.1) to

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

µ(B ∩ T−nB ∩ · · · ∩ T−knB) > 0

which is Furstenberg’s multiple recurrence theorem. We do not, however, give a new proof
of Furstenberg’s theorem, as it is an ingredient in our proof of Theorem 6.3.

When applying Theorem 6.3 to prove Theorem 6.1, we take u = (1, . . . , 1), v = (1, . . . , k);
this interchanges the roles of u and v in Furstenberg’s multiple recurrence.

Proof of Theorem 6.3. Define c = LCM(v1, . . . , vk) to be the least common multiple of
v1, . . . , vk and let wi = c ui

vi
, so that

T−wi
v (X i−1 × Ai ×Xk−i) = T−cu (X i−1 × Ai ×Xk−i).

It follows that

T−cnu A =
k⋂
i=1

T−cnu (X i−1 × Ai ×Xk−i) =
k⋂
i=1

T−win
v (X i−1 × Ai ×Xk−i)

⊃
k⋂
i=i

T−win
v A.

It is clear that

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

ν(A ∩ T−nu A) > lim inf
N→∞

1

|ΦN |
∑
n∈ΦN
c|n

ν(A ∩ T−nu A)

and so taking ΨN = ΦN/c = {n ∈ N : cn ∈ ΦN}, we have

lim inf
N→∞

1

|ΦN |
∑
n∈ΦN

ν(A ∩ T−nu A) > lim inf
N→∞

1

c|ΨN |
∑
n∈ΨN

ν(A ∩ T−cnu A)

> lim inf
N→∞

1

c|ΨN |
∑
n∈ΨN

ν

(
A ∩

k⋂
i=i

T−win
v A

)
as in (6.7). Since ν is Tv-invariant, the last expression is positive by applying Furstenberg’s
multiple recurrence theorem to the system (Xk, ν, Tv).

Proof of Theorem 6.1. Since G : Xk → [0, 1] is continuous and has positive integral, there
exist open sets U1, . . . , Uk and c > 0 such that c ·1U1⊗· · ·⊗1Uk

6 G and ν(U1×· · ·×Uk) > 0.
Applying Theorem 6.3 with u = (1, . . . , 1), v = (1, . . . , k), the conclusion follows.

6.3. Uniformity norms

For the proof of Theorem 6.2 we make use of the structure theory of measure preserving
transformations via uniformity seminorms [18, 19]. Roughly speaking, these seminorms
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capture the idea that functions orthogonal to the pronilfactor do not contribute to multiple
ergodic averages. We use this in the proof of Theorem 6.2 to, roughly speaking, replace the
function G by a function that is measurable with respect to Zk

k−1 without changing the L2(σ)
norm. This reduces the proof of Theorem 6.2 to analyzing the behavior in pronilsystems,
which have additional structure.

Definition 6.5 (Uniformity Norms). Given a measure preserving system (X,µ, T ) and s >
0, the s-step uniformity seminorm ‖f‖Us(X,µ,T ) of a function f ∈ L∞(µ) is defined inductively
as

‖f‖U0(X,µ,T ) =

∫
X

f dµ

‖f‖2s+1

Us+1(X,µ,T ) = lim
H→∞

1

H

H∑
h=1

‖T hf · f‖2s

Us(X,µ,T ).

The fact that the limit always exists and that ‖ · ‖Us(X,µ,T ) defines a seminorm on L∞(µ) for
s > 1 is proven in [18].

The mean ergodic theorem gives

‖f‖2
U1(X,µ,T ) = ‖E(f | I)‖2

2

where I denotes the σ-algebra of invariant sets and so

‖f‖U1(X,µ,T ) =

∣∣∣∣∫
X

f dµ

∣∣∣∣ ,
when the system (X,µ, T ) is ergodic, in agreement with the standard definition. The main
result in [18] states that given an ergodic system (X,µ, T ), for each s > 1, all functions
f ∈ L∞(µ) satisfy

‖f‖Us+1(X,µ,T ) = 0 ⇐⇒ E(f | Zs) = 0, (6.2)

where (Zs,ms, T ) denotes the s-step pronilfactor of (X,µ, T ).

Theorem 6.6. Let (X,µ, T ) be ergodic, let k > 2, let (ΦN)N∈N be a Følner sequence, and
let τ ∈ M(Xk+1) be invariant with respect to the transformation Id × T × T 2 × · · · × T k.
Assume that the marginals τi of τ satisfy τi 6 iµ for all 1 ≤ i ≤ k − 1. Then for any
f1, . . . , fk−1 ∈ L∞(µ) and any bounded sequence b : N→ C, we have

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

b(n) · (1⊗ T nf1 ⊗ · · · ⊗ T nfk−1 ⊗ 1)
∥∥∥
L2(τ)

6 Ck · ‖b‖∞ ·min{‖fi‖Uk(X,µ,T ) : 1 ≤ i ≤ k − 1}
(6.3)

where Ck is a constant depending only on k.

For the proof of Theorem 6.6, we make use of various properties of uniformity seminorms,
which we collect in the following lemma.

Lemma 6.7. Let (X,µ, T ) be a measure preserving system.
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(i) For all k > 1 and f ∈ L∞(µ), we have

‖f ⊗ f‖Uk(X×X,µ×µ,T×T ) 6 ‖f‖2
Uk+1(X,µ,T ).

(ii) For all f ∈ L∞(µ) and all c > 1 and all k > 1 we have that

‖f‖Uk(X,µ,T ) 6 ‖f‖Uk(X,µ,T c),

and for all k > 2 we have that

‖f‖Uk(X,µ,T c) 6 c
k

2k ‖f‖Uk(X,µ,T ). (6.4)

(iii) For any integer k > 1 and integers c1, . . . , ck ≥ 1, there is a constant C, independent of
the system, with the following property: for all f1, . . . , fk ∈ L∞(µ) with ‖fi‖L∞(µ) 6 1
and all Følner sequences (ΦN)N∈N, we have

lim
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

T c1nf1 · · ·T cknfk
∥∥∥
L2(µ)

≤ C min{‖fi‖Uk(X,µ,T ) : 1 6 i 6 k}

(iv) Let k > 2, c ∈ N, and let ρ ∈M(X) be invariant with respect to T c and satisfy

ρ 6 Cµ (6.5)

for some constant C > 0. Then for any f ∈ L∞(µ), we have

‖f‖Uk(X,ρ,T c) 6 C · c
k

2k ‖f‖Uk(X,µ,T ). (6.6)

Proof. Part (i) is proved in the appendix of [10, Equation (A.5)]. Part (ii) is a special case
of [9, Lemma 3.1]. Part (iii) follows by combining [16, Proposition 1] and [9, Lemma 3.1].
Finally, for part (iv), using (6.5) and that ρ is T c-invariant, it follows quickly that

‖f‖2k

Uk(X,ρ,T c) 6 C‖f‖2k

Uk(X,µ,T c),

and so (6.6) follows from (6.4).

We include a short lemma to clarify how to decompose averages over Følner sequences
along residue classes.

Lemma 6.8. Let a(n) be a bounded sequence taking values in a Banach space, let Φ =
(ΦN)N∈N be a Følner sequence in N, let c ∈ N, and let Ψ = (ΨN)N∈N be the Følner sequence
defined by ΨN := ΦN/c. Then

lim sup
N→∞

∥∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

a(n)

∥∥∥∥∥ 6
1

c

c−1∑
j=0

lim sup
N→∞

∥∥∥∥∥ 1

|ΨN |
∑
n∈ΨN

a(cn+ j)

∥∥∥∥∥ .
Proof. Since Φ is a Følner sequence, for every j ∈ N we have

1

|ΦN |

∣∣∣(ΦN − j) ∩ cN
∣∣∣→ 1

c

as N →∞. Hence we have that

1

|ΦN |

∣∣∣∣∣ΦN ∩

(
c−1⋃
j=0

cΨN + j

)∣∣∣∣∣→ 1 and
|ΨN |
|ΦN |

→ 1

c
(6.7)
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as N →∞. If follows that as N →∞, we have that

1

|ΦN |

∥∥∥∥∥∑
n∈ΦN

a(n)

∥∥∥∥∥− 1

|ΦN |

∥∥∥∥∥1

c

c−1∑
j=0

∑
n∈ΨN

a(cn+ j)

∥∥∥∥∥→ 0.

The conclusion is obtained by using the triangle inequality.

On the way to proving Theorem 6.6, we first establish the following related result, corre-
sponding roughly to the case b(n) = 1 in Theorem 6.6.

Theorem 6.9. Let (X,µ, T ) be a measure preserving system, k ∈ N, and let ν ∈ M(Xk)
be invariant under the transformation (T × T 2× · · · × T k). Assume that the marginals νi of
ν satisfy

νi 6 i2µ

for all 1 ≤ i ≤ k. Then for all f1, . . . , fk ∈ L∞(µ) we have

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

(T nf1 ⊗ · · · ⊗ T nfk)
∥∥∥
L2(ν)

6 Dk min{‖fi‖Uk(X,µ,T ) : 1 ≤ i ≤ k} (6.8)

where Dk is a constant depending only on k.

Proof. Let c = LCM(2, . . . , k) be the least common multiple of the first k positive integers
and set ci = c/i for all 1 ≤ i ≤ k. Let Dk be the constant in part (iii) of Lemma 6.7. Set

ΨN = ΦN/c = {n ∈ N : cn ∈ ΦN}

which defines a Følner sequence. Then, in view of Lemma 6.8,

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

T nf1 ⊗ · · · ⊗ T nfk
∥∥∥
L2(ν)

6
1

c

c−1∑
j=0

(
lim sup
N→∞

∥∥∥ 1

|ΨN |
∑
n∈ΨN

T cn+jf1 ⊗ · · · ⊗ T cn+jfk

∥∥∥
L2(ν)

)
and so it suffices to show

lim sup
N→∞

∥∥∥ 1

|ΨN |
∑
n∈ΨN

T cn+jf1 ⊗ · · · ⊗ T cn+jfk

∥∥∥
L2(ν)

≤ Dk min{‖fi‖Uk(X,µ,T ) : 1 6 i 6 k} (6.9)

for each fixed integer j 6 c. For each 1 ≤ i ≤ k, define gi : X
k → C by

gi(x1, . . . , xk) = (T jfi)(xi).

Set S = T × T 2 × · · · × T k and note that

Scingi = 1⊗ · · · ⊗ 1⊗ T cn+jfi ⊗ 1⊗ · · · ⊗ 1

for all n ∈ N. Thus we can rewrite (6.9) as

lim sup
N→∞

∥∥∥ 1

|ΨN |
∑
n∈ΨN

Sc1ng1 · · ·Sckngk
∥∥∥
L2(ν)

≤ Dk min{‖fi‖Uk(X,µ,T ) : 1 6 i 6 k}.
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By part (iii) of Lemma 6.7 applied to the system (Xk, ν, S) there exists C > 0, depending
only on k, such that

lim sup
N→∞

∥∥∥ 1

|ΨN |
∑
n∈ΨN

Sc1ng1 · · ·Sckngk
∥∥∥
L2(ν)

≤ C min{‖gi‖Uk(Xk,ν,S) : 1 6 i 6 k}.

For i = 1, . . . , k, we have

‖gi‖Uk(Xk,ν,S) = ‖T jfi‖Uk(X,νi,T i)

and so the conclusion follows by applying part (iv) of Lemma 6.7.

Lemma 6.10. Let (Y, τ) be a probability space, Φ ⊂ N be a finite set, b : Φ → C, and
(vn)n∈Φ be a collection of vectors in L2(τ). Then∥∥∥∥∥ 1

|Φ|
∑
n∈Φ

b(n)vn

∥∥∥∥∥
2

L2(τ)

6 ‖b‖2
∞ ·

∥∥∥∥∥ 1

|Φ|
∑
n∈Φ

vn ⊗ vn

∥∥∥∥∥
L2(τ×τ)

.

Proof. We expand the square and obtain∥∥∥∥∥ 1

|Φ|
∑
n∈Φ

b(n)vn

∥∥∥∥∥
2

L2(τ)

=
1

|Φ|2
∑
n,m∈Φ

b(n)b(m)

∫
Y

vnvm dτ 6 ‖b‖2
∞ ·

1

|Φ|2
∑
n,m∈Φ

∣∣∣∣∫
Y

vnvm dτ

∣∣∣∣ .
(6.10)

Using the Cauchy-Schwarz inequality, we estimate(
1

|Φ|2
∑
n,m∈Φ

∣∣∣∣∫
Y

vnvm dτ

∣∣∣∣
)2

6
1

|Φ|2
∑
n,m∈Φ

∣∣∣∣∫
Y

vnvm dτ

∣∣∣∣2
=

1

|Φ|2
∑
n,m∈Φ

∫
Y×Y

(
vn ⊗ vn

)
·
(
vm ⊗ vm

)
d(τ × τ)

=

∫
Y×Y

∣∣∣∣∣ 1

|Φ|
∑
n∈Φ

vn ⊗ vn

∣∣∣∣∣
2

d(τ × τ) =

∥∥∥∥∥ 1

|Φ|
∑
n∈Φ

vn ⊗ vn

∥∥∥∥∥
2

L2(τ×τ)

.

Combining this with (6.10), we obtain the conclusion.

Proof of Theorem 6.6. Let ν ∈ (X ×X)k−1 be the pushforward of τ × τ under the map

ϕ : (x0, . . . , xk, y0, . . . , yk) 7→ (x1, y1, x2, y2, . . . , xk−1, yk−1).

Note that ν is invariant under (T × T )× (T 2 × T 2)× · · · × (T k−1 × T k−1) and that each of
the k − 1 marginals νi ∈ M(X ×X) of ν are νi = τi × τi and hence satisfy νi 6 i2(µ × µ)
for i = 1, . . . , k − 1. Applying Theorem 6.9 to the system (X ×X,µ× µ, T × T ) with k − 1
instead of k and fi ⊗ fi instead of fi, it follows that

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

(T × T )n(f1 ⊗ f1)⊗ · · · ⊗ (T × T )n(fk−1 ⊗ fk−1)
∥∥∥
L2(ν)

6 Dk−1 ·min
{∥∥fi ⊗ fi∥∥Uk−1(X×X,µ×µ,T×T )

: 1 ≤ i ≤ k − 1
}
.
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Part (i) of Lemma 6.7 implies that

‖fi ⊗ fi‖Uk−1(X×X,µ×µ,T×T ) 6 ‖fi‖2
Uk(X,µT )

and so we deduce that

lim sup
N→∞

∥∥∥ 1

|ΦN |
∑
n∈ΦN

(T × T )n(f1 ⊗ f1)⊗ · · · ⊗ (T × T )n(fk−1 ⊗ fk−1)
∥∥∥
L2(ν)

6 Dk−1 ·min
{
‖fi‖2

Uk(X,µT ) : 1 ≤ i ≤ k − 1
}
.

(6.11)

Setting

vn = 1⊗ T nf1 ⊗ · · · ⊗ T nfk−1 ⊗ 1 ∈ L2(τ),

we note that

vn ⊗ vn =
(
(T × T )n(f1 ⊗ f1)⊗ · · · ⊗ (T × T )n(fk−1 ⊗ fk−1)

)
◦ ϕ.

Since ν = ϕ∗(τ ×τ), combining Lemma 6.10 (applied to each Φ = ΦN) with (6.11), it follows
that

lim sup
N→∞

∥∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

b(n) · vn

∥∥∥∥∥
2

L2(τ)

6 ‖b‖2
∞ ·Dk−1 ·min

{
‖fi‖2

Uk(X,µT ) : 1 ≤ i ≤ k − 1
}
.

Taking square roots on both sides, we obtain the desired conclusion with Ck =
√
Dk−1.

6.4. Proof of Theorem 6.2

For the proof of Theorem 6.2 we need one more lemma.

Lemma 6.11. Let (X,µ, T ) be an ergodic system, let a ∈ gen(µ,Φ) for some Følner sequence
Φ, and denote by (Zk−1,mk−1, T ) the (k − 1)-step pronilfactor of (X,µ, T ). Assume (Y, S)
is a (k − 1)-step pronilsystem. Then for every g ∈ C(X), y ∈ Y , and F ∈ C(Y ),

lim sup
N→∞

∣∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

g(T na)F (Sny)

∣∣∣∣∣ 6 ∥∥E(g | Zk−1)
∥∥
L1(mk−1)

· ‖F‖∞. (6.12)

We stress that (6.12) requires the function g to be continuous, as we could otherwise
modify it on the orbit of a without changing the right-hand side.

Proof. Pick an increasing sequence (Nj)j∈N of natural numbers such that

lim sup
N→∞

∣∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

g(T na)F (Sny)

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣ 1

|ΦNj
|
∑
n∈ΦNj

g(T na)F (Sny)

∣∣∣∣∣∣ .
By refining (Nj)j∈N if necessary, we can assume that (a, y) is generic along (ΦNj

)j∈N for a
measure ρ on X×Y with respect to T×S. Since (Y, S) is a pronilsystem there is an invariant
measure ν on Y for which y ∈ gen(ν,Φ). Since a ∈ gen(µ,Φ) we have that the first marginal
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of ρ is µ and the second marginal is ν. Letting g̃ = E
(
g | Zk−1) ◦ πk−1, we obtain

lim
j→∞

∣∣∣∣∣∣ 1

|ΦNj
|
∑
n∈ΦNj

g(T na)F (Sny)

∣∣∣∣∣∣
=

∣∣∣∣∫
X×Y

g ⊗ F dρ

∣∣∣∣ 6 ∣∣∣∣∫
X×Y

(g − g̃)⊗ F dρ

∣∣∣∣+

∣∣∣∣∫
X×Y

g̃ ⊗ F dρ

∣∣∣∣ .
Note that ∥∥(g − g̃)⊗ 1

∥∥
Uk(X×Y,ρ,T×S)

=
∥∥(g − g̃)

∥∥
Uk(X,µ,T )

= 0.

On the other hand, since (Y, ν, S) is a (k−1)-step nilsystem and a factor of (X×Y, ρ, T ×S),
the function 1 ⊗ F is measurable with respect to the maximal (k − 1)-step pronilfactor of
(X × Y, ρ, T × S). This shows that the functions (g − g̃) ⊗ 1 and 1 ⊗ F are orthogonal in
L2(ρ), and hence ∫

X×Y
(g − g̃)⊗ F dρ = 0.

We are left with

lim sup
N→∞

∣∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

g(T na)F (Sny)

∣∣∣∣∣ 6
∣∣∣∣∫
X×Y

g̃ ⊗ F dρ

∣∣∣∣
6 ‖F‖∞ ·

∫
X

|g̃| dµ = ‖F‖∞ ·
∫
Zk−1

|E(g | Zk−1)| dmk−1,

and the claim follows.

Proof of Theorem 6.2. By a standard approximation argument, it suffices to show that for
all f1, . . . , fk ∈ C(X) with ‖fi‖∞ 6 1,

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

T n
∆

(f1 ⊗ . . .⊗ fk ⊗ 1) − 1

|ΦN |
∑
n∈ΦN

T n
∆

(1⊗ f1 ⊗ . . .⊗ fk)
∥∥∥∥
L2(σ)

= 0. (6.13)

To ease the notation, we write gi = E(fi | Zk−1) ◦ πk−1 for i = 1, . . . , k. Note that for every
n ∈ N

T n
∆

(f1 ⊗ . . .⊗ fk ⊗ 1) = f1(T na) · T n
∆

(1⊗ f2 ⊗ . . .⊗ fk ⊗ 1)

holds σ-almost everywhere. Using (6.2), we have that ‖fi − gi‖Uk(X,µ,T ) = 0 for each i. In
view of Lemma 4.6, σ satisfies the assumptions of Theorem 6.6, which now implies that

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

f1(T na) · T n
∆

(1⊗ f2 ⊗ . . .⊗ fk ⊗ 1)

− 1

|ΦN |
∑
n∈ΦN

f1(T na) · T n
∆

(1⊗ g2 ⊗ . . .⊗ gk ⊗ 1)

∥∥∥∥
L2(σ)

= 0.
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On the other hand, Theorem 6.9 implies

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

T n
∆

(1⊗ f1 ⊗ . . .⊗ fk) −
1

|ΦN |
∑
n∈ΦN

T n
∆

(1⊗ g1 ⊗ . . .⊗ gk)
∥∥∥∥
L2(σ)

= 0.

This shows that (6.13) is equivalent to

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

f1(T na) · T n
∆

(1⊗ g2 ⊗ . . .⊗ gk ⊗ 1)

− 1

|ΦN |
∑
n∈ΦN

T n
∆

(1⊗ g1 ⊗ . . .⊗ gk)
∥∥∥∥
L2(σ)

= 0.

(6.14)

Using the definition of σ, we can rewrite (6.14) as

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

f1(T na) ·
(
T nE(f2 | Zk−1)⊗ . . .⊗ T nE(fk | Zk−1)⊗ 1

)
− 1

|ΦN |
∑
n∈ΦN

(
T nE(f1 | Zk−1)⊗ . . .⊗ T nE(fk | Zk−1)

)∥∥∥∥
L2(ξ)

= 0,

(6.15)

where ξ is as in (4.2). Fix 1 > ε > 0 and choose h1, . . . , hk ∈ C(Zk−1) such that

‖E(fi | Zk−1)− hi‖L2(mk−1) < ε. (6.16)

As the functions f1, . . . , fk are uniformly bounded by 1, we can assume that the functions
h1, . . . , hk are as well.

To prove (6.15), we establish the following three statements:

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

(
T nE(f1 | Zk−1)⊗ . . .⊗ T nE(fk | Zk−1)

)
− 1

|ΦN |
∑
n∈ΦN

(
T nh1 ⊗ . . .⊗ T nhk

)∥∥∥∥
L2(ξ)

6 k2ε,

(6.17)

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

f1(T na) ·
(
T nE(f2 | Zk−1)⊗ . . .⊗ T nE(fk | Zk−1)⊗ 1

)
− 1

|ΦN |
∑
n∈ΦN

h1(πk−1(T na)) ·
(
T nh2 ⊗ . . .⊗ T nhk ⊗ 1

)∥∥∥∥
L2(ξ)

6 k2ε+
√
ε,

(6.18)

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

h1(πk−1(T na))·(T nh2 ⊗ . . .⊗ T nhk ⊗ 1)

− 1

|ΦN |
∑
n∈ΦN

(T nh1 ⊗ . . .⊗ T nhk)
∥∥∥∥
L2(ξ)

= 0.

(6.19)

Since ε can be taken arbitrarily small, (6.15) follows by combining (6.17), (6.18), and (6.19)

24



and using the triangle inequality.
To prove (6.17) we first combine (6.16) with the fact that mk−1 is T -invariant and (4.4)

to deduce that for every n ∈ N,

‖T nE(fi | Zk−1)− T nhi‖L2(ξi) < ε
√
i,

where ξi is the i-th marginal of ξ. This, in turn, implies that∥∥(T nE(f1 | Zk−1)⊗ . . .⊗ T nE(fk | Zk−1)
)
−
(
T nh1 ⊗ . . .⊗ T nhk

)∥∥
L2(ξ)

6 k2ε

by estimating coordinate-wise, and hence (6.17) follows by averaging.
To prove (6.18) we first note that, by the same argument, we have∥∥∥(T nE(f2 | Zk−1)⊗ . . .⊗T nE(fk | Zk−1)⊗1

)
−
(
T nh2⊗ . . .⊗T nhk⊗1

)∥∥∥
L2(ξ)

6 k2ε. (6.20)

Defining g(x) = f1(x)− h1(πk−1(x)), we then have that

f1(T na)− h1(πk−1(T na)) = g(T na).

Since πk−1 is continuous, the function g is continuous. Multiplying (6.20) by f1(T na) and
using the triangle inequality, we reduce (6.18) to

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

g(T na) ·
(
T nh2 ⊗ · · · ⊗ T nhk ⊗ 1

)∥∥∥∥
L2(ξ)

6
√
ε. (6.21)

To establish (6.21) we use Lemma 6.11. Defining Y = Zk
k−1, S = T × · · · × T , and

F (x1, . . . , xk) = h2(x1) · · ·hk(xk−1), we then have

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

g(T na) ·
(
T nh2 ⊗ · · · ⊗ T nhk ⊗ 1

)∥∥∥∥2

L2(ξ)

6 lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

g(T na) ·
(
T nh2 ⊗ · · · ⊗ T nhk ⊗ 1

)∥∥∥∥
L1(ξ)

6
∫
Y

lim sup
N→∞

∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

g(T na) · F (Sny)

∣∣∣∣dξ(y)

6 sup
y∈Y

lim sup
N→∞

∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

g(T na) · F (Sny)

∣∣∣∣.
Since πk−1 is continuous, the function g is continuous and therefore we can apply Lemma 6.11
to conclude that

lim sup
N→∞

∣∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

(
f1(T na)− h1(πk−1(T na))

)
· F (Sny)

∣∣∣∣∣
6
∥∥E(g | Zk−1)

∥∥
L1(mk−1)

· ‖F‖∞. 6
∥∥E(f1 | Zk−1)− h1

∥∥
L2(mk−1)

· ‖F‖∞ 6 ε,

and the estimate in (6.21) follows.
To finish the proof, we are left with verifying (6.19). For this we use the definition (4.2)
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of ξ and the fact that orbit closures in pronilsystems are uniquely ergodic pronilsystems. We
have

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
n∈ΦN

h1

(
πk−1(T na)

)
· (T nh2 ⊗ · · · ⊗ T nhk ⊗ 1) − 1

|ΦN |
∑
n∈ΦN

(T nh1 ⊗ · · · ⊗ T nhk)
∥∥∥∥2

L2(ξ)

= lim
N→∞

∫
Zk
k−1

∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

h1

(
πk−1(T na)

)
· (T nh2 ⊗ · · · ⊗ T nhk ⊗ 1)

− 1

|ΦN |
∑
n∈ΦN

(T nh1 ⊗ · · · ⊗ T nhk)
∣∣∣∣2 dξ

= lim
N→∞

lim
M→∞

1

|ΦM |
∑
m∈ΦM

∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

h1

(
T n(πk−1a)

)
h2

(
T n+m(πk−1a)

)
· · ·hk

(
T n+(k−1)m(πk−1a)

)
− 1

|ΦN |
∑
n∈ΦN

h1

(
T n+m(πk−1a)

)
· · ·hk

(
T n+km(πk−1a)

)∣∣∣∣2.
Since Zk−1 is a pronilsystem, arguing as at the end of the proof of Theorem 5.2 we can
interchange the order of the limits, and this last expression becomes

lim
M→∞

lim
N→∞

1

|ΦM |
∑
m∈ΦM

∣∣∣∣ 1

|ΦN |
∑
n∈ΦN

h1

(
T n(πk−1a)

)
h2

(
T n+m(πk−1a)

)
. . . hk

(
T n+(k−1)m(πk−1a)

)
− 1

|ΦN |
∑
n∈ΦN

h1

(
T n+m(πk−1a)

)
h1

(
T n+2m(πk−1a)

)
· · ·hk

(
T n+km(πk−1a)

)∣∣∣∣2.
Making the change of variables n 7→ n−m in the second term shows that the two terms are
identical, concluding the proof.
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